
Basics of Machine Learning

Martha White

February 13, 2024

Table of Contents

Notation Reference 4

1 Introduction 8
1.1 A First Step in Machine Learning: Motivating a Probabilistic Formulation . 8
1.2 A Brief Mathematics Refresher . 9
1.3 Structure of the Book . 13

2 Introduction to Probabilistic Modeling 14
2.1 Probability Theory and Random Variables 15
2.2 Defining Distributions . 17

2.2.1 Probability mass functions for discrete random variables 17
2.2.2 Probability density functions for continuous random variables 19

2.3 Multivariate Random Variables . 23
2.3.1 Conditional distributions . 26
2.3.2 Independence of random variables 28

2.4 Expectations and Moments . 30
2.4.1 Properties of expectations and variances 32

2.5 Probability Review Exercises . 33

3 An Introduction to Estimation 35
3.1 Estimating the Expected Value . 35
3.2 Confidence Intervals and Concentration Inequalities 37
3.3 Consistency . 40
3.4 Rate of Convergence and Sample Complexity 41
3.5 Mean-Squared Error and Bias-Variance . 41

4 Introduction to Optimization 45
4.1 Discrete and Continuous Optimization Problems 45
4.2 Stationary Points for Continuous Optimization Problems 46
4.3 Reaching Stationary Points with Gradient Descent 48
4.4 Selecting the Step-size . 51
4.5 Testing for Optimality and Solution Uniqueness 53

5 Formalizing Parameter Estimation 55
5.1 Maximum Likelihood Estimation . 55
5.2 MAP Estimation . 59
5.3 Bayesian Estimation . 64

5.3.1 Using the posterior . 64
5.3.2 Computing the posterior with conjugate priors 66

5.4 Maximum Likelihood for Conditional Distributions 68
5.5 Using Gradient Descent for Parameter Estimation 71

1

6 Stochastic Gradient Descent and Big Data Sets 72
6.1 Stepsize Selection for SGD . 74
6.2 Contrasting Computational Complexity of GD and SGD 75

7 Introduction to Prediction Problems 77
7.1 Supervised Learning Problems . 77

7.1.1 Regression and Classification . 78
7.1.2 Deciding how to formalize the problem 80

7.2 Optimal Classification and Regression Models 81
7.2.1 Examples of costs . 81
7.2.2 Deriving the optimal predictors . 82

7.3 Reducible and Irreducible Error . 84

8 Linear Regression and Polynomial Regression 86
8.1 Maximum Likelihood Formulation . 86
8.2 Linear Regression Solution . 88
8.3 Polynomial Regression: Using Linear Regression to Learn Non-linear Predictors 90

9 Generalization Error and Evaluation of Models 94
9.1 Generalization Error, Overfitting and Underfitting 94
9.2 Estimating Generalization Error with Test Sets 96
9.3 Making Statistically Significant Claims . 98

9.3.1 Computing Confidence Intervals Tests 98
9.3.2 Parametric Tests . 99
9.3.3 How to Choose the Statistical Significance Test 101

10 Regularization and Constraining the Hypothesis Space 103
10.1 Regularization as MAP . 103
10.2 Expectation and Variance for the Regression Solutions 106
10.3 The Bias-Variance Trade-off . 109
10.4 Selecting Models for Deployment . 113

11 Logistic Regression and Linear Classifiers 114
11.1 The Parameterization for Binary Classification 114
11.2 Maximum Likelihood for Logistic Regression 115
11.3 Logistic Regression Learns a Linear Classifier 117
11.4 Issues with Minimizing the Squared Error 119

12 Bayesian Linear Regression 120
12.1 The Posterior Distribution for a Known Noise Variance 120
12.2 The Posterior Distribution for Unknown Noise Variance 121
12.3 The Posterior Predictive Distribution . 123

13 Notes Summary 125

14 Exercise Solutions 129
14.1 Chapter 2 Solutions . 129

14.1.1 Probability Review Exercise Solutions 131

2

A Extra Details on Probabilities 134

Bibliography 137

3

Notation Reference

Set notation

X A generic set of values. For example, X = {0, 1} is the set containing only 0 and 1,
X = [0, 1] is the interval from 0 to 1 and X = R is the set of real numbers. Depending on
occasion, symbols such as A, B, Ω, and others will also be used as sets.

P(X) The power set of X , a set containing all possible subsets of X .

[a, b] Closed interval with a < b, including both a and b.

(a, b) Open interval with a < b, with neither a nor b in the set.

(a, b] Open-closed interval with a < b, including b but not a.

[a, b) Closed-open interval with a < b, including a but not b.

Tuples, Vectors and Matrices
x Unbold lowercase variables are generally scalars.

a1, a2, . . . , am A sequence of m items.

(x1, x2, . . . , xd) A tuple; i.e., an ordered list of d elements. When (x1, x2, . . . , xd) ∈ Rd,
the tuple will be treated as a column vector x = [x1 x2 . . . xd]⊤.

x Bold lowercase variables are vectors. By default, vectors are column vectors.

X Bold uppercase variables are matrices. A matrix X ∈ Rn×d is a two-dimensional array
with n rows and d columns. This bold variable looks like a multivariate random variable,
X, but the random variable is italicized. It will often be clear from context when this is a
multivariate random variable and when it is a matrix.

X⊤ The transpose of the matrix, where we swap the elements around the diagonal of the
matrix. An n× d matrix consisting of n vectors each of dimension d can be expressed as

X = [x1 x2 . . . xn]⊤ .

A vector x is a matrix (a d× 1 matrix), and the transpose similarly flips the orientation: a
row vector becomes a column vector, and a column vector becomes a row vector.

4

⟨a, b⟩ We primarily use the transpose to obtain the dot product between two vectors
a, b ∈ Rd:

⟨a, b⟩ = a⊤b =
d∑

j=1
ajbj .

Function notation
f : X → Y The function is defined on domain X to co-domain Y, taking values x ∈ X
and sending them to f(x) ∈ Y.

df
dx(x) The derivative of a function at x ∈ X , where f : X → R for X ⊂ R.

∇f(x) The gradient of a function at x ∈ X , where f : X → R for X ⊂ Rd. It holds that

∇f(x) =
(

∂f

∂x1
,

∂f

∂x2
, ...,

∂f

∂xd

)⊤
.

mina∈B c(a) The minimum value of a function c across values a in a set B. Note that
this is equivalent to maxa∈B −c(a).

argmina∈B c(a) The item a in set B that produces the minimum value c(a). Note that
this is equivalent to argmaxa∈B −c(a).

c : Rd → R A generic objective function, that we want to minimize, for the learned
variable w. This could be, for example, a loss plus a regularizer.

Random variables and probabilities
X A univariate random variable is written in uppercase.

X The space of values for the random variable.

x Lowercase variable is an instance or outcome, x ∈ X .

X A multivariate random variable is written bold uppercase.

x Lower case bold variable is a multivariate instance, x ∈ X . Note that we use the set X ,
for both univariate and multivariate random variables. We explicitly distinguish between
univariate and multivariate outcomes because it changes whether we use a simple product
or dot products.

N (µ, σ2) A univariate Gaussian distribution, with parameters µ, σ2.

5

∼ indicates that a variable is distributed as e.g., X ∼ N (µ, σ2).

Parameters and estimation

D A data set, typically composed of n elements of multivariate inputs X ∈ Rn×d and
univariate outputs y ∈ Rn or multivariate outputs Y ∈ Rn×m. The data set will also be
referred to as a set of indexed tuples; i.e., D = {(x1, y1), (x2, y2), ..., (xn, yn)}.

F The function class or hypothesis space. Our learning algorithms will be restricted
implicitly to selecting a function from this set. For example, in linear regression, our
function class is F = {f : Rd → R | f(x) = x⊤w for some w ∈ Rd}. We may overload this
and write F = {w ∈ Rd}, since the set of weights defines this function class.

ω The true parameters for the (generalized) linear regression and classification models,
typically with ω ∈ Rd.

w The approximated parameters for the (generalized) linear regression and classification
models, typically with w ∈ Rd.

wMLE(D) When discussing w as the maximum likelihood solution on some data, we
write wMLE(D), to indicate that the variability arises from D.

Norms

∥x∥ A norm on x.

∥x∥2 The ℓ2 norm on a vector, ∥x∥2 =
√∑d

i=1 x2
i . This norm gives the Euclidean distance

from the origin of the coordinate system to x; that is, it is the length of vector x.

∥x∥22 The squared ℓ2 norm on a vector, ∥x∥22 =
∑d

i=1 x2
i .

∥x∥p The general ℓp norm on a vector, ∥x∥p = (
∑d

i=1 |x|
p
i)1/p.

6

Useful formulas and rules

log
(

x

y

)
= log(x)− log(y)

log (xy) = y log(x)
m∑

i=1
ai

ˆ
X

fi(x)p(x)dx =
ˆ

X

m∑
i=1

aifi(x)p(x)dx ▷ Can bring the sum into the integral

d

dx

ˆ
X

f(x)p(x)dx =
ˆ

X

d

dx
f(x)p(x)dx ▷ Can (almost always) bring a derivative

into an integral

7

Chapter 1

Introduction

This book focuses on the fundamentals underlying machine learning. In this chapter, you
will see the basic problem formulation, and why it is that we formalize the problem using
probability. The remainder of the chapter provides a brief refresher of useful background,
and concludes with a brief description of the structure of this book.

1.1 A First Step in Machine Learning: Motivating a Proba-
bilistic Formulation

Machine learning involves a broad range of techniques for learning from data. A central
goal — and the one we largely discuss in this handbook — is prediction. Many techniques
learn a function f : Rd → R that inputs attributes or features about an item, and produces
an output prediction about that item. For example, consider a setting where you would like
to guess or predict the price of a house based on information about that house. You might
have features such as its age, the size of the house and, of course, distance to the nearest
bakery. Without any previous examples of house costs, i.e., without any data, it might be
hard to guess this price. However, imagine you are given a set of house features and the
corresponding selling costs, for houses that sold this year. Let x ∈ Rd be a vector of the
features for a house, in this case x = [x1 x2 x3] =[age, size, distance to bakery] and
the target y = price. If we have 10 examples or instances of previous house prices, we have
a dataset: (x1, y1), . . . , (x10, y10), where (xi, yi) is the feature-price pair for the ith house in
your set of instances. A natural goal is to find a function f that accurately recreates the
data, for example by trying to find a function f that results in a small difference between
the prediction, f(xi), and the actual price, yi, for each house.

We can formalize this as an optimization problem. Imagine we have some space of
possible functions, F , from which we can select our function f . For a simple case, let
us imagine that the function is linear: f(x) = w0 + x1w1 + x2w2 + x3w3 for any w =
[w0 w1 w2 w3] ∈ Rd where w0 is the intercept of the linear function. We can try to find a
function from the class of linear functions that minimizes these squared differences

min
f∈F

10∑
i=1

(f(xi)− yi)2

As we will see later, this optimization problem is simple to solve for linear functions. The
solution is a straight line that tries to best fit the observed targets y. A simple illustration
of such a function, for only one attribute, is depicted in Figure 1.1.

Once we have this function, when we see a new house, we hope that it is similar enough
to the previous houses so that this function adequately predicts its house price. The learned

8

x

y

f x()

(,)x y1 1

(,)x y2 2

e f x y1 1 1= () {

Figure 1.1: An example of a linear function fit to the data set D =
{(1, 1.2) , (2, 2.3) , (3, 2.3) , (4, 3.3)}, with errors sum of squared errors e2

1 + e2
2 + e2

3 + e2
4.

function f interpolates between these 10 points to predict on unseen points. But, a natural
question is, did we interpolate well and is the learned f going to produce an accurate
prediction on new houses? If you want to use this learned function f in practice, you want
to have such a characterization.

In the agnostic development above, it is difficult to answer such questions. We can make
intuitive modifications that we hope will provide more accurate predictions, like extending
the class of functions to complex non-linear functions. But, these functional modifications
still do not help characterize accuracy of the prediction on new houses. Rather, what we
are missing is a notion of confidence. How confident are we in the predictions? Did we
see enough previous houses to be confident about this prediction? What is the source
of variability? How do we deal with variability? All these types of questions require a
probabilistic treatment.

In this book, we start by providing an introduction to probability, to provide a base for
dealing with uncertainty in machine learning. We then return to learning these functions,
once we have the probabilistic tools to better understand how to approach the answers to
these questions. Much of the required mathematical background will involve basic under-
standing of probability and optimization; this book will attempt to provide most of that
required background throughout.

1.2 A Brief Mathematics Refresher
Machine learning can be well-characterized as a field of applied mathematics. To understand
machine learning concepts, it is important to be comfortable with mathematical terminology
and concepts. This requirement can seem like a barrier, since you have to learn the language
of mathematics simultaneously to the machine learning concepts. This added difficulty is
not so uncommon in learning: to learn about Spanish poetry, for example, you may first
have to learn the underlying language (Spanish). If you understand that mathematics is just
a language in which you are not yet proficient—rather than that you have some inherent
inability—then you can embrace this part of machine learning and buckle down and learn
the needed language. And what better way to learn this language than immersion in a
useful and fun topic: machine learning.

9

The key concepts to recall for these notes involve basic set notation, function notation
and calculus basics. Background on probability and statistics is also critical, but will not
be covered in this section, since it has its own dedicated chapter (Chapter 2). After reading
this section, look over the notation section at the beginning of this book, which summarizes
the formulas here, as well as the notation for the book. Some of the definitions in the
notation section will not be addressed in this section, but rather just-in-time when we need
to start using it later in the notes.

We will need to reason about sets of items. For example, a set X = {0, 1} is the set
containing only 0 and 1, X = [0, 1] is the interval from 0 to 1 and X = R is the set of real
numbers. Other symbols, such as Ω and Y, will also be used to denote sets. To write a
discrete (or countable) set of items, we use curly brackets { and }, whereas for a continuous
(or uncountable) set we use the interval notation with square brackets [and].

For sets with multiple dimensions, we need to specify the set for each dimension. For
example, to specify a two-dimensional vector (x, y) with each element in [0, 1], we write

[0, 1]× [0, 1] = [0, 1]2

where [0, 1]2 is a more compact way to write this set. If instead x is from [−10, 10] and y is
from [4, 6.5], then we write [−10, 10]× [4, 6.5]. This all extends to more than two variables,
where if we have (x, y, z) all from [−1, 1], we write [−1, 1] × [−1, 1] × [−1, 1] = [−1, 1]3, or
if they are all simply from the reals, we write that the triplet (vector) is from R3. The two
sets also do not have to be of the same type. For example, y could instead be from {1, 2, 3}
and we would write [−10, 10] × {1, 2, 3}. More generically, we may simply consider some
items from a set X and others from a set Y, where their joint space is X ×Y. For example,
we might have vectors x ∈ X where X = R4 and scalars y ∈ Y where Y = [−1, 1].

We will often use logarithms and exponentials, because they arise due to the probabilistic
formulation we use. We always use base e for the logarithm—distinguished by calling it
ln—since we use it as the inverse for the exponential: f(x) = ex has f−1(y) = ln y where
f−1(ex) = ln(ex) = x. To make it easier to read, we will usually write exp(x) instead of
ex. When we write a function f : X → Y, we say that X is the domain and Y is the
co-domain, where f can only input values x from the domain, and only outputs value f(x)
in the codomain. For these functions, f(x) = ex has f : R → (0,∞) where ex approaches
but does not reach zero, even for very high magnitude negative numbers x. Therefore we
write the open set (0,∞). This set is also written R+, meaning the set of positive numbers.

Exercise 1: What is the domain and co-domain for the function f(y) = ln y? □

There are a few rules to recall for logarithms and exponentials. These include:

ln (ab) = ln(a) + ln(b)

ln
(

a

b

)
= ln(a)− ln(b)

ln
(
ab
)

= b ln(a)

exp(a + b) = exp(a) exp(b)
exp(a)b = exp(ab)

Exercise 2: Show the second logarithm rule above, using the first rule. □

10

Exercise 3: For1 b ∈ N1 = {1, 2, 3, . . .}, prove that exp(a)b = exp(ab) using induction.
Start with the base case b = 1. □

Exercise 4: For b ∈ R, prove that exp(a)b = exp(ab). Hint: use the fact that exp(a)b =
exp(ln(exp(a)b)) because applying the logarithm and then the exponential function does
not change the input. □

We will talk about continuous functions. Recall that a function is called continuous if it
does not have abrupt changes in value, or discontinuities. The functions w2 and w + 5 are
both continuous: you can trace your finger continuously along the lines produced by these
functions. The function

f(w) =

w2 w ∈ [−1, 1]

5 + w w < −1
5− w w > 1

(1.1)

has two discontinuities, one at w = −1 and at w = 1. The function changes from f(1) = 1
and suddenly jumps up to > 5 right after 1. This discontinuous function is depicted in
Figure 1.2. Note that the function restricted to particular subintervals is continuous: it is
continuous on the interval w ∈ [−1, 1], on the interval (−∞,−1) and on the interval (1,∞).2

1/9/22, 11:07 AM Piecewise function

https://www.desmos.com/calculator/3zabdb3vgt 1/2

−−−−−−−−−111111111,,,,,,,,, 111111111
111111111,,,,,,,,, 111111111

Figure 1.2: An example of a function that is not continuous, with formula in Eq. (1.1).

We will use summation and integration notation frequently. Both summation and in-
tegration accumulate the values across sets. When summing a function value f(x) over
the elements of a discrete set, such as X = {a, b, c}, we write

∑
x∈X f(x). If we are sum-

ming from 1 to n, we write
∑n

i=1. If we accumulate over a continuous set, like the interval
X = [a, b], then we need to use integration, which can be written as

ˆ
X

f(x)dx or
ˆ b

a
f(x)dx.

1For these notes, the natural numbers include zero N = {0, 1, 2, 3, . . .}. We explicitly use a subscript N1
to indicate the natural numbers without zero, starting at one.

2We do not need the formal definition of a continuous function, since the intuitive definition is sufficient.
For you interest, the formal definition is that a function f : X → R is continuous at x0 ∈ X if for any ϵ > 0
there exists a δ > 0 such that if ∥x−x0∥ < δ for x ∈ X then |f(x)−f(x0)| < ϵ. In other words, for arbitrarily
nearby points x and x0 (δ can be made very small) the difference in function values is also arbitrarily small.
The discontinuous function example does not satisfy this property at x0 = 1, because in the neighborhood
around 1, if we pick an ϵ < 4, we can pick an arbitrarily small neighborhood (δ approaching zero), but the
distance in the function values remains higher than ϵ.

11

flx)

¥É¥⇒ ..

(a) Integral of a function over [−1, 1].

t.IE#..sA-....fGc1--x2
=
- o .

%) = y

f
' 1-0 . 2)

µ

2=-0-2
x•= 2

(b) Derivative of f(x) = x2

Figure 1.3: In (a), we see that the integral gives the area under the function in the specified
interval, between -1 and 1. In (b), we see that the derivative gives the slope of the line
tangent to the function, at the given point. This slope—its sign and magnitude—reflects
how quickly the function is increasing or decreasing at that point.

Integration corresponds to the area under a function, for a given input range, as shown in
Figure 1.3a. For us, it will be useful for computing probabilities of ranges of outcomes (e.g.,
what is the probability that the car will stop within 3 to 5 seconds?). We will not need to
compute complicated integrals, but it will be useful to remember that constants c come out
of integrals and that the definite integral of a constant has a simple form.

ˆ
X

cf(x)dx = c

ˆ
X

f(x)dx

ˆ b

a
cdx = c

(
x|ba
)

= c(b− a)

For optimization, we will use derivatives. The derivative of a function reflects how
that function changes locally. For a function f , the derivative is written f ′ or df

dx . The
derivative function is generic, but then we have to specify at which point we are querying
the derivative, since it only gives local information. For example, f(x) = x2 has derivative
f ′(x) = 2x. By querying it at x = 3, we find that the derivative is f ′(3) = 6, meaning
that the function is increasing—because f ′(3) is positive—and doing so quite rapidly—the
magnitude of 6 is quite high. Namely, it is increasing as we increase x. If instead we queried
the derivative at x = −0.2, then we would get f ′(−0.2) = −0.4, meaning locally the function
is decreasing as we increase x, and it is doing so more slowly. Near zero, the derivative
gets close to zero, because the function is flatter near that point and changing much more
slowly. Note that we write df

dx(3) rather than df(3)
dx , because this emphasizes that we take

the derivative function f ′ = df
dx , and the evaluate it at 3. The derivative at two different

points for this function is depicted in Figure 1.3b.

12

Useful derivative rules to remember include

f(x) = xa,
df

dx
(x) = axa−1

f(x) = exp(x), df

dx
(x) = exp(x)

f(x) = ln(x), df

dx
(x) = 1

x

f(x) = g(h(x)), set u = h(x), df

dx
(x) =

(
df

du

du

dx

)
(x) ▷ chain rule for functions g, h

For example, for f(x) = exp(x2), we use the chain rule with u = x2 to get f ′(x) =
d exp

du
du
dx(x) = exp(u)2x = 2 exp(x2)x.

Exercise 5: What is the derivative of f(x) = exp(−x3)? □

1.3 Structure of the Book

The first part of the notes (Chapters 1-6) introduces you to probability, reasoning about
uncertainty, modeling distributions and basic optimization concepts. The primary purpose
of these chapters is to provide you with the needed mathematical background for the second
half of the notes, focused more specifically on learning functions that make predictions
(Chapter 7-12). The first half can feel more like a course in statistics, until we finally reach
what feels more like a machine learning course in Chapter 7. Becoming better modelers
is an important part of machine learning, and so Chapters 1-6 are not simply a course in
statistics; this book attempts to make more explicit connections to machine learning along
the way to emphasize this. Nonetheless, it is good to recognize that the primary role of
Chapters 1-6 is to fill in the needed background, and that examples or topics may not always
look directly connected to machine learning.

By the time we get to Chapter 7, the goal is to have a basic grasp of probability,
optimization, how we formalize a modeling problem to learn the parameters of a distribution
and how to reason about uncertainty in our estimates. The goal is also that you have gotten
a bit more comfortable with the language of mathematics. Then we start to ask the questions
posed at the start of this chapter: how do we formalize learning a function that makes
predictions, how can we assess whether it is good—both conceptually and empirically—and
how do we reason about uncertainty in our predictions.

Throughout the notes we revisit the same concepts, in ever increasing complexity. We
first start with the simplest estimator: a sample average (or sample mean). For even
this simple estimator, we can already ask questions about how we can be confident in our
estimate, how many samples we need to get a good estimate and how we can modify our
estimator to require fewer samples. Then we move on to reasoning about the parameters
for simple distributions, and again revisit these questions. And finally we move on to more
complex estimators, namely functions that make predictions for the two key settings in
machine learning: regression and classification.

13

Chapter 2

Introduction to Probabilistic Modeling

Probability theory and statistics have a relatively long history; the formal origins of both can
be traced to the 17th century. Probability theory was developed out of efforts to understand
games of chance and gambling. The correspondence between Blaise Pascal and Pierre de
Fermat in 1654 serves as the oldest record of modern probability theory. Statistics, on the
other hand, originated from data collection initiatives and attempts to understand trends
in the society (e.g., manufacturing, mortality causes, value of land) and political affairs
(e.g., public revenues, taxation, armies). The two disciplines started to merge in the 18th

century with the use of data for inferential purposes in astronomy, geography, and social
sciences. The increased complexity of models and availability of data in the 19th century
emphasized the importance of computing machines. This contributed to establishing the
foundations of the field of computer science in the 20th century, which is generally attributed
to the introduction of the von Neumann architecture and formalization of the concept of
an algorithm. The convergence of the three disciplines has now reached the status of a
principled theory of probabilistic inference with widespread applications in science, business,
medicine, military, political campaigns, etc.

We will refer to the process of modeling, inference, and decision making based on prob-
abilistic models as probabilistic reasoning or reasoning under uncertainty. Some form of
reasoning under uncertainty is a necessary component of everyday life. Consider a setting
where you want to predict your commute time. If we recorded the “time to work” for a few
months we would observe that trips generally took different times depending on many inter-
nal (e.g., preferred speed for the day) and also external factors (e.g., weather, road works,
encountering a slow driver). While these events, if known, could be used to predict the
exact duration of the commute, it is unrealistic to expect to have full information—rather
we have partial observability. It is useful to provide ways of aggregating external factors via
collecting data over a period of time and providing the distribution of the commute time.
Such a distribution, in the absence of any other information, would then facilitate reasoning
about events such as making it on time to an important meeting at 9 am.

The techniques of probabilistic modeling provide a formalism for dealing with such
repetitive experiments influenced by a number of external factors over which we have little
control or knowledge. With such a formalism, we can better understand and improve
how we make predictions, because we can more clearly specify our assumptions about our
uncertainty and explicitly reason about possible outcomes. In this chapter, we introduce
probabilities and probability theory, from the beginning. Because probability is such a
fundamental concept in machine learning, it is worth understanding where it comes from.
Nonetheless, following the spirit of these notes, the treatment will be brief and focus mostly
on what is needed to understand the development in following chapters.

14

2.1 Probability Theory and Random Variables
Probability theory is as a branch of mathematics that deals with measuring the likelihood of
events. At the heart of probability theory is the concept of an experiment. An experiment
can be the process of tossing a coin, rolling a die, checking the temperature tomorrow or
figuring out the location of one’s keys. When carried out, each experiment has an outcome,
which is an element drawn from a set of predefined options, potentially infinite in size. The
outcome of a roll of a die is a number between one and six; the temperature tomorrow
might be a real number; the outcome of the location of one’s keys can be a discrete set of
places such as a kitchen table, under a couch, in office etc. An event corresponds to a set of
outcomes. For example, we might want to know the probability of seeing a 1 or a 3 when
rolling a die.

We reason about the probabilities of events formally using random variables. A random
variable X has an associated outcome space X , for which we can ask probabilistic questions.
For example, if the random variable X represents the (random) outcome of a dice role, the
outcome space is the set X = {1, 2, 3, 4, 5, 6}. We might ask a probabilistic question like
P (X = 1) or P (3 ≤ X ≤ 6). For a fair die where the probability is 1

6 for each outcome, the
probability of seeing a 1 is P (X = 1) = 1

6 and the probability of seeing a 3, 4, 5, or 6 is
P (3 ≤ X ≤ 6) = 1

6 + 1
6 + 1

6 + 1
6 = 4

6 . In the first case, we ask the probability of the event
{1} (the event where a 1 was rolled) and in the second case, we ask the probability of the
event {3, 4, 5, 6} (the event where a number greater than or equal to 3 was rolled). It is
equivalent to write P (X ∈ {3, 4, 5, 6}) and P (3 ≤ X ≤ 6); in certain cases its more clear to
use the set notation. For example, we might want to ask the probability of seeing a 1 or 3,
in which case we write P (X ∈ {1, 3}).

The rules to get a valid probabilities—namely to appropriately define P—are actually
quite simple. We can build up the rules of probability from scratch quite simply. But,
going through this exercise is not necessary to understand probabilities; we only include
it for the interested reader in Appendix A. Instead, we discuss in the next section how
to define P using probability mass functions and probability density functions. These are
defined to satisfy a few natural constraints on P . First, the probabilities of events should
be between 0 and 1—in other words, in the interval [0, 1]. Further, the probability of seeing
any outcome should be 1, namely P (X ∈ X) = 1. Finally, if two events A1, A2 are disjoint,
then P (X ∈ A1 ∪A2) = P (X ∈ A1) + P (X ∈ A2): the probability of either event occurring
is the sum of their probabilities, because there is no overlap in the outcomes in the events.
(This rule extends to more than just two events, but the point is clear with just two events.)

The final nuance is in how we define events. For discrete variables, we typically assume
that we want to consider all possible collections of outcomes; this is called the power set.
For continuous variables, we consider all intervals. We highlight this with two examples
below.

Example 1: [Discrete variables (countable)] Consider modeling the probabilities of the roll
of a dice. The outcome space is the finite set X = {1, 2, 3, 4, 5, 6}. The set of events we

15

consider is the power set, which consists of all possible subsets of X :

P(X) =
{
∅, {1}, {2}, {3}, {4}, {5}, {6},

{1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6},
{2, 3}, {2, 4}, {2, 5}, {2, 6}, {3, 4}, {3, 5}, {3, 6}, {4, 5}, {4, 6}, {5, 6},
{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1, 3, 4}, {1, 3, 5}, {1, 3, 6}, {1, 4, 5}, {1, 4, 6}, {1, 5, 6},
{2, 3, 4}, {2, 3, 5}, {2, 3, 6}, {2, 4, 5}, {2, 4, 6}, {2, 5, 6}, {3, 4, 5}, {3, 4, 6}, {3, 5, 6}, {4, 5, 6},
{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 3, 6}, {1, 2, 4, 5}, {1, 2, 4, 6}, {1, 2, 5, 6},
{1, 3, 4, 5}, {1, 3, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {2, 3, 4, 5}, {2, 3, 4, 6}, {2, 3, 5, 6}, {2, 4, 5, 6},
{3, 4, 5, 6}, {1, 2, 3, 4, 5}, {1, 2, 3, 4, 6}, {1, 2, 3, 5, 6}, {1, 2, 4, 5, 6}, {1, 3, 4, 5, 6},

{2, 3, 4, 5, 6}, Ω
}

.

This set has 26 = 64 elements, because in each subset, we can either choose to include
the outcome or not (2 options, for 6 outcomes). For example, we might want to know the
probability of rolling a 2, 4 or 6 (event {2, 4, 6}) or the probability of rolling a 5 or 6 (event
{5, 6}), and so on. Note that we include the empty set ∅, meaning the event where nothing
happens, mainly for definitional reasons; the probability of this occurring is 0.1

Note that order in these sets is not relevant. We could also have written the set as
P(X) = {{1, 3}, Ω, {2, 3},∅, . . . , {4, 5, 6}}, as long as they have the same items. We could
also write event {3, 2}, which is just the same as {2, 3}. These sets of events should only
contain unique items, and we would not include both {2, 3} and {3, 2} in our set of events;
we just pick one. Similarly, we would never write {1, 1, 2}, instead it is written {1, 2}. □

Example 2: [Continuous variables (uncountable)] Consider modeling the probabilities of
the stopping time of a car, in the range of 3 seconds to 6 seconds. The outcome space is the
continuous interval X = [3, 6]. An event could be that the car stops within 3 to 3.1 seconds,
which we write as the interval [3, 3.1]. The probability P (X ∈ [3, 3.1]) of such an event is
likely low, because it would be a very fast stopping time. We could then start considering
all possible time intervals for the event space, and unions of intervals. For example, we
might ask the probability of stopping within [4, 4.67] seconds or [5.7, 6] seconds, written as
P (X ∈ [4, 4.67] ∪ [5.7, 6]).

□

These two examples demonstrate the two most common cases we will encounter: discrete
variables and continuous variables. The terms above—countable and uncountable—indicate
whether a set can be enumerated or not. For example, you can iterate over the set of natural
numbers, and so it is countable. The set of real numbers cannot be enumerated: you cannot
provide a procedure to iterate over the reals, and so they are uncountable. Though this
distinction results in real differences—such as using sums for countable sets and integrals
for uncountable sets—the formalism and intuition will largely transfer between the two
settings.

We will focus on discrete and continuous variables, though much of the same ideas
also transfer to mixed variables, where outcome spaces are composed of both discrete and

1Yes, yes, math can be annoying. But, we need to make sure we have rigorous definitions and this means
we need to reason about nothing (∅) and everything (X). Note that P (X ∈ X) = 1 and P (X ∈ ∅) = 0.

16

continuous sets such as X = [0, 1]∪{2}. Further, for the uncountable setting, we specifically
discuss continuous sets, i.e., those are unions of continuous intervals such as [0, 1] ∪ [5, 10].
Because almost all uncountable sets that we will want to consider are continuous, we will
interchangeably use the terms continuous and uncountable to designate such spaces. Finally,
discrete sets can either be finite, such as {1, 2, 3}, or countably infinite, such as the natural
numbers. Continuous sets are clearly infinite, and are said to be uncountably infinite.

2.2 Defining Distributions
In this section, we discuss how to specify P to satisfy natural conditions on the probabil-
ities, like having values between 0 and 1.2 It is convenient to separately consider discrete
(countable) and continuous (uncountable) sample spaces. For the discrete case, we define
probability mass functions; for the continuous case, we define probability density functions.

2.2.1 Probability mass functions for discrete random variables

Let X be a discrete sample space and define the set of events to be E = P (X), the power
set of X . A function p : X → [0, 1] is called a probability mass function (pmf) if∑

x∈X
p (x) = 1.

The probability of any event A ∈ E is defined as

P (X ∈ A) def=
∑
x∈A

p(x).

For discrete random variables we often write P (X = x), which means that P (X = x) = p(x)
for each outcome x ∈ X . The conditions on the pmf p ensure that we get valid probabilities,
including that P (X ∈ A) ∈ [0, 1] and that P (X ∈ X) = 1.

Exercise 6: Prove that for any pmf p, defined above, we have P (X ∈ X) = 1. □

Example 3: Consider a roll of a fair six-sided die; i.e., X = {1, 2, 3, 4, 5, 6}, and the event
space E = P(X). What is the probability that the outcome is a number greater than 4?

First, because the die is fair, we know that p(x) = 1
6 for all x ∈ X . Now, let A be an

event in E that the outcome is greater than 4; i.e., A = {5, 6}. Thus,

P (X ∈ A) =
∑
x∈A

p(x) = 1
3 .

□

To specify P , therefore, we need to determine how to specify the pmf, i.e., the probability
of each discrete outcome. The pmf is often specified as a table of probability values. For
example, to model the probability of a birthday for each day in the year, one could have
a table of 365 values between zero and one, as long as the probabilities sum to 1. These
probabilities could be computed from data about individuals birthdays, using counts for

2These are called the axioms of probability. It is explained in more detail in Appendix A.

17

each day and normalizing by the total number of people in the population to estimate the
probability of seeing a birthday on a given day. Such a table of values is very flexible,
allowing precise probability values to be specified for each outcome. There are, however, a
few useful named pmfs that have a (more restricted) functional form.

The Bernoulli distribution derives from the concept of a Bernoulli trial, an experiment
that has two possible outcomes: success and failure. In a Bernoulli trial, a success occurs
with probability α ∈ [0, 1] and, thus, failure occurs with probability 1− α. A toss of a coin
(heads/tails), a basketball game (win/loss), or a roll of a die (even/odd) can all be seen as
Bernoulli trials. The sample space consists of two elements and we define the probability
of one of them as α. More specifically, X = {failure, success} and

p(x) =
{

α x = success
1− α x = failure

where α ∈ [0, 1] is a parameter. If we take instead that X = {0, 1}, we can compactly write
the Bernoulli distribution as

p(x) = αx(1− α)1−x (2.1)

for x ∈ X . The Bernoulli distribution is often written Bernoulli(α). As we will see, a
common setting where we use the Bernoulli is for binary classification, say where we try to
predict whether a patient has the flu (outcome 0) or does not have the flu (outcome 1).

The uniform distribution for discrete sample spaces is defined over a finite set of out-
comes each of which is equally likely to occur. Let X = {1, . . . , n}; then for all x ∈ X

p(x) = 1
n

.

The uniform distribution does not contain parameters; it is defined by the size of the sample
space. We refer to this distribution as Uniform(n). We will see later that the uniform
distribution can also be defined over finite intervals in continuous spaces.

The Poisson distribution reflects the probability of how many incidences occur (implic-
itly within a fixed time interval). For example, a call center is likely to receive 50 calls per
hour, with a much smaller probability of only receiving 5 calls or receiving as many as 1000
calls. This can be modeled with a Poisson(λ), where λ represents the expected number of
calls. More formally, X = {0, 1, . . .} and for all x ∈ X

p(x) = λxe−λ

x! .

This mass function is hill-shaped, where the top of the hill is mostly centered around λ
and there is a skew to having a short, steep left side of the hill and a long, less-steep right
tail to the hill. The Poisson distribution is defined over an infinite sample space, but still
countable. This is depicted in Figure 2.1.

Exercise 7: Prove that
∑∞

x=0 p(x) = 1 for the Poisson distribution. Hint: use the power
series expansion for the exponential, i.e., exp(x) =

∑∞
i=0

xi

i! . □

Example 4: As a prelude to estimating parameters to distributions, consider an example of
how we might use a Bernoulli distribution and determine the parameter α to the Bernoulli.
A canonical example for Bernoulli distributions is a coin flip, where the outcomes are heads

18

1

1

1

1

.05

.05

.10

.10

.15

.15

Binomial(9, 0.4)

Uniform(9)

Geometric(0.25)

Poisson(4)

.20

.20

.25

.25

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5

6

6

6

6

8

8

8

8

9

9

9

9

7

7

7

7

Figure 2.1: Two probability mass functions, for discrete random variables. The Poisson
distribution continues further on the x-axis (for variable x ∈ N), with probability decreasing
to zero as x→∞.

(H) or tails (T). P (X = H) = α is the probability of seeing H and P (X = T) = 1 − α is
the probability of seeing T. We commonly assume α = 0.5; this is called a fair (unbiased)
coin. If we flipped the coin many times, we would expect to see about the same number of
H and T. However, a biased coin may have some skew towards H or T. If we flipped the
coin many times, if α > 0.5 we should eventually notice more H come up and if α < 0.5, we
should notice more T.

How might we actually determine this α? An intuitive idea is to use repeated experi-
ments (data), just as described above: flip the coin many times to see if you can gauge the
skew. If you see 1000 H and 50 T, a natural guess for the bias is α = 1000

1000+50 ≈ 0.95. How
confident are you in this solution? Is it definitely 0.95? And how do we more formally define
why this should be the solution? This is in fact a reasonable solution, and corresponds to
the maximum likelihood solution, as we will discuss in Chapter 5. □

2.2.2 Probability density functions for continuous random variables

The treatment of continuous probability spaces is analogous to that of discrete spaces,
with probability density functions (pdfs) replacing probability mass functions and integrals
replacing sums. In defining pdfs, however, we will not be able to use tables of values, and
will be restricted to functional forms. The main reason for this difference stems from the
fact that it no longer makes sense to measure the probability of a singleton event.

Consider again the stopping time for a car, discussed in Example 2. It would not make
a lot of sense to ask the probability of the car stopping in exactly 3.14159625 seconds; real-
istically, the probability of such a precise event is vanishingly small. In fact, the probability
of seeing precisely that stopping time is zero, because the set {3.14159625} as a subset of
[3, 6] is a set of measure zero. Essentially, it takes up zero mass inside the interval [3, 6],
which is after all uncountably infinite. Instead, we will have to consider the probabilities of
intervals, like [4, 5] or [5.667, 5.668].

