Review for Quiz

Chapter 2 (Probability)

Chapter 3 (Estimation):

Bias, Variance, Concentration Inequalities

CMPUT 267: Basics of Machine Learning

Logistics

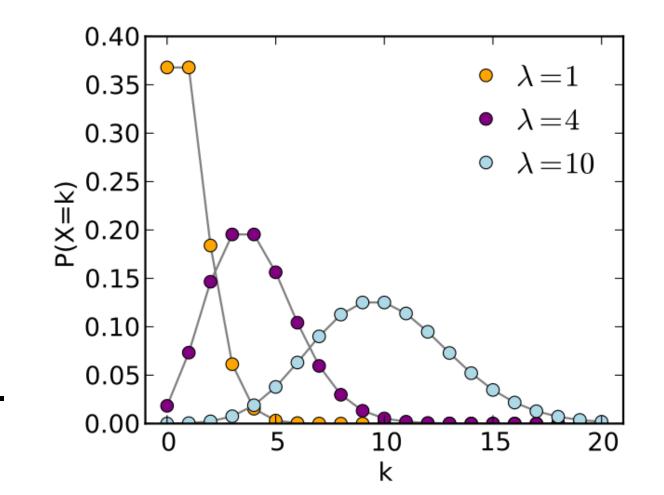
- Quiz during class on Thursday
 - Join 10 minutes early on Zoom lecture
- Any questions/issues with Assignment 2?

Language of Probabilities

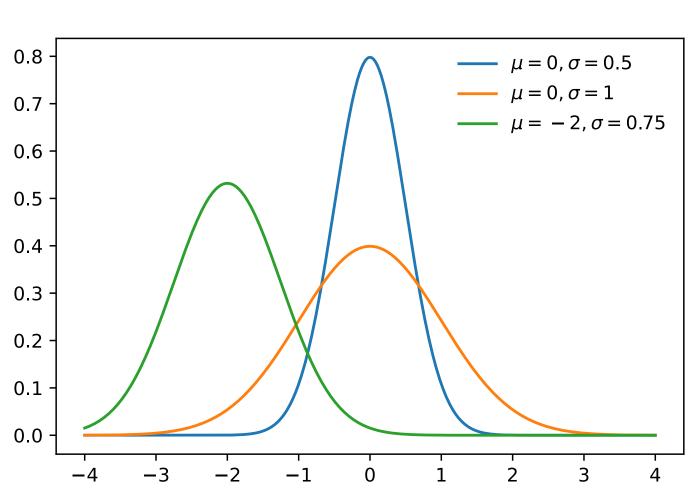
- Define random variables, and their distributions
 - Then can formally reason about them
- Express our beliefs about behaviour of these RVs, and relationships to other RVs
- Examples:
 - p(x) Gaussian means we believe X is Gaussian distributed
 - $p(y \mid X = x)$ —or written $p(y \mid x)$ is Gaussian means that when conditioned on x, y is Gaussian; but p(y) might not be Gaussian
 - p(w) and p(w | Data)

PMFs and PDFs

- Discrete RVs have PMFs
 - outcome space: e.g, $\Omega = \{1,2,3,4,5,6\}$
 - examples pmfs: probability tables, Poisson $p(k) = \frac{\lambda^k e^{-\lambda}}{k!}$



- Continuous RVs have PDFs
 - outcome space: e.g., $\Omega = [0,1]$
 - example pdf: Gaussian, Gamma



A few questions

- Do PMFs p(x) have to output values between [0,1]?
- Do PDFs p(x) have to output values between [0,1]?
- What other condition(s) are put on a function p to make it a valid pmf or pdf?

A few questions

- Do PMFs p(x) have to output values between [0,1]? Yes
- Do PDFs p(x) have to output values between [0,1]? No (between [0, infinity))
- What other condition(s) are put on a function p to make it a valid pmf or pdf?

PMF:
$$\sum_{x \in \mathcal{X}} p(x) = 1$$

• PDF:
$$\int_{\mathcal{X}} p(x)dx = 1$$

A few questions

Is the following function a pdf or a pmf?

$$p(x) = \begin{cases} \frac{1}{b-a} & \text{if } a \le x \le b, \\ 0 & \text{otherwise.} \end{cases}$$
 i.e., $p(x) = \frac{1}{b-a}$ for $x \in [a,b]$

How would you define a uniform distribution for a discrete RV

- Imagine $x \in \{1,2,3,4,5\}$
- What is the uniform pmf for this outcome space?

$$p(x) = \begin{cases} \frac{1}{5} & \text{if } x \in \{1, 2, 3, 4, 5\}, \\ 0 & \text{otherwise.} \end{cases}$$

How do you answer this probabilistic question?

