Midterm Review

CMPUT 267: Basics of Machine Learning

Announcements/Comments

- A few updates are being made to the assignment to make it clearer, to be released tonight.
- If you have already started, do not worry! It does not change the assignment in any way, it just adds clarity.
- How was the practice midterm? It is longer than the quiz because (a) you are more used to this now and (b) you do not have to type.

Midterm Details

- The content is from Chapters 1-7
- Chapter 7 is Introduction to Prediction problems
- Chapter 8 is Linear Regression. Exam does not cover linear regression
- The exam only covers what is in the notes
- The focus is Chapters 4-7, but Chapter 1-3 are important background

Very brief summary of Ch 1-3

- Probability
- Estimators

Probability

- Define a random variable
- Define joint and conditional probabilities for continuous and discrete random variables
- Define probability mass functions and probability density functions
- Define independence and conditional independence
- Define expectations for continuous and discrete random variables
- Define variance for continuous and discrete random variables

Probability (2)

- Represent a problem probabilistically
- e.g., how likely was the outcome?
- Use a provided distribution
- I will always remind you of the density expression for a given distribution
- Apply Bayes' Rule to manipulate probabilities

Estimators

- Define estimator
- Define bias
- Demonstrate that an estimator is/is not biased
- Derive an expression for the variance of an estimator
- Define consistency
- Demonstrate that an estimator is/is not consistent
- Justify when the use of a biased estimator is preferable

Poll Question: When is the use of a biased estimator preferable?

- 1. It is always better because it biases towards the true solution
- 2. If the bias reduces the mean-squared error by reducing the variance
- 3. If the bias reduces the mean-squared error by reducing the variance
- 4. It is rarely justifiable

Answer: 2

Estimators (2)

- Apply concentration inequalities to derive confidence bounds
- Define sample complexity
- Apply concentration inequalities to derive sample complexity bounds
- Explain when a given concentration inequality can/cannot be used

Optimization

- Represent a problem as an optimization problem
- Solve a discrete problem by iterating over options and picking the one with the minimum value according to the objective
- Solve a continuous optimization problem by finding stationary points
- Poll: What is a stationary point?

Poll Question: The following are true about stationary points

- 1. A stationary point is the global minimum of a function
- 2. A stationary point is a point where the gradient is zero
- 3. A global minimum is a stationary point, but a stationary point may not be a global minimum
- 4. If we find a stationary point, then we have found the minimum of our function
- 5. We can use the second derivative test to identify the type of stationary point we have

Optimization

- Represent a problem as an optimization problem
- Solve an analytic optimization problem by finding stationary points
- Define first-order gradient descent
- Define second-order gradient descent
- Define step size and adaptive step size
- Explain the role and importance of step sizes in first-order gradient descent
- Apply gradient descent to numerically find local optima

Exercise

- Imagine $c(w)=\frac{1}{2}(x w-y)^{2}$.
- What is the first-order update, assuming we are currently at point w_{t} ?
- i.e., the gradient descent update tells us how to modify our current point to descend on our surface c.

Answer: $w_{t+1} \leftarrow w_{t}-\eta_{t} c^{\prime}\left(w_{t}\right)$ for some stepsize $\eta_{t}>0$

$$
c^{\prime}(w)=(x w-y) x \text { so we have that. } w_{t+1} \leftarrow w_{t}-\eta_{t}\left(x w_{t}-y\right) x
$$

Exercise

- Imagine $c(w)=\frac{1}{2}(x w-y)^{2}$.
- What is the first-order update, assuming we are currently at point w_{t} ?
- i.e., the gradient descent update tells us how to modify our current point to descend on our surface c.
- What if instead we did $w_{t+1} \leftarrow w_{t}+\eta_{t} c^{\prime}\left(w_{t}\right)$. What would happen?
- The second-order update is $w_{t+1} \leftarrow w_{t}-\frac{c^{\prime}\left(w_{t}\right)}{c^{\prime \prime}\left(w_{t}\right)}$. Why might this update be preferable to the first-order? (poll)

Poll Question: Why might the second-order update be preferable?

- 1. It is easier to compute than the first-order one.
- 2. It tells us how to pick a good stepsize.
- 3. The second-order update is more likely to get stuck at a saddlepoint
- 4. The first-order update might get stuck in local minimum, but not the second-order update

Parameter Estimation

- Formalize a problem as a parameter estimation problem
- e.g., formalize modeling commute times as parameter estimation for a Poisson distribution, using maximum likelihood
- Describe the differences between MAP, MLE, and Bayesian parameter estimation
- MAP $\max _{\theta} p(\theta \mid \mathscr{D})$ versus MLE $\max _{\theta} p(\mathscr{D} \mid \theta)$
- Bayesian learns $p(\theta \mid \mathscr{D})$, reasons about plausible parameters
- Define a conjugate prior

The Likelihood Term and the Prior

- Likelihood:

$$
p(\mathscr{D} \mid w)=\prod_{i=1}^{n} p\left(x_{i} \mid w\right)
$$

- e.g., Poisson

$$
p\left(x_{i} \mid w\right)=\frac{w^{x_{i}} \exp (-w)}{x_{i}!}
$$

- Prior:
$p\left(w \mid \theta_{0}\right)$ for pdf or pmf parameters θ_{0}
- e.g., conjugate prior for Poisson is Gamma with

$$
\begin{aligned}
& \text { parameters } \theta_{0}=(a, b) \\
& p\left(w \mid \theta_{0}\right)=\frac{w^{a-1} \exp (-w / b)}{b^{a} \Gamma(a)}
\end{aligned}
$$