For continuous spaces, we will assume that the set of events E consists of all possible
intervals, called the Borel field B(X).3 For example, if X = R, the Borel field B(R) consists

3Do not be daunted by the term Borel field; it is just a name. You do not need to remember that it is
called this. The main point here is that we consider the set of all intervals and unions of intervals, rather
than the power set.

19

of all open intervals (e.g., (0, 1)), closed intervals (e.g.,[0, 1]) and semi-open intervals (e.g.,
[0, 1)) in R, as well as sets that can be obtained by a countable number of basic set operations
on them, such as unions. This results in a more restricted set of events than the power set
of X , which would, for example, include sets with only a singleton event. B(R) is still a
huge set—an uncountably infinite set—but still smaller than P(R). Nicely, though, B(R)
still contains all sets we could conceivably want to measure.

Notational Remark: [0, 1] × [0, 1] is the 2-dimensional space consisting of all pairs
(x, y) where x ∈ [0, 1] and y ∈ [0, 1]. The union of [1, 2] × [−1, 4] and [0, 0.1] × [10, 1000]
consists of all pairs (x, y) where x ∈ [1, 2] ∪ [0, 0.1] and y ∈ [−1, 4] ∪ [10, 1000].

Let X be a continuous sample space and E = B (X). A function p : X → [0,∞) is called
a probability density function (pdf) if

ˆ
X

p(x)dx = 1

where the integral is over the whole space X . For example, if X = [a, b], then
´

X p(x)dx =´ b
a p(x)dx. The probability of an event A ∈ B(X) is defined as

P (X ∈ A) def=
ˆ

A
p(x)dx.

Notice that the definition of the pdf is not restricted to having a range [0, 1], but rather
to [0,∞). For pmfs, the probability of a singleton event {x} is the value of the pmf at the
sample point x; i.e., P (X ∈ {x}) = p(x). Since probability distributions P are restricted
to the range [0, 1], this implies pmfs must also be restricted to that range. In contrast, the
value of a pdf at point x is not a probability; it can actually be greater than 1. Rather,
p(x) reflects the volume or density around x; we sometimes call this a likelihood, since it
reflects the likelihood of seeing points in the region around x. The density at x is not a
probability because, as mentioned above, the probability at any single point is 0 (i.e., a
countable subset of X is a set of measure zero).

A natural confusion is how p can integrate to 1, but actually have values larger than 1.
The reason for this is that p(x) can be (much) larger than 1, as long as its only for a very
small interval. Consider the small interval A = [x, x + ∆x], with probability

P (A) =
ˆ x+∆x

x
p(x)dx ≈ p(x)∆x.

A potentially large value of the density function is compensated for by the small interval
∆x to result in a number between 0 and 1. So, even if p(x) is a million, and the density
of points in the small interval or ball around x is large, the probability of an event must
still be ≤ 1. The density does indicate that there is high likelihood around that point. By
having a huge density around x, this suggests that the density for other points is zero or
near zero and that the pdf is extremely peaked around x.

Unlike pmfs, we cannot so easily define pdfs p to flexibly provide specific probabilities
for each outcome with a table of probabilities. Rather, for pdfs, we will usually use a known
pdf that satisfies the required properties. Further, unlike the discrete case, we will never
write P (X = x), because that would be zero. Rather, we will typically write P (X ∈ A),
such as by writing P (X ∈ [0.1, 0.2]) or P (X ≤ 5). We highlight four pdfs here, that will be
used throughout this book.

20

Uniform

Gaussian

Gamma

Exponential

Figure 2.2: Four probability density functions, for continuous random variables. Images
taken from Wikipedia.4

The uniform distribution is defined by an equal value of a probability density function
over a finite interval in R. Thus, for X = [a, b] the uniform probability density function
∀x ∈ [a, b] is defined as

p(x) def= 1
b− a

.

One can also define Uniform(a, b) by taking X = R and setting p(x) = 0 whenever x is
outside of [a, b]. This form is convenient because X = R can then be used consistently for
all one-dimensional probability distributions. When we do this, we will refer to the subset
of R where p(x) > 0 as the support of the density function.

The exponential distribution is defined over a set of non-negative numbers; i.e., X =
[0,∞). For parameter λ > 0, its pdf is

p(x) = λe−λx.

As the name suggests, this pdf has an exponential form, with sharply decreasing probability
for values x as they increase in magnitude. As before, the sample space can be extended to
all real numbers, in which case we would set p(x) = 0 for x < 0.

The Gaussian distribution or normal distribution is one of the most frequently used
probability distributions. It is defined over X = R, with two parameters, µ ∈ R and σ > 0

4Some images in this document are taken from other sources. This is not good practice, and these images
will be replaced someday soon. We want to highlight that we do not encourage this for formal documents,
but only use them here in these educational notes for your benefit temporarily.

21

0 1

x

Figure 2.3: Selection of a random number (x) from the unit interval [0, 1].

and pdf

p(x) = 1√
2πσ2

e− 1
2σ2 (x−µ)2

As we will discuss next, for a random variable that is Gaussian distributed, the parameter
µ is the mean or expected value and σ2 is the variance. We will refer to this distribution as
Gaussian(µ, σ2) or N (µ, σ2). When the mean is zero, and the variance is 1 (unit variance),
this Gaussian is called the standard normal. This specific Gaussian has a name because it is
so frequently used. Both Gaussian and exponential distributions are members of a broader
family of distributions called the natural exponential family.

The Laplace distribution is similar to the Gaussian, but is more peaked around the
mean. It is also defined over X = R, with two parameters, µ ∈ R and b > 0 and pdf

p(x) = 1
2b

e− 1
b

|x−µ|

The gamma distribution is used to model waiting times, and is similar to the Poisson dis-
tribution but for continuous variables. It is defined over X = (0,∞), with shape parameter
α > 0 and rate parameter β > 0 and pdf

p(x) = βα

Γ(α)xα−1e−βx

where Γ(α) is called the gamma function. A random variable that is gamma-distributed is
denoted X ∼ Gamma(α, β).

Example 5: Consider selecting a number (x) between 0 and 1 uniformly randomly (Figure
2.3). What is the probability that the number is greater than or equal to 3

4 or less than
and equal to 1

4?
We know that X = [0, 1]. The distribution is defined by the uniform pdf, p(x) = 1

b−a = 1
where a = 0, b = 1 define the interval for the outcome space. We define the event of interest
as A =

[
0, 1

4

]
∪
[

3
4 , 1
]

and calculate its probability as

P (A) =
ˆ 1/4

0
p(x)dx +

ˆ 1

3/4
p(x)dx ▷ p(x) = 1

=
(1

4 − 0
)

+
(

1− 3
4

)
= 1

2 .

What if we had instead asked the probability that the number is strictly greater than 3
4 or

strictly less than 1
4? Because the probability of any individual event in the continuous case

22

.05

.10

.15

Gamma(31.3, 0.352)

.20

.25

6 8 10 184 12 14 16 t20 22 24

Figure 2.4: A histogram of recordings of the commute time (in minutes) to work. The
data set contains 340 measurements collected over one year, for a distance of roughly 3.1
miles. The data was modeled using a gamma family of probability distributions, with the
particular location and scale parameters estimated from the raw data. The values of the
gamma distribution are shown as dark circles.

is 0, there is no difference in integration if we consider open or closed intervals. Therefore,
the probability would still be 1

2 . □

Example 6: Let’s imagine you have collected your commute times for the year5, and
would like to model the probability of your commute time to help you make predictions
about your commute time tomorrow. For this setting, your random variable X corresponds
to the commute time, and you need to define probabilities for this random variable. This
data could be considered to be discrete, taking values, in minutes, {4, 5, 6, . . . , 26}. You
could then create histograms of this data (table of probability values), as shown in Figure
2.4, to reflect the likelihood of commute times.

The commute time, however, is not actually discrete, and so you would like to model
it as a continuous RV. One reasonable choice is a gamma distribution. How, though, does
one take the recorded data and determine the parameters α, β to the gamma distribution?
Estimating these parameters is actually quite straightforward, though not as immediately
obvious as estimating tables of probability values; we discuss how to do so in Chapter 5.
The learned gamma distribution is also depicted in Figure 2.4.

Given the gamma distribution, one could now ask the question: what is the most likely
commute time today? This corresponds to argmaxx p(x), which is called the mode of the
distribution. Recall that the argmax is the argument (input) that makes a function maximal,
so here it is the x∗ that has the highest p. The max is the maximal value of the function,
namely p(x∗). Succinctly, x∗ = argmaxx p(x) and p(x∗) = maxx p(x).

Another natural question you might have is your average commute time. To obtain this,
you need the expected value (mean) of this gamma distribution, which we define below in
Section 2.4. □

2.3 Multivariate Random Variables
Much of the above development extends to multivariate random variables—a vector of ran-
dom variables—because the definition of outcome spaces and probabilities is general. The

5as my amazing colleague Predrag amazingly did, and you get to see his fascinating data here.

23

I
☐

U
E

É
s

→
⇒

•
5

☐
-

II
.
•

☐
°

☐

,

-
!

•
I

•
§
I

•
§

•
a

•
§

a

¥
9
-

-

o
J

Q
8
s
¥
9

s
'

q•
⇐

H
E

a
1
-

¥
-

¥
S :

-
o

T
D

+
o
f
f

-

g
n

s É
-

☒

←
→

O s
s
-

s
✗

&
5

§
.

-

•
•
I
t

0 i
t

8
18

81
0
6
g

Figure 2.5: The joint distribution for the two RVs X, Y where x ∈ {young, old} and y ∈
{0, 1} where 0 means No Arthritis and 1 means Arthritis. This image is meant to help you
visualize the probabilities given in Table 2.1.

examples so far, however, have dealt with scalar random variables, because for multivariate
random variables, we need to understand how variables interact. In this section, we discuss
several new notions that only arise when there are multiple random variables, including
joint distributions, conditional distributions, marginals and dependence between variables.

Let us start with a simpler example, with two discrete random variables X and Y with
outcome spaces X and Y. There is a joint probability mass function p : X ×Y → [0, 1], and
corresponding joint probability distribution P , such that

p(x, y) def= P (X = x, Y = y)

where the pmf needs to satisfy ∑
x∈X

∑
y∈Y

p(x, y) = 1.

The random variable Z = (X, Y) is a multivariate random variable, of two dimensions. We
could have equivalently written that we have outcome space Z = X×Y with the requirement
that

∑
z∈Z p(z) = 1, because

∑
z∈Z p(z) =

∑
(x,y)∈Z p(x, y) =

∑
x∈X

∑
y∈Y p(x, y).

Example 7: Consider an example where X = {young, old} and Y = {no arthritis, arthritis},
then the pmf could be the table of joint6 probabilities.

Y
no arthritis 1

X
young P (X=young, Y =no arthritis) = 1/2 P (X=young, Y =arthritis) = 1/100

old P (X=old, Y =no arthritis) = 1/10 P (X=old, Y =arthritis) = 39/100

Table 2.1: A joint probability table for random variables X and Y .

We can see that the two random variables interact, by looking at the joint probabilities
in the table. For example, the joint probability is small for young and having arthritis. This
distribution is over both variables, and so the probabilities in the whole table must sum to

6Pun intended.

24

¥
%
.

¥ :
→

•
:

¥
's

÷•
¥

i.
÷ s

¥
:

"
-

B
e

Bo
→

→
n
3

I
=

s r
e

"
u

o
→
&

.

s f
s

%
"

-

•

I
/w

s
.

5
81
8

o
-

C
C

,

+
0

11

1
-
I
t

5
'

☒
o

←
a

i.
to

o
o

'
'

°
s

g
it

?
S

o

o
f

1
-
&

a
→

§

Figure 2.6: The two marginal distributions, for the two RVs X, Y where x ∈ {young, old} and
y ∈ {0, 1} where 0 means No Arthritis and 1 means Arthritis. The marginal distribution
p(y) considers the probability of seeing Y = 0, with either X = young or X = old, and
Y = 1, with either X = young or X = old. The area of the subspace where y = 0 gives us
p(Y = 0, and the (remaining) area where y = 1 gives us p(Y = 1).

1. We can see that they do, since 1/2+1/100+1/10+39/100 = 1. Notice, however, that the
rows do not sum to 1 nor do the columns. □

Given a joint distribution over random variables, one would hope that we could extract
more specific probabilities, like the distribution over just one of those variables, which is
called the marginal distribution. The marginal can be simply computed, by summing up
over all values of the other variable, visualized in Figure 2.6

P (X = young) = p(young, no arthritis) + p(young, arthritis) = 51
100 .

A young person either does or does not have arthritis, so summing up over these two
possible cases factors out that variable. Therefore, using data collected for random variable
Z = (X, Y), we can determine the proportion of the population that is young and the
proportion that is old. Notice that we do not need to marginalize to get the proportion
that are old, instead we can use P (X = old) = 1− P (X = young) = 49/100.

In general, we can consider d-dimensional random variable X = (X1, X2, . . . , Xd) with
vector-valued outcomes x = (x1, x2, . . . , xd), such that each xi is chosen from some Xi.
Then, for the discrete case, any function p : X1 ×X2 × . . .×Xd → [0, 1] is called a multidi-
mensional probability mass function if∑

x1∈X1

∑
x2∈X2

· · ·
∑

xd∈X d

p (x1, x2, . . . , xd) = 1.

or, for the continuous case, p : X1×X2× . . .×Xd → [0,∞] is a multidimensional probability
density function if ˆ

X1

ˆ
X2

· · ·
ˆ

X d
p (x1, x2, . . . , xd) dx1dx2 . . . dxd = 1.

A marginal distribution is defined for a subset of X = (X1, X2, . . . , Xd) by summing or
integrating over the remaining variables. For the discrete case, the marginal distribution

25

I
☐

U
E

É
s

→
⇒

•
5

☐
-

II
.
•

☐
°

☐

,

-
!

•
I

•
§
I

•
§

•
a

•
§

a

¥
9
-

-

o
J

Q
8
s
¥
9

s
'

q•
⇐

H
E

a
1
-

¥
-

¥
S :

-
o

T
D

+
o
f
f

-

g
n

s É
-

☒

←
→

O s
s
-

s
✗

&
5

§
.

-

•
•
I
t

0 i
t

8
18

81
0
6
g

Figure 2.7: The joint distribution and a conditional distribution, for the two RVs X, Y where
x ∈ {young, old} and y ∈ {0, 1} where 0 means No Arthritis and 1 means Arthritis. The
conditional distribution looks at subspace in the event space, where Y = 0. Restricted to that
subspace, we can reason about the relative probabilities of events, by looking at their relative
areas. The relative probability can then be obtained by renormalizing by their combined area,
which is precisely what normalizing by p(Y = 0) does. Jointly, the events (young, 0) and
(old, 0) cover 60% of the space (60/100). Normalizing by p(Y = 0) = 60/100 gives new
probabilities 0.5/0.6 = 0.83̄ and 0.5/0.6 = 0.16̄.

p (xi) is defined as

p (xi)
def=

∑
x1∈X1

· · ·
∑

xi−1∈Xi−1

∑
xi+1∈Xi+1

· · ·
∑

xd∈Xd

p (x1, . . . , xi−1, xi, xi+1, . . . , xd) ,

where the variable xi is fixed to some value and we sum over all possible values of the other
variables. Similarly, for the continuous case, the marginal distribution p (xi) is defined as

p (xi)
def=
ˆ

X1

· · ·
ˆ

Xi−1

ˆ
Xi+1

· · ·
ˆ

Xd

p (x1, . . . , xi−1, xi, xi+1, . . . , xd) dx1 . . . dxi−1dxi+1 . . . dxd.

Notational Remark: Notice that we use p to define the density over x, but then we
overload this terminology and also use p for the density only over xi. To be more precise,
we should define two separate functions (pdfs), say px for the density over the multivariate
random variable and pxi for the marginal. It is common, however, to simply use p, and infer
the random variable from context. In most cases, it is clear; if it is not, we will explicitly
highlight the pdfs with additional subscripts.

2.3.1 Conditional distributions

Conditional probabilities define probabilities of a random variable X, given information
about the value of another random variable Y . More formally, the conditional probability
p(y|x) for two random variables X and Y is defined as

p(y|x) def= p(x, y)
p(x) (2.2)

26

where p(x) > 0. To be more precise, we have three distributions: the joint distribution
px,y(x, y), the marginal px(x) and the conditional distribution py|x(y|x). We can equivalently
think of this conditional distribution as a distribution over y that is different for different
x. For example, if X = {0, 1}, then we have two different distribution p0(y) and p1(y), or
as written above p(y|X = 0) and p(y|X = 1).

Exercise 8: Verify that p(y|x) sums (integrates) to 1 over all values y ∈ Y for a fixed
given x ∈ X , and thus satisfies the conditions of a probability mass (density) function. □

Equation (2.2) now allows us to calculate the posterior probability of an event A, given
some observation x, as

P (Y ∈ A|X = x) =

∑

y∈A p(y|x) Y : discrete

´
A p(y|x)dy Y : continuous

Two important rules for conditional distributions are the product rule and Bayes’ rule.
The product rule states that

p(x, y) = p(x|y)p(y) = p(y|x)p(x) (2.3)

We can derive Bayes’ rule, using the product rule:

p(x|y) = p(y|x)p(x)
p(y) . (2.4)

Therefore, one really only needs to remember the product rule, to easily recall Bayes’ rule.

Example 8: Let us return to the arthritis example. Using the product rule and Bayes rule,
we can also answer questions about conditional distributions. Imagine we want to answer:
what is the probability of having arthritis, if you are young? This equates to computing
P (Y = arthritis|X = young). Recall that we showed

P (X = young) = p(young, no arthritis) + p(young, arthritis) = 51
100 .

Given this, and the fact that p(y|x) = p(x, y)/p(x), we can compute

P (Y =arthritis|X =young)=p(young, arthritis)/P (X = young) = (1
100)/(51

100) = 1
51 ≈ 0.0196.

We can also ask questions like: what is the probability of a person being young, given
they have arthritis? This equates to computing P (X = young|Y = arthritis). We can use
the same strategy as above to compute this. But, there are multiple ways to get this answer.
This time, let’s use Bayes rule and the above answer to compute this.

P (X = young|Y = arthritis) = P (Y = arthritis|X = young)P (X = young)/P (Y = arthritis).

To use this formula, we have to get P (Y = arthritis), which we know how to do using
marginalization. The remaining steps are left as an exercise; see if you can get the right
answer of 0.025. We additionally visualize p(x|Y = no arthritis) in Figure 2.7. □

The product rule can be extended to more than two variables. We can write

p(x1, . . . , xd) = p(xd|x1, . . . , xd−1)p(x1, . . . , xd−1).

27

By a recursive application of the product rule, we obtain

p(x1, . . . , xd) = p(xd|x1, . . . , xd−1)p(x1, . . . , xd−1)
= p(xd|x1, . . . , xd−1)p(xd−1|x1, . . . , xd−2)p(x1, . . . , xd−2)
...
= p(xd|x1, . . . , xd−1)p(xd−1|x1, . . . , xd−2) . . . p(x2|x1)p(x1).

More compactly,

p(x1, . . . , xd) = p(x1)
d∏

i=2
p(xi|x1, . . . , xi−1) (2.5)

which is referred to as the chain rule or general product rule. For example, for three
variables, the product rule gives

p(x1, x2, x3) = p(x3|x2, x1)p(x2|x1)p(x1)

You may notice that the order of variables in the product rule did not seem to matter.
It is in fact somewhat interesting that we can either define the conditional distribution
p(x|y) and marginal p(y) or we can define p(y|x) and p(x) and both equivalently recover
the joint distribution p(x, y). This property is simply a fact of the definition of conditional
distributions, and provides flexibility when estimating distributions. We will mostly use
this equivalence in the form of Bayes rule, when doing parameter estimation and maximum
likelihood. For work in graphical models, which is not discussed here, this flexibility is of
even greater importance.

2.3.2 Independence of random variables

Two random variables are independent if their joint probability distribution factors into the
product of the marginals

p (x, y) = p(x)p(y).

One intuitive reason for this definition can be seen by considering X conditioned on Y . If
p(x|y) = p(x), then this means that the value of Y has no influence on the distribution over
X, and so they are independent. From the product rule, we know p(x, y) = p(x|y)p(y) and
since p(x|y) = p(x), this gives p(x, y) = p(x)p(y) as defined above.

The notion of independence can be generalized to more than two random variables. More
generally, d random variables are said to be mutually independent or jointly independent if
a joint probability distribution of any subset of variables can be expressed as a product of
marginal probability distributions of its components

p (x1, x2, . . . , xd) = p(x1)p(x2) . . . p(xd).

Another form of independence, called conditional independence, is used even more fre-
quently in machine learning. It represents independence between variables in the presence
of some other random variable (evidence); e.g.,

p (x, y|z) = p(x|z)p(y|z)

28

Interestingly, the two forms of independence are unrelated: neither one implies the other.
X and Y can be independent, but not conditionally independent given Z. X and Y can be
conditionally independent given Z, but not independent. We expand on this in Example 9.

Independence and conditional independence are critical in machine learning. If two
variables are independent, this has important modeling implications. For example, if feature
X and target Y are independent, then X is not useful for predicting Y and so is not a useful
feature. If two variables are conditionally independent given another variable, this can also
have important modeling implications. For example, if we have two features X1 and X2,
with target Y , where X2 and Y are conditionally independent given X1, then feature X2 is
redundant and could potentially be discarded.

As a concrete example, let X1 = temperature in Celcius and X2 = temperature in
Fahrenheit, with Y = plants need watering. Y is definitely not independent of X2; however,
once X1 is known (or given), then there is no additional information to be gained from
X2 and so p(y|x1, x2) = p(y|x1) = p(y|x2). In general, recognizing independencies and
conditional independencies can inform and simplify the modeling procedure. We end this
section with one more example, using a biased coin, to highlight the distinction between
independence and conditional independence.

Example 9: [Biased coin and conditional independence] Assume a manufacturer has pro-
duced a biased coin, where it does not equally randomly give heads (H) or tails (T). Rather,
it actually has some unknown probability α of seeing H when flipping the coin. Because this
bias is unknown, we will encode our uncertainty by defining a random Z = bias of the coin.
In general, this random variable can take values in [0, 1]. For the purposes of this example,
let’s make this a bit simpler, and assume that we know the bias is one of Z = {0.1, 0.5, 0.8}.
If the bias is 0.5, that would mean this is an unbiased (fair) coin. Let’s further assume that
we think the probability of each bias is equally likely, meaning P (Z = z) = 1/3, because
the manufacturer gave us no reason to think any of 0.1, 0.5 or 0.8 to be more likely.

Now imagine that you flip the coin twice, and record the two outcomes x1 and x2. These
two separate flips correspond to two random variables, X1 and X2. The outcome space for
X1 and X2 is {H, T}. Given the true bias of the coin, z, the distribution is Bernoulli
P (Xi = H|Z = z) = z, i.e., Xi is a Bernoulli random variable with parameter z. Because
we do not know the true bias, we have to marginalize over Z to get the marginal distribution
over X1,

P (X1 = x) =
∑
z∈Z

P (X1 = x, Z = z)

=
∑
z∈Z

P (X1 = x|Z = z)P (Z = z) ▷ product rule

= P (X1 = x|Z = 0.1)P (Z = 0.1) + P (X1 = x|Z = 0.5)P (Z = 0.5)+
+ P (X1 = x|Z = 0.8)P (Z = 0.8)

Therefore

P (X1 = H) = 0.11
3 + 0.51

3 + 0.81
3 ≈ 0.467

which does not correspond to the bias of any of the coins.
Now let us reason about independence and conditional independence. First, are X1 and

X2 conditionally independent given Z? The answer is yes, because given the bias of the

29

coin, knowing the outcome of X2 does not influence the distribution over X1, i.e.,

P (X1 = x1, X2 = x2|Z = z) = P (X1 = x1|Z = z)P (X2 = x2|Z = z)

Regardless of what we observe for X2, we know the distribution over X1 is a Bernoulli with
the given bias z. For example, imagine I hand you a coin and say: the bias of this coin is
0.8. Then, you know that the probability of seeing heads on the first flip is 0.8, and also
0.8 on the second flip regardless of the outcome of the first flip.

Are X1 and X2 independent? The answer is no, because without knowing the bias of
the coin, knowing the outcome of X2 tells us something about the Bernoulli distribution
over X1. For example, if X1 = T and X2 = H, then the second outcome suggests that the
bias might not be totally skewed towards T. More formally,

P (X1 = x1, X2 = x2) =
∑
z∈Z

P (X1 = x1, X2 = x2|Z = z)P (Z = z)

=
∑
z∈Z

P (X1 = x1|Z = z)P (X2 = x2|Z = z)P (Z = z)

which is not guaranteed to equal P (X1 = x1)P (X2 = x2), where

P (X1 = x1)P (X2 = x2)

=

∑
z1∈Z

P (X1 = x1|Z = z1)P (Z = z1)

∑
z2∈Z

P (X2 = x2|Z = z2)P (Z = z2)

□

The key point of this example is that the distribution reflects our beliefs and knowledge
about the world, rather than corresponding to an objective truth. Because we do not know
the bias of the coin, we write our distributions to reflect only what we know. The world, of
course, knows the bias of the coin, and the outcome follows the rules of these true underlying
probabilities. But our goal is to formalize and reason about what we know. In this sense, it
is helpful to think of probabilities as our modeling tools, to express our beliefs about what
we know. In the above, we were able to express what we know about the outcomes of the
coin, by considering all possible biases and their probabilities.

2.4 Expectations and Moments
The expected value, or mean, of a random variable X is the average of repeatedly sampled x,
in the limit of sampling. It is not necessarily the value we expect to see most frequently—
that is called the mode. More precisely, given the pmf or pdf p for outcome space X , the
expectation of X is

E [X] def=

∑

x∈X xp(x) if X is discrete

´
X xp(x)dx if X is continuous

For a dice roll, where each number from 1 to 6 has uniform probability, the expected value is
3.5 and the mode is tied for all numbers (i.e., it is multi-modal). For a Bernoulli distribution,
where X = {0, 1}, the expected value is α, which is not an outcome that will be observed,

30

but is the average of 0s and 1s if we flipped the coin infinitely many times. The mode in
this case depends on α: if α > 0.5, making 1 have higher probability, then the mode is 1;
if α < 0.5, the mode is 0; otherwise, it is bimodal with modes 0 and 1. For a Gaussian
distribution, the expected value is the parameter µ, and the mode also equals µ.

In general, we may be interested in the expected value of functions of the random
variable X. For example, we may want to know E

[
X2], or more generally E

[
Xk
]

for some

k > 1. Or, we may want to know E
[
(X − c)k

]
for some k > 1 and a constant c. These are

called the moments of X. In general, for a function f : X → R, we can consider f(X) to
be a transformed random variables and define its expectation as

E [f(X)] =

∑

x∈X f(x)p(x) if X is discrete

´
X f(x)p(x)dx if X is continuous

If E [f(X)] = ±∞, we say that the expectation does not exist or is not well-defined.
One useful moment is the variance: the central second moment, where central indicates

c = E[X]. The variance indicates the amount that the random variable varies around
its mean. For example, for a Gaussian distribution, if the variance σ2 is large, then the
Gaussian is very wide, indicating a non-negligible density for a broader range of points x
around µ. Alternatively, if σ2 is almost zero, then the Gaussian is concentrated tightly
around µ.

We can also consider conditional expectations, and expectations for multivariate random
variables. For two random variables X and Y and function f : Y → R, the conditional
expectation is

E [f(Y)|X = x] =

∑

y∈Y f(y)p(y|x) if Y is discrete

´
Y f(y)p(y|x)dy if Y is continuous

Using the identity function f(y) = y results in the standard conditional expectation E [Y |x].

Exercise 9: Show the law of total expectation: E[Y] = E[E[Y |X]], where the outer
expectation is over X and the inner expectation is over Y . For example, if both Y and X
are discrete

E[E[Y |X]] =
∑
x∈X

p(x)E[Y |X = x] =
∑
x∈X

p(x)
∑
y∈Y

yp(y|x).

Hint: start first with this discrete setting, and recall the product rule p(x, y) = p(y|x)p(x).
□

For two random variables X and Y and f : X×Y → R, we can also define the expectation
over the joint distribution, with one variable fixed

E [f(X, y)] =

∑

x∈X f(x, y)p(x|y) if X is discrete

´
X f(x, y)p(x|y)dx if X is continuous

31

or over both variables

E [f(X, Y)] =

∑

y∈Y p(y)E[f(X, y)] if Y is discrete

´
Y p(y)E[f(X, y)]dy if Y is continuous

For example, if X is continuous and Y is discrete, this gives

E [f(X, Y)] =
∑
y∈Y

p(y)E [f(X, y)]

=
∑
y∈Y

p(y)
ˆ

X
f(x, y)p(x|y)dx

Exercise 10: Show that
´

X

(∑
y∈Y f(x, y)p(x, y)

)
dx =

´
X E[f(x, Y)]p(x)dx. □

Just as above with variance, the covariance is one important instance of these expected
values, with f(x, y) = (x−E[X])(y−E[Y]). The expected value under this function indicates
how the two variables vary together. We use specific notation for the covariance, because
it is so frequently used

Cov[X, Y] = E [(X − E [X]) (Y − E [Y])]
= E [XY]− E [X]E [Y] ,

with Cov[X, X] = V [X] being the variance of the random variable X. The correlation is
the covariance, normalized by the standard deviation—square root of the variance—of each
random variable

Corr[X, Y] = Cov[X, Y]√
V [X]

√
V [Y]

.

The covariance can become larger, if X and Y themselves have large variance. The correla-
tion, on the other hand, is guaranteed to be between -1 and 1, and so is an scale-invariant
measure of how the variables vary together.

2.4.1 Properties of expectations and variances

Here we review some useful properties of expectations. Consider random variables, X and
Y . For a constant c ∈ R, it holds that:

1. E [cX] = cE [X]

2. E [X + Y] = E [X] + E [Y] ▷ linearity of expectation

3. Var [X] def= E
[
(X − E [X])2

]
= Cov[X, X] ≥ 0. We typically write Var [X], instead of

Cov[X, X].

4. Var [c] = 0 ▷ the variance of a constant is zero

5. Var [cX] = c2Var [X].

32

6. Cov[X, Y] def= E[(X − E[X])(Y − E(Y))] = E[XY]− E[X]E[Y]

7. Var [X + Y] = Var [X] + Var [Y] + 2Cov[X, Y] ▷ when d = m

In addition, if X and Y are independent random variables, it holds that:

8. E [XY] = E [X]E [Y] for all i, j

9. Var [X + Y] = Var [X] + Var [Y]

10. Cov[X, Y] = 0.

2.5 Probability Review Exercises
Phew, that was a lot about probability. This section includes more exercises to help you
get used to all this new terminology and new concepts. Answers to these solutions can be
found in Appendix 14.1.1.

Exercise 11: You have a dice and you rolled it once.

1. What is the sample space for rolling the dice?

2. What is the probability of observing an even number?

3. What is the probability of not observing 3 when you roll the dice?

4. What is the probability of neither observing 3 nor 4 when you roll the dice?

Exercise 12: In a Bernoulli trial, the probability of success was 0.7. What is the probability
of failure?

Exercise 13: You take the bus to campus every day, and come to the bus stop at 9:00 am.
Let X = the number of times the bus arrives between 9:00 am and 9:15 am. Let’s assume
that this X is a Poisson distribution, and that two buses arrive between 9:00 am and 9:15
am, on average. Hint: recall that the mean of a Poisson distribution is λ.

1. What is the probability that no bus comes between 9:00 am and 9:15 am?

2. What is the probability that two buses come between 9:00 am and 9:15 am?

3. What is the probability that three buses come between 9:00 am and 9:15 am?

Exercise 14: Assume X is a continuous random variable with a uniform distribution on
the interval [−5, 5].

1. What is P (X ≤ 4.5)?

2. What is P (−3 ≤ X ≤ 3)?

33

Exercise 15: Two discrete random variables X and Y have the following joint distribution,

x = 1 x = 2 x = 3

y = 1 3
18

1
18

1
18

y = 2 1
18

3
18

1
18

y = 3 2
18 c 3

18

1. What is p(x = 2, y = 3)?

2. What is p(x = 3)?

3. What is p(y = 1)?

Exercise 16: Two continuous random variables X and Y have the following joint pdf,

p(x, y) =
{

cx2

y2 y ≥ 1, 0 ≤ x ≤ 1
0 otherwise

(2.6)

1. Write the outcome space for X and the outcome space for Y ?

2. Write the joint outcome space for the two-dimensional random variable (X, Y).

3. What is c?

4. Calculate p(y|x = 0.5).

34

Chapter 3

An Introduction to Estimation

We first investigate a simple estimator—a sample average—with a focus on how we can
have confidence in our estimate. The sample average is the average of n samples from a
distribution. The sample average provides an estimate of the true mean. Depending on
the distribution, we might need a larger n to get an accurate estimate. In this chapter,
we provide the tools to understand the quality of our sample average, and introduce the
concepts of bias, consistency, sample complexity and concentration inequalities.

3.1 Estimating the Expected Value
We assume that we get n samples from an unknown distribution p, over outcome space X .
More formally, we assume we have n random variables X1, . . . , Xn, where E [Xi] = µ for
some unknown mean µ. The sample average estimator is

X̄ = 1
n

n∑
i=1

Xi (3.1)

Intuitively, we know as n gets larger, X̄ should get closer and closer to µ. But, how do we
show this? We will use concentration inequalities, which gives us the strong law of large
numbers, to show this in the next section.

First, let’s ask one slightly easier question: is this estimator unbiased? The bias of an
estimator is how far the expected value of the estimator deviates from the true value. For
the sample average estimator, the bias is

Bias(X̄) = E[X̄]− µ (3.2)

because µ is the true value we are trying to estimate. The estimator is said to be unbiased
if the Bias is zero. The expectation E[X̄] reflects that X̄ is random, due to the fact that we
could have observed many different plausible sets of n samples.

Example 10: To better understand why X̄ is a random variable, let us consider a specific
example where we flip a fair coin three times. The outcome of the first flip is X1, the second
flip is X2 and the third is X3, with n = 3 and X̄ = 1

3
∑3

i=1 Xi. Because this is a fair coin, we
know p(Xi = 1) = 0.5. A perfectly plausible sequence of flips we might see is x1 = 0, x2 =
0, x3 = 1 with sample average x̄ = 1/3. These are all written lowercase, because they are
actual outcomes we observed. Another possible sequence could be x1 = 1, x2 = 0, x3 = 1
with sample average 2/3. The random variable X1 represents that the first flip could be 0
or 1, with probability 0.5; the random variable X2 represents that the second flip could be
0 or 1, with probability 0.5; and so on. Because X̄ is the average of n random variables, it
itself is also random.

35

We can even reason about the outcome space of X̄ as well as the probabilities over
those outcomes. The possible outcomes are {0, 1/3, 2/3, 1}. There are 23 = 8 different
possible sequences of coin flips: (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0)
and (1, 1, 1). All of these sequences have equal probability .53 = 0.125 of occurring. This
means that

p(X̄ = 0) = p(X1 = 0, X2 = 0, X3 = 0) = 0.125
p(X̄ = 1/3) = p(X1 = 0, X2 = 0, X3 = 1) + p(X1 = 0, X2 = 1, X3 = 0)

+ p(X1 = 1, X2 = 0, X3 = 0) = 0.375
p(X̄ = 2/3) = p(X1 = 0, X2 = 1, X3 = 1) + p(X1 = 1, X2 = 0, X3 = 1)

+ p(X1 = 1, X2 = 1, X3 = 0) = 0.375
p(X̄ = 1) = p(X1 = 1, X2 = 1, X3 = 1) = 0.125

We only execute the experiment once (flipping three coins), so we will see precisely one of
these four outcomes. The likelihood of seeing a sample average of 1/3 or 2/3 is equally high,
and it is less likely to see a sample average of 0 or 1, but both are possible.

If we had done this for 10 coin flips, instead of 3, then we would get outcome space
{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} with associated probabilities

p(X̄ = 0) = 1/1024 ≈ 10−3 p(X̄ = 0.1) = 45/1024 ≈ 0.04
p(X̄ = 0.2) = 120/1024 ≈ 0.12 p(X̄ = 0.3) = 210/1024 ≈ 0.21
p(X̄ = 0.5) = 252/1024 ≈ 0.25 p(X̄ = 0.6) = 210/1024 ≈ 0.21
p(X̄ = 0.7) = 210/1024 ≈ 0.21 p(X̄ = 0.8) = 120/1024 ≈ 0.12
p(X̄ = 0.9) = 45/1024 ≈ 0.04 p(X̄ = 1) = 1/1024 ≈ 10−3

□

Now, let us compute this expectation.

E[X̄] = E
[

1
n

n∑
i=1

Xi

]

= 1
n

n∑
i=1

E [Xi] ▷ E [Xi] = µ, by assumption

= 1
n

n∑
i=1

µ = 1
n

nµ

= µ

So the bias is zero, because Bias(X̄) = E[X̄]− µ = µ− µ = 0.
We can also characterize the variance of the estimator. If the Xi are i.i.d. random

36

variables with variance σ2, then

Var
[
X̄
]

= Var
[

1
n

n∑
i=1

Xi

]
= 1

n2 Var
[

n∑
i=1

Xi

]

= 1
n2

n∑
i=1

Var [Xi] ▷ by independence

= 1
n2

n∑
i=1

σ2 = 1
n

σ2.

Therefore, the variance shrinks proportionally to the number of samples. However, this
does not give us enough information about how close X̄ is to the true mean µ. For this, we
use concentration inequalities in the next section.

You might wonder why we care about the bias and variance of our estimator. One reason
is simply that once we start thinking about our sample average estimator as a random
variable, it is useful to know statistics about the random variable, like its expectation and
variance. Another reason is that it helps us reason about the expected mean-squared error
of our estimator, as we discuss in Section 3.5.