• For continuous RV X with a uniform distribution and outcome space [0,10], what is the probability that X is greater than 7?

$$\Pr(X > 7) = \int_{7}^{10} p(x)dx = \int_{7}^{10} \frac{1}{10}dx$$
$$= \frac{1}{10} \int_{7}^{10} dx = \frac{1}{10} x \Big|_{7}^{10}$$
$$= \frac{3}{10}$$

Multivariate Setting

- Conditional distribution, $p(y \mid x) = \frac{p(x,y)}{p(x)}$, Marginal $p(y) = \sum_{x \in \mathcal{X}} p(x,y)$
- Chain Rule $p(x, y) = p(y \mid x)p(x) = p(x \mid y)p(y)$
- Bayes Rule $p(y \mid x) = \frac{p(x \mid y)p(y)}{p(x)}$
- Law of total probability $p(y) = \sum_{x \in \mathcal{X}} p(y \mid x) p(x)$
- Question: How do you get the law of total probability from the chain rule?

$$p(y) = \sum_{x \in \mathcal{X}} p(x, y) = \sum_{x \in \mathcal{X}} p(y \mid x) p(x)$$

Expectations

$$\mathbb{E}[f(X)] = \begin{cases} \sum_{x \in \mathcal{X}} f(x)p(x) & \text{if } X \text{ is discrete,} \\ \int_{\mathcal{X}} f(x)p(x) \, dy & \text{if } X \text{ is continuous.} \end{cases}$$

Eg: $\mathcal{X} = \{1,2,3,4,5\}, f(x) = x^2, Y = f(X), \text{ map } \{1,2,3,4,5\} \rightarrow \{1,4,9,16,25\}, p(y) \text{ determined by } p(x), \text{ e.g., } p(Y = 4) = p(X = 2)$

Eg:
$$\mathcal{X} = \{-1,0,1\}, f(x) = |x|, Y = f(X), \text{ map } \{-1,0,1\} \to \{0,1\}$$

$$p(Y = 1) = p(X = -1) + p(X = 1), \mathbb{E}[Y] = \sum_{y \in 0,1} yp(y) = \sum_{x \in \{-1,0,1\}} f(x)p(x)$$

Conditional Expectations

Definition:

The expected value of Y conditional on X = x is

$$\mathbb{E}[Y \mid X = x] = \begin{cases} \sum_{y \in \mathcal{Y}} yp(y \mid x) & \text{if } Y \text{ is discrete,} \\ \int_{\mathcal{Y}} yp(y \mid x) \, dy & \text{if } Y \text{ is continuous.} \end{cases}$$

Conditional Expectation Example

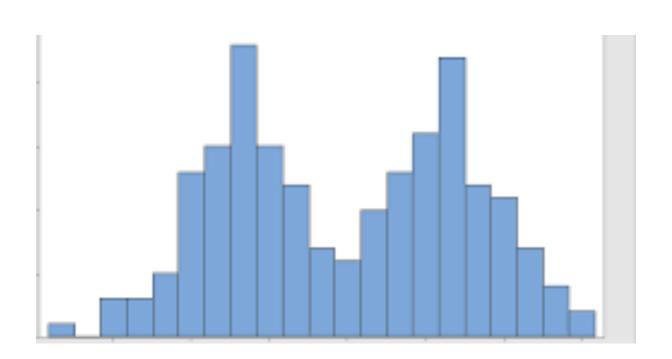
- X is the type of a book, 0 for fiction and 1 for non-fiction
 - p(X = 1) is the proportion of all books that are non-fiction
- Y is the number of pages
 - p(Y = 100) is the proportion of all books with 100 pages
- p(y|X=0) is different from p(y|X=1)
- $\mathbb{E}[Y|X=0]$ is different from $\mathbb{E}[Y|X=1]$
 - e.g. $\mathbb{E}[Y|X=0]=70$ is different from $\mathbb{E}[Y|X=1]=150$

