
Final Exam Topics

CMPUT 267: Basics of Machine Learning 
 

Chapters 1 - 11



Goal of these Slides

• Highlight key concepts to be tested 

• Additionally highlight what I will not test 
• It is in the notes for your knowledge, but hard to directly test



Probability
• Understand the following concepts 

• random variables 

• joint and conditional probabilities for continuous and discrete random 
variables 

• probability mass functions and probability density functions 

• independence and conditional independence 

• expectations for continuous and discrete random variables  

• variance for continuous and discrete random variables



Probability (2)

• Know how to represent a problem probabilistically 

• Use a provided distribution 

• I will always remind you of the density expression for a given distribution 

• Apply Bayes' Rule to derive probabilities 

• Will not be directly tested: 

• I will not expect you to know specific pdf and pmfs



Estimators
• Understand the following concepts 

• estimators 

• bias 

• consistency 

• how to show that an estimator is/is not biased  

• how to derive an expression for the variance of an estimator  

• how to show that an estimator is/is not consistent 

• when the use of a biased estimator is preferable



Estimators (2)

• Apply concentration inequalities to derive confidence bounds 

• Define sample complexity 

• Understand how concentration inequalities can be used to characterize the 
sample complexity of an estimator 

• Explain when a given concentration inequality can/cannot be used 

• Will not be directly tested 

• You do not need to know concentration inequality formulas



Estimators (3)

• Understand the sample average estimator and its properties 

• unbiased estimator, characterize variance 

• Understand the maximum likelihood estimator (MLE) 

• Understand the MAP estimator, and contrast to MLE 

• Will not be directly tested 

• You will not need to derive parameters for MLE and MAP on the exam



Estimators (4)
• Understand that MAP and MLE are point estimates, and the Bayesian 

estimator maintains the full posterior p(w | D) 

• Understand the role of conjugate priors priors 

• Will not be directly tested 

• Do not need to know specific conjugate priors  

• Will not need to obtain credible intervals 

• Do not need to know the formula for posterior risk nor the Bayesian 
estimator that minimizes posterior risk



Optimization
• Represent a problem as an optimization problem 

• Solve an optimization problem by finding stationary points 

• Define first-order gradient descent  

• Define second-order gradient descent  

• Define step size and adaptive step size 

• Explain the role and importance of step sizes in first-order gradient descent 

• Will not be directly tested 

• Specific stepsize adaptation algorithms



Prediction
• Describe the differences between regression and classification 

• Understand the optimal classification predictor for a given cost  

• Understand the optimal regression predictor for a given cost 

• Describe the difference between irreducible and reducible error 

• Will not be directly tested 

• Deriving optimal predictors 

• Multi-label vs multi-class classification



Linear Regression

• Derive the optimal predictor for a linear model with squared cost and 
Gaussian p(y | x) 

• Derive the computational cost of the gradient descent and stochastic 
gradient descent solutions to linear regression 

• Represent a polynomial regression problem as linear regression 

• Will not be directly tested 

• Do not need to know the closed-form solution with matrices



Generalization Error
• Describe the difference between empirical error and generalization error 

• Explain why training error is a biased estimator of generalization error 

• Describe how to estimate generalization error given a dataset 

• Understand that we can use statistical significance tests to compare 
two models 

• Will not be directly tested 

• Different ways to get samples of error 

• Specific statistical significance tests



Regularization
• Understand that regularization constrains the solutions to mitigate overfitting  

• Understand that L2-regularized linear regression is the MAP objective with 
a Gaussian prior 

• Describe the effects of the regularization hyperparameter  

• Understand that l1 regularization does feature selection 

• Will not be directly tested 

• The Laplace distribution 

• Deriving the MAP solution

λ



Bias-Variance Tradeoff
• Explain the implications of the bias-variance decomposition for estimators 

• Describe the advantages and disadvantages of the MAP estimator for linear 
regression (Gaussian prior) 

• Explain how the choice of hypothesis class can affect the bias and 
variance of predictions  

• Will not be directly tested 

• Do not need to know the bias and variance formulas of the MLE and MAP 
estimators for linear regression



Logistic Regression
• Define linear classifier, sigmoid function, logistic regression 

• Explain why logistic regression is more appropriate for binary classification 
than linear regression 

• Understand that the objective (cross-entropy) and update underlying logistic 
regression is different from linear regression 

• Understand that we estimate p(y | x), and predict  

• Will not be directly tested 

• That using the squared error results in a non-convex objective, unlike the 
cross-entropy

arg max
y∈{0,1}

p(y |x)



Bayesian linear regression

• I’ve decided not to test you on this 

• But it is a useful thing to know. You will use this in your ML life!



Fun Case Studies

• AKA how does anything we learned here connect to the real world? 

• (And obviously none of this will be tested)



Historical Example:  
US Postal Service (1990)

• Problem: automatically sort mail based on destination, by reading the 
handwritten zip code on the envelopes 

• Strategy:  

• 1. Snap a picture of the envelope front 

• 2. Segment the image, extracting first the zip code and then each digit in 
the zip code 

• 3. Input the segmented digit x into the classifier f(x) to get a prediction of the 
class from {0,1,2,3,4,5,6,7,8,9}



Step 3 is what we are doing

• The input x is a non-color image, with entries either 0 or 1 representing a 
black pixel (writing, dirt) and 0 representing a white pixel (no writing) 

• The image is 2d, but can be flattened into a vector input 

• e.g., 30x30 pixel image becomes a vector of size 900 (d = 900)  

• Our goal is to learn p(y | x) so that we can predict  

•                              f(x) = arg max
y∈{0,1,…,9}

p(y |x)



Multi-class Classification

• Need to use multinomial logistic regression instead of logistic regression 

• Idea is very similar. Learn weights  for each class to predict 

•  

• Pick the class k where  is the highest 

•
Small nuance: we normalize predictions so that 

wk

̂p(y = k |x) ∝ σ(x⊤wk)

σ(x⊤wk)

∑
y∈{0,1,…,9}

̂p(y |x) = 1



Moving from linear to nonlinear

• Is it sensible to learn a linear function of the image? 

• What is an alternative? Do polynomials make sense here?



Nonlinearity beyond polynomials

• The general concept behind polynomial regression is that we  

• mapped  to a new set of features  

• learning a linear function on  gives us a nonlinear function on  

• This general concept can be applied with many nonlinear functions, not just 
polynomials 

• Other examples: radial basis functions, Fourier basis, wavelets, neural 
networks

x ϕ(x)

ϕ(x) x



General idea

Input image

Nonlinear  
transformation 

(possibly learned  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General idea

Input image

Nonlinear  
transformation 

(possibly learned  
with a neural network)

 
Logistic  

Regression
x ϕ(x)

This course was focused on the underlying  
probabilistic concepts for this part, which stays 

the same for more complex models 
Also focused on the conceptual goals for ϕ(x)



General idea

Input image

Nonlinear  
transformation 

(possibly learned  
with a neural network)

 
Logistic  

Regression
x ϕ(x)

A huge part of machine learning 
is about how to get these  
nonlinear transformations  

(up next in future ML courses)



Fun Case Study 2

• A big part of machine learning is also learning more complex distributions  

• Mixture models and modal regression 

• Generative Models 

• Same concepts about finding parameters from the distribution, using 
maximum likelihood objectives 

• but the distributions are just more complex than Gaussians and Gammas



Example: Modal Regression

p(y|x) has is multimodal 
it has three modes 

When making predictions 
it can be useful to know  
that the central mode is  

most likely but that these 
other two very different 


outcomes can occur