3.2 Confidence Intervals and Concentration Inequalities
Our goal is to obtain a confidence interval around our estimate, to obtain a measure of
confidence in our estimate, and to show consistency. More specifically, we would likely be
able to say that for any ϵ > 0, there exists δ ≥ 0 such that

Pr
(∣∣∣X̄ − E[X̄]

∣∣∣ ≥ ϵ
)
≤ δ. (3.3)

In other words, we want a small probability δ that X̄ deviates by ϵ from the mean E[X̄].
We want the interval given by ϵ to be small—and of course δ to be small—so that we
can be confident in our estimator X̄. This probability tells us that E[X̄] ∈ [X̄ − ϵ, X̄ + ϵ]
with high probability, that is with probability 1− δ. You can see this is the case by notic-
ing that Equation (3.3) can equivalently be written Pr

(∣∣∣X̄ − E[X̄]
∣∣∣ ≤ ϵ

)
≥ 1 − δ because

Pr
(∣∣∣X̄ − E[X̄]

∣∣∣ ≤ ϵ
)

= 1− Pr
(∣∣∣X̄ − E[X̄]

∣∣∣ ≥ ϵ
)

and that∣∣∣X̄ − E[X̄]
∣∣∣ ≥ ϵ =⇒ −ϵ ≤ E[X̄]− X̄ ≤ ϵ

=⇒ X̄ − ϵ ≤ E[X̄] ≤ X̄ + ϵ ▷ Added X̄ to all three equations.

This inequality tells us that, for most sampled x̄, E[X̄] ∈ [x̄ − ϵ, x̄ + ϵ]. Only with small
probability—probability δ—will we see a x̄ where E[X̄] /∈ [x̄− ϵ, x̄ + ϵ].

If we set δ = 0.05, then we say that [X̄ − ϵ, X̄ + ϵ] is a 95% confidence interval: 95% of
the time the interval we observe from a sampled x̄ contains E[X̄]. In practice, of course, we
only observe one sampled x̄ and compute the confidence interval [x̄− ϵ, x̄+ ϵ]. The choice of
δ = 0.05 gives us confidence that E[X̄] is within this range. We often call δ the confidence
level, and ϵ provides the width of the interval. Naturally, to obtain higher confidence levels,
the width will be larger.

37

ic =2,n =1
Ass. Xare

eg.cz1012Re96] =20.04, . 1 Gaussian

M

n
=30,x

=0.2 n
(0.2 - 1.96.0,0.2 + 1.96707250.13.0.

i

↓ Instead 1-8 = 0.68. Whatis z?

Exercise
-

n
=(X- 5,X

+a)n.p.
tf

0 .

32
e is stader of

What if 1:8 =0.997?.......
2 =0 =

n is # samples.

3 =325:3
n

+0 un
+(x n

+30x

n
+25x
↑
1.96.

distribution for Xi? (mightnotbe

Whatifdon't
know Gaussian)

still assume.
known variance

Figure 3.1: Different ϵ for different δ for a Gaussian distribution N (µ, σ2
x̄) over X̄. The

integral over the tails gives us δ, meaning the integral for the part between the tails (within
ϵ around µ) is 1− δ.

Now the question is how we find ϵ, for a chosen δ. Let us first consider the setting
where we know the distribution type of the X1, X2, . . . , Xn, specifically that we know they
are Gaussian with a known variance σ2. The mean µ is unknown, since that is precisely
what we are trying to estimate. Given this information that the data points are Gaussian,
this tells us that X̄ is also Gaussian, with mean µ and variance σ2/n.(This outcome is
not obvious, but it comes from a well-known fact that adding Gaussians results in another
Gaussian.) Now to get our confidence interval, we simply need to integrate over a Gaussian
pdf. Let varx̄ = σ2/n, the variance for our sample average estimator. We want to solve for
ϵ such that

1− δ = Pr
(∣∣∣X̄ − µ

∣∣∣ ≤ ϵ
)

=
ˆ µ+ϵ

µ−ϵ
p(x̄)dx̄

=
ˆ µ+ϵ

µ−ϵ
(2πvarx̄)−1/2 exp((2varx̄)−1(x̄− µ)2)dx̄

Fortunately, we do not have to solve this, since others have already solved these integrals
for many ϵ; we just need to look them up in what is called a z-table. For example, if we
pick δ = 0.05, giving 1 − δ = 0.95, then the number in the z-table is 1.96 and we know
that ϵ = 1.96√varx̄ = 1.96σ/

√
n. In other words, to get about 95% of the density for the

Gaussian, we integrate over the area that is (nearly) 2 standard deviations away from the
mean (1.96 is very close to 2). To get 1− δ = 0.997, a much higher confidence, we need to
go three standard deviations away from the mean, visualized in Figure 3.1.

Exercise 17: What is ϵ when δ = 0.3, assuming still that we have Gaussian errors with
known variance σ2? □

Remark: The z-table only includes the number 1.96, so why did we conclude that
ϵ = 1.96√varx̄ rather than ϵ = 1.96? The reason is that the z-table consists of the integrals
over zero-mean, unit-variance Gaussians Z. It tells us the ϵz for a confidence level δ to
get Pr (|Z| ≤ ϵz) = 1 − δ. To use this calculated ϵz, we can notice that Z = X̄−µ√varx̄

is a

38

zero-mean, unit variance Gaussian. Therefore, we know that 1 − δ = Pr
(∣∣∣ X̄−µ√varx̄

∣∣∣ ≤ ϵz

)
=

Pr
(∣∣∣X̄ − µ

∣∣∣ ≤ ϵz
√varx̄

)
.

Exercise 18: Check that for Z = X̄−µ√varx̄
, we have E[Z] = 0 and Var[Z] = 1. □

More generally, the errors may not be Gaussian, or we may not know if there are Gaus-
sian. Concentration inequalities let us similarly get confidence intervals, without making
such specific distributional assumptions. We will discuss two common concentration in-
equalities: Hoeffding’s inequality and Chebyshev’s inequality. The second applies to more
general settings. Let’s start with Hoeffding’s inequality. Assume we have independent and
identically distributed (i.i.d.) bounded random variables X1, . . . , Xn, such that a ≤ Xi ≤ b
for some a, b ∈ R. Then Hoeffding’s inequality states that for any ϵ > 0

Pr(|X̄ − E[X̄]| ≥ ϵ) ≤ 2 exp
(
− 2nϵ2

(b− a)2

)
.

For a given ϵ, we have δ = 2 exp(−2nϵ2/(b − a)2). In many cases, we would actually like
to determine the interval around E[X̄], for some confidence level δ. We can solve for ϵ in
terms of δ, to get

δ = 2 exp(−2nϵ2/(b− a)2) =⇒ ϵ = (b− a)

√
ln(2/δ)

2n
.

We get that with probability 1− δ,
∣∣∣X̄ − E[X̄]

∣∣∣ ≤ ϵ = (b− a)
√

ln(2/δ)
2n .

Example 11: Let’s assume you have n i.i.d. random variables, with a = 0 and b = 1.
Imagine you get n = 30 samples, with x̄ = 0.6. Now you want to get a 95% confidence
interval around the true mean, i.e., δ = 0.05. Then the resulting interval, using Hoeffding’s
inequality, has

ϵ = (1− 0)

√
ln(2/0.05)

2× 30 ≈ 0.248

The resulting 95% confidence interval is

[x̄− ϵ, x̄ + ϵ] = [0.6− 0.248, 0.6 + 0.248] = [0.352, 0.848]

If instead we only require a lower confidence level, of δ = 0.2, to get a 80% confidence
interval, then we would have

ϵ = (1− 0)

√
ln(2/0.2)

2× 30 ≈ 0.196.

This interval is a bit smaller, because we only need to say that the true expected value µ
satisfies µ ∈ [X̄ − ϵ, X̄ + ϵ] with 80% probability, rather than with 95% probability. □

Exercise 19: Imagine again you get n i.i.d. samples, but now n = 20 and a = −2, b = 4.
You average the 20 sampled numbers and get x̄ = −0.3. What is the 85% CI? □

Remark: Notice here that sometimes we write [x̄ − ϵ, x̄ + ϵ] and other times we write
[X̄ − ϵ, X̄ + ϵ]. The first is the actual confidence interval we report, based on the data we

39

observed; it includes x̄ (lowercase) indicating it is an instance of X̄ and is not random. The
interval [X̄ − ϵ, X̄ + ϵ] is a random variable, and we reason about the probability it includes
µ. This probabilistic reasoning about [X̄ − ϵ, X̄ + ϵ] let’s us conclude that our sampled
interval [x̄− ϵ, x̄ + ϵ] is likely to contain µ, because it is a low probability event (probability
δ) that we sampled an interval that does not contain µ.

Hoeffding’s inequality assumes bounded random variables, but there are other concen-
tration inequalities for unbounded random variables. Chebyshev’s inequality let’s us say
that, for i.i.d. random variables X1, . . . , Xn with variance σ2,

Pr(|X̄ − E[X̄]| ≥ ϵ) ≤ σ2

nϵ2 . (3.4)

Again, we can solve for ϵ in terms of δ, to get

δ = σ2

nϵ2 =⇒ ϵ =

√
σ2

δn
.

For this setting, where we know the variance, but the variables are not bounded between
some a and b, we still get an interval proportional to

√
1/n. Notice that the conditions

for Chebyshev’s inequality are actually less stringent, because the variance of any random
variable bounded between [a, b] is at most σ2 = 1

4(b− a)2. So, Chebyshev’s can be applied
to such random variables, by using this upper bound on the variance. However, Hoeffding’s
bound is a better choice, since it gives a tighter bound.

Example 12: Let’s assume you have n i.i.d. random variables, with known variance
σ2 = 1.5. Here these variables are unbounded, so you will have to use Chebyshev’s inequality
instead. Imagine you get n = 30 samples, with x̄ = −3. Now you want to get a 95%
confidence interval around the true mean, i.e., δ = 0.05. Then the resulting interval, using
Chebyshev’s inequality, has

ϵ =

√
σ2

δn
=
√

1.5
0.05× 30 = 1.0

The confidence interval is [x̄ − ϵ, x̄ + ϵ] = [−3 − 1,−3 + 1] = [−4,−2]. If we use a lower
confidence level, of δ = 0.1, to get a 90% confidence interval, then ϵ =

√
1.5

0.1×30 ≈ 0.707. □

3.3 Consistency
Chebyshev’s inequality let’s us easily show consistency of the sample average estimator.
Consistency means that

X̄ → µ as n→∞. (3.5)

As n gets larger, ϵ =
√

σ2

δn gets smaller and smaller. In fact,√
σ2

δn
→ 0 as n→∞. (3.6)

This means that for arbitrarily small δ, X̄ → E[X̄] as n→∞. Because the sample average
is unbiased, we know E[X̄] = µ, and so X̄ → µ. This convergence in probability is also
called the (weak) law of large numbers.

40

3.4 Rate of Convergence and Sample Complexity
The sample complexity n is the number of samples needed to obtain an ϵ accurate estimate.
Our goal is to make the sample complexity small, so that we can get a good estimate with
as few samples as possible—to be data efficient. The sample complexity is determined both
by the properties of the data and by our estimator. We can improve the sample complexity
by using smarter estimators, but will inherently have higher sample complexity for certain
types of data. For example, if the data has high variance, the bound above tells us that
we need more samples to obtain an accurate estimate. But, we can reduce the sample
complexity if we could bias or initialize our sample average estimate to be closer to the true
mean.

The convergence rate indicates how quickly the error in our estimate decays, in terms
of the number of samples. For example, using Chebyshev’s inequality, we obtained a con-
vergence rate of O(1/

√
n):

∣∣∣X̄ − E[X̄]
∣∣∣ ≤

√
σ2

δn
with high probability 1− δ.

This concentration inequality—Chebyshev’s inequality—makes few assumptions about the
random variables. For example, it does not make any distributional assumptions about
each Xi. We can actually reduce the sample complexity, by making stronger assumptions
on the Xi.

To see why, let us contrast the Gaussian confidence interval to the Chebyshev confidence
interval. If we pick δ = 0.05, we get ϵ = 1.96σ/

√
n for the Gaussian case. Chebyshev’s

inequality would give a larger number of ϵ = 4.47σ/
√

n. This is 2.28x larger than if we knew
the distribution of the Xi were Gaussian, showing what we lose when we do not know the
distribution and so cannot take advantage of that information to improve the confidence
interval.

Notice that though sample complexity is better, the convergence rate is still O(1/
√

n).
Does this mean we are always stuck with this rate? For many distributions, yes, but
for certain distributions, we can actually get even faster convergence. For example, for
independent Bernoulli Xi, the Chernoff bound—yes, yet another concentration inequality—
let’s us obtain a convergence rate of O(1/n), which is significantly faster.

3.5 Mean-Squared Error and Bias-Variance
In the above treatment, we assumed our estimator was unbiased. But, we do not actually
have to require that our estimator be unbiased. Rather, our ultimate goal is to get an
estimator Y for the true mean µ, that is as close to this true value as possible. In some
cases, a biased estimator might actually be closer to µ, than an unbiased one.

To see why, let’s characterize the squared distance between our estimator Y and µ:
(Y − µ)2. Because Y is random, this difference is random. So instead we can ask: what is

41

the expected squared error of our estimator Y , across all possible datasets?

E[(Y − µ)2]
= E[(Y − E[Y] + E[Y]− µ)2] ▷ Let b = Bias(Y) = E[Y]− µ

= E[
(
(Y − E[Y]) + b

)2]
= E[(Y − E[Y])2 + 2b(Y − E[Y]) + b2]
= E[(Y − E[Y])2] + E[2b(Y − E[Y])] + E[b2] ▷ By linearity of expectation
= Var[Y] + 2bE[(Y − E[Y])] + b2 ▷ By definition Var[Y] = E[(Y − E[Y])2]

and constants come out of expectations
= Var[Y] + 2b(E[Y]− E[Y]) + b2 ▷ By linearity of expectation
= Var[Y] + Bias(Y)2

Therefore the mean squared error (MSE) is composed of the variance of Y and the bias of Y .
The estimator is unbiased, then it is simply due to the variance of Y . If the dataset is small,
for example, then the variance of Y is likely higher and the expected squared error (the
MSE) is high due to insufficient samples. On the other extreme, we can get an estimator
that has minimal variance: an estimator that always returns 0. This estimator, though,
is clearly biased and so will have a high MSE due to a high bias. There are estimators
in-between, and in some cases it can be worth having an estimator with a little bit of bias,
to help reduce the variance. We see this in the next example.

Example 13: Let’s define a biased estimator, Y = 1
n+100

∑n
i=1 Xi. This estimator is

biased because

E[Y] = E
[

1
n + 100

n∑
i=1

Xi

]
= 1

n + 100

n∑
i=1

E[Xi]

= n

n + 100µ ̸= µ unless µ = 0

=⇒ Bias(Y) = n

n + 100µ− µ = −100
n + 100µ

The variance of this estimator, however, is smaller than the sample average estimator:

Var[Y] = Var
[

1
n + 100

n∑
i=1

Xi

]

= 1
(n + 100)2 Var

[
n∑

i=1
Xi

]
▷ Var(cX) = c2Var(X)

= 1
(n + 100)2

n∑
i=1

Var[Xi] ▷ i.i.d. Xi

= n

(n + 100)2 σ2

You can interpret this estimator as if it saw 100 samples of zeros, and then starting seeing
real data X1, X2, . . . , Xn, i.e, Y = 1

n+100 [
∑100

i=1 0 +
∑n

i=1 Xi]. It is skewed towards the value
zero, which could introduce bias if µ ̸= 0. But, it also has lower variance since it effectively
saw 100 consistent samples corresponding to zero.

42

Intuitively, if the true mean µ is near zero, the bias introduced is minimal and we can
get significant gains from the variance reduction. If µ is far from zero, we might incur a big
penalty for the bias. Assume σ = 1.0, and n = 10. Let’s compare the MSE for the sample
average estimator X̄ and for the estimator Y .

Case 1: µ = 0.1. Then, using the results for the bias and variance of the sample average
estimator from Section 3.1 we have

MSE(X̄) = E[(X̄ − µ)2]
= Var[X̄] + Bias(X̄)2 ▷ Bias(X̄) = 0

= Var[X̄] ▷ Var(X̄) = σ2

n
= 1

10 ▷ σ = 1.0, n = 10
MSE(Y) = E[(Ȳ − µ)2]

= Var[Y] + Bias(Y)2

= n

(n + 100)2 σ2 +
(100

n + 100µ

)2

= 10
(110)2 +

(
100
1100.1

)2
≈ 9× 10−3

In this case, where µ is not too far from 0, the MSE of Y is much lower than the MSE of
the sample average estimator.

Case 2: µ = 5 gives

MSE(X̄) = Var[X̄] = 1
10

which is the same because X̄ is unbiased so its MSE does not depend on the value of µ, and

MSE(Y) = Var[Y] + Bias(Y)2

= n

(n + 100)2 σ2 +
(100

n + 100µ

)2

= 10
(110)2 +

(
100
1105

)2
≈ 20.7

In this case, where µ is far from 0, the MSE of Y is much higher than the sample average
estimator. The amount of bias introduced is higher, than the gains we obtained from having
a lower variance. □

This example illustrates an important phenomenon in machine learning. We often inject
some amount of prior knowledge into our learning systems. That prior knowledge often
biases the solution, since it changes the solution but is not based on the actual given
data. If that prior knowledge is helpful, it can often help constrain the space—and reduce
variance—and so make the MSE smaller, even if some bias is incurred. On the other hand,
if that prior knowledge is wrong, then it can incur too much bias. In the example above,
the prior knowledge was that the mean was likely close to zero. If that prior assumption is
correct, then we can get a good estimator with much less data. If the prior assumption is
wrong, though, it can significantly degrade performance.

43

The above example was all about the small sample setting. Once n gets very big, the
bias in Y is washed away.

Exercise 20: Show that Y is consistent. □

44

Chapter 4

Introduction to Optimization

Much of machine learning deals with learning functions by finding the optimal function
according to an objective. For example, one may be interested in finding a function f : Rd →
R that minimizes the squared differences to some targets for all the samples:

∑n
i=1(f(xi)−

yi)2. To find such a function, you need to have a basic grasp of optimization techniques.
In this chapter, we discuss basic optimization tools, particularly focused on smooth

objectives. Many of the algorithms in machine learning rely on a simple approach: gradient
descent. We first discuss how to minimize objectives using both first and second-order
gradient descent. This overview covers only a small part of optimization, but fortunately,
many machine learning algorithms are based on these simple optimization approaches.

4.1 Discrete and Continuous Optimization Problems
A basic optimization goal is to select a set of parameters w ∈ W to minimize a given
objective function c :W → R

min
w∈W

c(w)

whereW is the set of all possible parameters. For example, to obtain the parameters w ∈ Rd

for linear regression that minimizes the squared differences, we use c(w) =
∑n

i=1(⟨xi, w⟩ −
yi)2, for dot product

⟨xi, w⟩ =
d∑

j=1
xijwj .

The parameter set isW = Rd. This example is a continuous optimization problem, because
w is a real-valued variable for a continuous objective. (See Section 1.2 for a reminder about
the definition of a continuous function).

We use the term objective here, rather than error, since error has an explicit connotation
that the function is inaccurate. Later we will see that objectives will include both error
terms—indicating how accurately they recreate data—as well as terms that provide other
preferences on the function. Combining these terms with the error produces the final
objective we would like to minimize. For example, for linear regression, we will optimize
a regularized objective, c(w) =

∑n
i=1(⟨xi, w⟩ − yi)2 + w2

2 where the second term encodes a
preference for smaller coefficients w2.

A discrete optimization problem is one where the set of elements W is a finite—also
called discrete—set. For example, we may want to find the best of three possible parameters
W = {a, b, d} that minimizes the objective c. This optimization is straightforward: we
simply test each of the three values and return the one that gives the lowest c, namely
minimal c(a), c(b) or c(d). If W is a very large finite set, however, then this can become

45

Local Minima

Global Minima

Saddlepoint

Figure 4.1: Stationary points on a smooth function surface: local minima, global minima
and saddlepoints.

expensive; we may even prefer to reformulate the problem as a continuous optimization,
if possible. For these notes, we assume that we either have an easy discrete optimization
problem, where we can enumerate the items, or that we are dealing with a continuous
optimization problem.

Remark about maximizing versus minimizing: We have so far discussed the goal
of minimizing an objective. An equivalent alternative is to maximize the negative of this
objective.

argmin
w∈Rd

c(w) = argmax
w∈Rd

−c(w)

where argmin returns w that produces the minimum value of c(w) and argmax returns w
that produces the maximum value of −c(w). The actual min and max values are not the
same, since for a given optimal solution, c(w) ̸= −c(w). We opt to formulate each of our
optimizations as a minimization, simply by convention. It would be equally valid, however,
to formulate the optimizations as maximizations.

4.2 Stationary Points for Continuous Optimization Problems
Now back to the goal to find w that minimizes a continuous objective. The most straight-
forward, naive solution could be to do a random search: generate random w and check
c(w). If any newly generated wt on iteration t outperforms the previous best solution w, in
that c(wt) < c(w), then we can set wt to be the new optimal solution. Because we assume
our objectives are continuous, however, we can take advantage of this smoothness to design
better search strategies. In particular, for smooth functions, we will be able to use gradient
descent, which we describe in the next section.

Our goal is to exploit the smoothness of our objectives to efficiently search for stationary
points: points w where the derivative—also called the gradient—is zero. Consider first the
univariate case. The derivative tells us the rate of change of the function surface at a point
w. When the derivative of the objective is zero at w ∈ R, i.e., d

dw c(w) = 0, this means that
locally the function surface is flat. Such points correspond to local minima, local maxima

46

and saddlepoints, as shown in Figure 4.1. A local minima is a global minima if it obtains
the minimum on the objective.

For example, assume again that we are doing linear regression, with only one feature
and so only one weight w ∈ R. The derivative of the objective c(w) =

∑n
i=1(xiw − yi)2 is

d

dw
c(w) = d

dw

n∑
i=1

(xiw − yi)2

=
n∑

i=1

d

dw
(xiw − yi)2

=
n∑

i=1
2(xiw − yi)xi

where the last step follows from the chain rule. Our goal is to find w such that d
dw c(w) = 0;

once we find such a stationary point, we can then determine if it is a local minimum, local
maximum or saddlepoint.

Sometimes we can infer what type of stationary point we have simply from properties
of the objective. In particular, if the objective is convex, then we know that the stationary
point is a global minima. A function c : Rd → R is said to be convex if for any w1, w2 ∈ Rd

and t ∈ [0, 1],
c(tw1 + (1− t)w2) ≤ tc(w1) + (1− t)c(w2) (4.1)

This definition means that when we draw a line between any two points on the function
surface, the function values between these two points all lie below this line. Intuitively, this
means the function surface is shaped like a cup, and so the stationary point (or points)
are all at the bottom of the cup and are global minima. A corresponding definition is a
concave function, which is precisely the opposite: all points lie above the line. For any
convex function c, the negative of that function −c is a concave function.

The second derivative test tells us locally if the stationary point is a local minimum,
local maximum or if it is inconclusive. Namely, the test is

1. If c′′(w0) > 0 then w0 is a local minimum.

2. If c′′(w0) < 0 then w0 is a local maximum.

3. If c′′(w0) = 0 then the test is inconclusive: we cannot say which type of stationary
point we have and it could be any of the three.

To understand this test, notice that the second derivative tells us the local curvature of the
function. It tells us how the derivative is changing. If the slope of the derivative c′(w0) is
positive at w0, namely c′′(w0) > 0, then we know that the derivative is increasing; if it is
negative, then it is decreasing.

Example 14: Let us consider an example to understand this better, in Figure 4.2. Consider
a sin curve sin(w) and the point halfway between the bottom and top of the hill. At one
these in-between points, say w = 0, the derivative is maximally positive: it is cos(0) = +1.
As we increase w, the derivative starts to decrease until it is zero at the top of the hill,
at w = π/2. Then it flips and gets more and more negative until it reaches w = π with
derivative maximally negative at cos(π) = −1. In this region between [0, π], the derivative is

47

constantly decreasing and the second derivative is negative. Then, the derivative begins to
increase from its maximally negative point cos(π) = −1, and becomes less and less negative
until reaching the bottom of the hill for w = 3π/2 and becoming zero. Then again the slope
flips and starts to get more and more positive until reaching 2π. In this region between
[π, 2π] the derivative is constantly increasing and the second derivative is positive.

1/10/22, 12:26 PM Desmos | Graphing Calculator

https://www.desmos.com/calculator 1/2

sin(w)cos(w)

!/2
3!/2

Figure 4.2: Visualizing the behavior of the derivative for the red function c(w) = sin(w),
where the derivative iis in blue c′(w) = cos(w).

In the first region [0, π] the function is concave and in the second region [π, 3π/2] it is
convex. Locally, the stationary point in a concave region will be a maxima; for a convex
region, it will be a minima. The second derivative tells us this local curvature. □

In some cases, we can find a closed-form solution for a stationary point, meaning we
can isolate w and have an explicit formula for w. For example, if we have c(w) = (w− 3)2,
then

c′(w) = 2(w − 3) = 0 =⇒ w − 3 = 0 =⇒ w = 3.

On the other hand, for many (or arguably most) objectives, we cannot isolate w in this way
and cannot get a closed-form solution. For example, let c(w) = w2 + exp(w). Then

c′(w) = 2w + exp(w) = 0 =⇒ exp(w) = −2w

and we are stuck. This is not because this is a nonconvex or even difficult optimization.
In fact, this is a convex objective, which we can see by checking the second derivative:
c′′(w) = 2 + exp(w) > 0 for all w. In fact, it is an easy optimization problem, but we will
need to use an iterative method called gradient descent to solve it, described in the next
section.

4.3 Reaching Stationary Points with Gradient Descent
The key idea behind gradient descent is to approximate the function with a Taylor series
approximation. This approximation facilitates computation of a descent direction locally
on the function surface. We begin by considering the univariate setting, with w ∈ R. A
function c(w) in the neighborhood of point w0, can be approximated using the Taylor series

c(w) =
∞∑

n=0

c(n)(w0)
n! (w − w0)n,

48

OR

Figure 4.3: Gradient descent, using a local quadratic approximation at a point with the
Taylor series. The first figure, on the left, show how the new point is found by going to the
minimum of the local quadratic function. The figure on the right provides the intuition of
taking a small step in the negative direction of the gradient, for first-order gradient descent.

where c(n)(w0) is the n-th derivative of function c(w) evaluated at point w0. This assumes
that c(w) is infinitely differentiable, but in practice we will take such polynomial approxi-
mations for a finite n. A second-order approximation to this function uses the first three
terms of the series as

c(w) ≈ ĉ(w) = c(w0) + (w − w0)c′(w0) + 1
2(w − w0)2c′′(w0).

A stationary point of this ĉ(w) can be easily found by finding the first derivative and setting
it to zero

c′(w) ≈ c′(w0) + (w − w0)c′′(w0) = 0.

Solving this equation for w gives us

w1 = w0 −
c′(w0)
c′′(w0) .

Locally, this new w1 will be an improvement on w0, and will be a stationary point of this
local approximation ĉ. Moving (far enough) from w0, however, makes this local second-
order Taylor series inaccurate. We would need to check the local approximation at this new
point w1, to determine if we can further improve locally. Therefore, to find the optimal w,
we can iteratively apply this procedure

wt+1 = wt −
c′(wt)
c′′(wt)

. (4.2)

constantly improving wi until we reach a point where the derivative is zero, or nearly zero.
This method is called the Newton-Raphson method, or second-order gradient descent.1 It
is depicted in Figure 4.3.

1You may notice a theme where I prefer descriptive algorithm names, rather than those based on the
names of people. We will call this algorithm second-order gradient descent.

49

Example 15: Let us revisit our example c(w) = w2 + exp(w), where c′(w) = 2w + exp(w)
and c′′(w) = 2 + exp(w). Let us start w0 = 0 and do one second-order update.

w1 = w0 −
c′(w0)
c′′(w0)

= 0− 0 + exp(0)
2 + exp(0)

= −1
3

Now let us do the next update.

w2 = w1 −
c′(w1)
c′′(w1)

= −1
3 −
−2

3 + exp(−1
3)

2 + exp(−1
3)

= −0.3516893316

The change on this second update was much smaller. Now let’s do one more update.

w3 = w2 −
c′(w2)
c′′(w2)

= −0.352− −0.352 ∗ 2 + exp(−0.352)
2 + exp(−0.352)

= −0.351733711

We can check the first derivative at this point and we find c′(w3) = c′(−0.351733711) ≈
6.7× 10−10, which is very close to zero.

We can also plot the Taylor series expansion around the first two points, visualized in
Figure 4.4. The first approximation around w0 = 0 is

ĉ(w) = c(w0) + c′(w0)(w − w0) + 1
2c′′(w0)(w − w0)2

= exp(0) + w exp(0) + (2 + exp(0))1
2w2 = 1 + w + 3

2w2

The second approximation is around w1 = −1
3 is

ĉ(w) = c(w1) + c′(w1)(w − w1) + 1
2c′′(w1)(w − w1)2

= 1
9 + exp(−1

3) + (−2
3 + exp(−1

3))(w + 1
3) + 1

2(2 + exp(−1
3))(w + 1

3)2

= 1
9 + exp(−1

3) + (−2
9 + 1

3 exp(−1
3)) + (−2

3 + exp(−1
3))w + 1

2(2 + exp(−1
3))(w + 1

3)2

= −1
9 + 4

3 exp(−1
3) + (−2

3 + exp(−1
3))w + 1

2(2 + exp(−1
3))(w + 1

3)2

≈ 0.8443 + 0.04986w + 1.3583(w + 1
3)2

This second approximation almost perfectly matches the red curve, and locally finding the
minimum of the green curve brings us almost to the minimum of the red curve. □

In first-order gradient descent, the approximation is worse, where we no longer use the
true second derivative. Instead, we guess or approximate the second derivative by picking

50

00

-0.5-0.5

0.50.5

11

1.51.5

<latexit sha1_base64="JXYS65RUerVgechrhv7ynERvzvs=">AAAB+nicbVDLTsMwENyUVymvFI5cLCokTlWCeB0ruHAsEn1IbVQ5jttadZzIdkBVyKdw4QBCXPkSbvwNbpoDtIy00mhm1+sdP+ZMacf5tkorq2vrG+XNytb2zu6eXd1vqyiRhLZIxCPZ9bGinAna0kxz2o0lxaHPacef3Mz8zgOVikXiXk9j6oV4JNiQEayNNLCraT9/JJU0yFBKsmxg15y6kwMtE7cgNSjQHNhf/SAiSUiFJhwr1XOdWHsplpoRTrNKP1E0xmSCR7RnqMAhVV6ab83QsVECNIykKaFRrv6eSHGo1DT0TWeI9VgtejPxP6+X6OGVlzIRJ5oKMl80TDjSEZrlgAImKdF8aggmkpm/IjLGEhNt0qqYENzFk5dJ+7TuXtTP785qjesijjIcwhGcgAuX0IBbaEILCDzCM7zCm/VkvVjv1se8tWQVMwfwB9bnDwKflIA=</latexit>c

<latexit sha1_base64="vvITzo0UHpYGVl+8W2yI/5KW6nw=">AAACF3icbZDLSgMxFIYz9VbrrerSTbAIrsqMeNsIRTcuK9gLtKVk0tM2NJMZkjNqGeYt3Pgqblwo4lZ3vo3pZaGtBwIf/39OcvL7kRQGXffbySwsLi2vZFdza+sbm1v57Z2qCWPNocJDGeq6zwxIoaCCAiXUIw0s8CXU/MHVyK/dgTYiVLc4jKAVsJ4SXcEZWqmdLybN8SWJL2NIabPPMOGpBYQHTCjTYaw6NKX3bZdeULedL7hFd1x0HrwpFMi0yu38V7MT8jgAhVwyYxqeG2ErYRoFl5DmmrGBiPEB60HDomIBmFYyXimlB1bp0G6o7VFIx+rviYQFxgwD33YGDPtm1huJ/3mNGLvnrUSoKEZQfPJQN5YUQzoKiXaEBo5yaIFxLeyulPeZZhxtlDkbgjf75XmoHhW90+LJzXGhdDmNI0v2yD45JB45IyVyTcqkQjh5JM/klbw5T86L8+58TFozznRml/wp5/MHkYqffQ==</latexit>

ĉ around w0 = 0

00

-0.5-0.5

0.50.5

11

1.51.5

<latexit sha1_base64="QRzHwbqxgm5F2d0nQgGsY0wTtSA=">AAACJHicbZDLSgMxFIYz3q23qks3wSK4scx4BxFENy4VrAqdUjLpmTaYyQzJGbWEeRg3voobF15w4cZnMa1deDsQ+Pj/c5KTP8qkMOj7797Q8Mjo2PjEZGlqemZ2rjy/cG7SXHOo8VSm+jJiBqRQUEOBEi4zDSyJJFxEV0c9/+IatBGpOsNuBo2EtZWIBWfopGZ5z4b9S2xbA6iChh2GlhcOEG7RUqbTXLVoQW+aAd2nayHGmnEbFHajaJYrftXvF/0LwQAqZFAnzfJL2Ep5noBCLpkx9cDPsGGZRsElFKUwN5AxfsXaUHeoWAKmYfv7FXTFKS0ap9odhbSvfp+wLDGmm0SuM2HYMb+9nvifV88x3m1YobIcQfGvh+JcUkxpLzHaEho4yq4DxrVwu1LeYS4FdLmWXAjB7y//hfP1arBd3TrdrBwcDuKYIEtkmaySgOyQA3JMTkiNcHJHHsgTefbuvUfv1Xv7ah3yBjOL5Ed5H59Fv6Um</latexit>

ĉ around w1 = � 1
3

Figure 4.4: The second-order approximations at two different points, w0 = 0 and w1 = −1
3 .

In this example we can see how the second-order approximation can very quickly lead us to
a minimum.

a value ηt such that 1
ηt
≈ c′′(wt). This new term ηt is called the stepsize, because it

dictates how far we step in the direction of the gradient. Namely, if we solve for wt+1 =
argminw c(wt) + (w − wt)c′(wt) + 1

2ηt
(w − wt)2, we get the update

wt+1 = wt − ηtc
′(wt). (4.3)

From this, one can see that, given access to the second derivative, a reasonable choice for
the stepsize is ηt = 1

c′′(wt) .
We can similarly obtain such rules for multivariate variables. Gradient descent for

c : Rd → R consists of the update

wt+1 = wt − ηt∇c(wt). (4.4)

where
∇c(wt) =

(
∂c

∂w1
(wt),

∂c

∂w2
(wt), ...,

∂c

∂wd
(wt)

)
∈ Rd

is the gradient of function c evaluated at wt. Each partial derivative ∂c
∂wj

(wt) indicates how
the function c changes if all the variables in wt are held constant except for the j element.
As in the single variable setting, the gradient gives a descent direction where stepping (a
sufficiently small step) in that direction will decrease the function value. If the gradient is
zero, then we are already at a stationary point. We can also similarly derive second-order
updates for the multivariate setting, but will only use first-order approaches here with well
chosen stepsizes.

4.4 Selecting the Step-size

An important part of (first-order) gradient descent is to select the step-size. If the step-size
is too small, then many iterations are required to reach a stationary point (Figure 4.5(a)).
If the step-size is too large, then you are likely to oscillate around the minimum (Figure
4.5 (b)). What we really want is an adaptive step-size (Figure 4.5 (c)), that adjusts to the
magnitude of the gradient.

51

¥ : 8
{
•

0
0

E

÷

.
÷

☒
£

I

÷÷ .•
•

§
I ¥÷ .

.

¥ ¥

Figure 4.5: Different optimization paths, due to different stepsize choices. In (a), for fixed
small stepsize, the first step is reasonably large, because the gradient is large. As the gradient
gets smaller, as we get closer to w∗, the stepsize is too small. In (b), for a fixed big stepsize,
this would avoid the issue in (a) where the stepsize is too small once we get closer to w∗.
But, for the first gradient, such a big stepsize is too big, causing the update to jump all the
way to a w on the other size of w∗. In (c), we have an adaptive stepsize—such as might
be given by using ηt = 1/c′′(wt)—that is smaller on the first step and gets larger as the
gradient gets smaller.

The basic method to obtain adaptive step-sizes is to use backtracking line search. The
idea springs from the following goal: we would like to obtain the optimal step-size according
to

min
η∈R+

c(wt − η∇c(wt))

The solution to this optimization corresponds to the best scalar stepsize we could select, for
the current point wt with descent direction −∇c(wt). Solving this optimization would be
too expensive; however, we can find approximate solutions quickly. One natural choice is
to use a backtracking line search, that tries the largest reasonable stepsize ηmax, and then
reduces it until the objective is decreased. The idea is to search along the line of possible
η ∈ (0, ηmax], with the intuition that a large step is good—as long as it does not overshoot.
If it does overshoot, then the stepsize was too large, and should be reduced. The reduction
is typically according to the rule τη for some τ ∈ [0.5, 0.9]. For τ = 0.5, the stepsize
reduces more quickly—halves on each step of the backtracking line search; for τ = 0.9, the
search more slowly backtracks from ηmax. As soon as a stepsize is found that decreases the
objective, it is accepted. We then obtain a new wt, again compute the gradient and start
the backtracking line search once again from ηmax.

This basic backtracking line search provides some intuition for our goal in adapting the
stepsize. One can, of course, imagine other strategies for selecting the stepsize. We might
prefer more efficient choices, even if they are heuristic. For example, for gt

def= ∇c(wt) with
gt,j the j-th index into gt, a simple strategy to be robust to big gradients is to use the
stepsize

ηt = (1 +
d∑

j=1
|gt,j |)−1.

This heuristic uses the magnitude of the gradient on the denominator, plus 1 to ensure that

52

our stepsize is never too large. For example, if gt is very close to zero, then (
∑d

j=1 |gt,j |)−1

can be very large. To avoid this, we add a small constant in the denominator. Such a
constant can be a tuned ϵ value (ϵ +

∑d
j=1 |gt,j |)−1, but for simplicity we simply set ϵ = 1.

Algorithm 1: Backtracking Line Search(wt, c, g = ∇c(wt))
1: Optimization parameters: ηmax = 1.0, τ = 0.7, tolerance← 10−4

2: η ← ηmax
3: w← wt

4: obj← c(w)
5: while number of backtracking iterations is less than maximum iterations do
6: w← wt − ηg
7: // Ensure improvement is at least as much as tolerance
8: If c(w) < obj - tolerance then break
9: // Else, the objective is worse and so we decrease stepsize

10: η ← τη
11: if maximum number of iterations reached then
12: // Could not improve solution
13: return wt, η = 0
14: return w, η

4.5 Testing for Optimality and Solution Uniqueness
Recall that our ultimate goal is to find a solution to our optimization problem. Finding a
stationary point, therefore, is only a first step. After obtaining a stationary point, we then
have to check: (a) is it a local minimum, maximum or saddlepoint and (b) if it is a local
minimum, can we further conclude it is a global minimum.

As mentioned above, for a convex function, the stationary point(s) will all be global
minima. Therefore, regardless of where we start our gradient descent, with appropriately
chosen stepsize and sufficient iterations, we will reach an optimal solution.