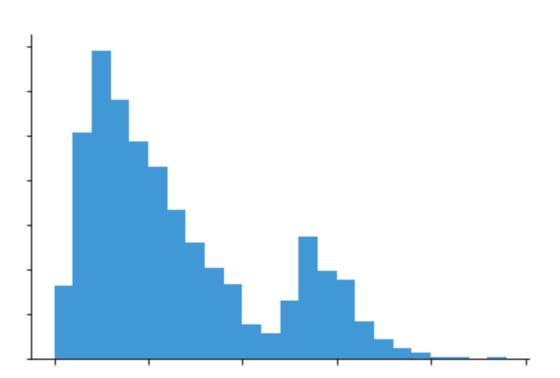
Conditional Expectation Example (cont)

•

$$p(y|X=0)$$

$$p(y | X = 1)$$





- $\mathbb{E}[Y|X=0]$ is the expectation over Y under distribution p(y|X=0)
- $\mathbb{E}[Y|X=1]$ is the expectation over Y under distribution p(y|X=1)

What if Y is dollars earned?

- Y is now a continuous RV, and X is still a discrete (binary) RV
- What is p(y|x)?

What if Y is dollars earned?

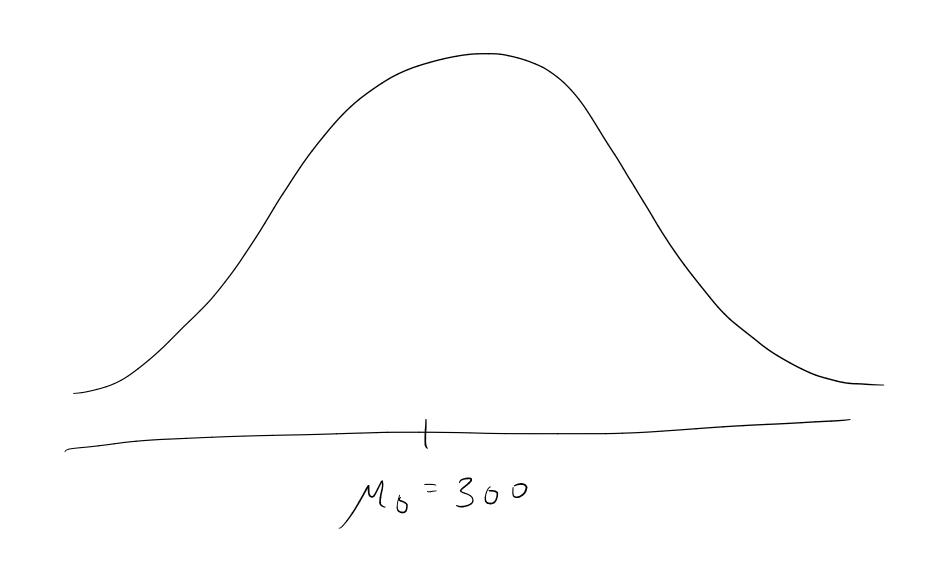
- Y is now a continuous RV
- Notice that p(y|x) is defined by p(y|X=0) and p(y|X=1)
- What might be a reasonable choice for p(y | X = 0) and p(y | X = 1)?

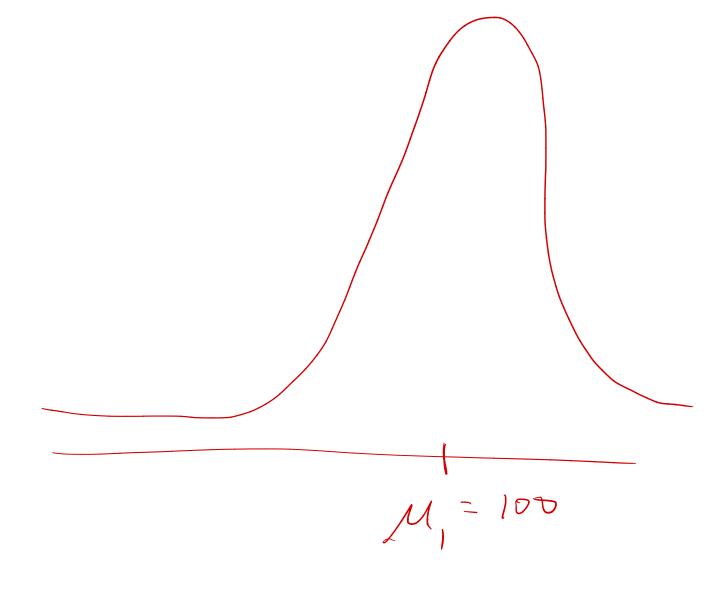
What if Y is dollars earned?

