Probability Theory

CMPUT 267: Basics of Machine Learning

§2.1-2.2

Recap for the Course Start

This class is about **understanding** machine learning techniques by understanding their basic mathematical underpinnings

- Please read the FAQ and Getting Started (it will save us all time)
- Assignment 1 released \bullet
- Thought Questions 1 due very soon (January 20)
 - Biggest reading since it covers much of the background
- lacksquare

Updates to notes throughout, to fix a few typos and add clarity (redownload)

- 1. Probabilities
- 2. Defining Distributions
- 3. Random Variables

Outline

Why Probabilities?

Example: A high-tech gumball machine behaves according to $f(x_1, x_2) =$ output candy if $x_1 \& x_2$, where $x_1 =$ has candy and $x_2 =$ battery charged.

- You can only see if it has candy (only see x_1)
- From your perspective, when $x_1 = 1$, sometimes candy is output, sometimes it isn't
- It looks stochastic, because it depends on the hidden input x_2

- Even if the world is completely deterministic, outcomes can look random

Measuring Uncertainty

- Probability is a way of measuring uncertainty
- We assign a number between 0 and 1 to events (hypotheses):
 - 0 means absolutely certain that statement is false
 - 1 means absolutely certain that statement is true
 - Intermediate values mean more or less certain
- Probability is a measurement of uncertainty, not truth
 - A statement with probability .75 is not "mostly true"
 - Rather, we believe it is more likely to be true than not

Example

- Let's think about estimating the average height of a person in the world •
- There is a true population mean h (say h = 165.2 cm)
 - which can be computed by averaging the heights of every person
- We can estimate this true mean using data
 - e.g., compute a sample average h from a subpopulation by randomly sampling 1000 people from around the whole world (say $\bar{h} = 166.3$ cm)
- We can also reason about our belief over plausible estimates h of h
 - $p(h = 163) = 0.3, p(h = 165) = 0.5, p(\bar{h} = 167) = 0.1$

• e.g., we can maintain a distribution over plausible h, such as saying p(h = 160) = 0.1,

Terminology Refresher

- Chapter 1 has a refresher and some exercises, and there is a notation sheet at the beginning of the notes
- Set notation

 - Curly brackets for discrete sets, e.g $\{a, b, c\}$, $\{1, 2, 3, 4, 5\}$, $\{-2.1, 6.5\}$ • Square brackets for continuous intervals, e.g., [-10,10], [3.2,7.1]
 - Subset notation $A \subset \Omega$ and the set complement $A^c = \Omega \setminus A$
 - Union of sets $A \cup B$, intersection of sets $A \cap B$
 - Power set $\mathcal{P}(A)$, e.g., $A = \{1, 2\}, \mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$
- Scalar $x \in \mathbb{R}$ and vector (array) is $\mathbf{x} \in \mathbb{R}^d$ for some integer $d \in \{2, 3, ...\}$

Terminology (cont.)

- Countable: A set whose elements can be assigned an integer index
 - The integers themselves
 - Any finite set, e.g., {0.1,2.0,3.7,4.123}
 - We'll sometimes say discrete, even though that's a little imprecise
- Uncountable: Sets whose elements *cannot* be assigned an integer index
 - Real numbers ${\mathbb R}$
 - Intervals of real numbers, e.g., [0,1], $(-\infty,0)$
 - Usually we'll say we have a continuous set

Outcomes and Events

All probabilities are defined with respect to a measurable space (Ω, \mathscr{E}) of outcomes and events:

- Ω is the sample space: The set of all possible outcomes
- key properties (that I will define in two slides)

• $\mathscr{E} \subseteq \mathscr{P}(\Omega)$ is the event space: A set of subsets of Ω that satisfies two

Examples of Discrete & Continuous Sample Spaces and Events

- **Discrete (countable) outcomes**
- $\Omega = \{1, 2, 3, 4, 5, 6\}$
- $\Omega = \{\text{person, robot, camera, TV}, \dots\}$
- $\Omega = \mathbb{N}$

- Continuous (uncountable) outcomes
- $\Omega = [0,1]$
- $\Omega = \mathbb{R}$
 - $\Omega = \mathbb{R}^k$

Definition: A non-empty set $\mathscr{E} \subseteq \mathscr{P}(\Omega)$ is an event space if it satisfies 1. $A \in \mathscr{E} \implies A^c \in \mathscr{E}$ 2. $A_1, A_2, \ldots \in \mathscr{E} \implies \bigcup^{\infty} A_i \in \mathscr{E}$ i=1

- 1. A collection of outcomes (e.g., either a 2 or a 6 were rolled) is an event.
- of them has happened; i.e., their **union** should be measurable too.

2. If we can measure that an event has occurred, then we should also be able to measure that the event has not occurred; i.e., its **complement** is measurable.

3. If we can measure two events separately, then we should be able to tell if one

Examples of Discrete & Continuous Sample Spaces and Events

- **Discrete (countable) outcomes**
- $\Omega = \{1, 2, 3, 4, 5, 6\}$
- $\Omega = \{\text{person, robot, camera, TV}, \dots\}$
- $\Omega = \mathbb{N}$
- $\mathscr{E} = \{ \emptyset, \{1,2\}, \{3,4,5,6\}, \{1,2,3,4,5,6\} \}$
- Typically: $\mathscr{E} = \mathscr{P}(\Omega)$

Powerset is the set of all subsets

Borel field is the set of all subsets of non-negligible size (e.g., intervals $[0.1, 0.1 + \epsilon]$)

- Continuous (uncountable) outcomes
- $\Omega = [0,1]$
- $\Omega = \mathbb{R}$
 - $\boldsymbol{\Omega} = \mathbb{R}^k$
 - $\mathscr{E} = \{ \emptyset, [0,0.5], (0.5,1.0], [0,1] \}$

Typically: $\mathscr{E} = B(\Omega)$ ("Borel field")

Discrete vs. Continuous Sample Spaces

Discrete (countable) outcomes

 $\Omega = \{1, 2, 3, 4, 5, 6\}$

 $\Omega = \{\text{person, robot, camera, TV, ...}\}$

 $\Omega = \mathbb{N}$

 $\mathscr{E} = \{ \emptyset, \{1,2\}, \{3,4,5,6\}, \{1,2,3,4,5,6\} \}$

Typically: $\mathscr{E} = \mathscr{P}(\Omega)$

Question: $\mathscr{E} = \{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}\}\}?$

- **Continuous (uncountable) outcomes**
- $\Omega = [0,1]$
- $\Omega = \mathbb{R}$
- $\Omega = \mathbb{R}^k$
- $\mathscr{E} = \{ \emptyset, [0,0.5], (0.5,1.0], [0,1] \}$

Typically: $\mathscr{E} = B(\Omega)$ ("Borel field")

Note: not $\mathscr{P}(\Omega)$

Exercise

- Write down the power set of {1, 2, 3}
- More advanced: Why is the power set a valid event space? Hint: Check the two properties

Definition:

A non-empty set $\mathscr{E} \subseteq \mathscr{P}(\Omega)$ is an event space if it satisfies $1 \quad A \subset \mathscr{C} \longrightarrow A^{c} \subset \mathscr{C}$

2.
$$A_1, A_2, \dots \in \mathscr{E} \implies \bigcup_{i=1}^{\infty} A_i$$

 $l_i \in \mathscr{C}$

Exercise answer A set $\mathscr{E} \subseteq \mathscr{P}(\Omega)$ is an **event space** if it satisfies 1. $A \in \mathscr{E} \implies A^c \in \mathscr{E}$ 2. $A_1, A_2, \ldots \in \mathscr{E} \implies \bigcup^{\infty} A_i \in \mathscr{E}$