If we are unsure about the convexity of the function, then we turn to the second deriva-
tive test. Recall that the second derivative test tells us locally if the stationary point is a
local minimum, local maximum or if it is inconclusive. We can conclude that, if we have
an unconstrained optimization, a stationary point is a global minimum if (a) the second
derivative test tells us it is a local minimum and (b) we have one stationary point.

In some cases we will have constraints on the variables we are optimizing. A common
one—and the only one we address in these notes—is lower and upper bounds on the vari-
ables: w ∈ [a, b]. If the stationary point w0 satisfies w0 ∈ [a, b] and the function is convex,
then the boundary points do not correspond to a solution. If the stationary point is outside
the feasible set, then one of the boundary points might be a solution. This is visualized in
Figure 4.6.

Uniqueness of the solution. We often care if there is more than one solution to our
optimization problem. In some cases, we care about identifiability, which means we can
identify the true solution. If there is more than one solution, one might consider that

53

§
I

s
8

←
⇐

✗

6
9
s

.

:[
d
-

§
←
d
-

S
F

S
'

o
f

5
d
-

☐
-

I
s

u
r
g
o
5

I ☐
£
8
S

s

o
8

→
s

e s
'

}
£

•

C

i
s

s
a

-
¥
;

.
✗

I
s

?
P S

E
.
{

a
0 J
u

g:

E
E

o
o

a
*

f
f
f

s
•

a
•
u

T

÷¥
€

: 5
.

w
e
?

I

8
-

É
O s

}

Figure 4.6: The second derivative test and reasoning about optimality. For (a), for a convex
function, all stationary points are global minima. If this function had a flat region at the
minimum, the second-derivative test would be inconclusive, because the second derivative
would be zero (flat curvature). But, we would still know that the stationary point was one
of many equivalent global minima, because the function is convex. For (b), we can use
the second derivative test to distinguish between local minima and maxima for nonconvex
functions. But, we cannot say for sure if our local minimum is a global minimum; the second
derivative test returns the same conclusion for both of these minima. In this case, a second
derivative of zero indicates a saddlepoint, but the test is generally inconclusive because flat
regions that are minimal or maximal regions also have flat curvature.

the problem is not precisely posed. For some problems, it is important or even necessary
to have identifiability (e.g., estimating the percentage of people with a disease) whereas
for others we simply care about finding a suitable (predictive) function f that reasonably
accurately predicts the targets, even if it is not the unique such function. We will not
consider identifiability further in this document, but it is important to be cognizant of if
your objective has multiple solutions.

Equivalence under a constant shift Adding or multiplying by a constant a ̸= 0 does
not change the solution

argmin
w∈Rd

c(w) = argmin
w∈Rd

a c(w) = argmin
w∈Rd

c(w) + a.

You can see why by taking the gradient of all three objectives and noticing that the gradient
is zero under the same conditions

∇a c(w) = 0 ⇐⇒ a∇c(w) = 0 ⇐⇒ ∇c(w) = 0

and
∇(c(w) + a) = 0 ⇐⇒ ∇c(w) = 0.

54

Chapter 5

Formalizing Parameter Estimation

In probabilistic modeling, we are typically presented with a set of observations and the
objective is to find a model that well approximates the true underlying model that generated
the data. For example, we may get a dataset of commute times. These commute times
might actually be sampled i.i.d. from a Gamma distribution, with parameters α∗ and β∗.
Namely, in the limit, as we sample more and more commute times, the density over commute
times will perfectly match a Gamma(α, β). Intuitively, we should be able to identify these
parameters—or estimate them—from a sufficiently large dataset. In this section, we talk
about how to formalize this parameter estimation problem.

The key steps involve 1) picking the distribution and parameters you will estimate (e.g.,
Gamma with parameters α and β), 2) writing down the optimization that formalizes which
parameters are the “best" choice (e.g., most likely) given the observed data. As you will see,
once we do Step 1, there are relatively standard choices for Step 2: maximum a posteriori
estimation (MAP), maximum likelihood estimation (MLE) and Bayesian estimators. Step
1 is not as straightforward. It is a mixture of expert knowledge and experience. In this
chapter, we will focus on Step 2, and conclude the chapter with a discussion about Step 1.

5.1 Maximum Likelihood Estimation

Imagine you observe a dataset of observations D = {xi}ni=1. The data is drawn from some
true distribution p∗, but that distribution is unknown to you. Instead, all you know is
that the distribution is in a set of possible distributions, F , sometimes called the hypothesis
space or function class. For example, F could be the family of all univariate Gaussian
distributions:

F = {N (µ, σ2) | for any µ ∈ R and σ ∈ R+}.

The true distribution has parameters µ∗ and σ∗. Using the data, we would like to find µ
and σ as close to these as possible.

One reasonable objective is to pick the function (parameters) that make the data the
most likely. This is called maximum likelihood, and is written

fMLE = argmax
f∈F

p(D|f)

where p(D|f) is called the likelihood of the data given the model. If the data has low
likelihood for a distribution given by f , then it is unlikely that f corresponds to the true
parameters that generated the data. Conversely, f for which the data is the most likely is
more likely to correspond to f∗, especially if we have a lot of data. Maximum likelihood
estimation (MLE) is also motivated by the connection to MAP, described in the next section.

55

*rai
res

1

c x2

a=p(x,/a.2a2) bi
=p(x/Mb.2Y plAcizaY:Mai: a.xan

az =p(z/Maiza") 32:plzfub.2bY) pLDfes.2sY:Abi =b.xbz

If pIDIuairaY< pIDIns.2oY), then Maira" better under mat

· Ibi, pretty similar. Which
dowe pick?

Here, asis
MAP gives

us a preference, using priorover M22), Pprior

In MAP, iftaiphawaii bipSMs,as', then reactan
better

Figure 5.1: Visualizing likelihoods for a dataset, under two different Gaussians. Here we
imagine we have sampled two points x1, x2 from a Gaussian with unknown mean and vari-
ance. We can check how likely these samples are under different Gaussians. The red curve
corresponds to one Gaussian, with probabilities labeled as a1, a2, and the blue curve to an-
other, with probabilities labeled as b1, b2. We have p(D|µa, σ2

a) = p(x1, x2|µa, σ2
a) = a1a2. If

p(D|µa, σ2
a) > p(D|µb, σ2

b), then the red curve is a better choice under the MLE objective.

We use words model, which is a function, and its parameters, which are the coefficients of
that function, somewhat interchangeably. For example, above, we could have equivalently
considered F = {(µ ∈ R, σ ∈ R+)}. We will typically reason directly about the parameter
space rather than indirectly about the models or probabilities that they parameterize.

Before talking about how to solve the maximum likelihood objective, let us consider a
simple example of how this objective lets us pick between two parameters. Let us imagine
we know the data is generated from a Gaussian N (µtrue, σ2

true), and our goal is to find
µtrue, σtrue. We can look at how likely the data is for different (µ, σ2), as in Figure 5.1; a
natural choice is to pick (µ, σ2) that make the data most likely, since it best matches the
evidence. Now let us move on to examples where we solve the MLE objective.

Example 16: Assume we are given a coin with an unknown probability of seeing a 1
(a heads). Our goal is to estimate this parameter w, which we sometimes call the bias
of the coin. The manufacturer that gave us the coin assures us that the bias is one of
F = {0.3, 0.5, 0.8}. Imagine we obtain a dataset of n coin flips, D = {0, 1, 0, 1, 1, . . . , 1}
namely where x1 = 0, x2 = 1, x3 = 0, x4 = 1, x5 = 1, . . . , xn = 1. Given w, the distribution
over an outcome is p(xi|w) = wxi(1−w)1−xi . The coin flips are conditionally independent,
given the bias of the coin, and so we know that

p(D|w) =
n∏

i=1
p(xi|w).

We can simplify this further to get
n∏

i=1
p(xi|w) =

n∏
i=1

wxi(1− w)1−xi = wn1(1− w)n0

56

where n1 is the number of observed 1s and n0 the number of observed 0s, with n = n1 + n0.
Further imagine that n = 10 and n1 = 8 and n0 = 2. Then we can evaluate p(D|w) for all
three values of w:

p(D|w = 0.3) = 0.3n10.7n0 ≈ 3.21× 10−5

p(D|w = 0.5) = 0.5n10.5n0 ≈ 9.77× 10−4

p(D|w = 0.8) = 0.8n10.2n0 ≈ 6.71× 10−3

To find argmaxw∈{0.3,0.5,0.8} p(D|w), we simply pick the w that gives the maximum in these
three equations, which is w = 0.8. □

If on the other hand we did not know that w ∈ {0.3, 0.5, 0.8}, and instead assumed
w ∈ [0, 1], we would solve for argmaxw∈[0,1] p(D|w) =

∏n
i=1 p(xi|w). This is now a continuous

optimization problem, and we will have to use the strategies from Chapter 4 to find the w
that maximizes the likelihood. We can go ahead and use our optimization tools, namely
gradient descent, to optimize this objective. However, the resulting gradient is annoying to
compute, due to all the products.

Fortunately, we have a simple work-around to specify an equivalent but easier-to-use
objective: the log likelihood. The idea is simple: we transform the likelihood with the
log function, which turns products into sums but does not change the relative ordering of
parameters. Namely

wMLE = argmax
w∈F

p(D|w) = argmax
w∈F

ln p(D|w)

= ln
n∏

i=1
p(xi|w) =

n∑
i=1

ln p(xi|w).

The last step follows from the property of logs: log(abc) = log(a) + log(b) + log(c). Further,
since the logarithm is a monotonically increasing function, we know that for any a, b > 0,
that a > b if and only if ln a > ln b. Therefore, relative ordering between w is preserved,
since the ordering on likelihoods and log-likelihoods are the same.

Additionally, we will typically choose to formalize problems as minimization problems
rather than maximization, just by convention. As discussed in Chapter 4, they are perfectly
equivalent, as one just uses the negative of the function. We therefore will typically minimize
the negative log-likelihood, rather than maximizing the likelihood

wMLE = argmax
w∈F

p(D|w)

= argmax
w∈F

ln p(D|w)

= argmin
w∈F

− ln p(D|w). (5.1)

Notice that the above formulas say that the argmax is equal. Recall that the argmax is the
argument that gives the maximum value. The value at the maximum or minimum itself,
though, is different. Our goal is to identify the parameters, not this maximal or minimal
value, so to us all these three objectives are equivalent.

Example 17: Suppose data set D = {2, 5, 9, 5, 4, 8} is an i.i.d. sample from a Poisson distri-
bution with a fixed but unknown parameter λ0. Our goal is to find the maximum likelihood

57

estimate of λ0. The probability mass function of a Poisson distribution is expressed as
p(x|λ) = λxe−λ/x!, with some parameter λ ∈ R+. We will estimate this parameter as

λMLE = argmax
λ∈(0,∞)

p(D|λ) = argmin
λ∈(0,∞)

− ln p(D|λ) = argmin
λ∈(0,∞)

−
n∑

i=1
ln p(xi|λ) (5.2)

where the last step follows from the fact that the data is i.i.d.. In other words, given the
model parameter λ, the samples are independent:

p(x1, x2, . . . , xn|λ) = p(x1|λ)p(x2|λ) . . . p(xn|λ).

Now notice that1

ln p(xi|λ) = ln λxie−λ/(xi)!
= ln λxi + ln e−λ − ln xi!
= xi ln λ− λ− ln xi!

=⇒ − ln p(xi|λ) = −xi ln λ + λ + ln xi!

The negative log-likelihood is the objective, composed of ci(λ) def= − ln p(xi|λ):

c(λ) def= − ln p(D|λ) =
n∑

i=1
ci(λ).

We can compute the gradient of this objective, by computing gradient c′(λ) =
∑n

i=1 c′
i(λ),

as discussed in Chapter 4.

c′(λ) = d

dλ
(−xi ln λ + λ + ln xi!)

= d

dλ
(−xi ln λ) + d

dλ
(λ) + d

dλ
(ln xi!)

= −xi
d

dλ
ln λ + 1 + 0 ▷

d

dλ
ln λ = 1

λ

= −xi

λ
+ 1

Solving for c′(λ) = 0 gives us a stationary point for this problem

c′(λ) =
n∑

i=1

(−xi

λ
+ 1

)
= − 1

λ

n∑
i=1

xi + n = 0

=⇒ n = 1
λ

n∑
i=1

xi

=⇒ λ = 1
n

n∑
i=1

xi

which is simply a sample mean. We can substitute n = 6 and values from D to compute
the solution as

λMLE = 1
n

n∑
i=1

xi = 5.5

1Recall that for scalars a, b > 0, (i) ln(ab) = ln a + ln b (ii) ln(a/b) = ln a − ln b and (iii) ln ab = b ln a

58

This objective, for this dataset, is visualized in Figure 5.2.
Finally, if we want to ensure that this is a local minimum, rather than maximum, we can

use the second derivative test. The second derivative is c′′(λ) = λ−2∑n
i=1 xi which is > 0

for this λMLE. Therefore, the objective is locally convex, and so we are at a local minimum.
We further know it is a global minimum, since it is the only stationary point. Note that to
properly maximize this loss, we also need to ensure the constraint λ ∈ (0,∞) is enforced.
Because the solution above is in the constraint set, we know we have the correct solution
to Equation (5.2). □

5.2 MAP Estimation

The idea behind maximum a posteriori (MAP) estimation is to find the most probable
model for the observed data. Given the data set D, we formalize the MAP solution as

wMAP = argmax
w∈F

p(w|D)

where p(w|D) is called the posterior distribution of the model given the data. In discrete
model spaces, p(w|D) is the probability mass function and the MAP estimate is exactly
the most probable model. Its counterpart in continuous spaces is the model with the
largest value of the posterior density function. This objective more explicitly considers our
uncertainty about the model parameters w, because we reason about the distribution over
w.

To calculate the posterior distribution we start by applying Bayes rule as

p(w|D) = p(D|w)p(w)
p(D) , (5.3)

where p(D|w) is called the likelihood function, p(w) is the prior distribution of the model,
and p(D) is the marginal distribution of the data. Notice that we use D for the observed data
set, but that we usually think of it as a realization of a multidimensional random variable
D drawn according to some distribution p(D). Using the formula of total probability, we
can express p(D) as

p(D) =

∑

w∈F p(D|w)p(w) w : discrete

´
F p(D|w)p(w)df w : continuous

Therefore, the posterior distribution over w can be fully described using the likelihood and
the prior. Computing this prior, though, can be prohibitively expensive. For example, it
could require the estimation of an integral over all possible models w.

Fortunately, finding wMAP can be greatly simplified because p(D) in the denomina-
tor does not affect the solution. This is because p(D) is the same regardless of f in the
maximization, and so scaling by p(D) does not change the relative ordering

max
w∈F

p(D|w)p(w)
p(D) = 1

p(D) max
w∈F

p(D|w)p(w)

=⇒ argmax
w∈F

p(D|f)p(w)
p(D) = argmax

w∈F
p(D|w)p(w).

59

For this reason, we often write

p(w|D) = p(D|w) · p(w)
p(D)

∝ p(D|w) · p(w),

where ∝ is the proportionality symbol. And, we find the MAP solution by solving the
following optimization problem

wMAP
def= argmax

w∈F
p(D|w)p(w).

Notice that again we can apply the log without changing the relative order and rewrite this
as a minimization by taking the negative

wMAP = argmax
w∈F

p(D|w)p(w) = argmax
w∈F

ln p(D|w) + ln p(w) = argmin
w∈F

− ln p(D|w)− ln p(w).

Example 18: Before we move on to finding the MAP solution, let’s consider what the
posterior can look like. Let us do this first by considering a discrete weight vector, with a
prior and posterior that is a pmf. Again we use the coin example, where we are given a
coin with an unknown probability w of seeing a 1 (a heads). The manufacturer that gave
us the coin assures us that the bias is one of F = {0.3, 0.5, 0.8}. Further, because it came
from their factory, they know that the proportion of coins they produce are: 70% have
w = 0.3, 20% have w = 0.5 and 10% have w = 0.8. In other words, the prior probability
over outcomes for w is

p(w) =

0.7 w = 0.3
0.2 w = 0.5
0.1 w = 0.8

Imagine we obtain a dataset of n coin flips, D = {0, 1, 0, 1, 1, . . . , 1} namely where x1 =
0, x2 = 1, x3 = 0, x4 = 1, x5 = 1, . . . , xn = 1. Given w, the distribution over an outcome
is p(xi|w) = wxi(1 − w)1−xi . To compute the posterior p(w|D), we need to compute the
likelihood p(D|w) and p(D); we already have the prior p(w). Notice that the posterior
p(w|D) is a pmf with three probabilities: p(w = 0.3|D), p(w = 0.5|D) and p(w = 0.8|D).
To obtain the posterior we need to compute these three probabilities. Notice that

p(w = 0.3|D) = p(D|w = 0.3)p(w = 0.3)
p(D)

Let’s start by computing p(D|w)p(w) for each w. Again recall that

p(D|w) =
n∏

i=1
p(xi|w) =

n∏
i=1

wxi(1− w)1−xi = wn1(1− w)n0

where n1 is the number of observed 1s and n0 the number of observed 0s, with n = n1 + n0.

60

As in Example 16, imagine that n = 10 and n1 = 8 and n0 = 2. Then we can evaluate
p(D|w)p(w) for all three values of w:

p(D|w = 0.3)p(w = 0.3) = 0.3n10.7n00.7 ≈ 2.25× 10−5

p(D|w = 0.5)p(w = 0.5) = 0.5n10.5n00.2 ≈ 0.0001953
p(D|w = 0.8)p(w = 0.8) = 0.8n10.2n00.1 ≈ 0.0006711

Now we can compute

p(D) =
∑
w∈F

p(D, w) =
∑
w∈F

p(D|w)p(w)

≈ 2.25× 10−5 + 0.0001953 + 0.0006711 = 0.0008889

and finally get

p(w|D) =

2.25× 10−5/p(D) w = 0.3
0.0001953/p(D) w = 0.5
0.0006711/p(D) w = 0.8

=

0.0253 w = 0.3
0.2197 w = 0.5
0.7550 w = 0.8

With only 10 coin flips, even though the ratio of 1s to 0s suggested w = 0.8 is the bias, the
posterior still has relatively high probability on w = 0.5, because the prior was higher for
0.5 than 0.8. If we had much more data, say n1 = 80 and n0 = 20, meaning n = 100, the
posterior is much more concentrated. Going through the same steps as above, we would get

p(w|D100) =

4.4× 10−23 w = 0.3
85× 10−9 w = 0.5
0.99999999 w = 0.8

This posterior effectively has all probability on w = 0.8, and we can be very confident
that w is 0.8. Notice for either the dataset of 10 or 100 samples, the MAP estimate would
actually be the same, since p(w = 0.8|D) had the highest probability for both. □

In some situations we may not have a reason to prefer one model over another and can
think of p(f) as a constant over the model space F . Namely, if p(f) = c for some constant
c, then MAP reduces to the maximization of the likelihood function

argmax
f∈F

p(D|f)p(f) = argmax
f∈F

c · p(D|f) = argmax
f∈F

p(D|f)

because the constant c comes out of the maximization and does not affect the relative order-
ing. This solution is the MLE solution described above, and further motivates why MLE is
a sensible objective. Formally speaking, the assumption that p(f) is constant is problematic
because a uniform distribution cannot be always defined (say, over R), though there are
some solutions to this issue using improper priors. Nonetheless, it is useful conceptually to
think of MLE as a special case of MAP estimation with a uniform prior.

Example 19: Let D = {2, 5, 9, 5, 4, 8} again be an i.i.d. sample from Poisson(λ0), but now
we are also given additional information. Suppose the prior knowledge about λ0 can be
expressed using a gamma distribution with parameters k = 3 and θ = 1. Find the MAP
estimate of λ0.

61

First, we write the probability density function of the gamma distribution for our prior

p(λ) = λk−1e− λ
θ

θkΓ(k) ,

where λ > 0. Γ(k) is the gamma function that generalizes the factorial function; when k is
an integer, we have Γ(k) = (k − 1)!. The MAP estimate of the parameters can be found as

λMAP = argmax
λ∈(0,∞)

p(D|λ)p(λ).

As before, we take the log to simplify calculations to get

ln p(D|λ)p(λ) = ln p(D|λ) + ln p(λ)

=
n∑

i=1
ln p(xi|λ) + ln p(λ).

We have already simplified the first term in the previous example. For the log of the prior
distribution, we have

ln p(λ) = ln
(
λk−1e− λ

θ

)
− ln(θkΓ(k))

= (k − 1) ln λ− λ

θ
− ln(θkΓ(k)).

The last term is constant with respect to λ; so when we take the derivative it will disappear
and we will be able to avoid computing it. Plugging everything back in

ln p(D|λ) + ln p(λ) = ln λ
n∑

i=1
xi − nλ−

n∑
i=1

ln (xi!) + (k − 1) ln λ− λ

θ
− ln(θkΓ(k))

and taking the derivative gives

∂ ln p(D|λ) + ln p(λ)
∂λ

= 1
λ

n∑
i=1

xi − n + k − 1
λ
− 1

θ
because ∂ ln p(λ)

∂λ
= k − 1

λ
− 1

θ

Once again setting the derivative to zero and solving for λ gives

λMAP = k − 1 +
∑n

i=1 xi

n + 1
θ

= 5 for the dataset D
□

A quick look at λMAP and λMLE suggests that as n grows, both numerators and denomi-
nators in the expressions above become increasingly more similar. In fact, it is a well-known
result that, in the limit of infinite samples, both the MAP and MLE converge to the same
model, f , as long as the prior does not have zero probability (or density) on f . This result
shows that the MAP estimate approaches the MLE solution for large data sets. In other
words, large data diminishes the importance of prior knowledge.

To get some intuition for this result, we will show that the MAP and MLE estimates
converge to the same solution for the above example with a Poisson distribution. Let sn =

62

1/18/22, 3:49 PM Desmos | Graphing Calculator

https://www.desmos.com/calculator 1/2

555555555.........555555555,,,,,,,,, −−−−−−−−−222222222333333333.........222222222555555555777777777
555555555,,,,,,,,, −−−−−−−−−222222222111111111.........333333333333333333

Figure 5.2: Contrasting the objective functions for the
MLE (red) and MAP (blue) estimates for a Poisson dis-
tribution, in Examples 17 and 19. The MLE objective
(red) has minimum at 5.5 and the MAP objective (blue)
has minimum at 5. The objective functions are
c(λ) = −33 ln(λ) + 6λ
c(λ) = −35 ln(λ) + 7λ
where we have dropped constants. The objectives are not
too different. The MAP objective simply balances the
data likelihood with the prior, which is a gamma distri-
bution with k = 3 and θ = 1. The mode for this prior
is (k − 1)θ = 2, and the mean is kθ = 3, so the prior
suggested that a smaller w (λ) was more likely. Conse-
quently, the MAP solution is smaller than the MLE one.

∑n
i=1 xi, which is a sample from the random variable Sn =

∑n
i=1 Xi. If limn→∞ sn/n2 = 0

(i.e., sn does not grow faster than n2), then

|λMAP − λMLE| =
∣∣∣∣k − 1 + sn

n + 1/θ
− sn

n

∣∣∣∣
=
∣∣∣∣ k − 1
n + 1/θ

− sn

n(n + 1/θ)

∣∣∣∣
≤ |k − 1|

n + 1/θ
+ sn

n(n + 1/θ) −−−→
n→∞

0

Note that if limn→∞ sn/n2 ̸= 0, then both estimators go to ∞; however, such a sequence
of values has an essentially zero probability of occurring. Consistency theorems for MLE
and MAP estimation state that convergence to the true parameters occurs “almost surely”
or “with probability 1” to indicate that these unbounded sequences constitute a set of
measure-zero, under certain reasonable conditions (for more, see [11, Theorem 9.13]).

Example 20: Let D = {xi}ni=1 be an i.i.d. sample from a univariate Gaussian distribution.
Our goal is to find the maximum likelihood estimates of the parameters. We start by forming
the log-likelihood function

ln p(D|µ, σ) = ln
n∏

i=1
p(xi|µ, σ)

= n ln 1√
2π

+ n ln 1
σ
−
∑n

i=1 (xi − µ)2

2σ2 .

We compute the partial derivatives of the log-likelihood with respect to all parameters as

∂

∂µ
ln p(D|µ, σ) =

∑n
i=1 (xi − µ)

σ2

∂

∂σ
ln p(D|µ, σ) = −n

σ
+
∑n

i=1 (xi − µ)2

σ3 .

63

-
d

C
C
I

W

W

E
O

>
S
-
is

&
(

↑
O

-
↑

↓
I

*
& E
1

O
&

-
>

&
-
0
0

-
ii
s

C &
>

99
,11
j

& I
16

⑤T
&

& &
↑

S
I S

= .
#
S

*

O

j
I

&

I
I

I

O
I
C

d
=

I ⑱
1

O
-
&

-
>

O
C

&
&

⑮
i

C &
>

99
,11

*

j

Figure 5.3: The prior and posterior for Example 18 about estimating the bias of a coin,
where the bias of the coin is w ∈ {0.3, 0.5, 0.8}.

From here, we can solve for each variable that makes these equations zero, to derive that

µMLE = 1
n

n∑
i=1

xi

σ2
MLE = 1

n

n∑
i=1

(xi − µMLE)2 .

Notice that the resulting σ2
MLE is guaranteed to be non-negative, and so satisfies the condi-

tions on that variable. □

MAP and MLE estimates are called point estimates. These estimates contrast Bayesian
estimates, which estimate the entire posterior distribution for the parameters, as we discuss
in the next section.

5.3 Bayesian Estimation
Maximum a posteriori and maximum likelihood approaches report the solution that corre-
sponds to the mode of the posterior distribution and the likelihood function, respectively.
These approaches, however, do not consider the possibility of skewed distributions or mul-
timodal distributions for the posterior distribution, nor do they allow us to reason about
the distribution over plausible parameters. Bayesian estimation addresses those concerns.

5.3.1 Using the posterior

Bayesian approaches require estimation of the full posterior p(w|D) (not just the mode as
in MAP). We have already seen a case where we explicitly computed p(w|D), for coins in
Example 18 where w ∈ {0.3, 0.5, 0.8}. The posterior is computed by updating the prior with
evidence (the data). We visualize this change for the coins example, in Figure 5.3. The
weights w can also be real-valued, as they were when w was the mean of a distribution. The
prior p(w) might be a Gaussian distribution, and under certain conditions, the posterior
p(w|D) will also be a Gaussian, with a narrower variance, as visualized in Figure 5.4. We
discuss how to actually get this p(w|D) in the next subsection, but first let us consider how
we might use it.

64

x
..
. .
.
.

* Z
3

3

3
& o
f t

-
.
.
.
.
.
.
.
.

vot
i
=
3 =

·

I
⑨ are t

Figure 5.4: The prior and posterior for real-valued w, assuming that data is generated by a
Gaussian. The prior is a wider distribution (larger variance), indicating that before seeing
the data, we think it is most likely that w is near µ0 (e.g., µ0 = 0), but are not confident
about it. As we see more data, the mean µw shifts away from µ0 towards a more plausible
value given the data, and the variance shrinks. In the limit, as we see more and more
samples, the variance shrinks to zero.

One reason we want the posterior is to reason about the range of plausible parameters,
given our data. For example, if p(w|D) is Gaussian with mean µ and variance σ2, then we
can determine the interval around the mean µ that corresponds to 95% probability

p(w ∈ [µ− ϵ, µ + ϵ]) = 0.95 =⇒ ϵ = 1.96σ.

This interval is called the credible interval, because any value for w in that region is plausible
or credible. The MAP estimator would say that the most likely w = µ, and the credible
interval additionally provides some level of confidence in that estimate. If the variance is
very small, then the credible interval is narrow and we can be reasonably confident that,
under our probabilistic assumptions, we have seen enough data to identify w.2

On the other hand, if the variance of the posterior is high, then we are not that sure
about our parameter. The credible interval indicates that values pretty far from µ are also
plausible. Recall that the density at just one standard deviation away, at µ + σ, remains
quite high. This means that there is a wide range of plausible w, and it would be hard to
confidently state that w = µ is near optimal.

We can also use this posterior to pick different point estimates. The MAP estimator
uses the most likely point, the mode of the posterior. But, we could also use the mean or
median of the posterior. For these notes, we will focus on the use of the credible interval,
rather than on these alternative point estimates.3

2Of course, it does not tell us anything about if we chose the wrong probabilistic assumptions. We will
discuss this more, particularly discussing the non-realizable setting, in Section 10.3.

3For your own interest, to find more information about this topic, these alternative point estimates are
called Bayes estimators and they are found by minimizing what is called the posterior risk.

65

5.3.2 Computing the posterior with conjugate priors

Now let us turn to how to obtain this posterior, so that we can actually extract these
credible intervals. We have a formula for the posterior, because it can be expressed in
terms of known distributions using Bayes rule

p(w|D) = p(D|w)p(w)
p(D) .

The difficulty, though, is in computing p(D). For MAP, we did not need to estimate p(D)
because it was a constant that did not affect finding the most likely parameters. Now, we
explicitly need to estimate this term, which we can do using

p(D) =
ˆ

p(D|w)p(w)dw

Now computing the posterior p(w|D) involves solving integrals. In some situations, these
integrals can be solved analytically; in others, numerical integration is necessary. There
are classes of distributions for which we know a simple form for the posterior. We discuss
this below—with the concept of conjugate priors—but first give an example to get some
intuition.

Example 21: Let D = {2, 5, 9, 5, 4, 8} yet again be an i.i.d. sample from Poisson(λ0).
Suppose the prior knowledge about the parameter of the distribution can be expressed
using a gamma distribution with parameters k = 3 and θ = 1. Let’s find the posterior
distribution and the resulting Bayesian estimate of λ0, that is E[Λ|D].

Let us first write the posterior distribution as

p(λ|D) = p(D|λ)p(λ)
p(D) = p(D|λ)p(λ)´∞

0 p(D|λ)p(λ)dλ
,

where, as shown in previous examples, we have that

p(D|λ) = λ
∑n

i=1 xi · e−nλ∏n
i=1 xi!

and p(λ) = λk−1e− λ
θ

θkΓ(k) .

Before calculating p(D), let us first note that
ˆ ∞

0
xα−1e−βxdx = Γ(α)

βα
.

Now, we can derive that

p(D) =
ˆ ∞

0
p(D|λ)p(λ)dλ

=
ˆ ∞

0

λ
∑n

i=1 xi · e−nλ∏n
i=1 xi!

· λk−1e− λ
θ

θkΓ(k) dλ

= Γ(k +
∑n

i=1 xi)
θkΓ(k)

∏n
i=1 xi!(n + 1

θ)
∑n

i=1 xi+k

66

a
=

2 =5

B
=3

B
=1

p(w)
x

=2

B
=2

O &
W

Figure 5.5: The beta distribution for different α, β.
When α = β = 2, the most likely value for w is
0.5, decreasing symmetrically away from 0.5. If we
increase them, but keep them equal, such as α = β =
100, we see similar behavior—the most likely value
for w is 0.5, decreasing symmetrically away from
0.5—but the variance reduces and the distribution is
more peaked around 0.5. For α = 5 and β = 1, the
mode is 1 and for α = 1 and β = 3 the mode is 0.

and subsequently that

p(λ|D) = p(D|λ)p(λ)
p(D)

= λ
∑n

i=1 xi · e−nλ∏n
i=1 xi!

· λk−1e− λ
θ

θkΓ(k) ·
θkΓ(k)

∏n
i=1 xi!(n + 1

θ)
∑n

i=1 xi+k

Γ(k +
∑n

i=1 xi)

=
λk−1+

∑n

i=1 xi · e−λ(n+1/θ) · (n + 1
θ)
∑n

i=1 xi+k

Γ(k +
∑n

i=1 xi)
.

Though this looks complex, notice that this is actually just a gamma distribution! The
parameters k′, θ′ for this gamma distribution are

k′ = k +
n∑

i=1
xi

θ′ = θ

nθ + 1 = 1
n + 1/θ

.

□

This example highlights why the selection of the prior distribution has important impli-
cations on calculation of the posterior mean. We did not pick the gamma distribution by
chance: when the likelihood was multiplied by the prior, the resulting distribution remained
in the same class of functions as the prior. Such prior distributions are called conjugate
priors. More formally, a prior is a conjugate prior to a likelihood if the resulting posterior
is the same type of distribution as the prior (e.g, both are Gaussian distributions, or both
are gamma distributions).

Why is it useful to have a conjugate prior? Consider if we did not have a conjugate
prior. Imagine if instead we chose an exponential distribution as the prior for λ in our above
example. When computing p(D) and p(λ|D), you would simply be stuck with complex
integrals and formulas that do not correspond to any known distribution. One ramification
is that it is not clear how to extract a credible interval. When you pick the conjugate
prior—the gamma distribution—you can simply go look up the known formula for the
parameters of the gamma posterior, assuming p(x|θ) is Poisson and prior p(θ) is gamma
with parameters k and θ. You wouldn’t even have to go through the above derivation; you
would simply have been able to immediately know that k′ = k +

∑n
i=1 xi and θ′ = θ

nθ+1 .

Example 22: Let us return to the coins example, now allowing for the coin bias to be
continuous, w ∈ [0, 1]. The likelihood p(x|w) is a Bernoulli distribution for x ∈ {0, 1},

67

where p(x|w) = wx(1 − w)(1−x) or more simply p(x = 1|w) = w. The conjugate prior for
the Bernoulli distribution is the beta distribution. The beta distribution has two positive
parameters, α, β > 0. The larger α is relative to β, the more the distribution is concentrated
near 1, and vice versa. We visualize this distribution, with different α, β, in Figure 5.5.

Because the beta distribution is the conjugate prior to the Bernoulli distribution, we
have a simple form for the posterior. After seeing a dataset D = {xi}ni=1 = {1, 0, 0, . . . , 1}
of coin flips, we update the prior distribution p(w) = Beta(α, β) to get posterior p(w|D) =
Beta(α + sn, β + n− sn) where sn =

∑n
i=1 xi is the number of successes (flips that were 1).

To get this posterior, we leveraged the known update for this conjugate prior.
The MAP estimate is the mode of this distribution. The mode of the beta distribution,

for α, β > 1, is α−1
α+β−2 . Our posterior parameters are α′ = α + sn and β′ = β + n − sn.

As we get more and more samples, sn dominates the small scalars α and β, and the mode
approaches sn

n , which is the proportion of times that we saw a 1 from the coin flip. For
a smaller sample size, this counting estimate is skewed by the prior, towards the values
deemed more plausible under the prior. For example, if α = 5 and β = 1, then the prior
puts much higher density near values of 1, with a mode of α−1

α+β−2 = 5−1
6−2 = 1. Even if we see

eight 0s (tails) and only two 1 (heads), then our posterior is still somewhat skewed towards
higher values, with a mode of

α′ − 1
α′ + β′ − 2 = 5 + 2− 1

(5 + 2) + (1 + 8)− 2 = 6
14 ≈ 0.429

In contrast to the MAP estimator, the MLE estimator would just use the proportion ob-
served in the data, and conclude that w = 0.2.

Finally, let use circle back to using this posterior to get a credible interval. We can
compute intervals for many distributions, beyond the Gaussian. We typically assumed that
the credible interval is centered, so that the probability above the interval equals δ/2 and
below the interval also equals δ/2, with the remaining probability of 1− δ for the interval.
You can obtain intervals for the beta distribution, using computing packages. For our
example, if δ = 0.05 to get a 95% credible interval, with α′ = 7 and β′ = 9, the credible
interval is [0.21267, 0.67713]. □

5.4 Maximum Likelihood for Conditional Distributions
We can also formulate MAP and maximum likelihood problems for conditional distributions.
Recall that a conditional distribution has the form p(y|x), for two random variables Y and
X, where above we considered the marginal distribution p(x) or p(y). For the distributions
above, we asked: what is the distribution over this variable? For a conditional distribution,
we are instead asking: given some auxiliary information, now what is the distribution over
this variable? When the auxiliary information changes, so will the distribution over the
variable. For example, we may want to condition a distribution over sales of a particular
product (Y) given the current month (X). We expect the distribution over Y to be different,
depending on the month.

Conditional distributions can be from any of the distribution families discussed above,
and we can similarly formulate parameter estimation problems. The parameters, however,
are usually tied to the given variable X. We provide two simple examples to demonstrate

68

this below. Much of the parameter estimation formulations we consider in the remainder
of the book will be for conditional distributions, because in machine learning we typically
have a large number of auxiliary variables (features) and are trying to predict (or learn the
distribution over) targets. For regression and classification, we will see how many models
can be formulated as maximum likelihood for conditional distributions p(y|x).

Example 23: Assume you are given two random variables X and Y and that you believe
p(y|x) = N (µ = x, σ2) for some unknown σ. Our goal is to estimate this unknown parameter
σ. Notice that the distribution over Y varies, depending on which X value is observed.

We again start by forming the log-likelihood function, now for pairs of n samples D =
(x1, y1), . . . , (xn, yn). We will use the chain rule for probability: p(xi, yi) = p(yi|xi)p(xi).

ln p(D|σ) = ln
n∏

i=1
p(xi, yi|σ) = ln

n∏
i=1

p(yi|xi, σ)p(xi)

=
n∑

i=1
ln p(yi|xi, σ) + ln p(xi)

=
n∑

i=1
ln 1√

2πσ
exp(−(yi − xi)2

2σ2) + ln p(xi)

= n ln 1√
2π

+ n ln 1
σ
−
∑n

i=1 (yi − xi)2

2σ2 +
n∑

i=1
ln p(xi).

Notice that we use µ = xi for each normal distribution p(yi|xi, σ). We now compute the
partial derivatives of the log-likelihood with respect to the parameter σ

∂

∂σ
ln p(D|σ) = −n

σ
+
∑n

i=1 (yi − xi)2

σ3 .