• Notice that p(y|x) is defined by p(y|X=0) and p(y|X=1)

$$P(Y|X=0) = N(M_0, 6_0^2) \qquad P(Y|X=1) = N(M_1, 6_1^2)$$

$$P(y|X=1)=N(m_{1}, \sigma_{1}^{2})$$





Fichion

Exercises

- Come up with an example of X and Y, and give possible choices for p(y | x)
- Do you need to know p(x) to specify p(y | x)?
- Are there any restrictions on the RVs X and Y, to let us specify p(y | x)?
- If we have p(y | x), can we get p(x | y)? Why or why not?

Properties of Expectations

- Linearity of expectation:
 - $\mathbb{E}[cX] = c\mathbb{E}[X]$ for all constant c
 - $\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]$
- Products of expectations of independent random variables X, Y:
 - $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$
- Law of Total Expectation:
 - $\bullet \ \mathbb{E}\left[\mathbb{E}\left[Y \mid X\right]\right] = \mathbb{E}[Y]$

You should know linearity of expectation

Variance

Definition: The variance of a random variable is

$$Var(X) = \mathbb{E}\left[(X - \mathbb{E}[X])^2\right].$$

i.e., $\mathbb{E}[f(X)]$ where $f(x) = (x - \mathbb{E}[X])^2$.

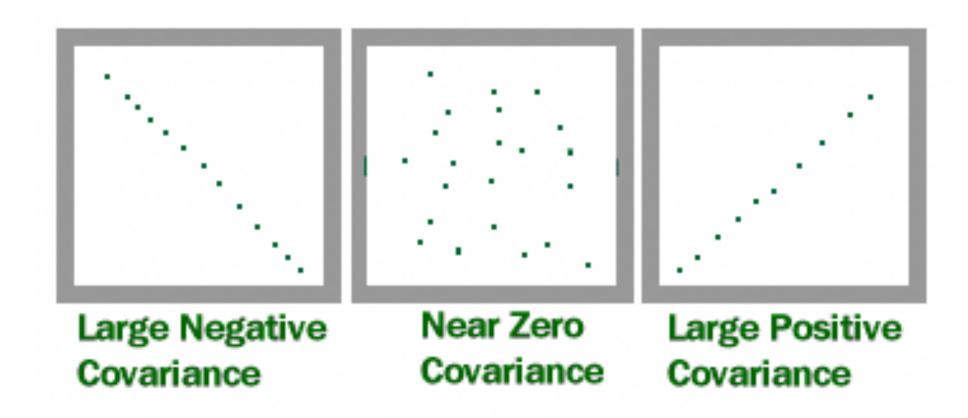
Equivalently,

$$Var(X) = \mathbb{E}\left[X^2\right] - (\mathbb{E}[X])^2$$

Covariance

Definition: The covariance of two random variables is

$$Cov(X, Y) = \mathbb{E} \left[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y]) \right]$$
$$= \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y].$$



Properties of Variances

• Var[c] = 0 for constant c

You should know all these properties

- $Var[cX] = c^2 Var[X]$ for constant c
- Var[X + Y] = Var[X] + Var[Y] + 2Cov[X, Y]
- For independent X, Y, because Cov[X, Y] = 0 Var[X + Y] = Var[X] + Var[Y]

Independent and Identically Distributed (i.i.d.) Samples

- We usually won't try to estimate anything about a distribution based on only a single sample
- Usually, we use multiple samples from the same distribution
 - Multiple samples: This gives us more information
 - Same distribution: We want to learn about a single population
- One additional condition: the samples must be independent

Definition: When a set of random variables are X_1, X_2, \ldots are all independent, and each has the same distribution $X \sim F$, we say they are i.i.d. (independent and identically distributed), written

$$X_1, X_2, \dots \stackrel{i.i.d.}{\sim} F.$$

Estimating Expected Value via the Sample Mean

Example: We have n i.i.d. samples from the same distribution F,

$$X_1, X_2, ..., X_n \stackrel{i.i.d}{\sim} F,$$

with $\mathbb{E}[X_i] = \mu$ and $\mathrm{Var}(X_i) = \sigma^2$ for each X_i .

We want to estimate μ .

Let's use the sample mean
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 to estimate μ .

$$\mathbb{E}[\bar{X}] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right]$$

$$= \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}[X_{i}]$$

$$= \frac{1}{n}\sum_{i=1}^{n}\mu$$

$$= \frac{1}{n}n\mu$$

 $=\mu$.