- $\Omega = \{1, 2, 3\}$
- $\mathcal{P}(\Omega) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$
- Proof that the power set satisfies the two properties
- Take any $A \in \mathscr{P}(\Omega)$ (e.g., $A = \{1\}$ or $A = \{1,2\}$). Then $A^c = \Omega \setminus A$ is a subset of Ω , and so $A^c \in \mathscr{P}(\Omega)$ since the power set contains all subsets
- Take any $A, B \in \mathscr{P}(\Omega)$. Then $A \cup B \subset \Omega$, and so $A \cup B \in \mathscr{P}(\Omega)$
- More generally, for an infinite union, see: <u>https://proofwiki.org/wiki/</u> Power Set is Closed under Countable Unions

Axioms

Definition:

1. unit measure: $P(\Omega) = 1$, and 2. σ -additivity: $P\left(\bigcup_{i=1}^{\infty} A_i\right) =$ $A_1, A_2, \ldots \in \mathscr{E}$ where $A_i \cap A_i$

Given a measurable space (Ω, \mathscr{E}) , any function $P : \mathscr{E} \to [0,1]$ satisfying

$$\sum_{i=1}^{\infty} P(A_i) \text{ for any countable sequence}$$
$$A_j = \emptyset \text{ whenever } i \neq j$$

is a probability measure (or probability distribution).

If P is a probability measure over (Ω, \mathscr{E}) , then (Ω, \mathscr{E}, P) is a probability space.

Defining a Distribution

Example:

 $\Omega = \{0,1\}$ $\mathscr{E} = \{\emptyset, \{0\}, \{1\}, \Omega\}$ $P = \begin{cases} 1 - \alpha & \text{if } A = \{0\} \\ \alpha & \text{if } A = \{1\} \\ 0 & \text{if } A = \emptyset \\ 1 & \text{if } A = \Omega \end{cases}$

where $\alpha \in [0,1]$.

Questions:

- Do you recognize this distribution?
- 2. How should we choose P in practice?
 - a. Can we choose an arbitrary function?
 - b. How can we guaranteethat all of the constraintswill be satisfied?

We will define distributions using **PMFs** and **PDFs**

Probability Mass Functions (PMFs)

Definition: Given a discrete sample space Ω and event space

a probability mass function.

- probability mass function $p: \Omega \rightarrow [0,1]$.
- p gives a probability for outcomes instead of events

$\mathscr{E} = \mathscr{P}(\Omega)$, any function $p: \Omega \to [0,1]$ satisfying $\sum p(\omega) = 1$ is $\omega \in \Omega$

• For a discrete sample space, instead of defining P directly, we can define a

The probability for any event $A \in \mathscr{E}$ is then defined as $P(A) = \sum p(\omega)$. $\omega \in A$

Example: PMF for a Fair Die

A categorical distribution is a distribution over a finite outcome space, where the probability of each outcome is specified separately.

1/6

1/6

1/6

1/6

1/6

Example: Fair Die $p(\omega)$ $\Omega = \{1, 2, 3, 4, 5, 6\}$ 2 $p(\omega) = \frac{1}{6}$ 3 4 $p(\{3,4\}) = \frac{1}{3}$ 1/6 5 6

Questions:

- What is a possible event? 1. What is its probability?
- What is the event space? 2.

Moving to Boolean Terminology with Random Variables

 $\Omega = \{(left, 1), (right, 1), (left, 2), (right, 2), ..., (right, 6)\}$

without thinking about where it landed.

This is simpler to write than using the event notation, e.g.

P(X = 3) would be written $P(\{\omega \in \Omega \mid \omega_2 = 3\})$

- **Example:** Suppose we observe both a die's number, and where it lands.
- We might want to think about the probability that we get a large number,
- Let X = number that comes up. We could ask about P(X = 3) or $P(X \ge 4)$

Random Variables, Formally

Given a probability space (Ω, \mathscr{E}, P) , a random variable is a function $X: \Omega \to \mathcal{X}$ (where \mathcal{X} is a new outcome space), satisfying $\{\omega \in \Omega \mid X(\omega) \in A\} \in \mathscr{E} \quad \forall A \in B(\mathscr{X}).$ It follows that $P_X(A) = P(\{\omega \in \Omega \mid X(\omega) \in A\}).$ and $X(\omega)$ = height in cm, and the event A = [150, 170].

- **Example:** Let Ω be a population of people, $\omega = (\text{height}, \text{age}, \dots, \text{location}),$
 - $P(X \in A) = P(150 \le X \le 170) = P(\{\omega \in \Omega : X(\omega) \in A\}).$

RVs are intuitive

- a new outcome space, event space and probabilities
- complex underlying distribution
- We have really already been talking about RVs

• All the probability rules remain the same, since RVs are a mapping to create

• The notation may look onerous, but they simply formalize something we do naturally: specify the variable we care about, knowing it is defined by a more

• e.g., for X = dice outcome, event $A = \{5, 6\}, P(A) = P(X \ge 4)$

Random Variables Simplify Terminology

- A Boolean expression involving random variables defines an event: E.g., $P(X \ge 4) = P(\{\omega \in \Omega \mid X(\omega) \ge 4\})$
- Random variables strictly generalize the way we can talk about probabilities lets us be specific about any transformations

 - switches language from events to boolean expressions
- From this point onwards, we will exclusively reason in terms of random variables

Revisiting the Fair Die PMF

Example: Fair Die $\mathcal{X} = \{1, 2, 3, 4, 5, 6\}$ $p(x) = \frac{1}{6}$ $p(\{3,4\}) = \frac{1}{3}$

X	p(x)
1	1/6
2	1/6
3	1/6
4	1/6
5	1/6
6	1/6

 $\langle \rangle$

Questions:

- What is a possible event? 1. What is its probability?
- What is the event space? 2.

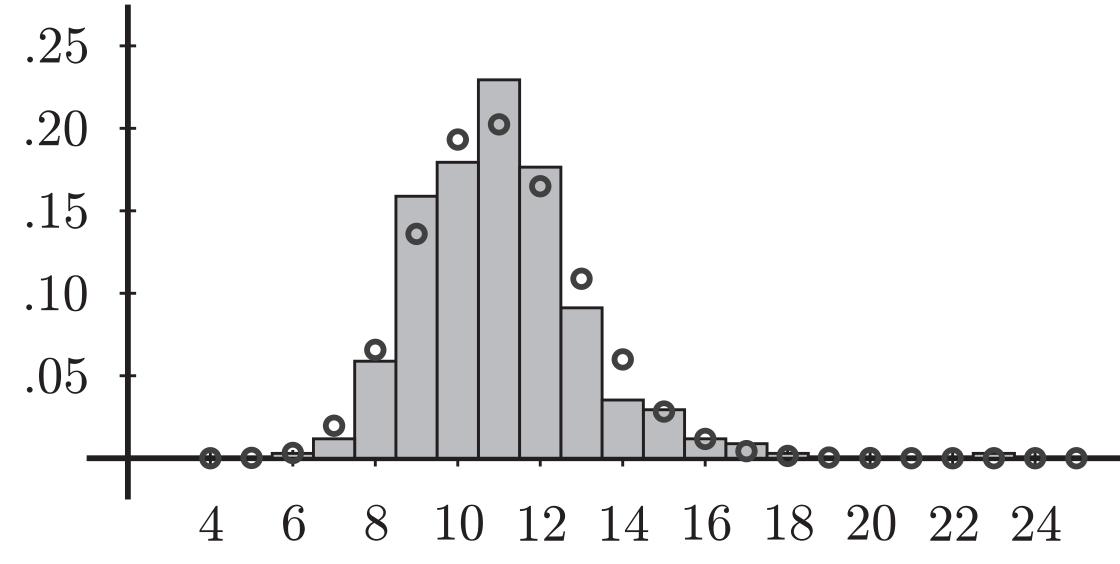
Answer: event space and probabilities are the same, but we write the probabilistic question using booleans