Notice that ∂
∂σ

∑n
i=1 ln p(xi) = 0, because σ does not parameterize p(xi). Therefore, to

obtain the optimal σ, we do not need to know or specify the distribution over the random
variable X. By setting the derivative to zero, to obtain a stationary point, we obtain

σ2
MLE = 1

n

n∑
i=1

(yi − xi)2.
□

Exercise 21: We can also formalize this problem as a MAP problem. To do so, we need to
pick a prior on the parameter σ. Let’s pick a uniform distribution with a relatively narrow
range of [0.5, 2]. Note that though MLE can be thought of as MAP with a uniform prior,
this is only the case if we pick a uniform prior that does not restrict the space of feasible
solution. This uniform prior, with range [0.5, 2], is quite restrictive, and so we should get a
different solution from above. Derive σ2

MAP. □

The above example was chosen primarily for algebraic simplicity. More realistically, we
might imagine that the mean of Y given x is a more general function of x. Let us revisit
this example, assuming the µ = xw and that σ = 1.0. Then we have

ln p(D|w) =
n∑

i=1
ln p(yi|xi, w) + ln p(xi) =⇒ argmin

w∈R
− ln p(D|w) = argmin

w∈R
−

n∑
i=1

ln p(yi|xi, w)

69

where the equality comes from the fact the the optimization is the same when dropping the
constant ln p(xi). Further, we have

− ln p(yi|xi, w) = − ln 1√
2πσ

exp(−(yi − xiw)2

2σ2) ▷ σ = 1.0

= − ln 1√
2π

+ 1
2(yi − xiw)2

Again, dropping constants, namely − ln 1√
2π

, we can define our objective as

ci(w) = 1
2(xiw − yi)2 c(w) =

n∑
i=1

ci(w)

where argminw∈R c(w) = argminw∈R− ln p(D|w). Computing the gradient

∂

∂w
ci(w) = ∂

∂w
1
2(xiw − yi)2 = (xiw − yi)

∂

∂w
xiw ▷ using the chain rule

= (xiw − yi)xi ▷ using the derivative of aw wrt w

Finally we can solve for w that makes the derivative zero.

0 = ∂

∂w
c(w) =

n∑
i=1

(xiw − yi)xi =
n∑

i=1
x2

i w −
n∑

i=1
yixi =⇒ w =

∑n
i=1 yixi∑n
i=1 x2

i

(5.4)

This problem setting is actually called linear regression, where here we assumed the simpler
setting of having one input x and one coefficient w. We will revisit the more general linear
regression setting, in Chapter 12.

Example 24: Let us do another example where p(y|x) is Gaussian, but this time let us
consider a case where X is a discrete random variable. Imagine we are modeling profits
Y from book sales, conditioned on whether the book is fiction or non-fiction. We let
X = {0, 1} where X = 0 indicates that the book is a non-fiction book and X = 1 is
that the book is a fiction book. Now we again have a different Gaussian for each input
value, but since x only has two possible values, we only have two Gaussians. Formally,
we have p(y|X = 0) = N (µ0, σ2

0) and p(y|X = 1) = N (µ1, σ2
1) for unknown parameters

w = (µ0, σ0, µ1, σ1) ∈ R4. We now have four parameters to learn.
We now need to formalize the MLE for this problem. To do so, again we simply need

to derive the negative log likelihood for one pair (xi, yi), and the full MLE is the sum over
all pairs. To make this simpler let us consider the two cases. Assume first that we have a
sample (xi, yi) where xi = 0, giving

− ln p(yi|xi = 0, w) = − ln 1√
2πσ2

0
exp

(
−(yi − µ0)2

2σ2
0

)
. (5.5)

We know how to find the MLE for a Gaussian, namely for µ0, σ2
0; we can exploit this here.

But first, consider the other case, where xi = 1, giving

− ln p(yi|xi = 1, w) = − ln 1√
2πσ2

1
exp

(
−(yi − µ1)2

2σ2
1

)
. (5.6)

70

We can write the negative log likelihood simply by choosing between one of these two
formulas for each datapoint. If the datapoint has xi = 0, then we use Equation (5.5). If
the datapoint has xi = 1, then we use Equation (5.6). Let I0 ⊂ {1, 2, . . . , n} be the set of
indices where xi = 0, namely I0 = {i ∈ {1, 2, . . . , n} | xi = 0}. Let I1 be the indices where
xi = 1. Notice these two sets are mutually exclusive, and cover the dataset because each xi

is either 0 or 1: I0 ∪ I1 = {1, 2, . . . , n}. We can write the negative log likelihood as∑
i∈I0

− ln p(yi|xi = 0, w) +
∑
i∈I1

− ln p(yi|xi = 1, w) =
∑
i∈I0

− ln p(yi|µ0, σ0) +
∑
i∈I1

− ln p(yi|µ1, σ1)

When solving for the MLE, we actually have two separate MLE problems: the first
Gaussian for the datapoints where xi = 0 and the second Gaussian for the datapoints
where xi = 1. We have already found the MLE solution for a Gaussian, which was the
sample mean and (biased) sample variance. This means our MLE solution is

µ0 = 1
n0

∑
i∈I0

yi σ2
0 = 1

n0

∑
i∈I0

(yi − µ0)2

µ1 = 1
n1

∑
i∈I1

yi σ2
1 = 1

n1

∑
i∈I1

(yi − µ1)2

where n0 = |I0| is the number of points where xi = 0 and n1 = |I1| the number of points
where xi = 1. This solution makes intuitive sense, since we are effectively modeling the
Gaussian over profits for non-fiction books on the subset of the data about non-fiction
books, and a completely separate Gaussian over profits for fiction books. □

5.5 Using Gradient Descent for Parameter Estimation
We found the stationary points in this chapter using closed-form solutions. But we could
have used gradient descent instead. For example, for the conditional model in the previous
section, we could have initialize w0 = 0 and updated using

wt+1 = wt − ηt

n∑
i=1

(xiw − yi)xi

This may not seem sensible, considering computing the closed-form solution is straightfor-
ward. For some models, however, we cannot obtain a closed-form solution. Further, as we
discuss in the next chapter, it might actually be more efficient to use an iterative approach,
namely with a modification to gradient descent called stochastic gradient descent. We dis-
cuss this optimization improvement first in the next chapter, before moving on to the more
general prediction setting.

Exercise 22: Let us consider one example where we cannot obtain a closed-form solution.
Imagine you decided it was unrealistic to assume that the variance is the same for all pairs
(x, y).4 You decide to parameterize the mean as xw1 for w1 ∈ R and the variance as
exp(xw2) for w2 ∈ R, where the exponential ensures the variance is positive. Write down
the maximum likelihood problem, and derive the gradient descent update. □

4Uniform variance, though, is actually a relatively common assumption. It is called homoscedastic vari-
ance, whereas a variance that depends on the input x is called heteroscedastic.

71

Chapter 6

Stochastic Gradient Descent and Big Data Sets

Gradient descent provides a relatively generic approach to finding stationary points. The
computational cost of gradient descent, however, can be quite high because we have to
iterate over the entire dataset to compute the gradient. It is common to have very large
datasets, in the millions of samples. Computing the gradient for each gradient descent step
requires at least O(dn) where d is the size of the parameters and n is the number of samples.
This is prohibitive for very large n.

One approach to handling big datasets is to use stochastic approximation, where the
gradient is estimated using a stochastic sample. The idea is similar to why a sample average
provides a reasonable estimate of the true mean. Instead of computing the gradient using
all the samples, a random subsample provides a reasonably good approximation.

To see how this would be done, let us revisit the gradient of the objective function.
Assume that we use a normalized objective, giving

c(w) = 1
n

n∑
i=1

ci(w) ∇c(w) = 1
n

n∑
i=1
∇ci(w)

The full gradient is like computing the true expectation, where each point has uniform
probability. In stochastic gradient descent, we use a small mini-batch of b samples (e.g.,
b = 32). For example, if using one sample to approximate the gradient (b = 1), you would
randomly sample a datapoint i and update the weights on iteration t using

wt+1 ← wt − ηt∇ci(wt)

for some stepsize ηt.
At first glance, this might seem a little crazy. How can we get a good descent direction,

with such a rough approximation to the gradient? The true gradient requires summing
the gradients for all samples, and we use only one of those gradients! Can we even say
that our algorithm will converge? Though this approach may appear to be too much of an
approximation, there is a long theoretical and empirical history indicating its effectiveness
(see for example [5, 4]). In fact, with modern dataset sizes that are very large, it is the
most common strategy in use in machine learning.

The key idea for why this works is simple: the gradient for a single sample is an unbiased
estimate of the true gradient. The true full gradient can be seen as an expectation with
probability p(i) = 1

n , where if K is a random index into {1, ..., n}

E[∇cK(w)] =
n∑

i=1
p(i)∇ci(w) = 1

n

n∑
i=1
∇ci(w).

72

In stochastic gradient descent, we randomly sample K and so our update ∇cK(w) is an
unbiased estimate of 1

n

∑n
i=1∇ci(w). So, even if one step actually happens to be pointing in

the wrong direction, on average across steps the gradient is pointing in the right direction
and the weights will progressively move towards a stationary point.

We summarize this approach in Algorithm 2. Randomly sampling for each update would
incur too much additional overhead. Instead, we can approximate this procedure by (a) first
shuffling the order of points in the dataset and (b) then iterating in order over the entire
dataset. Shuffling ensures that the order is randomized, and iterating over the entire dataset
after shuffling once is more efficient that repeated random sampling. Only performing one
iteration over the dataset, however, may not be enough. Instead, this procedure is repeated
multiple times. Each iteration over the dataset is called an epoch.

Note that we give the concrete updates for linear regression as an example, which we
introduce in a later chapter; we include them anyway for ease of reference when you need
to implement mini-batch linear regression.

Algorithm 2: Stochastic Gradient Descent with b = 1 for c(w) = 1
nci(w)

1: Optimization parameters: number of epochs = 104

2: w← random vector in Rd

3: for p = 1, . . . number of epochs do
4: Shuffle data points from 1, . . . , n
5: for k = 1, . . . , n do
6: g← ∇ck(w) ▷ for linear regression, ∇ck(w) = (x⊤

k w− yk)xk

7: // For convergence, the step-size ηt needs to decrease with time, such as ηt = p−1

8: // In practice, it is common to use stepsizes that do not decay with time
9: // such as picking a small fixed stepsize (η = 0.01), or using stepsize adaptation

10: η ← p−1

11: w← w− ηg
12: return w

Setting b = 1 is typically too high-variance. Instead, it is more common to pick b > 1.
The size of b is like the number of samples in a sample average: the larger the b, the lower the
variance. However, increasing b also increases computation. So, we have to strike a balance.
Notice that setting b = n corresponds to a full batch gradient update. Using mini-batches
allows us to select a b between the two extremes of b = 1 (high-variance, computationally
cheap) and b = n (zero-variance, computationally expensive). As is typically the case, the
extremes are not the best choices and an interim value of b is preferred.

Exercise 23: Show that the mini-batch stochastic gradient is also an unbiased estimate
of the batch gradient:

1
b

b∑
k=1
∇cik

(w) for i1, . . . , ib sampled uniformly from {1, . . . , n}. (6.1)

□

The mini-batch stochastic gradient descent approach is shown in Algorithm 3. Each
step corresponds to updating with a randomly chosen mini-batch of data: a small subset of

73

size b from the larger dataset of size n. As with b = 1, we want to avoid randomly sampling
a mini-batch for each update, as this would incur unnecessary overhead. Again, we shuffle
the dataset and grab each mini-batch in-order over the entire dataset. For a dataset with
(possibly paired) samples z1, z2, . . . , zn, that has been randomly shuffled to give new order
zi1 , zi2 , . . . , zin , the mini-batches correspond to

|zi1 , zi2 , . . . , zib
|︸ ︷︷ ︸

1st mini-batch

|zib+1 , zib+1 , . . . , zi2b
|︸ ︷︷ ︸

2nd mini-batch

. . . |zin−b+1 , zin−b
, . . . , zin |︸ ︷︷ ︸

n/b mini-batch

where we assumed n is divisible by b. If it is not, then the last batch is simply smaller,
consisting of the remaining points. In this case, the number of batches is ⌊n

b ⌋+ 1.

Exercise 24: When we say that the dataset is shuffled, we only mean the ordering of
the points. You cannot shuffle the inputs and target. In other words, we swap the order of
(xi1 , yi1) and (xi2 , yi2) but we do not swap their targets. In fact, it would be really bad if
we did! Why would it be bad to swap their targets? □

Remark: The computational trade-off when increasing b is nuanced, because computing
gradients is easily parallelizable. If you can parallelize across 32 cores, then there is almost
no disadvantage to using b = 32 instead of b = 1 in terms of computation time. If you can
parallelize across 256 cores, then even better! Of course, more computing energy is still
being expended, and so even in these settings, the trade-off might be taken into account.
There is a huge improvement when moving from b = 1 to b = 8, still potentially a large
gain when moving to b = 32, but at some point we reach diminishing returns.

6.1 Stepsize Selection for SGD
SGD requires a new mechanism to pick stepsizes. The conditions for convergence of SGD
include conditions on the step-sizes, requiring them to decrease over time. One simple
choice is to set the stepsize to decay with the epoch number: η = p−1. Smarter stepsize
algorithms use statistics on the magnitude of the gradient. For example, similarly to an
algorithm called AdaGrad [7], we can normalize the stepsize by the sum of accumulating
gradients

ηt = 1√
1 + ḡt

= (1 + ḡt)−1/2 (6.2)

where ḡt = ḡt−1 + 1
d

∑d
j=1 g2

t,j = ḡt−1 + 1
d∥gt∥22 where gt ∈ Rd is the mini-batch gradient you

use on iteration t. This stepsize is smaller if the gradients have been large, because you need
to take smaller steps in the steep parts of the function. After many epochs, these stochastic
gradient descent updates will converge, and oscillate around the true weight vector, with
the decreasing step-size progressively smoothing out these oscillations.

An even smarter stepsize strategy is to use a different stepsize per dimension. The idea
is that you might need to take a bigger step in one dimension and a smaller in another
dimension. For example, if in one direction, the optimization surface is flatter, you might
need a bigger stepsize, and if another it is steep, then you need a small stepsize. Most
stepsize selection strategies select vectors of stepsizes, where each element in the vector
corresponds to a stepsize for the corresponding dimension. In fact, this is how AdaGrad is
designed. Using the same notation as above, we now have a vector ηt ∈ Rd where

ηt = (1 + ḡt)−1/2 (6.3)

74

Algorithm 3: SGD for objective c(w) = 1
n

∑n
i=1 ci(w) with AdaGrad

1: Fix iteration parameters: number of epochs = 104 and mini-batch size b = 32
2: w← random vector in Rd

3: ḡ← zero vector in Rd

4: for p = 1, . . . number of epochs do
5: Shuffle ordering of data points from 1, . . . , n
6: for k = 0, . . . , ⌊n

b ⌋ do
7: g← 0
8: c← 0
9: for i = kb, . . . , min((k + 1)b− 1, n) do

10: g← g +∇ci(w) ▷ for linear regression, ∇ci(w) = (x⊤
i w− yi)xi

11: c← c + 1
12: g← g/c ▷ element-wise division
13: for j = 0, . . . , d− 1 do
14: ḡ[j]← ḡ[j] + g[j]2
15: η ← 1/(

√
ḡ[j] + 1)

16: w[j]← w[j]− ηg[j]
17: return w

where ḡt = ḡt−1 + g2
t using elementwise addition and powers. In other words, for each

entry ηt,j in the vector ηt and entry ḡt,j in the vector ḡt, we update ḡt,j = ḡt−1,j + g2
t,j and

ηt,j = (1+ ḡt,j)−1/2. Then each entry in the weights is updated using wt+1,j = wt,j−ηt,jgt,j .
This is the stepsize approach we use in Algorithm 3.

Exercise 25: How does Algorithm 3 change if we want to use a constant stepsize, one
based on the epoch number or the scalar stepsize heuristic above? Can you think of anyways
to improve on the AdaGrad stepsize approach currently in Algorithm 3? □

6.2 Contrasting Computational Complexity of GD and SGD

We motivated the use of SGD for big datasets. If it costs1 O(d) to compute ∇ci(w), then
computing each mini-batch update costs O(bd). At first glance, this seems much better
than the cost of computing one full gradient update, which is O(nd). The missing factor
is the number of updates k that each algorithm performs. We expect the full gradient to
be a much less noisy step, and so require much fewer iterations k to reach a stationary
point. Each update, with an appropriately chosen stepsize, is guaranteed to improve the
weights and reach a point with a lower objective value c. SGD with b = 1, on the other
hand, is quite noisy; an approximate gradient may even point in the wrong direction! For
this reason, we cannot guarantee improvement on each update, but rather only aggregate
improvement across updates.

1This big-O notation means how the computation scales with the given variable. It omits constants, to
focus on the key terms. For example, a methods that uses 3d computation and one that uses d computation
both have O(d) computational complexity. They both scale much better with d than an algorithm that
requires O(d2) computation.

75

We are faced with the question: is ksgdbd actually smaller than kgdnd? The answer
depends on n and the level of noise in the problem, which affects ksgd. First, we can see
that for SGD to be preferred we need

ksgdbd < kgdnd =⇒ ksgd < kgd
n

b

If n = 1 million and b = 32, then SGD would have to use 30,000 times more updates than
GD for it to be worth using GD instead of SGD. Namely, even if GD used only 10 updates,
as long as SGD uses fewer than 300,000 updates it is the preferable algorithm.

In general, we expect SGD to be better than full-batch GD. We can see GD as an
extreme of SGD, where we set the batch size b to n. The two extremes are unlikely to be
the best for SGD: b = 1 will likely have gradients that are too noisy and b = n is likely
wasting too much computation to reduce variance. An interim value of b is likely better
than either of these two extremes. This is particularly true if we have a large n. If we do
happen to have small number of samples (e.g., n = 100), then it is likely worth simply using
GD. Once we start getting to more realistic sizes, even in the thousands, b < n is likely
better.

76

Chapter 7

Introduction to Prediction Problems

Machine learning addresses many problem settings, which can sometimes feel overwhelm-
ing. As a non-exhaustive list, these include supervised learning (with classification and
regression); semi-supervised learning; unsupervised learning; completion under missing fea-
tures; structured prediction; learning to rank; statistical relational learning; active learning;
and temporal prediction (with time series prediction and policy evaluation in reinforce-
ment learning and online learning). For some of these settings, such as active learning and
reinforcement learning, the data collection is a central part of the algorithm and can signif-
icantly determine the quality of the learned predictive models. Most other settings assume
that data has been collected—without our ability to influence that collection—and now we
simply need to analyze that data and learn the best predictors that we can. In this passive
setting, we can either assume that the data is i.i.d.—which is the most common—or that
there are dependencies between data points—such as in time series prediction or statistical
relational learning. There are also settings where the data is incomplete, say because a user
did not fill in their age.

One ontology, therefore, could consider the following dimensions to categorize machine
learning problems:

1. passive vs. active

2. i.i.d. vs. non-i.i.d.

3. complete vs. incomplete.

As with all ontologies, each problem will not perfectly fit into these categories. Further, it
is likely that most data collection is not completely passive (even if only because the human
modeler influences collection of data), is likely not i.i.d. (even if we intended it to be), and
likely has some missing components. Nonetheless, algorithms will make these assumptions,
to varying degrees, even if the data does not satisfy those assumptions. For these notes, we
will focus on the simplest setting: passive, i.i.d. and complete.

In this chapter, we will first introduce classification and regression and then discuss
criteria for selecting functions for classification and regression, to motivate the algorithms
developed in later chapters.

7.1 Supervised Learning Problems

We start by defining a data set D = {(x1, y1), (x2, y2), ..., (xn, yn)}, where xi ∈ X is the
i-th input or observation and yi ∈ Y the corresponding target. We usually assume that
X = Rd, in which case xi = (xi1, xi2, . . . , xid) is a d-dimensional vector called an instance

77

1 2 k

1

2

n

j

X y

i xij

xi

fj

yi

T

feature j d

Figure 7.1: Notation for the dataset. X is an n-by-d matrix, with rows corresponding to
instances and columns to features. y is an n-by-1 vector of targets.

or a sample.1 Each component of xi is typically called a feature or an attribute, where we
denote the jth element as xij . We will often organize the dataset into a matrix X ∈ Rn×d

where each row corresponds to a sample xi and each column corresponds to a feature (see
Figure 7.1).

The distinction between x and y is due to the fact that we assume that the features are
relatively easy to collect for each object (e.g., by measuring the height of a person or the
square footage of a house), while the target variable is difficult to observe or expensive to
collect (e.g., presence of a disease or the final selling price of a house before it has sold).
Such situations usually benefit from the construction of a computational model that predicts
targets from a set of input values. The model is trained using a set of input observations for
which target values have already been collected. In deployment, we can use this model to
make predictions from easy-to-obtain information—the observation—about hard-to-obtain
information—the targets.

7.1.1 Regression and Classification

The differences in algorithms for prediction problems, with i.i.d. complete data, typically
arises from the properties of the inputs (observations) and the properties of the targets. For
example, we may need to treat text observations—such as those from a set of documents—
differently than a ten-dimensional real-valued observation vector of sensor readings reflecting
the temperature and pressure in a physical system. A simple, and relatively common
strategy, to handle these differences is to map different types of observations—language,
categorical variables and even sequence data—into a Euclidean space where the observation
is re-represented as a real-valued vector. Many prediction algorithms are designed for real-
valued observations, and so standard algorithms can then be applied. This question of data
representation is a central problem in machine learning. For these notes, we will assume
the observations are already in a convenient form, as a d-dimensional real-valued vector.

1In statistics, a sample usually refers to a collection of randomly sampled x, rather than a single instance.
It is common in machine learning, though, to use the word sample to mean a single sample, rather than
multiple samples or draws from the distribution.

78

The properties of the target are also important, and result in two typical distinctions for
prediction problems: classification and regression. Generally speaking, we have a regression
problem when Y is continuous and a classification problem if Y is discrete. In regression
possible target sets include Y = R or Y = [0,∞). An example of a regression problem is
shown in Table 7.1.

size [sqft] age [yr] dist [mi] inc [$] dens [ppl/mi2] y

x1 1250 5 2.85 56,650 12.5 2.35
x2 3200 9 8.21 245,800 3.1 3.95
x3 825 12 0.34 61,050 112.5 5.10

Table 7.1: An example of a regression problem: prediction of the price of a house in a
particular region. Here, features indicate the size of the house (size) in square feet, the age
of the house (age) in years, the distance from the city center (dist) in miles, the average
income in a one square mile radius (inc), and the population density in the same area
(dens). The target indicates the price a house is sold at, e.g. in hundreds of thousands of
dollars.

In classification we construct a function that predicts discrete class labels; this function
is typically called a classifier. The cardinality of Y in classification problems is usually small,
e.g. Y = {healthy, diseased}. An example of a data set for classification with n = 3 data
points and d = 5 features is shown in Table 7.2.

Classification problems can be further subdivided into multi-class and multi-label prob-
lems. A multi-class problem consists of providing the single label for an input. For example,
for (simple) blood-type with Y = {A, B, AB, O}, a patient can only be labeled with one of
these labels. Within multi-class problems, if there are only two classes, it is called binary
classification, such as the example in Table 7.2. In multi-label, an input can be associated
with more than one label. An example of a multi-label problem is the classification of text
documents into categories such as {sports, medicine, travel, politics}. Here, a single docu-
ment may be related to more than one value in the set; e.g. an article on sports medicine.
This article would be assigned two labels: sports and medicine.

Typically, to make the outputs more consistent between these two settings, the output
for both multi-class and multi-label is an indicator vector. For m = |Y|, the prediction for
blood types might be [0 1 0 0] to indicate blood-type B and the prediction for four article
labels could be [1 1 0 0] if it is both an article pertaining to sports and medicine.

A more precise distinction between regression and classification is that regression con-
siders the order in the target variables, whereas classification assigns labels (unordered).
For example, we might have the discrete set of prices for an item {1, 2, 3, 4, 5, . . . , 100} where
the order matters. This problem is called ordinal regression. When considering accuracy
of our prediction, we would want to say a prediction of 99 for a true target of 100 is closer
than a prediction of 1. For classification, it is common to check accuracy by measuring if
labeled the item correctly or not: here both 1 and 99 would be equally treated as incorrect
labels. In other instances, a discrete set of labels {1, 2, 3, 4, 5} may not actually be ordered:
each number might just map to a property, like an inventory category. In that case, check-
ing accuracy based on similarity would be incorrect. We will see this primary distinction
between regression and classification in Section 7.2, when we formalize prediction accuracy.

In summary, a key distinction between supervised learning problems is whether the

79

wt [kg] ht [m] T [◦C] sbp [mmHg] dbp [mmHg] y

x1 91 1.85 36.6 121 75 −1
x2 75 1.80 37.4 128 85 +1
x3 54 1.56 36.6 110 62 −1

Table 7.2: An example of a binary classification problem: prediction of a disease state for
a patient. Here, features indicate weight (wt), height (ht), temperature (T), systolic blood
pressure (sbp), and diastolic blood pressure (dbp). The class labels indicate presence of a
particular disease, e.g. diabetes. This data set contains one positive data point (x2) and two
negative data points (x1, x3). The class label shows a disease state, i.e. yi = +1 indicates
the presence while yi = −1 indicates absence of disease.

target variables are ordered or unordered. Regression problems are those where we want
to exploit the ordering in the target variables, and classification problems are those where
we treat target variables as unordered labels. It is also common to less precisely define
regression as handling continuous targets, and classification as handling (finite) discrete
targets. This somewhat more vague definition is common because many datasets either
have continuous targets or a discrete set of labels, with ordinal targets less commonly
considered. In these notes, we will only consider these two more common cases: real-valued
targets and small discrete sets.

Exercise 26: Is the set {Prefers apples, Prefers oranges, Prefers bananas} or-
dered or unordered? How about {Good, Better, Best}? □

7.1.2 Deciding how to formalize the problem

We repeatedly return to the question: How do you decide which problem formulation to
use? Though the mathematical procedures in machine learning are precise, deciding how
to formulate real-world problems is subtle, and so inherently less clear-cut. The selection
of a particular way of modeling depends on the analyst and their knowledge of the domain
as well as technical aspects of learning.

We have already seen this with MLE and MAP, where an important step was to decide
which distribution to use to model our data. For example, to model a pmf p(x), we might
choose to use a more restricted pmf like the Poisson distribution, because it only requires us
to learn on parameter λ. If we use a table of probabilities—a categorical distribution—then
we have to learn k−1 probabilities, if x ∈ {1, 2, . . . , k}. If we have lots of data, then learning
the more powerful distribution might be suitable. If we have very little data, then we might
prefer to learn the more restricted pmf.

This same problem arises in supervised learning, because (as we will see) we are modeling
p(y|x). The biggest question for these models is what types of (nonlinear) functions we learn
on x, to best model this distribution. But, when deciding between using ordering or not, we
are also asking what type of distribution to use for p(y|x). For example, consider the output
space Y = {0, 1, 2}. We can treat this as a multi-class classification problem, or we could
presume Y = [0, 2] and learn a regression model. We can then threshold the predictions
returned by the regression model, by rounding them to the closest integer. We might choose
to do so because there is an ordering to these variables and because regression functions

80

can be easier to learn and often produce surprisingly good classification predictions.
The primary point of these examples is that formalizing the problem—selecting the

function class, distributions and/or objective—does not have one clear-cut answer. But it
is a critical step in using machine learning effectively. Fortunately, there is a wealth of
knowledge, especially empirically, that can guide this selection. As you learn more about
the methods, combined with some information about structure in your domain, you will
become better at this specification. Nonetheless, picking distributions, function classes and
objectives can be difficult, and is an art. Deciding to use regression and classification is
actually typically more clear-cut, since we will almost always use the criteria that we use
classification for unordered targets and regression for ordered targets.

7.2 Optimal Classification and Regression Models
Our goal is to establish the criteria that will be used to evaluate predictors f : X → Y
and subsequently define optimal classification and regression models. To do so, we assume
we have access to the true joint distribution p(x, y) and ask what the optimal prediction
would be in this ideal case. The optimal predictor is defined based on a cost function
cost : Y×Y → [0,∞), where cost(ŷ, y) reflects the cost or penalty for predicting ŷ when the
true target is y. Because X, Y are random, the cost C = cost(f(X), Y) is also a random
variable, because it is a function of these random variables. Our goal is to minimize the
expected cost. We first consider examples of costs, and then derive the optimal predictors.

7.2.1 Examples of costs

The costs for classification and regression are usually different. A typical cost function for
classification is the 0-1 cost,

cost(ŷ, y) =

0 when y = ŷ

1 when y ̸= ŷ

(7.1)

Notice that this equally applies to binary classification problems or multi-class classification
problems. It simply reflects: did you get the class prediction right or wrong.

Y
-1 (¬Has Disease) 1 (Has Disease)

Ŷ
-1 (¬Has Disease, No Test) 0 1000
1 (Has Disease, Do Test) 1 1

Table 7.3: The cost function for the medical lab, cost(ŷ, y), with clawsuit = 1000 and clab = 1.

A more complex cost function might arise in settings where certain inaccurate predictions
are more problematic than others. Let’s consider a concrete example, in a medical domain.
Suppose our goal is to decide whether a patient with a particular set of symptoms (x)
should be sent for an additional lab test (y = 1 if yes and y = −1 if not), with cost clab, in
order to improve diagnosis. However, if we do not perform a lab test and the patient is later

81

found to have needed the test for proper treatment, we may incur a significant penalty, say
clawsuit. If clawsuit ≫ clab, as it is expected to be, then the classifier needs to appropriately
adjust its outputs to account for the cost disparity in different forms of incorrect prediction.
Here, the cost is better depicted as a table, in Table 7.3. If there is no such asymmetry in
your problem, where false negatives are more costly than false positives (and vice-versa),
then a reasonable default is the 0-1 cost in Equation (7.1).

In regression, common costs are the squared error

cost(ŷ, y) = (ŷ − y)2 (7.2)

and the absolute error
cost(ŷ, y) = |ŷ − y|. (7.3)

The squared error more heavily penalizes values further away from y than the absolute
error. There are many other costs, that factor in the magnitude of the targets, such as the
percentage error.

7.2.2 Deriving the optimal predictors

We begin first by deriving the optimal classifier. We can express the expected cost as
follows, assuming the inputs are continuous real-valued vectors and the targets are from a
discrete set Y and ŷ = f(x) for the given predictor f

E[C] =
ˆ

X

∑
y∈Y

cost(f(x), y)p(x, y)dx

=
ˆ

X
p(x)

∑
y∈Y

cost(f(x), y)p(y|x)dx,

where the integration is over the entire input space X = Rd. Notice that we have to predict
one class for each observation: f(x) can only output one value ŷ in Y. But, the target
is random. Because of this the optimal classifier f∗ may not be able to obtain zero cost.
However, simply by looking at the above equation, we can obtain f∗ = argminE[C], by
picking the best classifier for each x separately

f∗(x) = argmin
ŷ∈Y

E[C|X = x]

= argmin
ŷ∈Y

∑
y∈Y

cost(ŷ, y)p(y|x).

82

If we use the 0-1 cost function, in Equation (7.1), this optimal classifier becomes

f∗(x) = argmin
ŷ∈Y

∑
y∈Y

cost(ŷ, y)p(y|x)

= argmax
ŷ∈Y

1−
∑
y∈Y

cost(ŷ, y)p(y|x)

= argmax

ŷ∈Y

∑
y∈Y

(1− cost(ŷ, y))p(y|x) ▷ because
∑
y∈Y

p(y|x) = 1

= argmax
ŷ∈Y

∑
y∈Y,y ̸=ŷ

0 · p(y|x) +
∑

y∈Y,y=ŷ

1 · p(y|x)

= argmax
y∈Y

p(y|x)

Therefore, if p(y|x) is known or can be accurately learned, we are fully equipped to make
the prediction that minimizes the total cost. In other words, we have converted the problem
of minimizing the expected classification cost or probability of error, into the problem of
learning functions, more specifically learning probability distributions.

The analysis for regression is similar to that for classification. Here too, we are interested
in minimizing the expected cost of prediction of the true target y when a predictor f(x) is
used. The expected cost can be expressed as

E[C] =
ˆ

X

ˆ
Y

cost(f(x), y)p(x, y)dydx.

For simplicity, we will consider the squared error from Equation (8.1)

cost(f(x), y) = (f(x)− y)2,

which results in

E[C] =
ˆ

X

ˆ
Y

(f(x)− y)2p(x, y)dydx

=
ˆ

X
p(x)
ˆ

Y
(f(x)− y)2p(y|x)dy︸ ︷︷ ︸

g(f(x))

dx.

Assuming f(x) is flexible enough to be separately optimized for each unit volume dx, we
see that minimizing E[C] leads us to the problem of finding ŷ for each x to minimize

g(ŷ) =
ˆ

Y
(ŷ − y)2p(y|x)dy.

To find the optimal ŷ, we can solve this minimization problem by finding a stationary point,
the global minimum. To do so, we differentiate g with respect to ŷ and find the point where

83

the derivative equals zero

∂g(ŷ)
∂ŷ

= 2
ˆ

Y
(ŷ − y)p(y|x)dy = 0

=⇒ ŷ

ˆ
Y

p(y|x)dy︸ ︷︷ ︸
=1

=
ˆ

Y
yp(y|x)dy

=⇒ ŷ

ˆ
Y

p(y|x)dy︸ ︷︷ ︸
=1

=
ˆ

Y
yp(y|x)dy

=⇒ ŷ =
ˆ

Y
yp(y|x)dy = E[Y |x].

Therefore, the optimal predictor is

f∗(x) = E[Y |x].

Therefore, the optimal regression model in the sense of minimizing the square error between
the prediction and the true target is the conditional expectation E[Y |X = x].2

Exercise 27: We can similarly compute the optimal predictor for the absolute error cost,
in Equation (7.3). Show that the optimal predictor for the absolute error is the conditional
median, Median[Y |X = x]. □

7.3 Reducible and Irreducible Error
Having found the optimal regression model, we can now write the expected cost in the cases
of both optimal and suboptimal models f(x). That is, we are interested in expressing E[C]
when

1. f(x) = E[Y |x]

2. f(x) ̸= E[Y |x].

When f(x) = E[Y |x], the expected cost can be simply expressed as

E[C] =
ˆ

X
p(x)

ˆ
Y

(E[Y |x]− y)2p(y|x)dydx

=
ˆ

X
p(x)Var [Y |X = x] dx (7.4)

Recall that Var [Y |X = x] is the variance of Y , for the given x. The expected cost, therefore,
reflects the cost incurred from noise or variability in the targets. This is the best scenario
in regression for a squared error cost; we cannot achieve a lower expected cost.

2It may appear that in the above equations, setting f(x) = y would always lead to E[C] = 0. Unfor-
tunately, this would be an invalid operation because for a single input x there may be multiple possible
outputs y and they can certainly appear in the same data set. To be a well-defined function, f(x) must
always have the same output for the same input. E[C] = 0 can only be achieved if p(y|x) is a delta function
for every x.

84

The next situation is when f(x) ̸= E[Y |x]. Here, we will proceed by decomposing the
squared error as

(f(x)− y)2 = (f(x)− E[Y |x] + E[Y |x]− y)2

= (f(x)− E[Y |x])2 + 2(f(x)− E[Y |x])(E[Y |x]− y)︸ ︷︷ ︸
g(x,y)

+ (E[Y |x]− y)2

Notice that the expected value of g(x, Y) for each x is zero because

E[g(x, Y)] = E
[
(f(x)− E[Y |x])(E[Y |x]− Y)|x

]
= (f(x)− E[Y |x])E

[
(E[Y |x]− Y)|x

]
= (f(x)− E[Y |x]) (E[Y |x]− E[Y |x])
= 0.

Therefore, we can conclude that E[g(X, Y)] = 0, when taking expectations over X. We
can now express the expected cost as

E[C] = E[(f(X)− Y)2]
= E[(f(X)− E[Y |X])2]︸ ︷︷ ︸

reducible error

+E[(E[Y |X]− Y)2]︸ ︷︷ ︸
irreducible error

.

The first term reflects how far the trained model f(x) is from the optimal model E[Y |x].
The second term reflects the inherent variability in Y given x, as written in Equation (7.4).
These terms are also often called the reducible and irreducible errors. If we extend the
class of functions f to predict E[Y |x], we can reduce the first expected error. However, the
second error is inherent or irreducible in the sense that no matter how much we improve the
function, we cannot reduce this term. This relates to the problem of partial observability,
where there is always some stochasticity due to a lack of information. This irreducible
distance could potentially be further reduced by providing more feature information (i.e.,
extending the information in x). However, for a given dataset, with the given features, this
error is irreducible.

To sum up, we argued here that optimal classification and regression models critically
depend on knowing or accurately learning the posterior distribution p(y|x). This task can
be solved in different ways, but a straightforward approach is to assume a functional form
for p(y|x), say p(y|x, θ), where θ is a set of weights or parameters that are to be learned
from the data.

Remark: You may be wondering how these two errors relate to the notions of bias and
variance. Bias and variance examines how much the learned estimator—which here is f—
changes with different datasets. The above analysis was about decomposing errors for one
given function f . We will see in Section 10.3 that the irreducible error, in expectation across
all datasets of size n—and so across all the possible learned functions we could see across
these datasets—corresponds to the squared bias plus the variance. There, we will reason
that the expected mean-squared error for regression, where expectation is across different
datasets we could have seen, decomposes into bias and variance (expected irreducible error)
and reducible error.

85

Chapter 8

Linear Regression and Polynomial Regression

Given a data set D = {(xi, yi)}ni=1 the objective is to learn the relationship between features
and the target. We start by hypothesizing the functional form of this relationship. For
example, the function f might be a linear function

f(x) = w0 + w1x1 + w2x2

where we learn w = (w0, w1, w2). Alternatively, we might hypothesize that f is a nonlinear
function, such as f(x) = α + βx1x2, where α and β need to be learned.

In this chapter, we focus on estimating linear functions. The function is modeled as a
linear combination of features and parameters, i.e.

f(x) = w0 + w1x1 + . . . wdxd =
d∑

j=0
wjxj = x⊤w

where we extended x to (x0 = 1, x1, x2, . . . , xd). This choice is for simplicity of notation:
it allows us to write f(x) as a dot product, and avoid having to specially account for the
intercept term w0. Finding the best parameters w ∈ Rd+1 is referred to as the linear
regression problem. We begin by formalizing this as a maximum likelihood problem.

8.1 Maximum Likelihood Formulation
We consider a statistical formulation of linear regression. We assume the datapoints xi

are generated according to some (unknown) distribution p(x). We assume that the target
variable Y has an underlying linear relationship with input X = (X1, X2, . . . , Xd), plus a
noise term ε that follows a zero-mean Gaussian distribution, i.e. ε ∼ N (0, σ2). That is, for
a given input x, the target y is a realization of a random variable Y defined as

Y =
d∑

j=0
ωjxj + ε,

where ω = (ω0, ω1, . . . , ωd) are the true underlying parameters, and x0 = 1 is the intercept
term. The assumption of normality for the error term is reasonable, although the indepen-
dence between ε and X may not hold in practice.1 We can see that Y given x also follows
a Gaussian distribution, i.e. its conditional density is p(y|x, ω) = N (ω⊤x, σ2).