Bias

Definition: The **bias** of an estimator \hat{X} is its expected difference from the true value of the estimated quantity X:

$$\operatorname{Bias}(\hat{X}) = \mathbb{E}[\hat{X}] - \mathbb{E}[X]$$

- Bias can be positive or negative or zero
- When $\operatorname{Bias}(\hat{X}) = 0$, we say that the estimator \hat{X} is unbiased

Questions:

What is the **bias** of the following estimators of $\mathbb{E}[X]$?

- 1. $Y \sim \text{Uniform}[0,10]$
- 2. $Y = \mathbb{E}[X] + Z$, where $Z \sim \text{Uniform}[0,1]$
- 3. $Y = \mathbb{E}[X] + Z$, where $Z \sim N(0, 100^2)$

$$4. \quad Y = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Variance of the Estimator

- Intuitively, more samples should make the estimator "closer" to the estimated quantity
- We can formalize this intuition partly by characterizing the variance $Var[\hat{X}]$ of the estimator itself.
 - The variance of the estimator should decrease as the number of samples increases
- **Example:** \bar{X} for estimating μ :
 - The variance of the estimator shrinks linearly as the number of samples grows.

$$\operatorname{Var}[\bar{X}] = \operatorname{Var}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right]$$

$$= \frac{1}{n^{2}}\operatorname{Var}\left[\sum_{i=1}^{n}X_{i}\right]$$

$$= \frac{1}{n^{2}}\sum_{i=1}^{n}\operatorname{Var}[X_{i}]$$

$$= \frac{1}{n^{2}}\sum_{i=1}^{n}\sigma^{2}$$

$$= \frac{1}{n^{2}}n\sigma^{2} = \frac{1}{n^{2}}\sigma^{2}.$$

Mean-Squared Error

- Bias: whether an estimator is correct in expectation
- Consistency: whether an estimator is correct in the limit of infinite data
- Convergence rate: how fast the estimator approaches its own mean
 - For an unbiased estimator, this is also how fast its error bounds shrink
- We don't necessarily care about an estimator being unbiased.
 - Often, what we care about is our estimator's accuracy in expectation

Definition: Mean squared error of an estimator \hat{X} of a quantity X:

$$MSE(\hat{X}) = \mathbb{E}\left[(\hat{X} - \mathbb{E}[X])^2\right]$$

Bias-Variance Tradeoff

$$MSE(\hat{X}) = Var[\hat{X}] + Bias(\hat{X})^2$$

- If we can decrease bias without increasing variance, error goes down
- If we can decrease variance without increasing bias, error goes down
- Question: Would we ever want to increase bias?
- YES. If we can increase (squared) bias in a way that decreases variance more, then error goes down!
 - Interpretation: Biasing the estimator toward values that are more likely to be true (based on prior information)

Downward-biased Mean Estimation

Example: Let's estimate μ given i.i.d $X_1, ..., X_n$ with $\mathbb{E}[X_i] = \mu$ using: $Y = \frac{1}{n+100} \sum_{i=1}^n X_i$

This estimator is biased:

$$\mathbb{E}[Y] = \mathbb{E}\left[\frac{1}{n+100} \sum_{i=1}^{n} X_{i}\right]$$

$$= \frac{1}{n+100} \sum_{i=1}^{n} \mathbb{E}[X_{i}]$$

$$= \frac{n}{n+100} \mu$$

$$\text{Bias}(Y) = \frac{n}{n+100} \mu - \mu = \frac{-100}{n+100} \mu$$

This estimator has low variance:

$$Var(Y) = Var \left[\frac{1}{n+100} \sum_{i=1}^{n} X_i \right]$$

$$= \frac{1}{(n+100)^2} Var \left[\sum_{i=1}^{n} X_i \right]$$

$$= \frac{1}{(n+100)^2} \sum_{i=1}^{n} Var[X_i]$$

$$= \frac{n}{(n+100)^2} \sigma^2$$

Estimating μ Near 0

Example: Suppose that $\sigma=1$, n=10, and $\mu=0.1$

$$Bias(\bar{X}) = 0$$

$$MSE(\bar{X}) = Var(\bar{X}) + Bias(\bar{X})^{2}$$

$$= Var(\bar{X}) \quad Var(\bar{X}) = \frac{\sigma^{2}}{n}$$

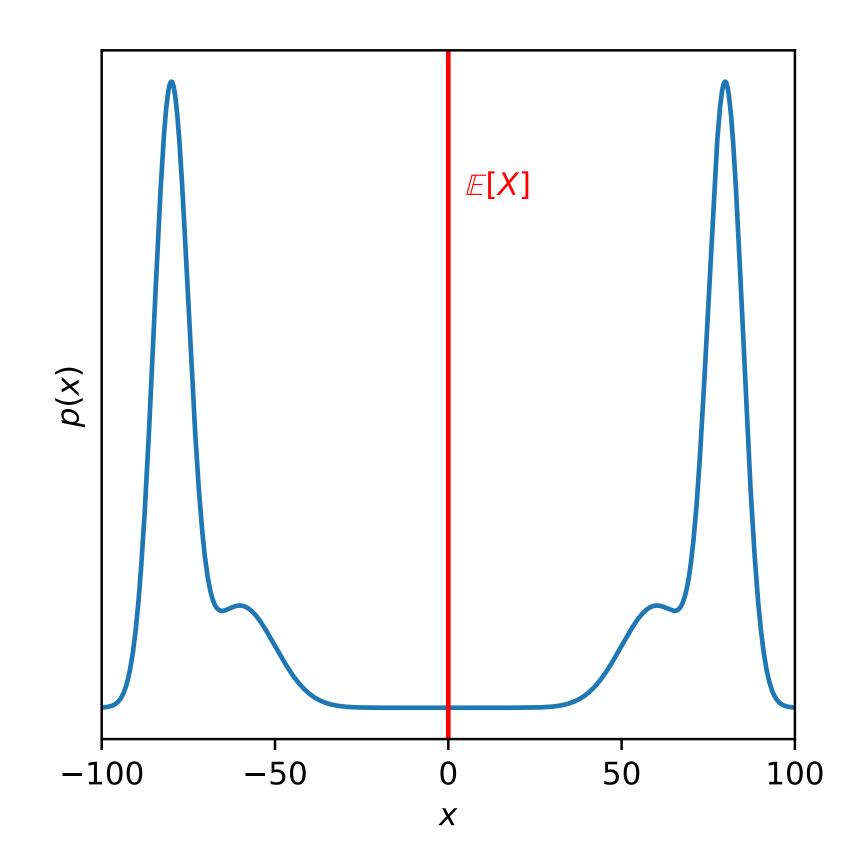
$$= \frac{1}{10}$$

MSE(Y) = Var(Y) + Bias(Y)²
=
$$\frac{n}{(n+100)^2} \sigma^2 + \left(\frac{100}{n+100}\mu\right)^2$$

= $\frac{10}{110^2} + \left(\frac{100}{110}0.1\right)^2$
 $\approx 9 \times 10^{-4}$

Exercise: What is the variance of these estimators?

Example: Estimating $\mathbb{E}[X]$ for r.v. $X \in \mathbb{R}$.



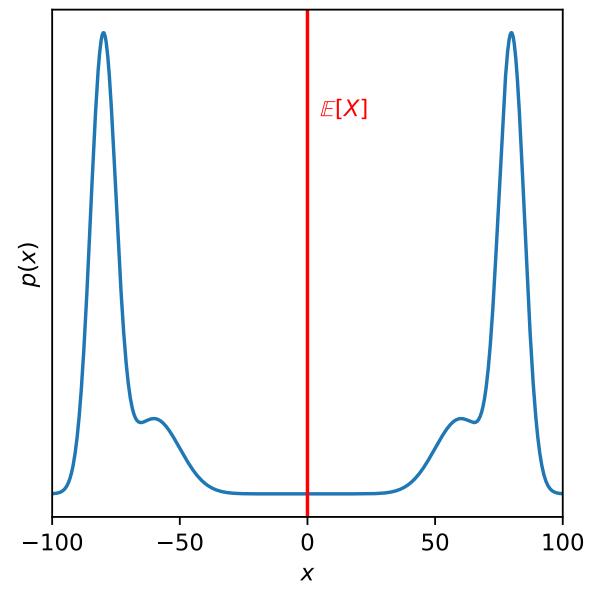
Questions:

Suppose we can observe a different variable Y. Is Y a good estimator of $\mathbb{E}[X]$ in the following cases? Why or why not?