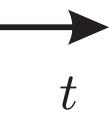
$$p(3 \le X \le 4) = \frac{1}{3}$$
 or $p(X \in \{3,4\}) = \frac{1}{3}$

- year (i.e., 365 recorded times).
- The random variable is T with outcomes $t \in \{4, 5, 6, 7, \dots, 25\}$
- **Question:** How do you get p(t)? \bullet
- **Question:** How is p(t) useful? \bullet
- **Question:** How do you compute $p(10 \le T \le 13)?$

Example: Using a PMF

Suppose that you recorded your commute time (in minutes) every day for a



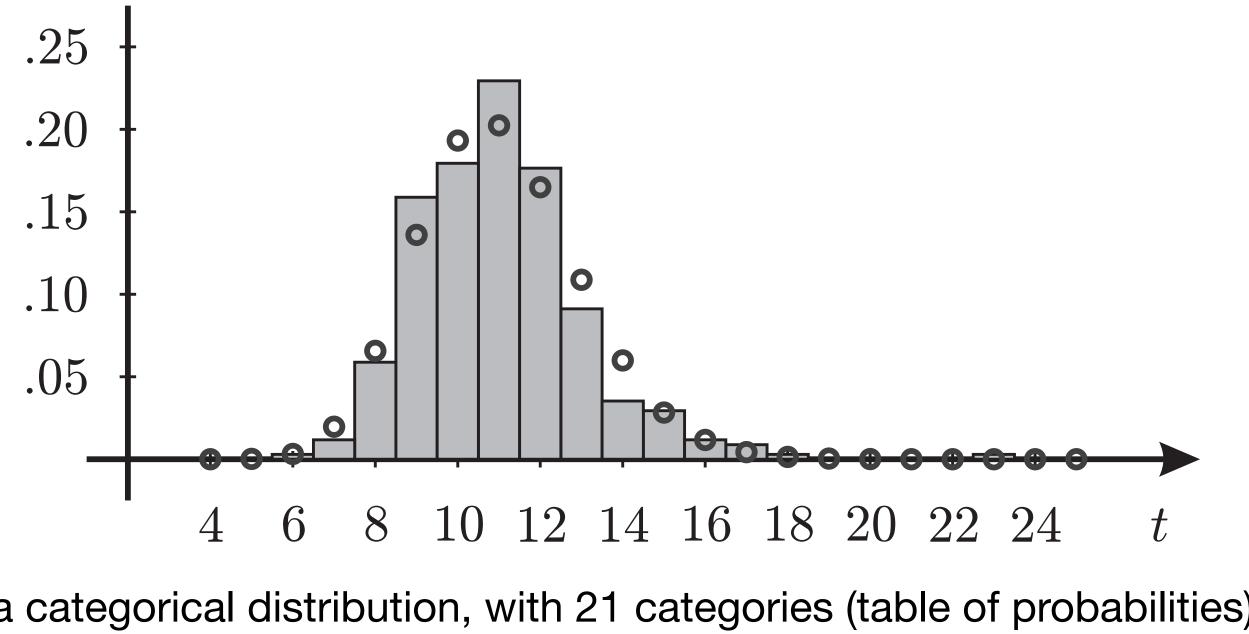


- year (i.e., 365 recorded times).
- The random variable is T with outcomes $t \in \{4, 5, 6, 7, \dots, 25\}$
- **Question:** How do you get p(t)? (Answer: count and normalize) \bullet
- Question: How is p(t) useful?
 - We can take mode as prediction
- **Question:** How do you compute \bullet $p(10 \le T \le 13)?$

p(t)Answer: 188 1210 166 4 $t \in \{10, 11, 12\}$ This PMF is called a categorical distribution, with 21 categories (table of probabilities)

Example: Using a PMF

• Suppose that you recorded your commute time (in minutes) every day for a



Useful PMFs: Bernoulli

A Bernoulli distribution is a special case of a categorical distribution in which there are only two outcomes. It has a single parameter $\alpha \in (0,1)$.

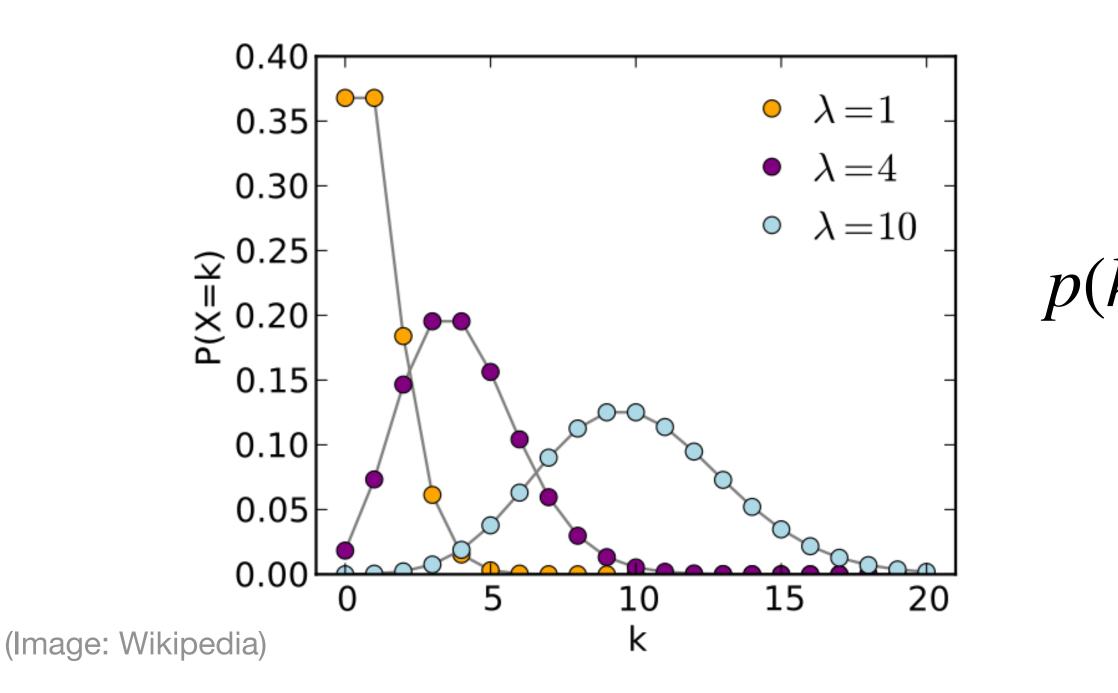
$$\mathcal{X} = \{T, F\} \text{ (or } \mathcal{X} = \{S, F\})$$
$$p(x) = \begin{cases} \alpha & \text{if } x = T\\ 1 - \alpha & \text{if } x = F. \end{cases}$$

Alternatively: $\mathscr{X} = \{0,1\}$ $p(x) = \alpha^x (1 - \alpha)^{1-x}$ for $x \in \{0,1\}$

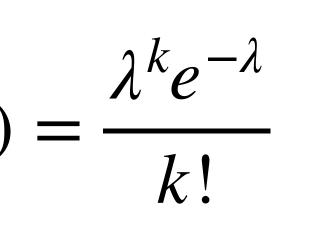
Useful PMFs: Poisson

A **Poisson distribution** is a distribution over the non-negative integers. It has a single parameter $\lambda \in (0,\infty)$.