The Likelihood Term and the Prior

- Likelihood:

$$
p(\mathscr{D} \mid w)=\prod_{i=1}^{n} p\left(x_{i} \mid w\right)
$$

- e.g., Poisson

$$
p\left(x_{i} \mid w\right)=\frac{w^{x_{i}} \exp (-w)}{x_{i}!}
$$

- MLE: maximize

$$
p(\mathscr{D} \mid w)=\prod_{i=1}^{n} p\left(x_{i} \mid w\right)
$$

- MAP: maximize

$$
p(\mathscr{D} \mid w) p\left(w \mid \theta_{0}\right)=p\left(w \mid \theta_{0}\right) \Pi_{i=1}^{n} p\left(x_{i} \mid w\right)
$$

- Prior:
$p\left(w \mid \theta_{0}\right)$ for pdf or pmf parameters θ_{0}
- e.g., conjugate prior for Poisson is Gamma with parameters $\theta_{0}=(a, b)$ $p\left(w \mid \theta_{0}\right)=\frac{w^{a-1} \exp (-w / b)}{b^{a} \Gamma(a)}$

The Likelihood Term and the Prior

- MLE: maximize

$$
p(\mathscr{D} \mid w)=\prod_{i=1}^{n} p\left(x_{i} \mid w\right)
$$

- MAP: maximize

$$
p(\mathscr{D} \mid w) p\left(w \mid \theta_{0}\right)=p\left(w \mid \theta_{0}\right) \Pi_{i=1}^{n} p\left(x_{i} \mid w\right)
$$

- Bayesian: obtain posterior $p(w \mid \mathscr{D})$
- e.g., if Poisson likelihood with conjugate prior Gamma with prior parameters $\theta_{0}=(a, b)$, then posterior is Gamma with $\theta_{n}=\left(a_{n}, b_{n}\right)$ where $a_{n}=a+\sum_{i=1}^{n} x_{i}$ and $b_{n}=\frac{1}{n+1 / b}$
- Prior: $p\left(w \mid \theta_{0}\right)$ for pdf or pmf parameters θ_{0}
- e.g., conjugate prior for Poisson is Gamma with parameters $\theta_{0}=(a, b)$ $p\left(w \mid \theta_{0}\right)=\frac{w^{a-1} \exp (-w / b)}{b^{a} \Gamma(a)}$

Gamma Prior and Posterior

- For $\mathrm{a}=3 \mathrm{and} \mathrm{b}=1$, we have $p(w)=\frac{1}{2} w^{2} \exp (-w)$ because $\Gamma(3)=2$
- For $\mathscr{D}=\{2,5,9,5,4,8\}$ we have $\sum_{i=1}^{n} x_{i}=33$
- $a_{n}=a+\sum_{i=1}^{n} x_{i}=36$ and $b_{n}=\frac{1}{n+1 / b}=1 / 7$
. $p(w \mid \mathscr{D})=\frac{w^{a_{n}-1} \exp \left(-w / b_{n}\right)}{b_{n}^{a_{n}} \Gamma\left(a_{n}\right)}=\frac{w^{35} \exp (-7 w)}{7^{-36} \Gamma(36)}$

Gamma Prior and Posterior

- For $\mathrm{a}=3$ and $\mathrm{b}=1$, we have $p(w)=\frac{1}{2} w^{2} \exp (-w)$ as $\Gamma(k)=(k-1)$!
- $p(w \mid \mathscr{D})=\frac{w^{a_{n}-1} \exp \left(-w / b_{n}\right)}{b_{n}^{a_{n}} \Gamma\left(a_{n}\right)}=\frac{w^{35} \exp (-7 w)}{7^{-36} \Gamma(36)}($ Red $)$

Poll Question: Why is MAP useful, namely why is it useful to include a prior over the weights? (Select all that apply)

- 1. It incorporates bias to reduce the variance
- 2. The prior makes our solution closer to the true solution
- 3. It lets us reason about uncertainty in our parameters
- 4. It let's us incorporate expert knowledge about plausible weight values

Formalizing Prediction

- Supervised learning problem: Learn a predictor $f: \mathscr{X} \rightarrow \mathscr{Y}$ from a dataset $\mathscr{D}=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1}^{n}$
- \mathscr{X} is the set of observations, and \mathscr{Y} is the set of targets
- Classification problems have discrete, unordered targets
- Regression problems have continuous targets
- Predictor performance is measured by the expected $\operatorname{cost}(\hat{y}, y)$ of predicting \hat{y} when the true value is y
- An optimal predictor for a given distribution minimizes the expected cost

Prediction Concepts

- Describe the differences between regression and classification
- Derive the optimal classification predictor for a given cost
- Derive the optimal regression predictor for a given cost
- Understand that the optimal predictor is different depending on the cost
- Describe the difference between irreducible and reducible error
- Even an optimal predictor has some irreducible error. Suboptimal predictors have additional, reducible error

$$
\mathbb{E}[C]=\frac{\mathbb{E}\left[\left(f(X)-f^{*}(X)\right)^{2}\right]}{\text { Reducible error }}+\frac{\mathbb{E}\left[\left(f^{*}(X)-Y\right)^{2}\right]}{\text { Irreducible error }}
$$

Is Cost the Same as our Objective c?

- We gave this a different name to indicate it might not be
- The Cost is the penalty we incur for inaccuracy in our predictions
- We parameterize our function or distribution with parameters \mathbf{w}
- Our objective to find \mathbf{w} has typically been the negative log likelihood
- Example: we might learn $p(y \mid \mathbf{x}, \mathbf{w})$ using $c(\mathbf{w})=-\ln p(\mathscr{D} \mid \mathbf{w})$
. For the 0-1 cost, we evaluate the predictor $f(\mathbf{x})=\arg \max p(y \mid \mathbf{x}, \mathbf{w})$

Any Questions?

- Switch now to going over the practice midterm