- 1. $Y \sim \text{Uniform}[0,10]$
- 2. $Y = \mathbb{E}[X] + Z$, where $Z \sim N(0, 100^2)$

3.
$$Y = \frac{1}{n} \sum_{i=1}^{n} X_i, \text{ for } X_i \sim p$$

Exercise: What is the variance of these estimators?



$$\operatorname{Var} \left[\frac{1}{n} \sum_{i=1}^{n} Xi \right] = \frac{1}{n} \sigma^{2}.$$

Estimators:

1. $Y_1 \sim \text{Uniform}[0,10]$

2. $Y_2 = \mathbb{E}[X] + Z$, where $Z \sim N(0, 100^2)$

3. $Y_3 = \frac{1}{n} \sum_{i=1}^n X_i$, for $X_i \sim p$

$$Var(Y_1) = \frac{1}{12}(10 - 0)^2 = \frac{100}{12} = 8.\overline{3}$$

$$Var(Y_2) = Var(\mathbb{E}[X] + Z) = ?$$

$$Var(Y_3) = \frac{\sigma^2}{n}$$

Exercise: What is the variance of these estimators?

Estimators:

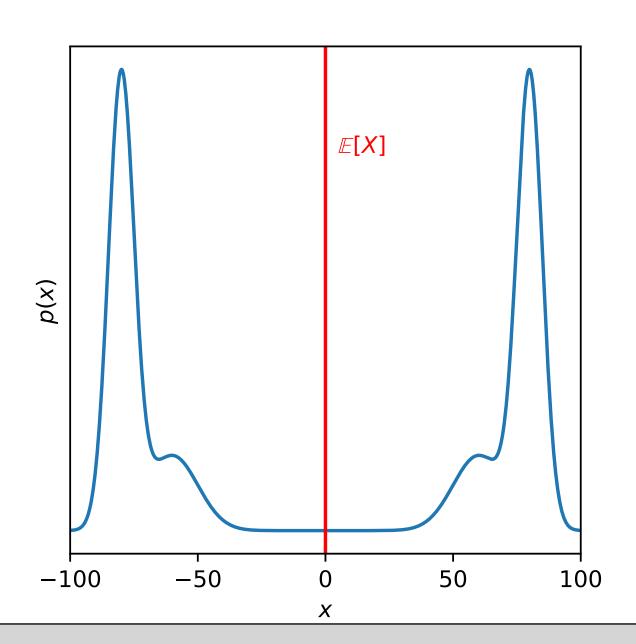
1.
$$Y_1 \sim \text{Uniform}[0,10]$$

2.
$$Y_2 = \mathbb{E}[X] + Z$$
, where $Z \sim N(0, 100^2)$

3.
$$Y_3 = \frac{1}{n} \sum_{i=1}^{n} X_i$$
, for $X_i \sim p$

```
\begin{aligned} \operatorname{Var}(Y_2) &= \operatorname{Var}(\mathbb{E}[X] + Z) \\ &= \operatorname{Var}(Z) \qquad \qquad \triangleright \operatorname{Var}(c + Y) = \operatorname{Var}(Y) \\ &= 100^2 \end{aligned}
```

MSE of these estimators



$$Var(Y_1) = \frac{1}{12}(10 - 0)^2 = \frac{100}{12} = 8.\overline{3}$$
 Bias $(Y_1) = \mathbb{E}[Y_1] - \mathbb{E}[X] = 5$

$$\operatorname{Bias}(Y_1) = \mathbb{E}[Y_1] - \mathbb{E}[X] = 5$$

$$Var(Y_2) = Var(\mathbb{E}[X] + Z) = 100^2$$

$$\mathsf{Bias}(Y_2) = \mathbb{E}[Y_2] - \mathbb{E}[X] = 0$$

$$Var(Y_3) = \frac{\sigma^2}{n}$$

$$Bias(Y_3) = 0$$

Estimators:

- 1. $Y_1 \sim \text{Uniform}[0,10]$
- 2. $Y_2 = \mathbb{E}[X] + Z$, where $Z \sim N(0, 100^2)$

3.
$$Y_3 = \frac{1}{n} \sum_{i=1}^n X_i$$
, for $X_i \sim p$

$$MSE(Y_1) = 5^2 + 8.\overline{3} = 33.\overline{3}$$

$$MSE(Y_2) = 0 + 100^2 = 10000$$

$$MSE(Y_3) = 0 + \frac{\sigma^2}{n}$$

$$MSE(\hat{X}) = Var[\hat{X}] + Bias(\hat{X})^2$$

Concentration Inequalities

. We would like to be able to claim $\Pr\left(\left|\bar{X}-\mu\right|<\epsilon\right)>1-\delta$ for some $\delta,\epsilon>0$

Hoeffding's Inequality

Theorem: Hoeffding's Inequality

Suppose that $X_1, ..., X_n$ are distributed i.i.d, with $a \le X_i \le b$.