number of calls

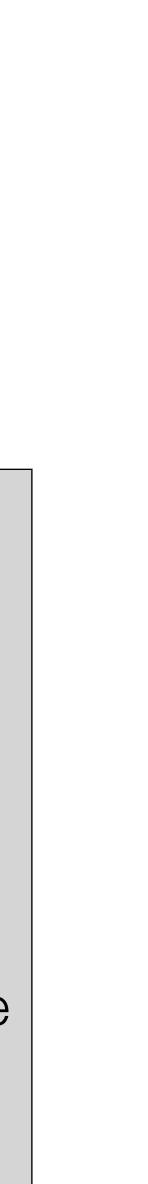


- E.g., number of calls received by a call centre in an hour, λ is the average



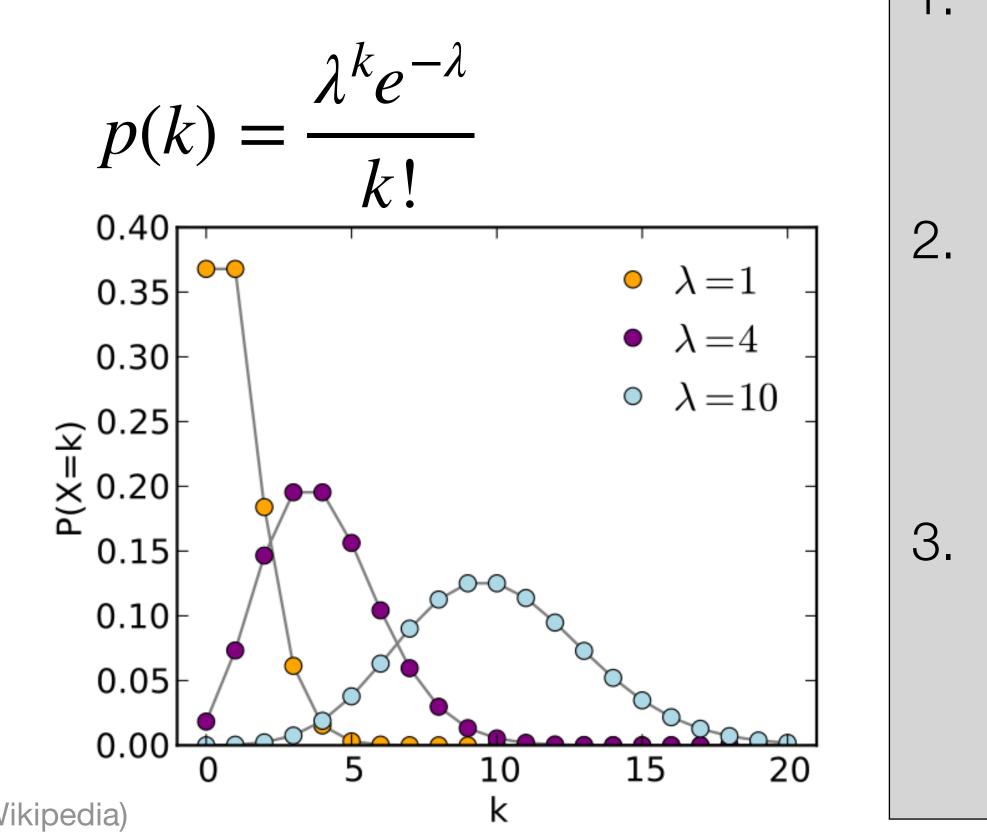
Questions:

- Could we define this with a table instead of an equation?
- 2. How can we check whether this is a valid PMF?
- λ real-valued, but outcomes are discrete. What might be the mode (most likely outcome)?



Useful PMFs: Poisson

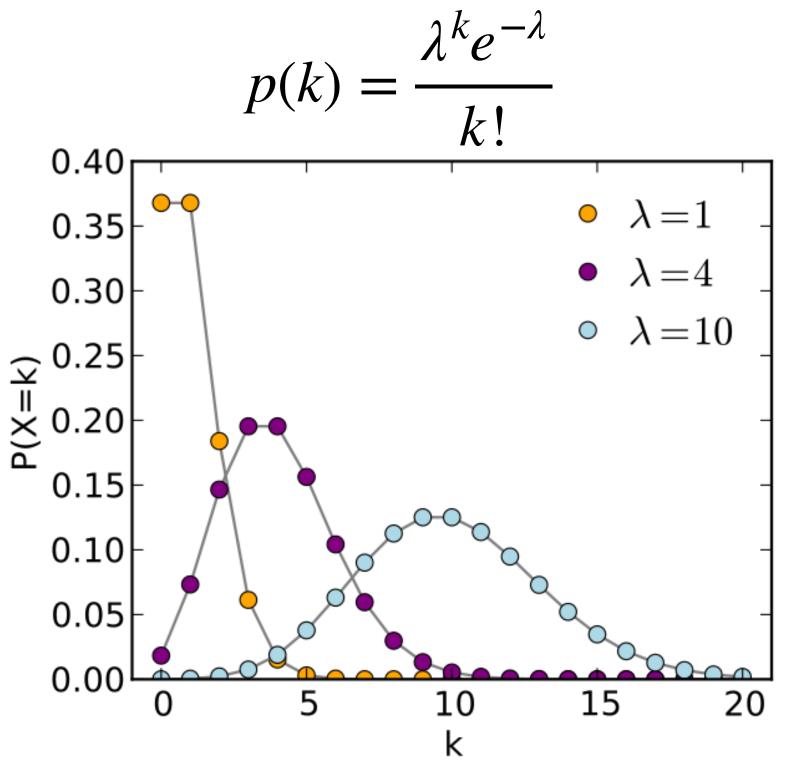
A **Poisson distribution** is a distribution over the non-negative integers. It has a single parameter $\lambda \in (0,\infty)$.



(Image: Wikipedia)

- Could we define this with a table instead of an equation?
- No because the outcome space is infinite
- How can we check whether this is a valid PMF?
- Check if $\sum p(k) = 1$ k=0
- λ real-valued, but outcomes are discrete. What might be the mode (most likely outcome)?
- Mean is λ , may not correspond to any outcome
- Two modes, $\lceil \lambda \rceil 1, \lceil \lambda \rceil$