1The justification for this comes from the central limit theorem. Y is obtained by summing up multiple
random variables. The central limit theorem states that the normalized sum of independent random variables
(need not be Gaussian) becomes more and more Gaussian with more variables in the sum. For a reasonable
number of features, Y is approximately Gaussian, so it is reasonable to assume a Gaussian noise component.

86

In linear regression, we seek to approximate the target as f(x) = w⊤x, where weights
w are to be determined. We first write the conditional likelihood function for a single pair
(x, y) as

p(y|x, w) = 1√
2πσ2

exp
(
−(y − x⊤w)2

2σ2

)
where we use the notation exp(a) = ea, to make the exponent easier to read. Observe that
the only change from the conditional density function of Y is that coefficients w are used
instead of ω. The MLE problem, where we assume the space of possible values for the
weights is F ⊂ Rd+1 is

wMLE = argmin
w∈F

−
n∑

i=1
ln p(yi|xi, w)

= argmin
w∈F

−
n∑

i=1
ln 1√

2πσ2
exp

(
−(yi − x⊤

i w)2

2σ2

)

= argmin
w∈F

−
n∑

i=1

[
− ln
√

2πσ2 − (yi − x⊤
i w)2

2σ2

]

= argmin
w∈F

n∑
i=1

ln
√

2πσ2 +
n∑

i=1

(yi − x⊤
i w)2

2σ2 ▷ first term is constant w.r.t. w

= argmin
w∈F

n∑
i=1

(yi − x⊤
i w)2

2σ2 ▷ dropping the first term does not change the solution

= argmin
w∈F

1
2σ2

n∑
i=1

(yi − x⊤
i w)2 ▷ scaling by 2σ2 does not change the solution

= argmin
w∈F

n∑
i=1

(yi − x⊤
i w)2 (8.1)

The resulting objective is intuitive. Our prediction ŷi
def= x⊤

i w. The MLE formulation
states that we should find the weights that minimize the squared differences between our
predictions ŷi and the given yi. A simple example illustrating the linear regression problem
is shown in Figure 8.1. In the next sections, we will discuss how to solve this optimization
and the properties of the solution.

Note that here it seems obvious that we could have just started with the squared error
objective. This is in fact how ordinary least squares (OLS) was originally introduced. How-
ever, there are two reasons that we use the MLE approach. First, the statistical framework
provides insights into the assumptions behind OLS regression. In particular, the assump-
tions include that the data D was drawn i.i.d.; there is an underlying linear relationship
between features and the target; that the noise (error term) is zero-mean Gaussian and in-
dependent of the features; and that there is an absence of noise in the collection of features.
Second, for other distributions p(y|x)—such as the Bernoulli when we do classification—
guessing a good objective is much less obvious. For those situations, we will often turn to
an MLE formulation to help us define a reasonable objective for our parameters. When
possible, it is better to take a more unified approach.

Example 25: Consider again data set D = {(1, 1.2) , (2, 2.3) , (3, 2.3) , (4, 3.3)} from Figure
8.1. We want to find the maximum likelihood coefficients—the least-squares fit—for f(x) =

87

x

y

f x()

(,)x y1 1

(,)x y2 2

e f x y1 1 1= () {

Figure 8.1: A linear regression solution on data set D = {(1, 1.2) , (2, 2.3) , (3, 2.3) , (4, 3.3)}.
The task of the optimization process is to find the best linear function f(x) = w0 + w1x so
that the sum of squared errors e2

1 + e2
2 + e2

3 + e2
4 is minimized.

w0 + w1x. The problem corresponds to finding the solution with the following variables

X =

x⊤

1
x⊤

2
x⊤

3
x⊤

4

 =

1 1
1 2
1 3
1 4

 , w =
[

w0
w1

]
, y =

1.2
2.3
2.3
3.3

 ,

where a column of ones was added to X to allow for a non-zero intercept w0. We can
substitute X and y into Equation (8.3) below, to get the solution w = (0.7, 0.63). At this
point, the gradient w.r.t. w of the sum of squared errors is zero and the sum of squared
errors is 0.223. □

8.2 Linear Regression Solution
To minimize the sum of squared errors, let’s define

ci(w) = 1
2 (f(xi)− yi)2 = 1

2

(
x⊤

i w− yi

)2
, (8.2)

with the full objective as

c(w) = 1
n

n∑
i=1

ci(w)

We added a normalization by the number of samples, so that we have an average squared
error rather than a cumulative error. This optimization is equivalent, since normalization by
a fixed constant does not change the solution: argminw

1
n

∑n
i=1 ci(w) = argminw

∑n
i=1 ci(w).

Numerically, though, the average error is more sensible to optimize, since it will not grow
with more data. The cumulative error, on the other hand, can get very big if n is big. So,
to implement a solution, we will use Equation (8.2) instead of Equation (8.1). Similarly,
we used 1

2 in front of Equation (8.2) without changing the solution; this will be convenient
later to cancel the 2 that comes from the gradient.

88

Notice that to compute the gradient of the objective, it decomposes into a sum of
gradients for each sample

∇c(w) = 1
n

n∑
i=1
∇ci(w)

and so we simply need to determine the gradient of the error for each sample (xi, yi). We
can use the chain rule, by introducing variable u = x⊤

i w− yi, to get

∂ci(w)
∂wj

=
∂ 1

2(x⊤
i w− yi)2

∂wj

=
∂ 1

2u2

∂u

∂u

∂wj
▷ u

def= x⊤
i w− yi

= u
∂(
∑d

m=0 ximwm − yi)
∂wj

= u
d∑

m=0

∂ximwm

∂wj
= uxij ▷

∂ximwm

∂wj
= 0 for m ̸= j

= (x⊤
i w− yi)xij

This derivation is for any 0 ≤ j ≤ d.
Our goal is to find w such that ∂c(w)

∂wj
= 0 for all 0 ≤ j ≤ d. We obtain a system of

equations, with d + 1 variables and d + 1 equations

1
n

n∑
i=1

(x⊤
i w− yi)xi0 = 0

1
n

n∑
i=1

(x⊤
i w− yi)xi1 = 0

...

1
n

n∑
i=1

(x⊤
i w− yi)xid = 0

which can be equivalently written in vector notation as 1
n

∑n
i=1(x⊤

i w− yi)xi = 0, where 0
is the d + 1 vector of all zeros. We can turn to linear algebra to obtain a solution. We can
write down the matrix and vector that correspond to this linear system of equations

A def= 1
n

n∑
i=1

xix⊤
i ∈ R(d+1)×(d+1)

b def= 1
n

n∑
i=1

xiyi ∈ Rd+1 (8.3)

Then our goal is to find w such that Aw = b. If A is invertible, then w = A−1b.
In practice, though, it is more common to solve for the weights w using gradient descent.

For gradient descent, we would initialize the weights w at some random initialization and
iteratively update w until we reach a point where the gradient is approximately zero. This
is shown in the pseudocode, in Algorithm 4.

89

Algorithm 4: Gradient Descent for a given objective c

1: Fix iteration parameters: tolerance = 10−4 and max iterations = 105

2: w← random vector in Rd

3: err←∞
4: while |c(w)− err| > tolerance and have not reached max iterations do
5: err← c(w) ▷ for linear regression, c(w) = 1

2n

∑n
i=1(x⊤

i w− yi)2

6: g← ∇c(w) ▷ for linear regression, ∇c(w) = 1
n

∑n
i=1(x⊤

i w− yi)xi

7: // The step-size η could be chosen by line-search, as in Algorithm 1
8: η ← line search(w, c, g)
9: w← w− ηg

10: return w

Using gradient descent can be more efficient than solving for w = A−1b. Each gradient
descent update costs O(nd), whereas the solution to the linear system costs O(d3 + d2n).
It costs d2n to construct A and matrix inversion2 costs approximately O(d3). If we use k
iterations for gradient descent, then gradient descent costs O(ndk) in total. For big d and
fewer samples, gradient descent is almost definitely more efficient. Further, we can get to
an approximate solution with gradient descent efficiently, with a relatively small number of
iterations.

The cost of gradient descent, though, is still quite high because we have to iterate over
the entire dataset to compute the gradient. It is not uncommon to have very large datasets.
Rather, what is really used in practice is the much more efficient stochastic gradient descent,
which we discussed in Chapter 6. In fact, the mini-batch SGD algorithm given in Algorithm
3 has the specific update for linear regression.

8.3 Polynomial Regression: Using Linear Regression to Learn
Non-linear Predictors

At first, it might seem that the applicability of linear regression to real-life problems is
greatly limited. After all, it is not clear whether it is realistic (most of the time) to assume
that the target variable is a linear combination of features. Fortunately, the applicability
of linear regression is broader because we can use it to obtain non-linear functions. The
main idea is to apply a non-linear transformation to the observation vector x prior to the
fitting step. A linear function in this new feature space provides a nonlinear function in the
original observation space. In this section, we will discuss one such nonlinear transformation:
polynomials. Many other nonlinear transformations are possible—see for example radial
basis functions, wavelets, and Fourier basis to name a few. The idea, though, is the same,
and so we will use polynomials as one representative example.

Let’s start by considering one-dimensional data, i.e., d = 1. In OLS regression, we would
learn the function

f(x) = w0 + w1x,

2We can actually use other linear system solvers to find w such that Aw = b; the best strategy is not
necessarily to compute the matrix inverse. But, the costs are still typically close to O(d3), so for simplicity
of analysis we use this computational complexity.

90

0 1 2 3 4 5

1

2

3

4

5

x

f3(x)

f1(x)

Figure 8.2: Example of a linear vs. polynomial fit on a data set shown in Figure 8.1. The
linear fit, f1(x), is shown as a solid green line, whereas the cubic polynomial fit, f3(x), is
shown as a solid blue line. The dotted red line indicates the target linear concept.

where x is the data point and w = (w0, w1) is the weight vector. To achieve a polynomial
fit of degree p, we will modify the previous expression into

f(x) =
p∑

j=0
wjxj ,

where p is the degree of the polynomial. We will rewrite this expression using a set of basis
functions as

f(x) =
p∑

j=0
wjϕj(x) = w⊤ϕ,

where ϕj(x) = xj and ϕ = (ϕ0(x), ϕ1(x), . . . , ϕp(x)). We simply apply this transformation
to every data point xi to get a new dataset {(ϕ(xi), yi)}. Then we use linear regression on
this dataset, to get the weights w and the nonlinear predictor f(x) =

∑p
j=0 wjϕj(x), which

is a polynomial (nonlinear) function in the original observation space.

Example 26: In Figure 8.1 we presented an example of a data set with four data points.
What we did not mention was that, given a set {x1, x2, x3, x4}, the targets were generated
by using function 1 + x

2 and then adding a measurement error ϵ = (−0.3, 0.3,−0.2, 0.3). It
turned out that the optimal coefficients wMLE = (0.7, 0.63) were close to the true coefficients
ω = (1, 0.5), even though the error terms were relatively significant. We will now attempt
to estimate the coefficients of a polynomial fit with degrees p = 2 and p = 3.

First let us consider how we get these new functions. For p = 2, we get f2(x) =
w0 + w1x + w2x2, or in other words we have

ϕ2(x) =

 ϕ0(x) = 1.0
ϕ1(x) = x
ϕ2(x) = x2

 e.g., ϕ2(1) =

 1.0
1.0
1.0

 , ϕ2(2) =

 1.0
2.0
4.0

 , ϕ2(3) =

 1.0
3.0
9.0

with f2(x) = ϕ2(x)⊤w2 for w2

def= [w0, w1, w2]⊤. For p = 3, we get f3(x) = w̃0 + w̃1x +

91

w̃2x2 + w̃3x3, or in other words we have

ϕ3(x) =

ϕ0(x) = 1.0
ϕ1(x) = x
ϕ2(x) = x2

ϕ3(x) = x3

 e.g., ϕ3(1) =

1.0
1.0
1.0
1.0

 , ϕ3(2) =

1.0
2.0
4.0
8.0

 , ϕ3(3) =

1.0
3.0
9.0
27.0

with f3(x) = ϕ3(x)⊤w3 for w3

def= [w̃0, w̃1, w̃2, w̃3]⊤. We can use linear regression on these
new features, ϕ2 and ϕ3 to get the best polynomial fits for w2 and w3 respectively.

Using a polynomial fit with degrees p = 2 and p = 3 results in w2 = (0.575, 0.755,−0.025)
and w3 = (−3.1, 6.6,−2.65, 0.35), respectively. The average squared error on the dataset is
c(w2) = 0.055 and c(w3) ≈ 0. Thus, the best fit is achieved with the cubic polynomial.

Note that this polynomial is strictly more expressive than either the linear function and
the degree two polynomial, since it can always choose to set the weights to zero and ignore
the added features. It is no surprise, then, that it can achieve a lower squared error than
either the linear function or the quadratic function. As we discuss in the next chapter,
however, this cubic function is actually not a good predictor. It can achieve a better fit,
but does not generalize well to new data nor does it discover the true linear function that
generated the data. □

The same idea extends to multivariate observation vectors x. Each transformation
ϕj : X → R produces one of the terms ϕj(x) for the polynomial for the given input x. For
example, for x = (x1, x2), we could define polynomial basis

ϕ(x) =

ϕ0(x) = 1.0
ϕ1(x) = x1
ϕ2(x) = x2

ϕ3(x) = x1x2
ϕ4(x) = x2

1
ϕ5(x) = x2

2

This transformation allows us to learn a degree-2 polynomial, now with 6 variables w0, . . . , w5
to learn rather than the 3 we would learn for (x0 = 1, x1, x2). The resulting function is a
polynomial with coefficients wj :

f(x) = w0 + w1x1 + w2x2 + w3x1x2 + w4x2
1 + w5x2

2 =
6∑

j=0
wjϕj(x).

We can similarly obtain a cubic functions, adding the required terms for degree-3 polyno-
mial, including x2

1x2, x1x2
2, x3

1 and so on. The number of variables for this cubic, if we
include all the possible terms, is 10.

In general, for a p-degree polynomial on d inputs, the number of terms corresponds to
number of combinations of choosing p elements from a set of d + 1 elements3 if repetition is
allowed:

((d+1)+p−1
p

)
=
(d+p

p

)
. So, for two variables, the quadratic has

(2+2
2
)

=
(4

2
)

= 6; the
cubic has

(2+3
3
)

=
(5

3
)

= 10; and a quartic would have
(2+4

4
)

=
(6

4
)

= 15. For three variables,
the quadratic has

(3+2
2
)

=
(5

2
)

= 10; the cubic has
(3+3

3
)

=
(6

3
)

= 20; and a quartic would
3It is d + 1 because in the polynomial input we consider x0 = 1.0 to be a valid term to select.

92

have
(3+4

4
)

=
(7

4
)

= 35. If we let k =
((d+1)+p−1

p

)
, then the resulting polynomial can be

generically written

f(x) =
k∑

j=0
wjϕj(x) = w⊤ϕ(x),

and the new number of features for linear regression is k. We provide the generic procedure
to create polynomial features for p = 2, in Algorithm 5 or Algorithm 6 (they produce the
same outcome).

Algorithm 5: Polynomial features for p = 2, input x ∈ Rd

1: // Augment x with ones to include the bias unit in the choice over d + 1 items
2: x̃ = [1, x]
3: k = choose(d + p, p) = choose(d + 2, 2) = 1

2(d + 2)(d + 1)
4: ϕ = zeros(k)
5: ind = 1
6: // First adds 0th order, then 1st order, then 2nd order
7: for i ∈ {1, 2, . . . , d + 1} do
8: for j ∈ {i, 2, . . . , d + 1} do
9: ϕ[ind] = x̃[i] ∗ x̃[j]

10: ind++
11: return ϕ

Algorithm 6: Polynomial features for p = 2, x ∈ Rd, without augmenting x
1: k = choose(d + p, p) = choose(d + 2, 2) = 1

2(d + 2)(d + 1)
2: ϕ = zeros(k)
3: // First add 0th order
4: ϕ[1] = 1
5: // Then 1st order,
6: ϕ[2 : (d + 1)] = x
7: // Then 2nd order
8: ind = d + 2
9: for i ∈ {1, 2, . . . , d} do

10: for j ∈ {i, 2, . . . , d} do
11: ϕ[ind] = x[i] ∗ x[j]
12: ind++
13: return ϕ

Remark: Recall that in linear regression, we made the assumption that Y given an input x
is Gaussian distributed: Y ∼ N (µ = x⊤w, σ2). The distribution of the observation vector
itself was not relevant. Under this nonlinear transformation, we can similarly notice we
are making a Gaussian assumption. However, now the mean for the Gaussian is a more
complex, nonlinear function of x: Y ∼ N (µ = ϕ(x)⊤w, σ2).

Exercise 28: Write the SGD update for polynomial regression. □

93

Chapter 9

Generalization Error and Evaluation of Models

The majority of this book has focused on algorithm derivation and obtaining models, but we
have yet to address how to evaluate these models. The maximum likelihood formalism for
deriving learning algorithms provides some consistency results, where in the limit of samples
we can discuss the convergence point of an estimator. In practice, however, we would like
to evaluate the models and the algorithms based on a finite sample. Imagine a setting
where you learn two models, say using linear regression and polynomial regression. Which
of these two models is “better”? What does it even mean to say better? Are we trying
to compare algorithms or models obtained from a specific instance of an algorithm? How
can we be confident that the measured performance accurately reflects the performance we
expect to see on new data? These questions are largely separate from our previous questions
of effectively optimizing a specified objective, and rather starts to ask questions about the
properties of that objective and about empirical properties of learned models.

In this chapter, we provide empirical tools to better evaluate the properties of learning
algorithms and models. We will start by discussing the idea of generalization error: the
expected cost of a model across all possible datapoints. This reflects how well that model
generalizes to data it did not get trained on, which reflects our ultimate goal of deploying
predictors to make predictions on new data. We will discuss the nuances in trying to
accurately estimate this generalization error. Towards this goal, we will discuss how to split
data and how to use statistical significance tests to provide some level of confidence that one
algorithm or model is better than another, under some specific criteria. We will rarely be
able to make strong conclusions based on experiments, but we can build up some evidence
on the algorithm or model’s properties.

These tools are arguably the most critical aspects of properly using machine learning
algorithms in practice. One can learn a complex model, but without any understanding of
how it is expected to perform in practice on new data, it is not viable to actually use these
models. Whether an algorithm is used for scientific purposes or deployed in real systems,
having an understanding of its properties both theoretically and empirically is key to obtain
expected outcomes. This chapter only scratches the surface of the complex topic of proper
evaluation of learning algorithms and models. For a nice overview of evaluation for machine
learning algorithms, see [9].

9.1 Generalization Error, Overfitting and Underfitting
Our goal is to minimize generalization error: the expected cost. Recall that for a given loss,
or cost cost(ŷ, y), the expected cost is

E[C] =
ˆ

X ×Y
p(x, y)cost(f(x), y)dxdy.

94

We already saw this goal when talking about optimal predictors. But, we cannot directly
minimize the generalization error; instead, we have minimized an empirical error. For
example, for regression, we minimized a sample average squared error 1

n

∑n
i=1(f(xi)− yi)2

which is an unbiased and consistent estimate of the true expected cost. A natural question
is, for this minimum w of the empirical cost on the given training dataset, how well does it
do in terms of the expected cost?

One might hope that by minimizing the empirical cost, that we should do well in terms of
the expected cost. After all, a sample average is a reasonable estimate of the expectation.
Unfortunately, in some cases, minimizing the empirical cost can produce functions that
generalize poorly. Consider the following extreme example, where f is a function that
memorizes the data. For every observed xi, it returns precisely yi. For any xi that are
not observed, it returns 0. This function will get zero empirical error—also called training
error—but will not generalize at all and is likely to do very poorly in terms of the expected
cost—the generalization error.

This effect is called overfitting. The term comes from the idea that the function has
overly specialized—or overly fit itself—to the training set, at the expense of performing well
for other data points. Overfitting typically occurs because the complexity of the model is
increased considerably, whereas the size of the data set remains small relative to this model
size. Even with modern datasets that are quite large, model complexity has increased at a
commensurate pace, and so these very large models can overfit to the large datasets.

0 1 2 3 4 5

1

2

3

4

5

x

f3(x)

f1(x)

Example 27: Let’s return to the polynomial regression
example, shown in Figure 8.2 and which we redisplay here
for convenience. Now, instead of simply asking how well
the function can fit the data, we ask how well it performs
on new data. To evaluate the learned models, we generate
a testing dataset of 100 samples with observations x ∈
{0, 0.1, 0.2, . . . , 10} and noise-free target values generated
using the true function 1 + x

2 .
Using a polynomial fit with degrees p = 2 and p = 3 results in w2 = (0.575, 0.755,−0.025)

and w3 = (−3.1, 6.6,−2.65, 0.35), respectively. The average error on the training dataset
equals c(w2) = 0.05 and c(w3) ≈ 0. Thus, the best fit is achieved with the cubic poly-
nomial. However, the average error on the test dataset reveals poor generalization ability
of the cubic model. The average squared errors are ctest(w) = 0.269, ctest(w2) = 0.039,
and ctest(w3) = 220.185. It is clear the cubic model is overfitting, which is not surprising
considering it has much higher model complexity than the linear models—and higher than
is required to actually fit the data. □

Though we know overfitting occurs, it is not always obvious to see that it is occurring.
One signature of overfitting is an increase in the magnitude of the coefficients. This mani-
fests in the above example. While the absolute values of all coefficients in w and w2 were
less than one, the values of the coefficients in w3 became significantly larger with alternating
signs. (We will discuss regularization in Chapter 10 as an approach to prevent this effect.)
This occurs because the cubic function has four unknowns (four parameters) and only four
observations: it can fit this small dataset of four examples perfectly. In particular, it can
fit the noise ϵ in the targets by adding and subtracting large numbers to get the precise y
values. For sample (x = 1, y = 1.2), we have f(x) = −3.1+6.6∗1−2.65∗12 +0.35∗13 = 1.2.

95

& s
É
:-
.
.

.

.
.

.
.

• •
t

9
I

→
•

-
-
-
-

.

§
+

5
.

S
-

y
s E

.

.

÷ .
s

1
- → ±

↳

s
o

1
-

↳
•
a

G
•

•

a
F

s
-

e

→
•

+
D
o

•

•

B
-

e.
.

?
'

#
¥

¥
I

&
5

•
0 ¥
.

↳
< ÷

Figure 9.1: The true data is generated according to f∗, the quadratic in black, with observed
datapoints in red. Each datapoint is generated using y = f∗(x) + ϵ for some zero-mean
Gaussian noise ϵ. The linear function f1 cannot fit these points that have a quadratic
shape, and so has high error. The quadratic function f2 fits the points well. When p is very
big, the points can be fit exactly, but the function is clearly overfit to these given points.

For sample (x = 2, y = 2.3), we have f(x) = −3.1 + 6.6 ∗ 2− 2.65 ∗ 22 + 0.35 ∗ 23 = 2.3. And
so on. The function contorts to an odd solution, so that it can perfectly match the given y,
which may actually match the noise in y rather than our actual target, E[Y |x].

Models may not only suffer from overfitting; they can also suffer from underfitting. The
problem here is usually that the model class is insufficient to represent the true model, and
so is not able to obtain a good fit. In this case, the training error can be quite high. Another
way to see this is that the learned model cannot explain the data. It is reasonable to expect
that with growing dataset sizes, for increasingly complex problems, our models will begin
to suffer more from underfitting than overfitting. The true model—determined by complex
interactions in the world—is likely not in our function class. We visualize underfitting and
overfitting, for a true model that is quadratic, in Figure 9.1.

9.2 Estimating Generalization Error with Test Sets
We can diagnose overfitting by obtaining samples of generalization error. The most straight-
forward way to obtain a measure of the generalization error for a model is to use a test set.
Before doing any training, a part of the data is set to the side—or held out—to only be
used at the very end to gauge performance of our learned function. For example, if we have
10,000 samples, we could use n = 8000 for training and m = 2000 for testing. We train f
on the first n = 8000 datapoints and then measure

GE(f) ≈ Test-Error(f) = 1
m

n+m∑
i=n+1

cost(f(xi), yi)

For example, for regression, we used cost(f(xi), yi) = (f(xi)− yi)2.

96

Err§Trainiq%
It'sPolynomial Degree

Figure 9.2: Hypothetical training and testing error, for polynomial regression with increasing
polynomial degree. The training error decreases with increasing degree (increasing model
complexity). The testing error improves, when using more complex models, but then starts
to degrade with higher-order polynomials due to overfitting.

Once we have these m samples of error, we can try to make statistically sound conclusions
about performance. We can use confidence intervals, with the sample average error on the
test set, to gauge the level of certainty in this estimate of the generalization error. If our
confidence intervals are narrow, then we can be relatively confident in our estimate. If the
confidence intervals are quite wide, then we need to exercise caution using our estimate and
it might be worthwhile gathering more data for testing before any deployment. Further,
we can also use these m estimates of error to compare different models, say one using
polynomial regression with p = 2 and another with p = 3. We discuss using statistical
significance tests to make high-probability claims about differences between algorithms, in
the next section.

One disadvantage of using a held-out test set to estimate GE is that we cannot use
all the data for training. But, we always want more training data. The naive approach
would be to simply train on all the data, and then use this training error as an estimate
of the GE. Unfortunately, this would be terribly biased. Consider again a function that
perfectly overfits the data: it would zero training error, but likely high GE. In fact, to give
an unbiased sample of generalization error, the hold-out test set cannot be used in any
way during training. There are, however, clever ways to try to split the data—called cross
validation—to allow us to get reasonable estimates of the performance of the model trained
on all the data. We will use the simpler test set approach here, but for more about these
other strategies see the thorough and accessible explanation in [8, Chapter 5].

Now let us consider how to use this test set to diagnose overfitting. If there is a significant
mismatch between training and testing error, this could indicate overfitting. We cannot
simply compare the numbers, because we generally expect training error to be lower than
testing error (and lower than generalization error). The weights were chosen to minimize
that error, after all. A function could be quite good in terms of generalization error, and still
have lower training error than testing error. Instead, it is typically easier to gauge overfitting
by comparing different models. For example, you could increase model complexity, such as

97

trying all polynomials up to degree p, and then see at what degree the testing error stops
decreasing and starts increasing, as in Figure 9.2.

Notice that the training error can only decrease with increasing p because, for Fp the
set of degree p polynomials,

min
f∈Fp+1

1
n

n∑
i=1

(f(xi)− yi)2 = min
(

min
f∈Fp

1
n

n∑
i=1

(f(xi)− yi)2, min
f∈Fp+1\Fp

1
n

n∑
i=1

(f(xi)− yi)2
)

≤ min
f∈Fp

1
n

n∑
i=1

(f(xi)− yi)2

Another way to see this is by noting that it is strictly more flexible to pick polynomials of
higher degrees, since we can always set the coefficients for higher-order terms to zero. For
example, for scalar inputs x ∈ R, we can always take a p + 1-order polynomials fp+1(x) =∑p+1

j=0 wjxj and recover a p-order polynomial by fixing wp+1 = 0. You can see fp as a
polynomial that is forced to use wp+1, whereas fp+1 can more flexibly use any value it
wants for wp+1. This flexibility means it should be better able to minimize the loss.

This approach can also be used to diagnose underfitting. We can see that when we
increase p from 1 to 2, both the training error and testing error decrease. We cannot say for
sure that the ideal p is at 3, with underfitting occurring at p < 3 and overfitting at p > 3.
The test set, after all, only gives an estimate of the generalization error. However, with a
sufficiently large test set, such a curve is likely quite representative of the performance of
these models.

Remark about terminology: A common mistake is to think that the generalization
error is the gap between the training and test error. This is incorrect. The generalization
error is the expected cost, namely the expected test error. A large gap between training and
test error can be indicative of poor generalization error, since it can indicate overfitting.
We might use this gap to diagnose overfitting. But the estimate of generalization error
that we ultimately care about is the test error. For example, a random predictor might
have very similar performance on training and test, but it is equally bad performance. This
random predictor has high generalization error (high expected test error), even though the
generalization gap is near zero.

9.3 Making Statistically Significant Claims

Now that we have a mechanism to obtain m (unbiased) samples of error, we can turn to
obtaining statistically significant (high-probability) claims about the performance of models.
Suppose we have m samples, and wish to compare learned functions f1 and f2. When
measuring performance on these m samples, we find that f1 seems to perform better on
average than f2. But can we say that it is actually better? In this section, we discuss this
questions, that is how to claim that f1 is better than f2, with high-probability, or realize
that we cannot make such claims.

9.3.1 Computing Confidence Intervals Tests

One of the easiest approaches for evaluating and comparing models is to use a tool we
already know: confidence intervals. We can compute a sample average error for a learned

98

function f , using the m samples of error from the test set Dtest = {(Xi, Yi)}ni=1

X̄ = 1
m

m∑
i=1

ci(f)

where ci(f) is the error for the ith sample. For example, we could have a learned linear
function f(x) = x⊤w and have squared error ci(f) = (X⊤

i w−Yi)2. We know that we have
an unbiased sample average, and so E[X̄] = GE(f). Then we can obtain a 1− δ (say 95%)
confidence interval GE(f) ∈ [X̄ − ϵ, X̄ + ϵ], where ϵ is such that Pr

(∣∣∣X̄ − E[X̄]
∣∣∣ ≥ ϵ

)
≤ δ.

If we believed the errors were Gaussian distributed with known variance σ2, we could use a
95% Gaussian confidence interval, with ϵ = 1.96σ/

√
m.

We liked the Gaussian interval because it required fewer samples to get a tighter interval;
but sadly it is not really usable in practice. You might even be able to plot your m
errors and notice they look Gaussian distributed. But, you definitely do not know their
true variance. The Student’s t-distribution is precisely designed for this setting. This
distribution allows the sample variance to be used instead of the true variance. A 95%
confidence interval is given by ϵ = tδ,m−1Sm/

√
m with the unbiased (Bessel-corrected)

sample variance S2
m = 1

m−1
∑m

i=1(ci(f) − X̄)2. The constant tδ,m−1 now also depends on
the number of samples, contrasting this constant for the Gaussian (which was 1.96). For
m = 2, we have t0.05,1 = 12.71; for m = 11, we have t0.05,10 = 2.228; and for m = 101, we
have t0.05,100 = 1.984. In the limit, as m → ∞, this constant approach 1.96, because the
distribution becomes a Gaussian distribution.

This confidence interval is useful just for evaluating the performance of one model. But,
we can also use them to compare two models. If two intervals do not overlap, then we can
say that they are different with high probability: that they are statistically significantly
different. Assume f1 has error X̄1 and f2 has error X̄2, with correspondingly intervals given
by ϵ1 and ϵ2. Then if X̄1 + ϵ1 < X̄2− ϵ2, then we can say that f1 is statistically significantly
better than f2 with confidence level δ.

9.3.2 Parametric Tests

Using confidence intervals is one of the simplest, but also least powerful statistical signif-
icance tests. We can do better by considering tests designed to compare two means. For
now, let’s start with a simple case, where we compare two models using the binomial test.
Imagine you do not care about precise errors, but rather just want to rank the algorithms
by saying which did better or worse. We can carry out such a comparison using a counting
test: for each sample i, we award a win to f1 if it has lower error and vice versa. In the
case of exactly the same performance, we can provide a win/loss randomly.

1 2 3 4 m− 1 m

f1 1 0 1 1 · · · 0 1
f2 0 1 0 0 1 0

Table 9.1: A counting test where models f1 and f2 are compared on a set of m independent
samples. A model with better performance on a particular sample collects a win (1), whereas
the other algorithm collects a loss (0).

99

Our goal is to provide statistical evidence that say model f1 is better than model f2.
Suppose f1 has k wins out of m and f2 has m − k wins, as shown in Table 9.1. Assume
k > m−k, as otherwise we would be asking if f2 is statistically significantly better than f1.
We would like to evaluate the null hypothesis H0 that f1 and f2 have the same performance
by providing an alternative hypothesis H1 that f1 is better than f2. In short,

H0: quality(f1) = quality(f2)
H1: quality(f1) > quality(f2)

If the null hypothesis is true, the win/loss on each data set will be equally likely and
determined by minor variation. Therefore, the probability of a win on any data set will be
roughly equal to β = 1/2. Now, we can express the probability that f1 would have collected
k wins or more under the null hypothesis using the binomial distribution

p = Pr(f1 gets at least k wins) =
m∑

i=k

(
m

i

)
βi(1− β)m−i

This value is the probability of k wins, plus the probability of k+1 wins, up to the probability
of m wins, under the null hypothesis. It reflects how likely it is that f1 would have been
able to get so many wins, i.e., get a least k wins.

This probability p is referred to as the p-value. A typical approach in these cases is to
establish a significance value, say, α = 0.05 and reject the null hypothesis if p ≤ α. For
sufficiently low p-values, we may conclude that there is sufficient evidence that f1 is better
than f2. The p-value represents the likelihood of observing these outcomes—observing the
evidence—if the null hypothesis is true. If the p-value is very small, this says that the
probability of that evidence is very small, and so it suggests you were wrong to think the
null hypothesis accurately describes the world. Instead, it is more reasonable to conclude
your model of the world—the null hypothesis—is wrong. If the p-value is greater than α
we say that there is insufficient evidence for rejecting1 H0.

The choice of the significance threshold α is somewhat arbitrary. A value of 5% is
typical, but lower values indicate that the particular situation of k wins out of m was so
unlikely, that we can consider the evidence for rejecting H0 very strong. Being able to reject
the null hypothesis provides some confidence that the result did not occur by chance.

More generally, we can consider other statistical significance tests based on the distri-
butions of the performance measures. In the above example, a binomial distribution was
appropriate. If instead we considered the actual errors on the datasets, then we have pairs
of real values. In this case, a common choice is the paired t-test. This test can be used
if both errors appear to be distributed normally and if they have similar variance. The
paired t-test takes in the sampled differences between the algorithms (line 3 in Table 9.2),
d1, . . . , dm. Because again our null hypothesis is that the algorithms perform equally, un-
der the null hypothesis the mean of these differences is 0. If the differences are normally
distributed, then for the sample average d̄ = 1

m

∑m
i=1 di and sample standard deviation

Sd =
√

1
m−1

∑m
i=1(di − d̄)2, the random variable t = d̄−0

Sd/
√

m
is distributed according to the

1Note that this does not mean that we accept the null hypothesis. Rather, we assumed it was true and
evidence did not contradict that fact. But, absence of evidence is not a proof: just because it was not
disproved, does not mean that it was proved.

100

Student’s t-distribution. The Student’s t-distribution is approximately like a normal distri-
bution, with a degrees-of-freedom parameter m− 1 that makes the distribution look more
like a normal distribution as m becomes larger.

We can now ask about the probability of this random variable T , relative to the com-
puted statistic. If we only care about knowing if algorithm 1 is better than algorithm 2, we
conduct a one-tailed test. If the probability that T is larger than t, i.e., p = Pr(T > t), is
small, then we obtain some evidence that algorithm 1 is better than algorithm 2. To test
if algorithm 1 is better than algorithm 2, we can swap the order of the difference. Or, in
this setting, t would be negative, so we check if p = Pr(T > −t) is small; then we obtain
some evidence that algorithm 2 is better than algorithm 1. These are both one-tailed tests,
reflecting the probabilities at one end of the tails of the distribution. A two-tailed test
instead asks if the two algorithms are different; in this case, one would use p = Pr(T > |t|).
Note that this two-tailed test will always have a bigger p-value than the one-sided tests.

1 2 3 4 m− 1 m

f1 0.11 0.08 0.15 0.12 · · · 0.07 0.09
f2 0.10 0.09 0.11 0.12 · · · 0.10 0.09

performance difference d 0.01 -0.01 0.04 0.0 · · · -0.03 0.0

Table 9.2: A table of errors for two learning algorithms a1 and a2 are compared on a set of
m independent data sets. The last row contains the differences, i.e., d = performance(f1) -
performance(f1). These differences are used for the paired t-test.

9.3.3 How to Choose the Statistical Significance Test

We gave two examples of tests: the binomial test and the paired t-test. These tests make
parametric assumptions. The binomial test requires that the compared values are 0, 1 val-
ues. The paired t-test assumes the difference in errors follows a Student’s t-distribution,
which is satisfied if the paired samples are normally distributed with equal variance. How-
ever, these conditions are not always satisfied, in which case other tests are more suitable.
Further, there are some tests that do not make distributional assumptions, and rather are
non-parametric. For a summary on selecting tests, see [9, Section 6.3]

The choice of the test comes down to satisfying assumptions, and the power of the test.
The power of the test is the ability for the test to reject the null hypothesis, if it should
be rejected. The approach using non-overlapping confidence intervals is a low-power test,
because it does not take into account the paired errors for the two models. When a test
fails to reject the null hypothesis, when it should have been rejected, this is called a Type
II error (a false negative outcome). If the test is a low-power test, then it is more likely to
commit a Type II error.

On the other hand, if a test is used when assumptions are violated, then we might falsely
conclude that we can reject the null hypothesis, when in fact we should not have. This is
called a Type I error (a false positive outcome). For example, if we make a relatively strong
parametric assumption that the errors are Gaussian, then we have more power to reject
the null hypothesis but might commit a Type I error if the errors are in fact not normally
distributed.

101

These choices for statistical tests are similar to the choices we make when learning
models: strong assumptions can enable faster learning, but are more biased and can lead
to poorer predictions, whereas very general models can produce accurate predictions, but
might need a lot of data. This choice is even more difficult for statistical significance
tests, where the amount of available data is often highly limited—running experiments is
expensive.

102

Chapter 10

Regularization and Constraining the Hypothesis Space

In this chapter, we discuss how regularization can be used to mitigate issues of overfitting. In
particular, we discuss both regularizing the weights, as well as restricting the function class.
We then discuss a foundational concept in machine learning: the bias-variance trade-off.

10.1 Regularization as MAP
So far, we have discussed linear regression in terms of maximum likelihood. But, as before,
we can also propose a MAP objective. This means we specify a prior over w. In particular,
we select a prior to help regularize overfitting to the observed data. We will discuss two
common priors (regularizers): the Gaussian prior (ℓ2 norm) and the Laplace prior (ℓ1 norm),
shown in Figure 10.1.