Then for any $\epsilon > 0$,

$$\Pr\left(\left|\bar{X} - \mathbb{E}[\bar{X}]\right| \ge \epsilon\right) \le 2\exp\left(-\frac{2n\epsilon^2}{(b-a)^2}\right).$$

Equivalently,
$$\Pr\left(\left|\bar{X} - \mathbb{E}[\bar{X}]\right| \le (b-a)\sqrt{\frac{\ln(2/\delta)}{2n}}\right) \ge 1-\delta.$$

Chebyshev's Inequality

Theorem: Chebyshev's Inequality

Suppose that X_1, \ldots, X_n are distributed i.i.d. with variance σ^2 .

Then for any $\epsilon > 0$,

$$\Pr\left(\left|\bar{X} - \mathbb{E}[\bar{X}]\right| \ge \epsilon\right) \le \frac{\sigma^2}{n\epsilon^2}.$$

Equivalently,
$$\Pr\left(\left|\bar{X} - \mathbb{E}[\bar{X}]\right| \le \sqrt{\frac{\sigma^2}{\delta n}}\right) \ge 1 - \delta.$$

When to Use Chebyshev, When to Use Hoeffding?

• If
$$a \le X_i \le b$$
, then $\operatorname{Var}[X_i] \le \frac{1}{4}(b-a)^2$

• Hoeffding's inequality gives
$$\epsilon = (b-a)\sqrt{\frac{\ln(2/\delta)}{2n}} = \sqrt{\frac{\ln(2/\delta)}{2}}(b-a)\sqrt{\frac{1}{n}};$$
 Chebyshev's inequality gives $\epsilon = \sqrt{\frac{\sigma^2}{\delta n}} \le \sqrt{\frac{(b-a)^2}{4\delta n}} = \frac{1}{2\sqrt{\delta}}(b-a)\sqrt{\frac{1}{n}}$

Hoeffding's inequality gives a tighter bound*, but it can only be used on bounded random variables

* whenever
$$\sqrt{\frac{\ln(2/\delta)}{2}} < \frac{1}{2\sqrt{\delta}} \iff \delta < \sim 0.232$$

• Chebyshev's inequality can be applied even for unbounded variables

Sample Complexity

Definition:

The **sample complexity** of an estimator is the number of samples required to guarantee an error of at most ϵ with probability $1 - \delta$, for given δ and ϵ .

- We want sample complexity to be small
- Sample complexity is determined by:
 - 1. The **estimator** itself
 - Smarter estimators can sometimes improve sample complexity
 - 2. Properties of the data generating process
 - If the data are high-variance, we need more samples for an accurate estimate
 - But we can reduce the sample complexity if we can bias our estimate toward the correct value

Sample Complexity

Definition:

The **sample complexity** of an estimator is the number of samples required to guarantee an expected error of at most ϵ with probability $1 - \delta$, for given δ and ϵ .

For $\delta = 0.05$, Chebyshev gives

$$\epsilon = \sqrt{\frac{\sigma^2}{\delta n}} = \frac{1}{\sqrt{0.05}} \frac{\sigma}{\sqrt{n}}$$

$$\iff \epsilon = 4.47 \frac{\sigma}{\sqrt{n}}$$

$$\iff \sqrt{n} = 4.47 \frac{\sigma}{\epsilon}$$

$$\iff n = 19.98 \frac{\sigma^2}{\epsilon^2}$$

With Gaussian assumption and $\delta = 0.05$,

$$\epsilon = 1.96 \frac{\sigma}{\sqrt{n}}$$

$$\iff \sqrt{n} = 1.96 \frac{\sigma}{\epsilon}$$

$$\iff n = 3.84 \frac{\sigma^2}{\epsilon^2}$$

Summary

- Concentration inequalities let us bound the probability of a given estimator being at least ϵ from the estimated quantity
- Sample complexity is the number of samples needed to attain a desired error bound ϵ at a desired probability $1-\delta$
 - We only discussed sample complexity for unbiased estimators
- The mean squared error of an estimator decomposes into bias (squared) and variance
- Using a biased estimator can have lower error than an unbiased estimator
 - Bias the estimator based on some prior information
 - But this only helps if the prior information is **correct**, cannot reduce error by adding in arbitrary bias