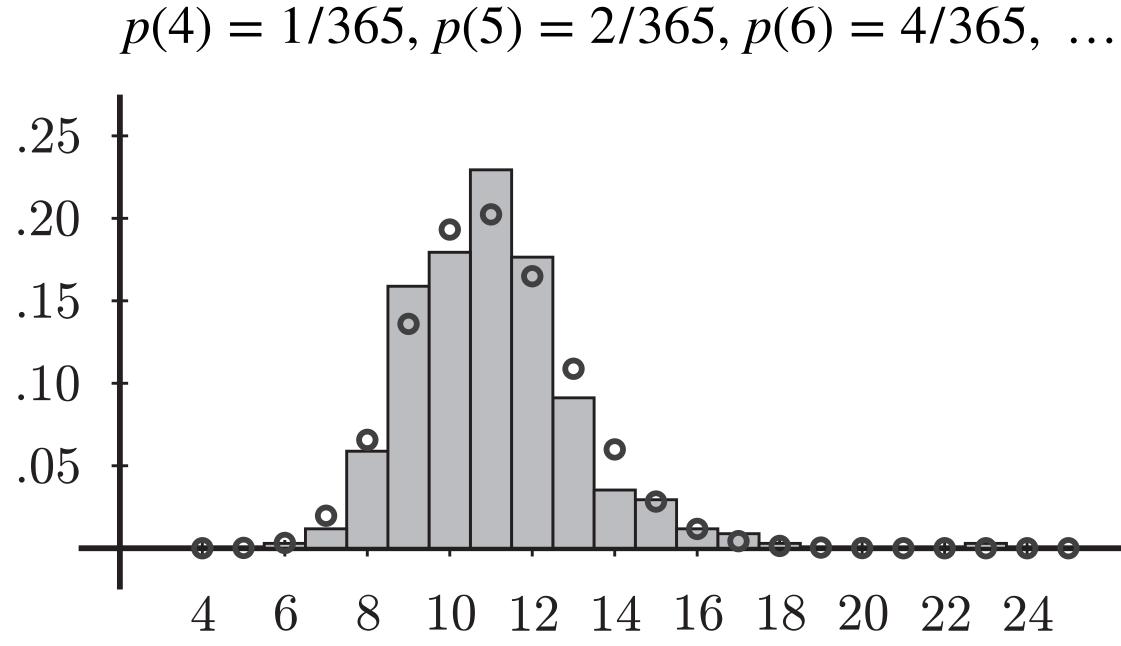
- \bullet (instead of a categorical distribution)?
- \bullet



Commute Times Again

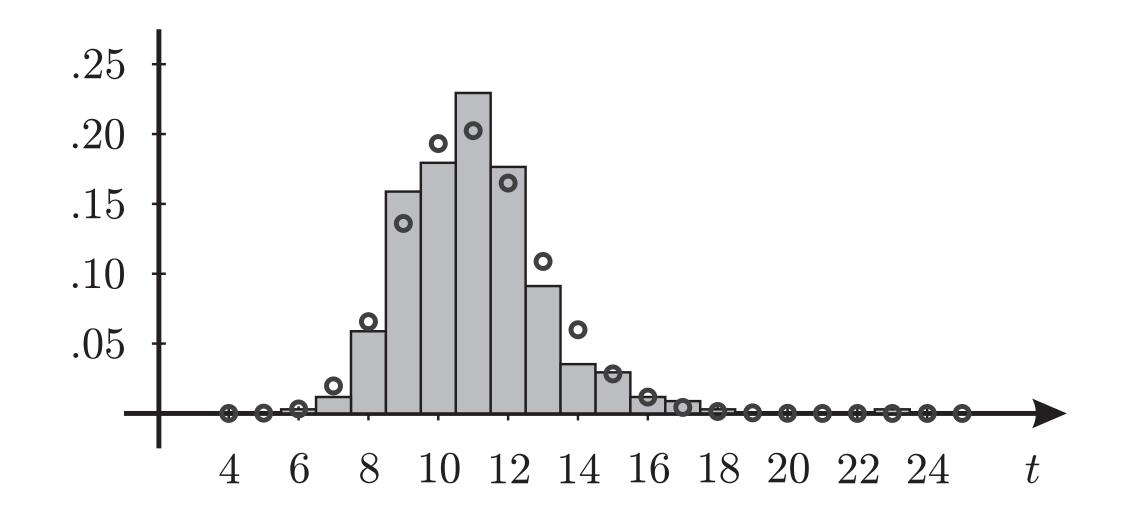
Question: Could we use a **Poisson distribution** for commute times

Question: What would be the benefit of using a Poisson distribution? Hint: what do you need to estimate to specify the Poisson, vs the categorical?



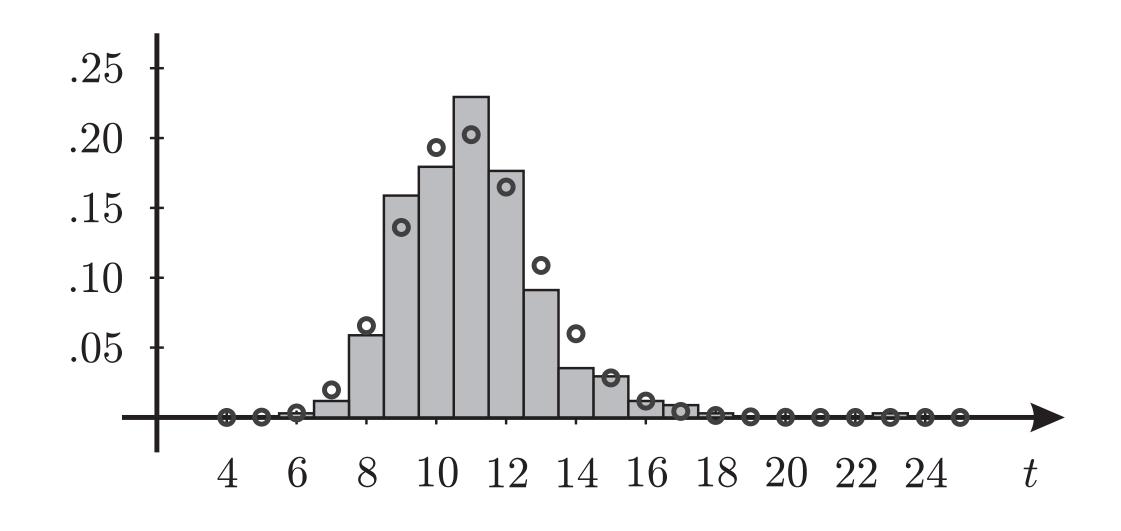
Continuous Commute Times

- It never actually takes *exactly* 12 minutes; I rounded each observation to the nearest integer number of minutes.
 - Actual data was 12.345 minutes, 11.78213 minutes, etc.



Continuous Commute Times

- It never actually takes *exactly* 12 minutes; I rounded each observation to the nearest integer number of minutes.
 - Actual data was 12.345 minutes, 11.78213 minutes, etc.
- **Question:** Could we use a Poisson distribution to predict the *exact* commute time (rather than the nearest number of minutes)? Why?



Probability Density Functions (PDFs)