Let’s start with the Gaussian prior. We assume each element wj has a Gaussian prior
N (0, σ2/λ), with zero covariance between the weights, for some λ > 0 and under the
assumption that p(y|x) = N (x⊤w, σ2). The choice of the constant σ2/λ for the prior
variance is explained below. By picking a Gaussian on each wj , we get the prior p(w) =
p(w1)p(w2) . . . p(wd). Taking the log of this zero-mean Gaussian prior, we get

− ln p(w) = −
d∑

j=1
ln p(wj) = −

d∑
j=1

ln
(

1√
2πσ2/λ

exp(−
w2

j

2σ2/λ

)

= −
d∑

j=1
−1

2 ln(2πσ2/λ)−
w2

j

2σ2/λ

= d
2 ln(2πσ2/λ)) + λ

2σ2

d∑
j=1

w2
j

We can drop the first term, which does not affect the selection of w since it is constant. We
can combine the negative log-likelihood and the negative log prior. Then ignoring constants,
we can add up the negative log-likelihood and negative log prior to get

argmin
w∈Rd+1

− ln(p(y|X, w))− ln p(w) = argmin
w∈Rd+1

1
2σ2

n∑
i=1

(
x⊤

i w− yi

)2
+ λ

2σ2

d∑
j=1

w2
j

= argmin
w∈Rd+1

1
2

n∑
i=1

(
x⊤

i w− yi

)2
+ λ

2

d∑
j=1

w2
j .

Recall that x⊤
i w =

∑d
j=0 wjxij , which gives the prediction ŷi. Notice that the regular-

ization does not include w0, because the intercept term only shifts the function. It does not

103

increase the complexity of the function, and so does not notably contribute to overfitting.
It is preferable to avoid regularizing w0, so that it can accurately learn the mean value of
the target across x.

Exercise 29: Show that the learned w0 = 1
n

∑n
i=1 yi, if we first normalize the data to have

zero mean, i.e.
∑n

i=1 xi,j = 0 for every j = 1, 2, . . . , d. Notice that w0 is approximating
E[Y]. You can use this to conclude that if yi is centered across all samples, then we did not
need to add an intercept term (i.e., w0 = 0). Centering involves taking the average values
across samples, and subtracting it from each point: ỹi = yi − 1

n

∑n
i=1 yi. □

In summary, if we assume that each weight, except w0, has a zero-mean Gaussian prior
N (0, λ−1σ2), then we get the following ℓ2-regularized problem1, also called ridge regression:

c(w) = 1
2

n∑
i=1

(
x⊤

i w− yi

)2
+ λ

2

d∑
j=1

w2
j (10.1)

where λ is a user-selected parameter that is called the regularization parameter. The idea
is to penalize weight coefficients that are too large; the larger the λ, the more large weights
are penalized. Correspondingly, larger λ corresponds to a smaller covariance in the prior,
pushing the weights to stay near zero. The MAP estimate, therefore, has to balance between
this prior on the weights, and fitting the observed data.

Similarly to linear regression, we can take the gradient of this objective to get a system
of d + 1 equations. We can obtain a closed form solution, but will use stochastic gradient
descent. Instead of using cumulative errors, we use an average error by normalizing by n:

c(w) = 1
2n

n∑
i=1

(
x⊤

i w− yi

)2
+ λ

2n

d∑
j=1

w2
j (10.2)

Dividing both terms by n does not change the objective, it simply rescales it. The form
in Equation (10.2) is more amenable for our stochastic gradient descent solution approach,
which is why we pick that instead of (10.1). We can write this objective as an average of
c1, c2, . . . , cn using ci(w) = 1

2
(
x⊤

i w− yi
)2 + λ

2n

∑d
j=1 w2

j because

1
n

n∑
i=1

ci(w) = 1
n

n∑
i=1

1
2

(
x⊤

i w− yi

)2
+ λ

2n

d∑
j=1

w2
j

= 1

2n

n∑
i=1

(
x⊤

i w− yi

)2
+ 1

n

n∑
i=1

λ

2n

d∑
j=1

w2
j

= 1
2n

n∑
i=1

(
x⊤

i w− yi

)2
+ λ

2n

d∑
j=1

w2
j = c(w)

This form makes it more clear that regularization diminishes with a growing number of
samples; in other words, the prior is washed away with more data. The gradient for each
term ci is composed of the following partial derivatives for j ∈ {1, 2, . . . , d}

∂ci(w)
∂wj

=
(
x⊤

i w− yi

)
xij + λ

nwj and for j = 0 ∂ci(w)
∂w0

=
(
x⊤

i w− yi

)
1It is called ℓ2-regularized linear regression, because the regularizer uses an ℓ2-norm on the weights. See

the notation at the beginning of these notes, for the definitions of norms on vectors.

104

2/26/22, 8:53 AM Desmos | Graphing Calculator

https://www.desmos.com/calculator 1/2

Figure 10.1: A comparison between Gaussian (blue) and Laplace (red) priors. The
blue curve is (2π)−1/2 exp(−x2/2), which is the pdf for a N (0, 1). The red curve is
(1/2) exp(−|x|), which is the pdf for a Laplace with mean zero and b = 1. Both prefer
values to be near zero, but the Laplace prior more strongly prefers the values to equal zero.

because for λ̃ = λ/n

∂ λ̃
2
∑d

k=1 w2
k

∂wj
= λ̃

2

d∑
k=1

∂w2
k

∂wj
= λ̃

2
∂w2

j

∂wj
= λ̃wj .

Each stochastic gradient descent update is

wt+1 = wt − ηtgt

where gt = ∇ci(w) for a random sample i, with

∇ci(w) =

(
x⊤

i w− yi
)(

x⊤
i w− yi

)
xi1 + λw1(

x⊤
i w− yi

)
xi2 + λw2

...(
x⊤

i w− yi
)

xid + λwd

Exercise 30: Write down the mini-batch gradient descent update. □

We can go through the same procedure with a different prior: a Laplace prior. If we go
through similar steps as above, we get an ℓ1 penalized objective

c(w) = 1
2n

n∑
i=1

(
x⊤

i w− yi

)2
+ λ

n

d∑
j=1
|wj | (10.3)

which is often called the Lasso. We put a Laplace prior on each weight p(wj) = 1
2b exp(− |wj−µ|

b)
with parameters µ = 0 and scale b = σ2/λ. This results in putting an ℓ1 regularizer on the
weights, which sums up the absolute values of the weights.

Exercise 31: Derive Equation (10.3) using the MAP formulation with the given Laplace
prior, similarly to how it was done for MAP with a Gaussian prior on the weights. □

105

As with the ℓ2 regularizer for ridge regression, the ℓ1 regularizer penalizes large values
in w. However, it also produces more sparse solutions, where entries in w are zero. This
preference can be seen in Figure 10.1, where the Laplace distribution is more concentrated
around zero. In practice, however, this preference is even stronger than implied by the
distribution, due to how the spherical least-squares loss and the ℓ1 regularizer interact.

Forcing entries in w to zero has the effect of feature selection, because zeroing entries
in w is equivalent to removing the corresponding feature. Consider the dot product

x⊤w =
d∑

j=0
xjwj =

∑
j:wj ̸=0

xjwj .

This is equivalent to simply dropping entries in x and w where wj = 0. Notice that again
it is not sensible to apply this regularizer to w0, and it remains unregularized.

For the Lasso, we no longer have a closed-form solution. We do not have a closed form
solution, because we cannot solve for w in closed-form that provides a stationary point.
Instead, we use gradient descent to compute a solution to w. The ℓ1 regularizer, however,
is non-differentiable at 0. Understanding how to optimize this objective requires a bit more
optimization background; we leave it for a future course.

10.2 Expectation and Variance for the Regression Solutions
A natural question to ask is how this regularization parameter can be selected, and the
impact on the final solution vector. The selection of this regularization parameter leads
to a bias-variance trade-off. To understand this trade-off, we need to understand what it
means for the solution to be biased, and how to characterize the variance of the solution,
across possible datasets.

Let us begin with understanding the bias and variance of the non-regularized solution.
For simplicity in the derivation, let’s look only at the univariate setting: input x ∈ R and
weights w ∈ R, with f(x) = xw. For this analysis, we start by presuming the distributional
assumptions behind linear regression are true. This means that there exists a true parameter
ω such that for each of the data points

Yi = ωXi + εi

where the εj are i.i.d. random variables drawn according to N (0, σ2). We can characterize
the MLE weights (estimator) wMLE as a random variable, where the randomness is across
possible datasets that could have been observed. In this sense, we are considering the dataset
D to be a random variable, and the solution wMLE(D) from that dataset as a function of this
random variable. All stochasticity comes from the fact that we could have drawn different
datasets D, and we want to reason about the resulting distribution over possible wMLE(D).
Our learned estimator will be just one of these possible solutions, but we reason about the
whole space to help us understand properties of our solution.

We can show that wMLE(D) is an unbiased estimator of ω. To do so, we will need the
closed form solution, which we actually already derived in Equation (5.4):

wMLE(D) =
∑n

i=1 XiYi∑n
i=1 X2

i

(10.4)

106

For simplicity of notation, we will use Sn
def=
∑n

i=1 X2
i . Then we have that

E[wMLE(D)] = E
[∑n

i=1 XiYi

Sn

]
= E

[∑n
i=1 Xi(ωXi + εi)

Sn

]
▷ because Yi = ωXi + εi

= E
[∑n

i=1(ωX2
i + Xiεi)

Sn

]

= E
[

ω
∑n

i=1 X2
i +

∑n
i=1 Xiεi

Sn

]

= E
[

ωSn

Sn

]
+ E

[∑n
i=1 Xiεi

Sn

]
▷ by linearity of expectation

= E [ω] +
n∑

i=1
E
[
εi

Xi

Sn

]

= ω +
n∑

i=1
E[εi]E

[
Xi

Sn

]
▷ ω not random and εi independent of all Xi

= ω ▷ because E [εi] = 0

Therefore, we can conclude that E[wMLE(D)] = ω and so wMLE(D) is an unbiased estimator.
We can similarly characterize the variance, and obtain

Var[wMLE(D)] = E
[
(wMLE(D)− ω)2

]
= E

[
wMLE(D)2

]
− ω2

Above we showed that wMLE(D) = ω +
∑n

i=1 εi
Xi
Sn

. Again, for simplicity of notation, define
this residual term Rn

def=
∑n

i=1 εi
Xi
Sn

. Then we get

wMLE(D)2 = (ω + Rn)2

= ω2 + 2ωRn + R2
n

We can further show that

E[ωRn] = ωE[Rn] = ω
n∑

i=1
E[εi]E

[
Xi

Sn

]
= 0

as we showed above when characterizing the expectation of wMLE(D). We can use the law
of total probability to show that

E[R2
n] = σ2E[S−1

n]

We leave this as an exercise. Putting this all together, we get that

Var[wMLE(D)] = E
[
wMLE(D)2

]
− ω2

= ω2 + 0 + E[R2
n]− ω2

= σ2E[S−1
n]

= σ2E
[1

n
C−1

n

]
▷ for Cn

def= 1
n

n∑
i=1

X2
i

107

✗
✗

8
+

✗
☒☒

"8
✗

jÉ
✗

✗
¥§

§

✗

ax
✗

⇒¥i
•

or

§-

f. ¥¥¥¥¥
:>

£>
÷ : :*
-

f-
÷

£

*

§
.¥

⇐
É

Figure 10.2: Visualizing the meaning of bias and variance for our regression estimates. This
visualization is for a setting with two weights, w = (w1, w2), where each × corresponds to
possible w we might see for a given dataset. For example, the purple × would be the weights
learned under a randomly sampled dataset D1; the orange × the weights under a different
randomly sampled dataset D2; and the light blue × the weights under a third randomly
sampled dataset D3. All these datasets are possible datasets that could have been observed,
although we of course only see one dataset and our × is one amongst these many possibilities.
Those in the first row with low bias have all the possible solutions around the true w∗,
where for low variance they are clustered more closely around w∗ and for high variance any
one × can be quite far. The second row visualizes a situation where there is high bias, and
the solutions × are clustered away from the true w∗.

The last format is given in terms of the sample average estimate Cn, which is essentially
a sample average estimate of the variance for Xi. (It would be a variance estimate, if it was
centered around the mean.) This term reflects the variability in X. For a small number
of samples, Cn could vary widely, and could be very small. The inverse in the above can
be very big, and so the variance for wMLE(D) can be big for a small amount of data. This
implies that, across datasets, the solution wMLE(D) can vary widely. This behavior is not
desirable: if our solution could be very different across several different random subsets of
data, we cannot be confident in any one of these solutions. Notice that as n get bigger, the
variance decreases proportionally to n−1, because of the 1

n in front of Cn. We depict this in
Figure 10.2.

The regularized solution, on the other hand, is much less likely to have high variance,
but will no longer be unbiased. Let wMAP(D) be the MAP estimate for the ℓ2 regularized
problem with some λ > 0. As above, we can write the MAP estimate as a closed form
solution

wMAP(D) =
∑n

i=1 XiYi

λ + Sn
(10.5)

108

Then, using similar steps to above we get

E[wMAP(D)] = E
[∑n

i=1 XiYi

λ + Sn

]
= E

[
ωSn

λ + Sn

]
+ E

[∑n
i=1 Xiεi

λ + Sn

]
= ωE

[
Sn

λ + Sn

]
+ 0

̸= ω

when λ > 0. Notice that if λ = 0, then wMAP(D) is unbiased. In fact, it simply correspond
to the MLE solution for λ = 0, so it makes sense that it is unbiased for λ = 0. The bias
is determined by how far E

[
Sn

λ+Sn

]
is from 1. As λ→ 0, the solution becomes less and less

biased. As λ→∞, the solution becomes maximally biased with E
[

Sn
λ+Sn

]
→ 0.

We can also characterize the variance of wMAP(D). We leave the steps as an exercise.
Again, for simplicity of notation, let’s define Cn,λ = 1

n(λ + Sn). Then variance is

Var[wMAP(D)] = σ2E
[

1
nC−1

n,λCnC−1
n,λ

]
Notice now that even if Cn is very small, it does not cause the variance to become very big
because we are not inverting it. Instead, we use the inverse of Cn,λ. This inverse is always
smaller than 1/λ, because we increase the denominator by λ. Therefore, for reasonably
large λ, the variance will not be very big and it should be notably smaller than wMLE(D).

We can reason about which quadrants best characterize our regression solutions. The
wMLE solution is unbiased, so it should be in the first row. For a small number of samples,
the variance is likely high, and so it would be in the low-bias, high-variance quadrant. Once
we have enough samples, the variance becomes small—because it decreases proportionally
to n—and so wMLE is in the low-bias, low-variance quadrant.

The wMAP solution is biased, so we have to think a bit more carefully. For a very small λ,
we know that the bias is minimal, so the solution will be low-bias. So, this answer depends
on the choice of λ. For a small λ, we expect wMAP to behave somewhat similarly to wMLE,
but should be lower-variance. For a larger λ, the bias is higher and the variance even lower,
but this bias also decreases with samples. In general, for a large λ with a small number of
samples, we except a high-bias, low-variance solution. As we get more samples, we start to
decrease the bias until with enough samples we have a low-bias, low-variance solution.

10.3 The Bias-Variance Trade-off
The reason we care about the bias and variance is that the expected mean-squared error
to the true weights can be decomposed into the bias and variance. We saw this in Section
3.5, when we talked about sample average estimators. As depicted in Figure 10.3, there is
an optimal choice of λ that minimizes this bias-variance trade-off—if we could find it. We
can show the same decomposition for the weights for regression

E
[
∥w(D)− ω∥22

]
= E

 d∑
j=1

(wj(D)− ωj)2

 =
d∑

j=1
E
[
(wj(D)− ωj)2

]

109

variance

"

*.

Bias
2

* -#m* decreasing ✗ very
small

big best t

Figure 10.3: The bias-variance trade-off. The Model Complexity is increasing on the x-
axis. For example, increasing p would correspond to increasing model complexity. For the
regularization parameter, a smaller λ constrains the function less, and so it corresponds to
higher model complexity. A large λ constraints the weights much more, to be near zero, and
so reduces the model complexity.

where we can then further simplify this inner term

E
[
(wj(D)− ωj)2

]
= E

[
(wj(D)− E [wj(D)] + E [wj(D)]− ωj)2

]
= E

[
(wj(D)− E [wj(D)])2

]
+ E

[
(E [wj(D)]− ωj)2

]
where the second step follows from the fact that

−2E [(wj(D)− E [wj(D)])(E [wj(D)]− ωj)] = (E [wj(D)]− ωj)E [wj(D)− E [wj(D)]]
= 0.

The first term above in E
[
(wj(D)− ωj)2] is the variance of the jth weight and the second

term is the bias of the jth weight, where E
[
(E [wj(D)]− ωj)2] = (E [wj(D)]−ωj)2 because

nothing is random in this term so the outer expectation is dropped. This gives

E
[
∥w(D)− ω∥22

]
=

d∑
j=1

E
[
(wj(D)− ωj)2

]

=
d∑

j=1
(E [wj(D)]− ωj)2 + Var [wj(D)]

showing that the expected mean-squared error to the true weight vector ω decomposes into
the squared bias E [wj(D)] − ωj and the variance Var [wj(D)]. The bias-variance trade-off
reflects the fact that we could potentially reduce the mean-squared error by incurring some
bias, as long as the variance is decreased more than the squared bias.

Above we assumed that the true model was linear, and so the only bias introduced was
from the regularization. This was the realizable setting, where our function class contains

110

Space of
← all functions

←
Space of
all functions

(a) Realizable setting: f∗ ∈ F

Space of
← all functions

←
Space of
all functions

(b) Non-realizable setting: f∗ /∈ F

Figure 10.4: Visualizing the realizable and non-realizable settings. If f∗ is representable
by our function class, then it is the realizable setting. For example, if F is all degree-4
polynomials, and f∗ is a polynomial with p = 3, then f∗ ∈ F and we are in the realizable
setting. On the other hand, if f∗ is a polynomial with p = 6, then f∗ /∈ F and we are
in the non-realizable setting. For the realizable setting, it does not mean we will find f∗

with polynomial regression on a given (finite) dataset. But, in the limit as we get more n,
polynomial regression will find this f∗. For the non-realizable setting, in the limit we will
find the best approximation to f∗. Of course, for either case, any function we learn will be
in F . For this example, with F the space of all degree-4 polynomials, we have labeled our
learned function f4 in the diagram, since it is a degree four polynomial.

the true function. Specifically, we assumed that the true function is linear, and that the
bias introduced was only due to regularization. In reality, when using linear regression with
regularization, we are introducing bias both from

1. selecting a simpler function class, and

2. from the regularization.

For example, we might select F to be the set of linear functions, the true function f∗ might
be cubic function. We visualize this in Figure 10.4.

If the true function is not linear, then we cannot compare the learned weights for a linear
function directly to the true function. If a powerful basis is used to first transform the data,
then we can learn nonlinear functions even though the solution uses linear regression. In
this case, it is feasible that this function class is sufficiently powerful and includes the true
function, and that the bias is mostly due to regularization. But, in general, it will be
difficult to guarantee that we have specified a function class that includes the true function,
and it will be difficult to directly compare our parameters to true parameters (which may
not even be of the same dimension).

We can more generally talk about bias and variance by considering instead the reducible
error. In fact, the bias-variance trade-off is all about reducing the reducible error. (Remem-
ber, we cannot reduce the irreducible error—the name says it all—by improving how we
estimate the function.) We can define a more general bias-variance decomposition that

111

compares function outputs rather than parameter vectors. Recall the reducible error corre-
sponds to E

[
(fD(X)− f(X))2], where f(X) is the optimal function, i.e., f(x) = E [Y |x]

for the squared cost. We previously discussed this reducible error for a fixed function, with
expectation only over X. But now we additionally consider the fact that fD is random,
and we can reason about its expectation and variance for a given x.

Let’s start by only considering the expected mean-squared error, for a given input x.
Using similar steps to the decomposition above, we get

E
[
(fD(x)− f(x))2

]
= (E [fD(x)]− f(x))2 + Var [fD(x)] .

Notice that in the second line, the expectation is now inside the squared distance; this
term corresponds to the squared bias. The bias here reflects the output of the estimated
function fD(x), in expectation across all datasets D. The variance term reflects how much
the prediction for x can vary, if we learn on different iid datasets. This decomposition of
the mean-squared error into a squared bias and variance is not obvious, but does follow
similar steps to above. It is left as an exercise.

The above generalization highlights that one of the ways we balance bias and variance
is actually in the selection of the function class. If we select a simple function class, the
class is likely not large enough—not powerful enough—to represent the true function. This
introduces some bias, but likely also has lower variance, because that simpler function class
is less likely to overfit to any one dataset. If this class is too simple, then we might be
suffering from underfitting. On the other hand, if we select a more powerful function class,
that does contain the true function, we may not have any bias but could have high variance
due to the ability to find a function in your large class that overfits a given dataset. Though
we have the ability to learn a highly accurate function, it will be difficult to actually find
that function amongst this larger class. Instead, one is likely to select a model that overfits
to the given data, and does not generalize to new data (i.e., performs poorly on new data).

We can revisit our bias-variance quadrants and categorize these learning scenarios.

1. Low-Bias, Low-Variance: (a) Large F (high model complexity) so that we can
nearly represent f∗, with a very big n. (b) Small F (low model complexity) but f∗ is
also simple, such as the case where F is composed of linear functions and f∗ is also
linear. For this setting, we do not need as many samples, for even for a relatively
small n we might have low variance.

2. Low-Bias, High-Variance: Large F (high model complexity) so that we can nearly
represent f∗ (low-bias), butn is not big enough.

3. High-Bias, Low-Variance: Small F (low model complexity) but f∗ is complex, such
as the case where F is composed of linear functions and f∗ is a high-order polynomial,
say with p = 8.

4. High-Bias, High-Variance: This is a bad quadrant to be in. It could occur if
we have very little data and interim model complexity. For example, F could be
composed of cubic functions, which cannot represent f∗ (a polynomial with p = 8),
and n is small enough that there is large variability amongst possible cubic functions
that could be observed.

112

Exercise 32: In which four quadrants is the training accuracy reflective of generalization
error? In which four quadrants is the generalization error low or high? □

10.4 Selecting Models for Deployment
Finding the balance between bias and variance, and between underfitting and overfitting,
is a core problem in machine learning. Our goal is to identify the true function, and in
some cases the data may be insufficient for identification. For example, imagine you are
given a dataset of images, where the color red has no impact on prediction accuracy. Your
classifier, though, does not know that this property is irrelevant and may use it to better
fit the data. If there were multiple instances of the same picture, with and without the
color red, it might be able to learn that that property is not relevant. But that is too
much to hope for. Instead, we build-in some prior knowledge into the types of functions
we learn to acknowledge that the given data is unlikely to be sufficient to perfectly identify
the model. That prior knowledge need not be specific to the problem; it could be as simple
as preferring to use a minimal set of features in the observed data. Understanding what
this prior knowledge should be—understanding inductive biases—remains an important
question.

However, what you have learned so far already gives you some tools to answer this
question in practice. We have two strategies to select models: using first principles (based
on reasoning about the bias and variance) and using model evaluation. Notice that we do
not directly optimize the bias-variance trade-off. We cannot actually measure the bias, so
we do not directly minimize these terms. Rather, this decomposition guides how we select
models. We may reason that if we have a small dataset, then we should err on the side
of using simpler models. This might mean we choose to use a smaller p for polynomial
regression, or incorporate regularization.

Such reasoning helps us constrain the models we consider; then testing lets us select
amongst this smaller set. We can take our dataset and separate it into a training set and a
test set. Because we are using this test set to select amongst different models, it is typically
called a validation set. We might train three different models, with p = 2, 3, 4, and then
evaluate performance on the validation set, selecting the best p. We then select that p, and
train on all the data before deploying.

Note that in some cases there is actually a training set, validation set and test set. To
be more sure about the model before deploying, we might actually split the dataset into
training and test first, then further using this validation approach with another split on the
training set. The model can be tested once more on the test set, before deployment, to
ensure we are deploying an acceptable model. Note that before testing the model on the
test set, we do still combine the training and validation into one dataset, and learn that
model on this larger dataset, before testing on the test set.

Exercise 33: A test set allows us to measure the accuracy of our predictor. Imagine we
have trained a predictor using polynomial regression with p = 4, selected using validation.
We measure the mean squared error on the test dataset. We want to ensure we are not
tricked by an optimistic average error. How can we say that, with 95% confidence, our
predictor will not do worse than some lower bound? □

113

Chapter 11

Logistic Regression and Linear Classifiers

In Chapter 7, when introducing prediction, we presented a classifier as a function f :
X → Y for a finite (unordered) set Y and showed that a reasonable goal to obtain a good
classifier is to approximate p(y|x). Similarly to linear regression, we need to figure out
how to parameterize p(y|x). Here we consider the simplest first case: Y = {0, 1} (binary
classification). We know p(y|x) must be a (conditional) Bernoulli distribution, because Y
is a binary variable. The parameter for a Bernoulli distribution is α(x) = p(y = 1|x), the
success probability. In this chapter, we discuss how to parameterize and learn this α(x),
with an approach called logistic regression.

11.1 The Parameterization for Binary Classification

Let us start by reasoning about how to represent α(x) = p(y = 1|x). We could again
use a linear function of the inputs x. Notice, however, that a linear function x⊤w may
produce any number in R. We need to approximate p(y = 1|x), which has to be between
0 and 1. The simple idea is to still use a simple linear function of x, but then squash the
values between 0 and 1 with what is called the sigmoid function, shown in Figure 11.1. We
approximate p(y = 1|x) with

σ(x⊤w) =
(
1 + exp(−x⊤w)

)−1
.

2/27/22, 12:38 PM Desmos | Graphing Calculator

https://www.desmos.com/calculator 1/2

Figure 11.1: Sigmoid function
σ(t) = 1

1+exp(−t) for t ∈ [−5, 5].

The Bernoulli distribution over Y , with α a function
of x, is

p(y|x) =

(

1
1+e−ω⊤x

)(
1− 1

1+e−ω⊤x

) for y = 1

for y = 0
(11.1)

= σ(x⊤w)y(1− σ(x⊤w))1−y

In the realizable setting, we assume there is are true un-
derlying parameters ω = (ω0, ω1, . . . , ωd) that satisfy

p(y = 1|x) = σ(ω⊤x).

Our goal is to identify these parameters. Notice that this means that our goal is to predict
the probability that the class is 1; given this probability, we can infer p(y = 0|x) = 1−p(y =
1|x). In the next section, we talk about how to learn w; here, we first discuss a bit more
how we use this model.

114

The function learned by logistic regression returns a probability, rather than an explicit
prediction of 0 or 1. Therefore, we have to take this probability estimate and convert it to
a suitable prediction of the class. For a previously unseen data point x and a set of learned
coefficients w, we simply calculate the conditional probability as

p(y = 1|x, w) = 1
1 + e−x⊤w .

If p(y = 1|x, w) ≥ 0.5 we conclude that data point x should be labeled as positive (ŷ = 1).
Otherwise, if p(y = 1|x, w∗) < 0.5, we label the data point as negative (ŷ = 0). The
predictor maps a (d + 1)-dimensional vector x = (x0 = 1, x1, . . . , xd) into a zero or one.

Notice that, even if logistic regression can perfectly model p(y = 1|x), this does not mean
we obtain perfect classification accuracy. Imagine you were given the true p(y = 1|x) that
generates the data. Imagine for one observation vector, p(y = 1|x) = 0.5. This means that,
for this given observation, 50% of the time is labeled positive and 50% it is labeled negative.
This goes back to partial observability and irreducible error. The given observations are
insufficient to perfectly characterize the outcome. Potentially, if we had obtained a richer
observation vector x with more information, the target y might become more certain and
the distribution over y more concentrated at one value. But, we are stuck with the data we
have been given, and so have to recognize that sometimes a class label is simply ambiguous,
even under the optimal model.

The probability values themselves can be useful. If the probability estimates are accu-
rate, then they provide a measure of confidence in the classification. You might be more
comfortable making a health decision if the classifier p(y = 1|x) = 0.99 rather than if
p(y = 1|x) = 0.6. Additionally, differences in probability estimates can help you pick be-
tween classifiers. For example, if you have two classifiers that produce good classification
accuracy on a test set, then it is preferable to have a classifier that consistently produces
probabilities near 0.9 and 0.1, rather than probabilities that hover around 0.5. The rea-
son for this is that small perturbations are expected to have more impact on the second
classifier, which could suddenly erroneously swap the labeling on an instance.

Remark: As we discussed in Chapter 9, the threshold for classification need not be 0.5.
In some cases, one might care more about failing to identify a positive (e.g., failing to identify
a disease); in such a case, it may be safer to err on the side of a smaller threshold, so that
more instances are labeled as positive. For now, we will assume this simpler thresholding,
but remain cognizant that the choice can be an important one.

11.2 Maximum Likelihood for Logistic Regression
To learn the parameters for logistic regression, we need to define an objective. We will once
again use maximum likelihood to help us derive a reasonable objective. As before, assume
that the data set D = {(xi, yi)}ni=1 is an i.i.d. sample from a fixed but unknown probability
distribution p(x, y) = p(y|x)p(x). The data is generated by randomly drawing a point x
according to p(x) and then setting its class label Y according to the Bernoulli distribution
in (11.1). Our objective is the negative log-likelihood for the conditional distribution, scaled
by the number of samples

c(w) = 1
n

n∑
i=1
− ln p(yi|xi)

115

which we can write as c(w) = 1
n

∑n
i=1 ci(w) where

ci(w) = − ln p(yi|xi) ▷ p(yi|xi) = σ(x⊤
i w)yi(1− σ(x⊤

i w))1−yi

= − ln σ(x⊤
i w)yi − ln(1− σ(x⊤

i w))1−yi

= −yi ln σ(x⊤
i w)− (1− yi) ln

(
1− σ(x⊤

i w)
)

This objective is typically referred to as the cross-entropy.
From here, you could take the derivative of each component in this sum, using the chain

rule for the sigmoid. Let θi = x⊤
i w. For the first component, with pi = σ(θi),

∂yi ln σ(x⊤
i w)

∂wj
= yi

∂ ln σ(θi)
∂θi

∂θi

∂wj
▷ chain rule

= yi
∂ ln pi

∂pi

∂pi

∂θi

∂θi

∂wj
▷ chain rule

= yi
1
pi

∂pi

∂θi
xij ▷

∂ ln pi

∂pi
= 1

pi
,

∂θi

∂wj
= xij

= yi
1
pi

σ(θi)(1− σ(θi))xij ▷
∂σ(θi)

∂θi
= σ(θi)(1− σ(θi))

= yi(1− σ(θi))xij

It is not obvious that

∂σ(θi)
∂θi

= σ(θi)(1− σ(θi))

but you can verify this step for yourself. For the second component, following similar steps,
we get

∂(1− yi) ln(1− σ(x⊤
i w))

∂wj
= (yi − 1)σ(θi)xij

Summing these together and taking the negative, we end up with the gradient (pi − yi)xij .

Exercise 34: We could have slightly rearranged the objective before taking the gradient.
This would lead to another path to derive the update rule for logistic regression. You can
notice first that

1− σ(x⊤
i w) = 1− 1

1 + exp(−x⊤
i w)

= exp(−x⊤
i w)

1 + exp(−x⊤
i w)

giving

ci(w) = −yi · ln
(
1 + exp(−x⊤

i w)
)

+ (1− yi) · ln
(
exp(−x⊤

i w)
)

− (1− yi) · ln
(
1 + exp(−x⊤

i w)
)

= (yi − 1) x⊤
i w + ln

(
1

1 + exp(−x⊤
i w)

)
.

Derive the gradient of c starting from here. □

116

(,)x1 1y

(,)xi yi(,)x2 2y

w w w x0 1 2 2+ +x1 0=

x1

x2

+
+

+

+

+

+

+

+ +

Figure 11.2: A data set in R2 consisting of nine positive and nine negative examples. The
gray line represents a linear decision surface in R2. The decision surface does not perfectly
separate positives from negatives.

Unlike linear regression, there is no closed-form solution to ∇c(w) = 0. Thus, we have
to proceed with iterative optimization methods, like gradient descent. We initialize w0
usually to a random vector. Because the objective is convex, the initialization only affects
the number of steps, but will not prevent the gradient descent from converging to a global
minimum. The stochastic gradient descent update is

wt+1 = wt − ηt

(
σ(x⊤

i wt)− yi

)
xi

and the mini-batch gradient descent update, for mini-batch (xk, yk), . . . , (xk+b, yk+b) is

wt+1 = wt −
ηt

b

k+b−1∑
i=k

(
σ(x⊤

i wt)− yi

)
xi.

Exercise 35: Like linear regression, we can obtain a regularized version for logistic regres-
sion using MAP. We can incorporate a Gaussian prior—or Laplace prior—on the weights
and go through the same steps as we did above for the maximum likelihood formulation. As
with ridge regression, this amounts to adding the regularizer λ

2n

∑d
j=1 w2

j to the objective.
The resulting update is

wt+1 = wt − ηt

(
σ(x⊤

i wt)− yi

)
xi − ηt

λ

n
wt.

Derive this MAP objective. What is the variance for the Gaussian prior, in terms of λ? □

11.3 Logistic Regression Learns a Linear Classifier
The logistic regression classifier is a linear classifier, despite the fact that the sigmoid is non-
linear. This is because p(y = 1|x, w) ≥ 0.5 only when x⊤w ≥ 0. The expression x⊤w = 0
represents the equation of a hyperplane that separates positive and negative examples.

To better understand this, consider Figure 11.2. A linear classifier is a linear function
(a point, a line, a plane or a hyperplane) that splits Rd into two half-spaces. The two

117

XD X2

⇒

W=(1,1)

Wo=0→wo= -0.5
*
W=(1,1)

0.5 •

y

Xp 24

-11-1,1)
(0,0-5)+(-1-1,1)

Figure 11.3: Visualizing two possible linear classifiers, one going through the origin and the
other shifted away from the origin but defined by the same (w1, w2).

half-spaces act as decision regions for the positive and negative examples, respectively. For
a given x, if x⊤w > 0, then x is classified as a positive. If x⊤w < 0, then x is classified as
a negative. It may not be possibly to perfectly separate the points; the goal is to the find
the surface that best separates the points, with minimal classification errors. Notice here
that the axes are different than in linear regression: the x-axis is x1 and the y-axis is x2.
To classify a point (x1, x2), you can check if it lies above or below the line.

As in regression, we add a component x0 = 1 to each input (x1, . . . , xd) to model
the intercept term. Notice that, without an intercept term, the linear classifier would be
required to go through the origin, significantly skewing the solution. In Figure 11.2, for
example, if w0 = 0, then w1x1 + w2x2 = 0 for (x1 = 0, x2 = 0). However, the line depicted
clearly should not go through the origin.

The line is defined by the equation x⊤w = 0, for x = (1, x1, x2) and w = (w0, w1, w2).
Every vector (x1, x2) that satisfies the equation x⊤w = 0 is on this line. These vectors
x are those that are orthogonal to w, which means they have a 90 degree angle between
them, as depicted in Figure 11.3. For example, if w = (0, 1, 1) (passes through the origin),
then the vectors that are orthogonal are all of the form (1,−t, t) for any t ∈ R. This is
because ⟨(1,−1, 1), (0, 1, 1)⟩ = 0− 1 + 1 = 0, and the constant t simply multiplies by zero.
The constant t takes this orthogonal vector to w and then changes the magnitude, sliding
it up and down this line, including flipping its sign. Notice that t is not multiplied by the
intercept term, which always stays at 1; we only consider the changes to the inputs (x1, x2),
since that is the only part of the input vector x that can change.

When shifting off of the origin, only w0 changes, but (w1, w2) do not change. For
example, again as seen in Figure 11.3, if we simply want to shift the line up, so that it goes
through 0.5, then we set w0 = −0.5. Now a new set of points (x1, x2) satisfy x⊤w = 0.
Notice that the old choice of (1,−1, 1) now is classified as a negative (below the line) because
⟨(1,−1, 1), (−0.5, 1, 1)⟩ = −0.5 − 1 + 1 = −0.5 < 0. In other words, the new equation of
the line is (x1, x2)⊤(w1, w2) = −w0 = 0.5. For example, x = (1, 0, 0.5) are on this line, as
is x = (1, 0.5, 0). This line is now defined by points (0, 0.5) + t(1,−1) where the first term
gives an offset from the origin. Now we have (0, 0.5)⊤(w1, w2) + t(1,−1)⊤(w1, w2) + w0 =
0.5 + t− t− 0.5 = 0.

Exercise 36: Logistic regression learns a linear classifier on the given inputs. But, like

118

linear regression, this means we can get a version of polynomial logistic regression where we
first transform the features using polynomials. What does the stochastic gradient descent
updating look like for polynomial logistic regression? What might the resulting decision
surface, separating the lines, look like? □

11.4 Issues with Minimizing the Squared Error
A natural question is why we went down this route for linear classification. Instead of
explicitly assuming p(y = 1|x) is a Bernoulli distribution and computing the maximum
likelihood solution for σ(x⊤w) = p(y = 1|x, w), we could have simply decided to use
σ(x⊤w) to predict targets y ∈ {0, 1} and then tried to minimize their difference, using our
favourite loss (the squared loss).

min
w

1
n

n∑
i=1

(
σ(x⊤

i w)− yi

)2

Unfortunately, this more haphazard problem specification results in a non-convex optimiza-
tion. In fact, there is a result that using the Euclidean error for the sigmoid transfer gives
exponentially many local minima in the number of features [1].

Minimization of this non-convex function, therefore, is more problematic than the convex
cross-entropy. Gradient descent on the cross-entropy, with stepsizes gradually decayed, will
converge to a global minimum. For this non-convex squared error between the sigmoid
prediction and the true label, it will generally be impossible to ensure we can converge to
the global minimum. We could try to develop some tricks, like randomly restarting the
optimization at different points to find different local minima, in the hopes that one will be
the global minimum. But, such a search is not very effective. This example provides some
motivation for why we care about selecting our objectives in an intelligent way.

We could also have stuck with squared errors, if we have used linear regression to learn
a linear classifier. Now that you see logistic regression learns a linear classifier, you can
see that we may have been able to learn this line with linear regression. If we set targets
to be y = 1 for the positive class and y = −1 for the negative class, and learned x⊤w
to approximate these targets, we could obtain a solution where x⊤w > 0 means that we
predict the positive class and x⊤w < 0 means we predict the negative class. In fact, this
approach can work quite well. But, because it is attempting to actually predict targets y in
a linear way, it can be skewed by high magnitude x, whereas logistic regression is designed
only to ensure the line separates points.

Consider the following example. We might have x1 = (1, 1, 1) have y1 = 1, x2 =
(1, 10, 10) have y2 = 1 and x3 = (1,−1,−1) have y3 = −1. For logistic regression, this is no
problem: the weights can be set to w = (0, 1, 1) to get x⊤

1 w = 2, x⊤
2 w = 20 and x⊤

3 w = −2.
When applying the sigmoid, these produce reasonable probability values σ(x⊤

1 w) = 0.88,
x⊤

2 w = 0.999 and x⊤
3 w = 0.12. For linear regression, however, it is hard to pick a w that

predicts 1 for both x1 and x2. For a w = (0, 0.5, 0.5), we get a perfect prediction for x1 and
x3, but x2 has a whopping squared error of 102 = 100. To avoid getting a huge squared
error for x2, it will learn a skewed w.