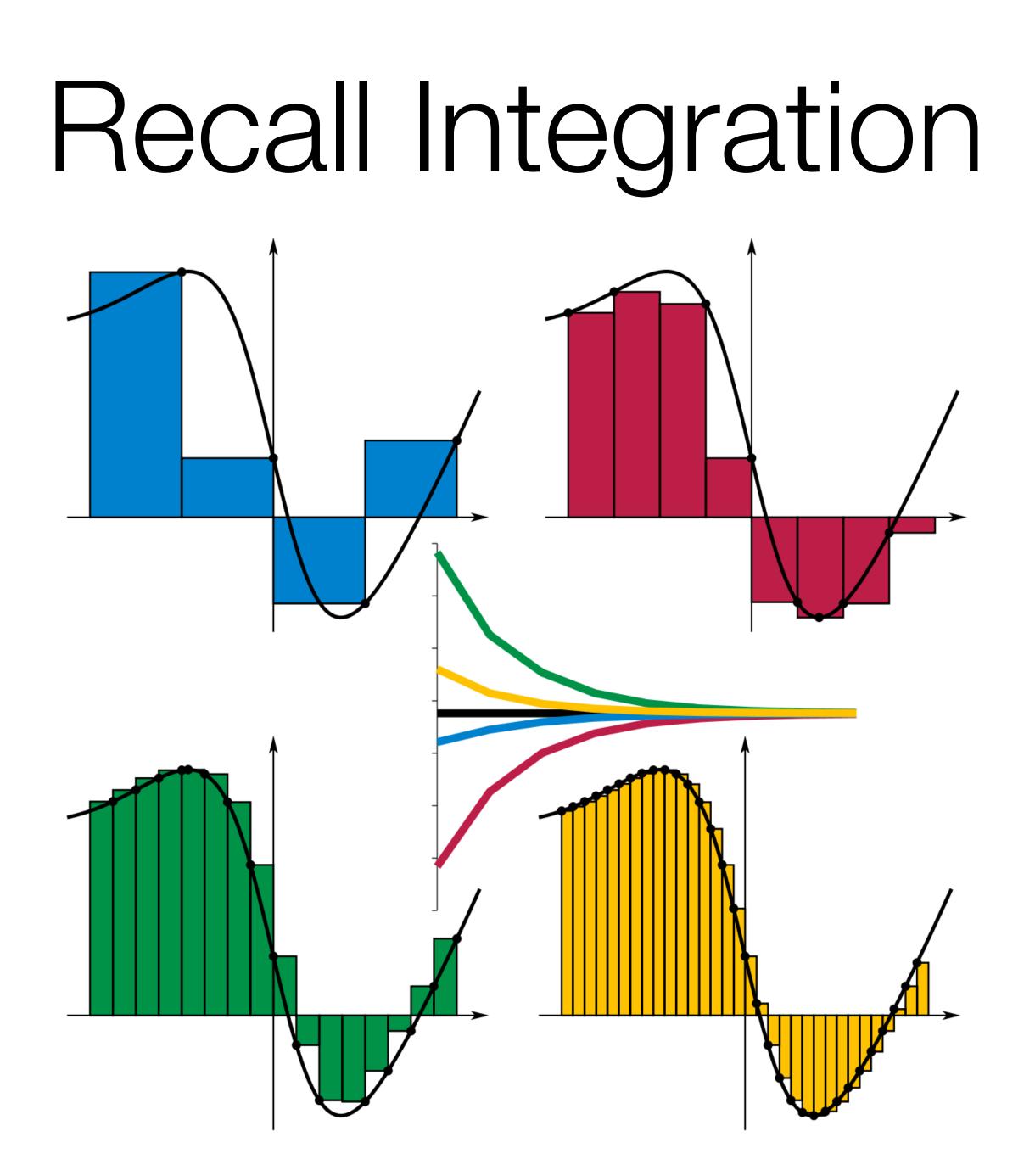
Definition: Given a continuous sample space \mathcal{X} and event space a probability density function.

- For a continuous sample space, instead of defining P directly, we can define a probability density function $p: \mathcal{X} \to [0,\infty)$.
- The probability for any event $A \in \mathscr{E}$ is then defined as

P(A) =

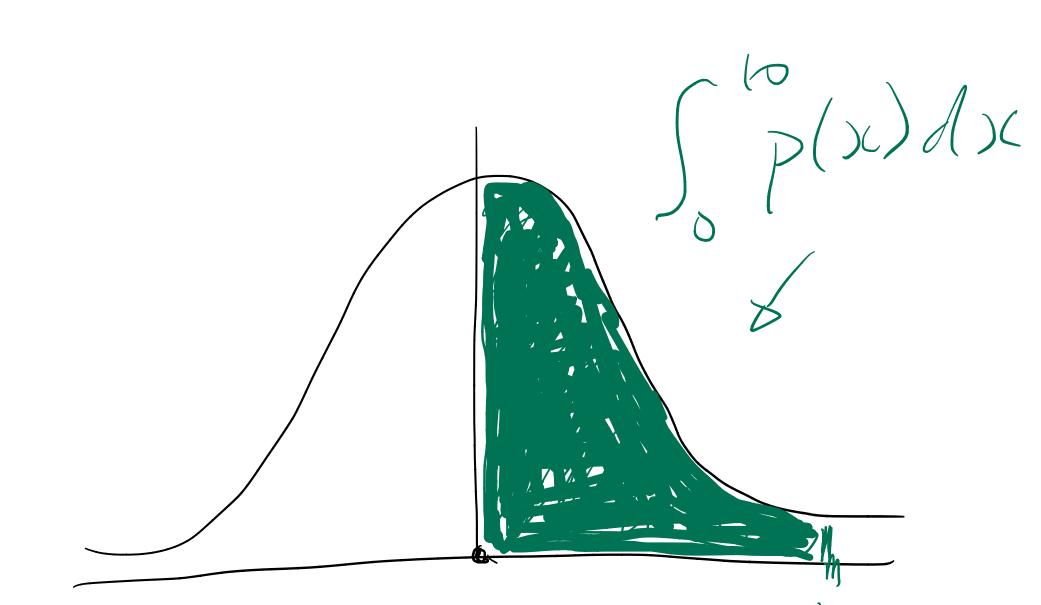
 $\mathscr{E} = B(\mathscr{X})$, any function $p: \mathscr{X} \to [0,\infty)$ satisfying $\int_{\mathscr{X}} p(x)dx = 1$ is

$$= \int_{A} p(x) dx.$$

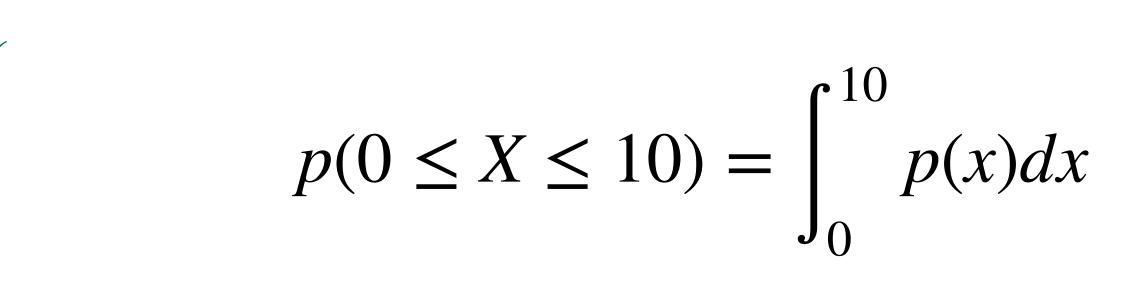


Integration to give the probability of an event

Imagine the PDF looks like the following concave function



Area under the curve reflects the probability of seeing an outcome in that region

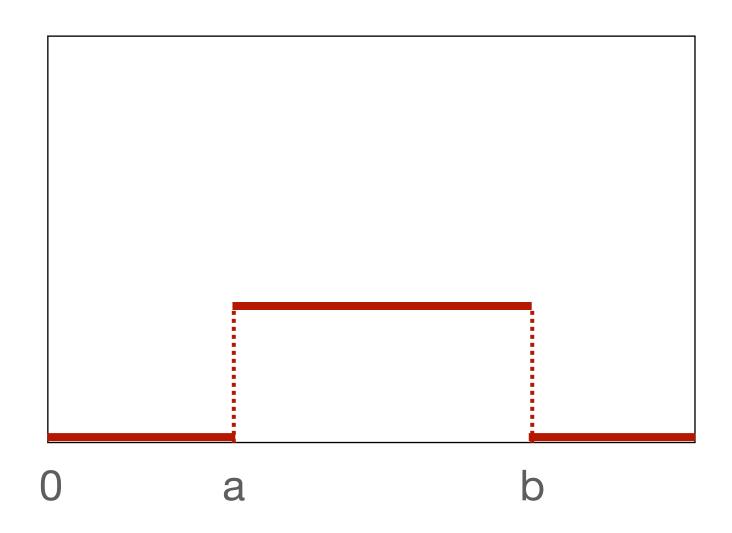


Useful PDFs: Uniform

A uniform distribution is a distribution over a real interval. It has two parameters: *a* and *b*.

$$\begin{aligned} \mathscr{X} &= [a, b] \\ p(x) &= \begin{cases} \frac{1}{b-a} & \text{if } a \leq x \leq b, \\ 0 & \text{otherwise.} \end{cases} \end{aligned}$$

Question: Does $\mathcal X$ have to be bounded?



Exercise: Check that the uniform pdf satisfies the required properties

Recall that the antiderivative of 1 is x, because the derivative of x is 1

$$\int_{a}^{b} p(x)dx = \int_{a}^{b} \frac{1}{b-a}dx$$
$$= \frac{1}{b-a} \int_{a}^{b} dx = \frac{1}{b-a}$$
$$= \frac{1}{b-a}(b-a) = 1$$

 $-\frac{x}{a}\Big|_{a}^{b}$

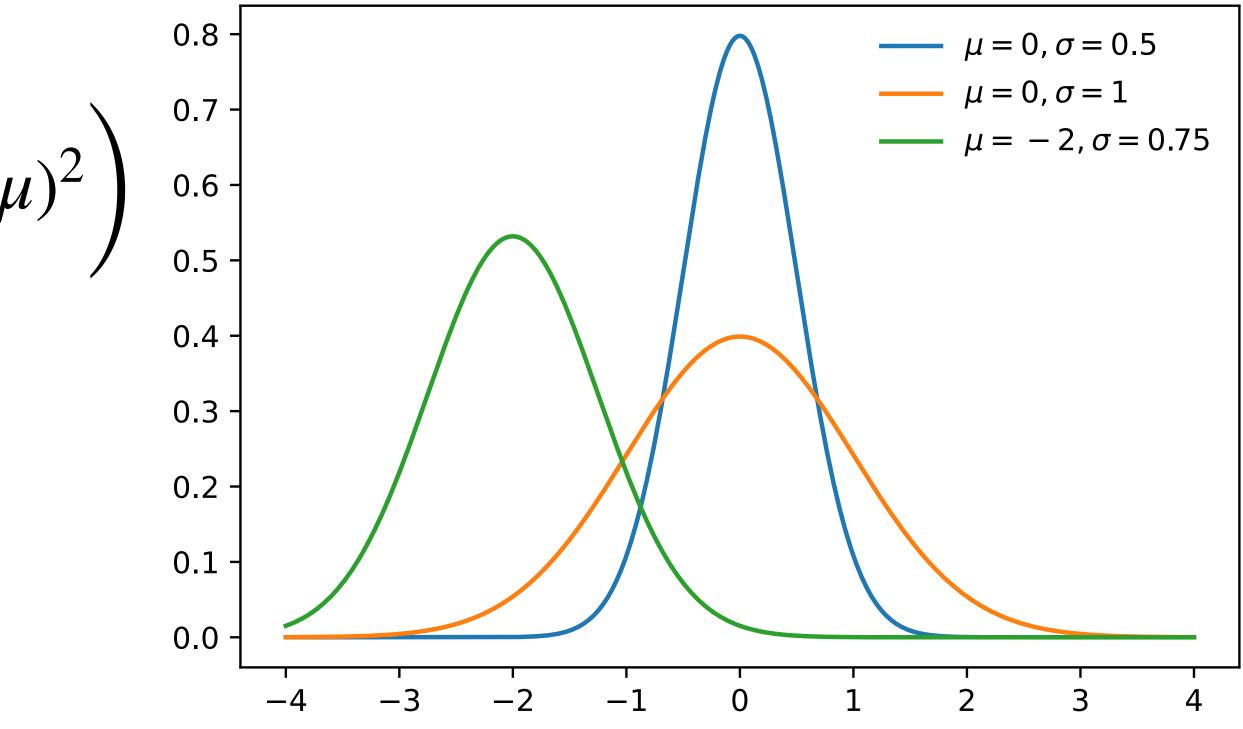
Useful PDFs: Gaussian

A Gaussian distribution is a distribution over the real numbers. It has two parameters: $\mu \in \mathbb{R}$ and $\sigma \in \mathbb{R}^+$.

 $\mathcal{X} = \mathbb{R}$ $p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$

where $exp(x) = e^x$

Also called a normal distribution and written $\mathcal{N}(\mu,\sigma^2)$



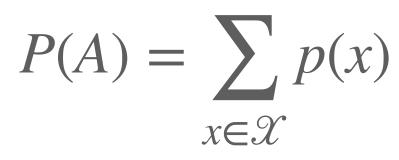
Why the distinction between PMFs and PDFs?

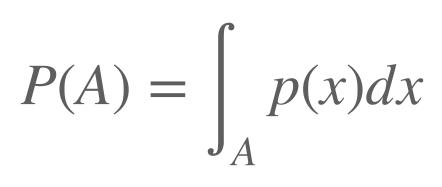
- 1. When the sample space \mathscr{X} is **discrete:**
 - Singleton event: $P(\{x\}) = p(x)$ for $x \in \mathcal{X}$
- 2. When the sample space \mathscr{X} is **continuous:**
 - Example: Stopping time for a car with $\mathscr{X} = [3, 12]$
 - **Question:** What is the probability that the stopping time is exactly 3.14159?

 $P({3.14159})$

• More reasonable: Probability that stopping time is between 3 to 3.5.

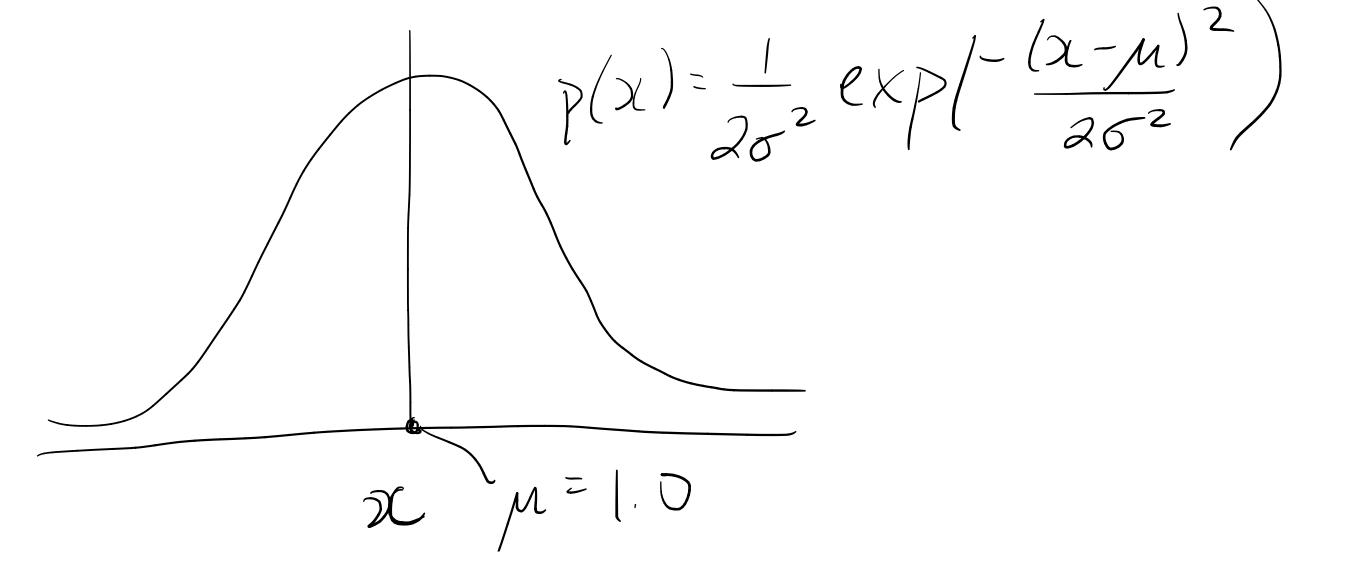
$$f) = \int_{3.14159}^{3.14159} p(x)dx = 0$$