119

Chapter 12

Bayesian Linear Regression

Bayesian estimation involves maintaining the entire posterior distribution, p(w|D). So far,
we only looked at Bayesian estimation for a marginal distribution, such as for the case where
p(x) is a Poisson distribution with unknown parameter w corresponding to λ for the Poisson.
We have only discussed how MLE and MAP extends to conditional distributions, p(y|x).
In this chapter, we make the next step: discussing Bayesian estimation for conditional
distributions.

In fact, once we have looked at MAP, the extension to Bayesian estimation is not a
big leap. For MAP, we already had to specify a prior to obtain argmaxw∈F p(w|D). For
Bayesian estimation, we need to maintain the entire posterior p(w|D), not just the mode.
Just as before, we simplify the explanation by only considering the univariate case: w ∈ R.

12.1 The Posterior Distribution for a Known Noise Variance

Assume that p(y|x) = N (µ = xw, σ2) for some fixed σ ∈ R. This is the assumption we
made for linear regression, and then for MAP with a Gaussian prior on the weights. Again,
let’s assume a Gaussian prior on the weights p(w) = N (0, σ2/λ) for some (regularization)
parameter λ > 0. Then we get

p(w|D) = p(D|w)p(w)
p(D)

= p(w)
∏n

i=1 p(yi|xi, w)´
p(w)

∏n
i=1 p(yi|xi, w)dw

As in Section 5.3, computing the posterior is complicated by the integral in the denominator.
In some cases, though, this integral can be solved analytically, and the posterior has a simple
known form. This was the case with conjugate priors. For a given p(y|x, w), a conjugate
prior p(w) is one where the posterior p(w|D) is of the same form as the prior (example,
both Gaussian).

For Bayesian linear regression, where p(y|x) = N (µ = xw, σ2), the conjugate prior is in
fact the prior used for ℓ2 regularization: p(w) = N (0, σ2/λ). Given this prior, with prior
mean µ0 = 0 and prior variance σ2

0 = σ2/λ, it can be derived that

p(w|D) = N (µn, σ2
n) where σ2

n = σ2∑n
i=1 x2

i + λ

µn =
∑n

i=1 xiyi + λµ0∑n
i=1 x2

i + λ
=

∑n
i=1 xiyi∑n

i=1 x2
i + λ

= σ2
n

σ2

n∑
i=1

xiyi

The MAP solution corresponds to the mode of this distribution: µn.

120

Additionally, we can obtain a credible interval around weights that are plausible given
the data, based on the variance σn. If the variance is big, then even after seeing the data
there are many plausible values for w. As n gets larger, notice that σ2

n shrinks. We can
be more precise by computing p(w ∈ [a, b]|D) = 0.95 to get a 95% credible interval for w.
Because the posterior is a Gaussian, we know just how to specify a and b to cover 95% of
the density: a = µn − 1.96σn and b = µn + 1.96σn.

You may be wondering why this looks so similar to a confidence interval, though it
is called a credible interval. The reason is that both are built by reasoning about the
distribution over our estimator, and integrating to get a probability of 95%. The key
difference is that the distribution itself is different, because Bayesian approaches use a
prior, as we show in the following example.

Example 28: In this example we show when a confidence interval and credible interval
are similar. The difference arises because the credible interval is built by reasoning about
the posterior, with a prior that restricted plausible outcomes. The confidence interval, on
the other hand, does not incorporate such priors, and listens only to the observed data.
They look similar when the prior for the credible interval is (nearly) uniform.

To understand why, let us return to the sample average estimator. Assume ptrue is
N (wtrue, σ2 = 1) with unknown mean wtrue. Your goal is to estimate wtrue. The sample
average estimator—which actually corresponds to the maximum likelihood estimator—is
w(D) = 1

n

∑n
i=1 Xi which has variance σ2/n = 1/n. Assuming a Gaussian distribution, we

obtained 95% confidence interval Pr(wtrue ∈ [w(D)− 1.96/
√

n, w(D) + 1.96/
√

n]) = 0.95.
For the Bayesian approach, we assumed a Gaussian prior on w, p(w) = N (µ0, σ2

0) and
obtained posterior p(w|D) = N (µn, σ2

n) where

µn = 1
n + σ−2

0

(
n∑

i=1
xi + µ0

σ2
0

)

σ2
n = 1

n + σ−2
0

The resulting credible interval is Pr(w ∈ [µn − 2σn, µn + 2σn]) ≥ 0.95. If µ0 = 0 and σ0 is
very big—almost like having a uniform distribution—then µn ≈ 1

n

∑n
i=1 xi and σ2

n ≈ 1/n.
The resulting credible interval is nearly the same as the confidence interval. Otherwise, the
prior has an effect, primarily resulting in a tighter credible interval. □

12.2 The Posterior Distribution for Unknown Noise Variance

For linear regression, though, we typically do not know the variance σ2. Fortunately, even
when extending more generally to this setting, we have a conjugate prior. First consider
the univariate case. We need now a prior on weights w ∈ R and also the variance σ2.
The conjugate prior is called the Normal-Inverse-Gamma (NIG) distribution, which has
four parameters: µn, λn, an, bn. For prior parameters µ0 ∈ R and λ0, a0, b0 > 0 (e.g.,

121

µ0 = 0, λ0 = 0.1, a0 = 3, b0 = 10), we get posterior

p(w, σ2|D) = NIG(µn, λn, an, bn) where λn =
n∑

i=1
x2

i + λ0

µn =
∑n

i=1 xiyi + λ0µ0∑n
i=1 x2

i + λ0
=
∑n

i=1 xiyi + λ0µ0
λn

an = a0 + 1
2n

bn = b0 + 1
2

(
n∑

i=1
y2

i + λ0µ2
0 − λnµ2

n

)

For the NIG, the mode of the distribution is E[(w, σ2)] = (µn, bn
an−1). The solution for w is

the same as for MAP above. And now we also have an estimate for the most likely value
for the variance of the noise bn

an−1 .
This solution for the variance is not that intuitive; but for certain settings it is more

intuitive. Let’s assume that the data is centered, meaning 1
n

∑n
i=1 xi = 0. Let’s further

assume a simple choice on the prior parameters, a0 = 1, b0 = 0 and µ0 = 0, and use λ = 0 to
minimally restrict the solution for w, giving λ0 = 0. For this setting, µn = wMLE =

∑n

i=1 xiyi∑n

i=1 x2
i

.
Let ŷi = wMLExi. Then we get that

bn

an − 1 =
b0 + 1

2
(∑n

i=1 y2
i + λ0µ2

0 − λnµ2
n

)
a0 + 1

2n

=
1
2
(∑n

i=1 y2
i − λnµ2

n

)
1
2n

▷ µn = wMLE

=
∑n

i=1 y2
i − wMLEλnµn

n
▷ λnµn = λn

∑n
i=1 xiyi + λ0µ0

λn
=

n∑
i=1

xiyi

= 1
n

(
n∑

i=1
y2

i − wMLE

n∑
i=1

xiyi

)

= 1
n

n∑
i=1

(y2
i − wMLExiyi)

= 1
n

n∑
i=1

(y2
i − ŷiyi)

= 1
n

n∑
i=1

(y2
i − 2ŷiyi + ŷ2

i)− 1
n

n∑
i=1

(ŷ2
i − ŷiyi)

= 1
n

n∑
i=1

(yi − ŷi)2 − 1
n

n∑
i=1

(ŷ2
i − ŷiyi)

The first term 1
n

∑n
i=1(yi− ŷi)2 is a sample average estimate of the variance σ, using ŷi as an

estimate of E[Y |xi]. The second term reflects the additional variance due to the observed
features themselves and the covariance between X and Y . The term 1

n

∑n
i=1 ŷ2

i is a sample
average estimate of the variance of the prediction, because an estimate of the variance is

122

given by 1
n

∑n
i=1 ŷ2

i − (1
n

∑n
i=1 ŷi)2 and

1
n

n∑
i=1

ŷi = 1
nwMLE

n∑
i=1

xi = wMLE
1
n

n∑
i=1

xi = 0

because the data is centered, i.e., 1
n

∑n
i=1 xi = 0. This variance is subtracted from the

noise variance estimate, because we want to remove the influence of the feature variance on
our estimate of the noise variance. The second term 1

n

∑n
i=1−ŷiyi is a sample covariance

between the prediction and the observed target. This covariance needs to be added to
the above, to account for the fact that ŷi is not an independent estimate of E[Y |xi]—it is
correlated with yi because it uses that data to get the estimate.

We can again use this distribution to reason about a plausible set of values for the
weights, namely the credible interval. The variance of the weights, under the NIG, corre-
sponds to bn

(an−1)λn
for an > 1. If this term is large, then the set of plausible weights are

large. We can be more precise by computing p(w ∈ [a, b]|D) = 0.95 to get a 95% credible in-
terval for w. We can compute the marginal for w, of the NIG: it is a Student’s t-distribution,
with mean µn, scale parameter an

bnλn
and degrees of freedom 2an. Consequently, we can get

a 95% credible interval using [µn − ϵ, µn + ϵ] for ϵ = t0.05,2an
an

bnλn
.

12.3 The Posterior Predictive Distribution
Practically, it is more useful to reason about the variability across our predictions using
w, than about the variability in w itself. When we make a prediction f(x), we would
like to know the range of plausible values for that prediction. Namely, we would like to
have p(xw|x,D). We may additionally want to update our estimate of the conditional
distribution, to get the posterior predictive distribution:

p(y|x,D) =
ˆ

w
p(w|D)p(y|x, w)dw (12.1)

This equation is effectively averaging over the predictions given by all w, proportionally to
how likely each one is. It is a form of model averaging. Rather than picking one (likely
incorrect) model, we can instead average over a set of possible models.

The elegance for Bayesian linear regression is that we can compute these distributions
in closed form. First, we can compute the distribution over the prediction p(xw|x,D), to
get the credible interval for our prediction. The reason is simple: the random variable xw—
random due to w—is still a Student’s t-distribution, because w is a Student’s t-distribution.
Therefore, p(xw|x,D) is a Student’s t-distribution with mean xµn, scale parameter anx2

bnλn

and degrees of freedom 2an. Consequently, we can get a 95% credible interval using [xµn−
ϵ, xµn + ϵ] for ϵ = t0.05,2an

anx2

bnλn
. The form is even simpler under known variance σ2, where

p(xw|x,D) is Gaussian with mean xµn and variance x2σ2
n.

We can use a similar approach to get the posterior predictive distribution. For a known
variance σ2, we have that p(y|x,D) = N (xµn, x2σ2

n + σ2). This involves the variance in our
prediction, as well as the variance in y. For an unknown variance, p(y|x,D) is a Student’s
t-distribution.

All the above extends to the multivariate case, the formulas simply become a bit more
complex. We stayed in the simpler univariate setting, to avoid this complexity here. The

123

primary purpose of this chapter was to expose you to the ideas underlying Bayesian predic-
tors, which can be quite different than the point estimates given by MLE and MAP. You
should now be equipped with the tools to learn about the multivariate setting.

124

Chapter 13

Notes Summary

In this section we do a very brief summary of the concepts in these notes. Our primary
goal was to learn a prediction function fw : X → Y, parameterized by a vector of weights
w ∈ Rk. This prediction function inputs a vector of observations x ∈ X ⊂ Rd and outputs
a prediction ŷ ∈ Y. If Y is a discrete, unordered set, like Y = {giraffe, hippo, ostrich},
then we call the problem of finding f a classification problem. If Y is continuous, then
we say it is a regression problem.1

We discussed (a) how to learn such a function and (b) how to evaluate if that function
is good. To learn the function, we needed a clear criterion (objective function) to optimize.
We discussed that the ultimate goal is to find a function f with low expected cost,
E[cost(f(X), Y)], which we later called the generalization error of f . This cost was
different for different problems. For regression, we used cost(f(x), y) = (f(x)− y)2 and for
classification we used the 0-1 cost

cost(ŷ, y) =

0 when y = ŷ

1 when y ̸= ŷ

We found that these choices for costs implied that the optimal predictor for regression
is f∗(x) = E[Y |x] and for classification is f∗(x) = argmaxy∈Y p(y|x). This motivated
estimating p(y|x), or the mean of this distribution E[Y |x], using data.

Formalizing the problem was fun, but now we have to do the hard part of estimating
these unknown quantities. We know f∗(x) = E[Y |x] for regression, but we don’t have
E[Y |x]! Instead, we only have a dataset of samples D def= {(xt, yt)}nt=1 where (xt, yt) ∼ p
where p(x, y) = p(y|x)p(x). This dataset is a poor proxy, but we will have to make do. For
regression we modeled the conditional distribution as a Gaussian with fixed variance σ2,
written as p(y|x) = N (fw(x), σ2). We want to pick the fw that is the most likely, given
this evidence. In other words, the MAP objective is

argmax
w∈Rk

p(w|D) = argmax
w∈Rk

p(D|w)p(w)

= argmax
w∈Rk

n∑
t=1

ln p(yi|xi, w) + ln p(w)

= argmin
w∈Rk

−
n∑

t=1
ln p(yi|xi, w)− ln p(w)

1If Y is discrete but ordered, then sometimes this is modeled as an ordinal regression problem. In these
notes, we focused on small, discrete unordered sets or real-valued targets, so we did not discuss ordinal
regression approaches.

125

where the first step drops constants, the second uses monotonicity of log and the third
uses the equivalence between maximizing a function and minimizing the negative of that
function. The term p(D|w) is called the likelihood, the term p(w) the prior (before seeing
evidence) and the term p(w|D) the posterior (after seeing evidence).

The prior allows us to inject our own knowledge, and so constrain the space of possible
solutions. We considered a Gaussian prior on w, to encourage the weights to be near zero.
We did so because we concluded large weights can indicate overfitting. Overfitting occurs
when the learned function fw specializes to the training set, at the cost of generalization
performance. We saw that for very small training sets, with polynomial regression, we
could almost perfectly fit the training dataset, but the resulting function had very poor
generalization error. The true underlying function was actually simpler, and the additional
degrees of freedom from the polynomial was used to fit noise (from variance σ2 in Y |x)
rather than identify the pattern E[Y |x]. This addition of a Gaussian prior with variance
σ2/λ (with λ > 0) corresponded to ℓ2 regularization, with the resulting objective for
ℓ2-regularized linear regression being

n∑
t=1

1
2(fw(xt)− yi)2 + λ

2

k∑
j=1

w2
j .

In some cases, we may not want to constrain solutions with a prior, potentially because
we do not know what prior to pick. We may simply want to maximize the likelihood. As
we discussed, conceptually this is like picking a uniform prior in MAP. This maximum
likelihood (MLE) objective—equivalently negative log likelihood objective—is

argmin
w∈Rk

−
n∑

t=1
ln p(yi|xi, w).

After finding this function fw, using MAP or MLE, we want to evaluate if it is good.
The gold standard is the generalization error of fw: E[(fw(X) − Y)2]. However, again we
cannot directly compute this, as it is an expectation over all possible pairs (x, y). Instead,
we can use data to estimate it and we can reason conceptually (or theoretically) about
whether we should expect fw to have good generalization error.

To estimate the generalization error with data, we use a (hold-out) test set. This
means that we take the dataset and split it into a training set (say 80% of the data)
D = {(xt, yt)}nt=1 and use the rest as a test set Dtest = {(xt, yt)}n+m

t=n+1. This ensures that
the test set is independent of the training set: they have independent samples of pairs (x, y).
We can then use a sample average estimate of the generalization error using

GE(fw) ≈ ĜE(fw) def= 1
m

n+m∑
t=n+1

(fw(xi)− yi)2

It is not enough to simply use this sample average estimate, we also want a notion of
confidence in this estimate. In other words, we want a less vague relationship between
GE(fw) and ĜE(fw) than our approximately equals to symbol ≈. We obtained a more
precise relationship using a confidence interval around ĜE(fw). When reporting our
estimate of generalization error, therefore, we provide the interval [ĜE(fw)− ϵ, ĜE(fw) + ϵ]
for an ϵ that gives the width of the interval, determined by distributional assumptions and

126

the level of confidence required 1− δ. For example, if we assumed errors (fw(Xi)−Yi)2 are
Gaussian distributed with unknown mean and variance, then we modeled ĜE(fw) using a
Student t-distribution. The resulting confidence interval, say if δ = 0.05 and m = 10, is
given by ϵ = 2.26√

m
× Sm for Sm the unbiased sample standard deviation of the errors.

In addition to empirical measures, we also reasoned about whether we should expect
fw to generalize well. For example, we reasoned that if fw is a 9th-order polynomial but
we only have three data points, then likely we will not generalize well due to overfitting.
This conceptual reasoning is about the bias and variance of different function classes and
algorithms to find these functions. For bias-variance, we went beyond the generalization
error for one specific model fw, and instead reasoned about the behavior of the function class
by considering the possible functions fD for different datasets D we could have sampled.
We compared the predictions from fD to f∗, where for one x we have

E
[
(fD(x)− f∗(x))2

]
= (E [fD(x)]− f∗(x))2 + Var [fD(x)] .

Recall that the generalization error for squared costs, for one specific model f , decom-
posed into reducible and irreducible error

GE(f) = E[(f(X)− Y)2] = E[(f(X)− f∗(X)])2]︸ ︷︷ ︸
reducible error

+E[(f∗(X)− Y)2]︸ ︷︷ ︸
irreducible error

where f∗(x) = E[Y |x]. Picking a better f can only reduce the reducible error; the irreducible
error is due to the stochasticity in Y |x, and so cannot be overcome with a better f .2 The
term (fD(x)−f∗(x))2 is the reducible error for one datapoint x, and E[(fD(X)−f(X))2]
is the reducible error (defined in expectation across all x). Therefore, the bias-variance
decomposition is about understanding how effectively we can reduce the reducible error, for
our function class.

We reasoned that in some cases it was worthwhile to incur some bias to reduce variance.
In other words, we can get lower reducible error—and so get lower generalization error—if
we can reduce variance. For linear regression, we concluded that ℓ2-regularization allows
us to reduce variance, where for bigger λ we have lower variance, and can be preferable to
using λ = 0 (linear regression without regularization). We showed that linear regression
(the MLE solution) is unbiased but can be high variance (when we have a small training
dataset) whereas MAP (with λ > 0) is biased but decreases the variance as we increase λ.

This conceptual reasoning does not tell us about our specific model, but rather let’s us
reason about how to make good choices when specifying the function class (e.g., linear vs
polynomial) and the objective (e.g., MLE which uses no regularization or MAP that uses
regularization). Ultimately, we combine conceptual reasoning to select the set of models we
consider (e.g., low or high order polynomials, with or without regularization) with empirical
estimates of generalization error to deploy learned functions.

A theme underlying the notes is the notion of a probabilistic formulation to quantify un-
certainty in our estimators. We have sensible ways to obtain sample average estimators,
or parameters of distributions like the variance, or the parameters for a function that give

2The way to get a lower irreducible error is to augment the x that we consider. If we have more feature
information x̃ = [x, more context], then Y |x̃ is likely to be lower variance and so the irreducible error will be
lower. One rule of thumb in machine learning is that if you can gather more data and more features—more
information—then you should.

127

conditional distributions. But, we may also want to know the uncertainty in our estimates.
For sample averages, we used concentration inequalities—as well as more specific dis-
tributional assumptions like assuming our errors are Gaussian—to get confidence intervals
to reflect this uncertainty. For our parameterized functions, such as in linear regression,
we use a Bayesian approach to obtain credible intervals over both the parameters and
the predictions. For Bayesian approaches, to make it easier to obtain the posterior, we
can select conjugate priors that ensure that the prior and posterior are the same type of
distribution.

All of the above equally applies to classification with logistic regression. We used
the same analysis to reason about (a) optimal predictors for classification, (b) the resulting
MAP or MLE optimization problem to approximate the predictor and (c) conceptual and
empirical strategies to evaluating generalization error of the learned functions. We modeled
the conditional distribution

p(y = 1|x, w) = 1
1 + e−x⊤w = σ(x⊤w)

with the resulting MLE objective corresponding to a loss called the cross-entropy,

c(w) =
n∑

t=1
(−yi ln σ(x⊤

i w)− (1− yi) ln
(
1− σ(x⊤

i w)
)

.

Just like linear regression, we can add an ℓ2-regularizer on the weights to avoid overfitting,
and can use polynomials to obtain a nonlinear predictor with model

p(y = 1|x, w) = σ(ϕ(x)⊤w).

Logistic regression is a linear classifier, and polynomial logistic regression is a nonlinear
classifier. The resulting predictor is

fw(x) =
{

1 if σ(ϕ(x)⊤w) > 0.5
0 else

=
{

1 if ϕ(x)⊤w > 0
0 else

We can also estimate model performance using a sample average estimate of the general-
ization error (expected 0-1 cost) for this predictor

GE(fw) ≈ ĜE(fw) def= 1
m

n+m∑
t=n+1

1 (fw(xi) ̸= yi)

= percentage of test data that is misclassified (i.e., labeled incorrectly).

Finally, an important theme throughout the course was optimization algorithms
strategies to actually solve the optimization problems. We spent a lot of time formalizing
and understanding the goals of learning, as described above, but eventually we have to
actually implement it on a computer. We discussed gradient descent to solve our smooth,
continuous optimization problems, and the importance of step-size selection. We then
discussed the clever generalization to mini-batch stochastic gradient descent, which
similarly reaches local minima but with less computation.

128

Chapter 14

Exercise Solutions

14.1 Chapter 2 Solutions
Exercise 5
This can be solved using the chain rule. Let u(x) = −x3. Then we can rewrite f(x) as
f(x) = exp(u(x)). We know that du

dx = −3x2. Thus, using the chain rule, we get:

df

dx
= df

du

du

dx
= exp(−x3)(−3x2) = −3x2exp(−x3) .

Exercise 37
Consider an event A ∈ E . By property 1 of the event space, Ac ∈ E . Since the intersection
A ∩Ac = ∅, and we assume that P satisfies the axioms of probability, then by axiom 2 we
have

P (A ∪Ac) = P (A) + P (Ac)
P (Ω) = P (A) + P (Ac)

1 = P (A) + P (Ac)
P (A) = 1− P (Ac)

Exercise 38
By property 3, we know E ≠ ∅. Thus there is some event A ∈ E . By property 1, we know
that Ac ∈ E . By property 2 we then know that A∪Ac = Ω ∈ E . By property 1, Ωc = ∅ ∈ E .
Exercise 39
The first axiom is straightforward to prove by combining the two statements we are given.

P (X) =
∑
x∈X

p(x) (by second statement)

= 1 (by first statement)

To prove the second axiom, first suppose that A1, A2, . . . ∈ E , Ai ∩Aj = ∅ ∀i, j.

P (A1, A2, ... ∈ E) =
∑

x∈∪iAi

p(x) (by second statement)

=
∑

i

∑
x∈Ai

p(x) (because Ai ∩Aj = ∅)

=
∑

i

P (Ai) (be second statement)

129

Exercise 7
Using the power series expansion for the exponential, we have

eλ =
∞∑

x=0

λx

x! .

Thus,
∞∑

x=0
p(x) =

∞∑
x=0

λxe−λ

x! = e−λ
∞∑

x=0

λx

x! = e−λeλ = e0 = 1.

Exercise 8∑
y

p(y|x) =
∑

y

p(x, y)
p(x) (definition of conditional probability)

= 1
p(x)

∑
y

p(x, y)

= 1
p(x)p(x) (marginalizing)

= 1

Exercise 9

EX [EY [Y |X]] =
∑
x∈X

p(x)
∑
y∈Y

yp(y|x)

=
∑
x∈X

∑
y∈Y

yp(y|x)p(x)

=
∑
x∈X

∑
y∈Y

yp(x, y)

=
∑
y∈Y

y
∑
x∈X

p(x, y)

=
∑
y∈Y

yp(y)

= E[Y]

Exercise 10
Show that

´
X

(∑
y∈Y f(x, y)p(x, y)

)
dx =

´
X E[f(x, Y)]p(x)dx.

ˆ
X

∑
y∈Y

f(x, y)p(x, y)

 dx =
ˆ

X

∑
y∈Y

f(x, y)p(y|x)p(x)

 dx

=
ˆ

X

∑
y∈Y

f(x, y)p(y|x)

 p(x)dx

=
ˆ

X
E[f(x, Y)]p(x)dx

130

14.1.1 Probability Review Exercise Solutions

Exercise 11

1. Ω = {1, 2, 3, 4, 5, 6, 7}

2. Let event A1 be that we observe 2, A1 = {2}, event A2 be that we observe 4, A1 = {4},
and event A3 be that we observe 6, A3 = {6}. Then, the probability of observing even
number P (∪i=3

i=1Ai) = P (A1) + P (A2) + P (A3) = 3
6 . Note that the event A = 2, 4, 6 is

also a part of the event space E .

3. Let event A = 3, then the probability of not observing 3 is P (Ac)

P (Ac) = 1− P (A)

= 1− 1
6

= 5
6

4. Let event A = 3, 4, then P (A) = 2
6 . The probability of not observing A is P (Ac) =

1− P (A) = 4
6

Exercise 12
In a Bernoulli trial, if the probability of success is α, then the probability of failure is 1−α
which will be 0.3.
Exercise 13
We have λ = 2, because two buses arrives on average between 9:00 am and 9:15 am. Recall
that the pmf for a Poisson is p(x) = e−λλx

x! .
1. The probability that no bus comes between 9:00 am and 9:15 am is p(x = 0).

p(x = 0) = e−λλx

x!

= e−220

0!
= 0.135

2.

p(x = 2) = e−λλx

x!

= e−222

2!
= 0.271

3.

p(x = 3) = e−λλx

x!

= e−223

3!
= 0.180

131

Exercise 14

1.

P (X ≤ 4.5) =
ˆ 4.5

−5
p(x)dx

=
ˆ 4.5

−5

1
b− a

dx

=
ˆ 4.5

−5

1
10dx

= 1
10(4.5− (−5))

= 0.95

2.

P (−3 ≤ X ≤ 3) =
ˆ 3

−3
p(x)dx

=
ˆ 3

−3

1
10dx

= 1
10(6)

= 0.6

Exercise 15

1.
∑

x∈X ,y∈Y p(x, y) = 1, then c = 3
18

2. p(x = 3) =
∑

y∈Y p(x = 3, y) = 5
18

3. p(y = 1) =
∑

x∈X p(x, y = 1) = 5
18

Exercise 16

1. The outcome space for X is X = [0, 1] and the outcome space for Y is Y = [1,∞)

2. The joint outcome space for the new random variable (random vector) Z = (X, Y) is
Z = [0, 1]× [1,∞).

132

3.

1 =
ˆ

X

ˆ
Y

p(x, y)dydx

=
ˆ 1

0

ˆ ∞

1

cx2

y2 dydx

=
ˆ 1

0
(−cx2

y
)
∣∣∣∞
1

dx

=
ˆ 1

0
cx2dx

= cx3

3

∣∣∣1
0

= c

3 − 0 = c

3
=⇒ c = 3

4. Notice that p(y|x = 0.5) = p(x=0.5,y)
p(x=0.5) and that p(x = 0.5, y) = 3(0.5)2/y2 = 0.75/y2.

Now we just need p(x = 0.5).

p(x = 0.5) =
ˆ

Y
p(x = 0.5, y)dy

=
ˆ

Y

0.75
y2 dy

= 0.75
ˆ ∞

1
y−2dy

= 0.75(−y−1)
∣∣∣∞
1

= 0.75(0− (−1−1)) = 0.75

Therefore p(y|x = 0.5) = y−2.

133

Appendix A

Extra Details on Probabilities

In this section, we more carefully go through probabilities and random variables. The main
set of notes covers only what is strictly necessary. But, the definitions for probabilities are
actually quite simple, so simple in fact that we can build them up from scratch. We do that
here for the interested reader.

We can build up rules of probability, based on an elegantly simple set of axioms called
the axioms of probability. Let the sample space (Ω) be a non-empty set of outcomes and
the event space (E) be a non-empty set of subsets of Ω. For example, Ω = {1, 2, 3} and one
possible event is A = {1, 3} ∈ E , where the event is that a 1 or a 3 is observed. Another
possible event is A = {2}, where the event is that a 2 is observed. The event space E
must satisfy the following properties1

1. A ∈ E ⇒ Ac ∈ E (where Ac is the complement of the event A: Ac = Ω\A)

2. A1, A2, . . . ∈ E ⇒
⋃∞

i=1 Ai ∈ E

3. E is non-empty.

If E satisfies these three properties, then (Ω, E) is said to be a measurable space. The symbol
∅ means the empty set. Note that these three conditions imply that ∅ ∈ E and Ω ∈ E .2

Now we can define the axioms of probability, which make it more clear why these two
conditions are needed for our event space to define meaningful probabilities over events. A
function P : E → [0, 1] satisfies the axioms of probability if

1. P (Ω) = 1

2. A1, A2, . . . ∈ E , Ai ∩Aj = ∅ ∀i, j ⇒ P (∪∞
i=1Ai) =

∑∞
i=1 P (Ai)

is called a probability measure or a probability distribution. The tuple (Ω, E , P) is called the
probability space.

The second condition means that the probability of the union of disjoint sets equals
the sum of their probabilities. This is an intuitive requirement. In it simplest form, this
requirement states that if two events A1, A2 are disjoint, then P (A1∪A2) = P (A1)+P (A2):
the probability of either event occurring is the sum of their probabilities, because there is
no overlap in the outcomes in the events. More generally, a finite union should also satisfy

1Such a set is usually called a sigma algebra or sigma field. This terminology feels daunting and is only
due to historical naming conventions. Because the sigma algebra is simply the set of events to which we can
assign probabilities (measure), we will use this more clear name. If you would like to learn more about this
topic, it is more formally discussed in a branch of mathematics called Measure Theory.

2In fact, it is common to use the condition that Ω ∈ E rather than using the condition that E is non-empty.
However, it is equivalent and requiring that we have a non-empty event space is a more obvious condition
to include.

134

this equality, namely that for any A1, A2, . . . AN ∈ E , Ai ∩ Aj = ∅ ∀i, j ⇒ P (∪N
i=1Ai) =∑N

i=1 P (Ai). The above condition requires this equality for the union of infinitely many
events, and implies that P satisfies this condition for finitely many sets. This is because all
AN+j for j ≥ 1 can be set to the empty set ∅, where Ai ∩∅ = ∅ and ∅ ∩∅ = ∅.

The beauty of these axioms lies in their compactness and elegance. Many useful expres-
sions can be derived from the axioms of probability. For example, it is straightforward to
show that P (Ac) = 1−P (A). This makes it more clear why we required that if an event is
in the event space, then its complement should also be in the event space: if we can measure
the probability of an event, then we know that the probability of that event not occurring
is 1 minus that probability. Another property we can infer is that we always have Ω,∅ ∈ E ,
where ∅ corresponds to the event where nothing occurs—which must have zero probability.

Exercise 37: Show that for any event A ∈ E , P (Ac) = 1−P (A). Assume that P satisfies
the axioms of probability. □

Exercise 38: Show that the above three conditions on E imply that ∅ ∈ E and Ω ∈ E . □

We can now introduce random variables, and from here on will deal strictly with random
variables. A random variable lets us more rigorously define transformations of probability
spaces; once we execute that transformation, we can forget about the underlying probability
space and can focus on the events and distribution only on the random variable. This is in
fact what you do naturally when defining probabilities over variables, without needing to
formalize it mathematically. Of course, here we will formalize it.

Consider again the dice example, where now instead you might want to know: what
is the probability of seeing a low number (1-3) or a high number (4-6)? We can define a
new probability space with X = {low, high}, EX = {∅, {low}, {high},X} and PX({low}) =
1/2 = PX({high}). The transformation function X : Ω→ X is defined as

X(ω) def=
{

low if ω ∈ {1, 2, 3}
high if ω ∈ {4, 5, 6}

The distribution PX is immediately determined from this transformation. For example,
PX({low}) = P ({ω : X(ω) = low}),3 because the underlying probability space indicates
the likelihood of seeing a 1, 2 or 3. Now we can answer questions about the probability of
seeing a low number or a higher number.

This function X is called a random variable.4 The utility of this terminology is that
we move from talking about probabilities of sets—which can be cumbersome—to writ-
ing boolean statements. For example, we write PX(X = x) or PX(X ∈ A), rather than
P ({ω : X(ω) = x}) or P ({ω : X(ω) ∈ A}). For correctness, we can remember that it is a
function defined on a more complex underlying probability space. But, in practice, we can
start thinking directly in terms of the random variable X and the associated probabilities.
Similarly, even for the dice role, we can acknowledge that there is a more complex underlying

3You can read {ω : X(ω) = low} as “The event where the outcome was low” and more explicitly as “The
set of outcomes where the outcome was low”. You can read this whole expression P ({ω : X(ω) = low}) as
“The probability of the event where the outcome was low”.

4This terminology might be slightly confusing consider X is a function, so it is neither random, nor a
variable. But, we end up using X as if its a variable that can take random outcomes, by writing statements
like X = x. In this sense, the terminology is reasonable.

135

probability space, defined by the dynamics of the dice. When considering only the proba-
bilities of discrete outcomes from 1-6, we have already implicitly applied a transformation
on top of probabilities of the physical system.

Once we have a random variable, it defines a valid probability space (X , EX , PX). There-
fore, all the same rules of probability apply, the same understanding of how to define dis-
tributions, etc. In fact, we can always define a random variable X that corresponds to no
transformation, to obtain the original probability space. For this reason, we can move for-
ward assuming we are always dealing with random variables, without losing any generality.
We will drop the subscripts, and consider (X , E , P) to be defined for X. To define P , we
can use the definitions in Section 2.2.

Exercise 39: Recall that for a given pmf p, we defined the probability of any event A ∈ E
as

P (A) def=
∑
x∈A

p(x).

Show that this P satisfies the axioms of probability. □

136

Bibliography

[1] P Auer, M Herbster, and Manfred K Warmuth. Exponentially many local minima for single
neurons. In Advances in Neural Information Processing Systems, 1996.

[2] A Banerjee, S Merugu, I S Dhillon, and J Ghosh. Clustering with Bregman divergences. Journal
of Machine Learning Research, 2005.

[3] Peter L Bartlett and Shahar Mendelson. Rademacher and Gaussian Complexities: Risk Bounds
and Structural Results. Journal of Machine Learning Research, 2002.

[4] L on Bottou and Yann Le Cun. On-line learning for very large data sets. Applied Stochastic
Models in Business and Industry, 2005.

[5] Léon Bottou. Online learning and stochastic approximations. Online Learning and Neural
Networks, 1998.

[6] Olivier Bousquet, Stéphane Boucheron, and Gábor Lugosi. Introduction to Statistical Learning
Theory. In Advanced Lectures on Machine Learning. Springer Berlin Heidelberg, 2004.

[7] John C Duchi, Elad Hazan, and Yoram Singer. Adaptive Subgradient Methods for Online
Learning and Stochastic Optimization. Journal of Machine Learning Research, 2011.

[8] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Introduction to
Statistical Learning. Springer New York, 2013.

[9] Nathalie Japkowicz and Mohak Shah. Evaluating Learning Algorithms - A Classification Per-
spective. Cambridge University Press, 2011.

[10] Sham M Kakade, Karthik Sridharan, and Ambuj Tewari. On the Complexity of Linear Pre-
diction: Risk Bounds, Margin Bounds, and Regularization. In Advances in Neural Information
Processing Systems, 2008.

[11] Larry Wasserman. All of Statistics: A Concise Course in Statistical Inference. Springer, 2004.

[12] Martha White. Regularized factor models. PhD thesis, University of Alberta, 2014.

137

	Notation Reference
	Introduction
	A First Step in Machine Learning: Motivating a Probabilistic Formulation
	A Brief Mathematics Refresher
	Structure of the Book

	Introduction to Probabilistic Modeling
	Probability Theory and Random Variables
	Defining Distributions
	Probability mass functions for discrete random variables
	Probability density functions for continuous random variables

	Multivariate Random Variables
	Conditional distributions
	Independence of random variables

	Expectations and Moments
	Properties of expectations and variances

	Probability Review Exercises

	An Introduction to Estimation
	Estimating the Expected Value
	Confidence Intervals and Concentration Inequalities
	Consistency
	Rate of Convergence and Sample Complexity
	Mean-Squared Error and Bias-Variance

	Introduction to Optimization
	Discrete and Continuous Optimization Problems
	Stationary Points for Continuous Optimization Problems
	Reaching Stationary Points with Gradient Descent
	Selecting the Step-size
	Testing for Optimality and Solution Uniqueness

	Formalizing Parameter Estimation
	Maximum Likelihood Estimation
	MAP Estimation
	Bayesian Estimation
	Using the posterior
	Computing the posterior with conjugate priors

	Maximum Likelihood for Conditional Distributions
	Using Gradient Descent for Parameter Estimation

	Stochastic Gradient Descent and Big Data Sets
	Stepsize Selection for SGD
	Contrasting Computational Complexity of GD and SGD

	Introduction to Prediction Problems
	Supervised Learning Problems
	Regression and Classification
	Deciding how to formalize the problem

	Optimal Classification and Regression Models
	Examples of costs
	Deriving the optimal predictors

	Reducible and Irreducible Error

	Linear Regression and Polynomial Regression
	Maximum Likelihood Formulation
	Linear Regression Solution
	Polynomial Regression: Using Linear Regression to Learn Non-linear Predictors

	Generalization Error and Evaluation of Models
	Generalization Error, Overfitting and Underfitting
	Estimating Generalization Error with Test Sets
	Making Statistically Significant Claims
	Computing Confidence Intervals Tests
	Parametric Tests
	How to Choose the Statistical Significance Test

	Regularization and Constraining the Hypothesis Space
	Regularization as MAP
	Expectation and Variance for the Regression Solutions
	The Bias-Variance Trade-off
	Selecting Models for Deployment

	Logistic Regression and Linear Classifiers
	The Parameterization for Binary Classification
	Maximum Likelihood for Logistic Regression
	Logistic Regression Learns a Linear Classifier
	Issues with Minimizing the Squared Error

	Bayesian Linear Regression
	The Posterior Distribution for a Known Noise Variance
	The Posterior Distribution for Unknown Noise Variance
	The Posterior Predictive Distribution

	Notes Summary
	Exercise Solutions
	Chapter 2 Solutions
	Probability Review Exercise Solutions

	Extra Details on Probabilities
	Bibliography