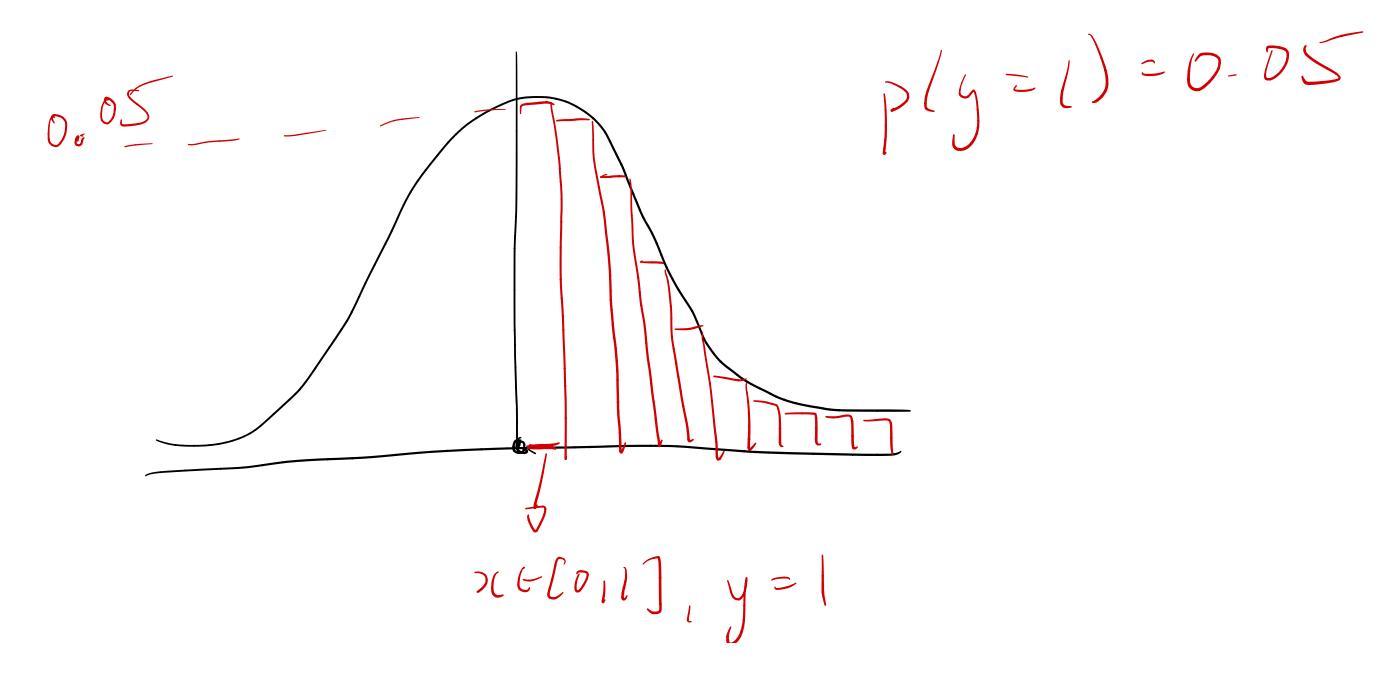
Example comparing integration and summation

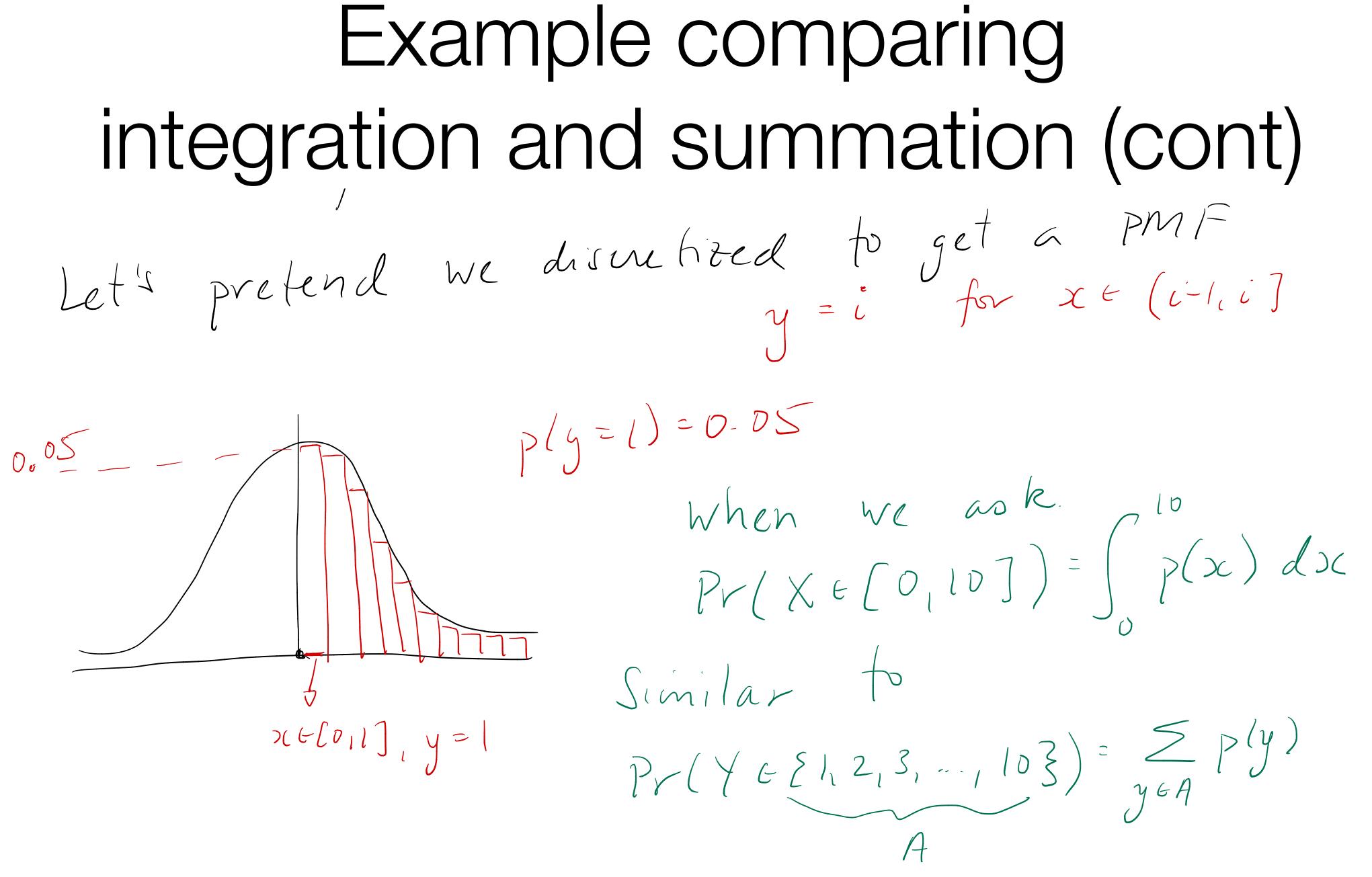
Imagine we have a bandsian distribution



Example comparing integration and summation (cont)

Let's pretend we discretized to get a PMFy = i for $x \in (i-1, i]$

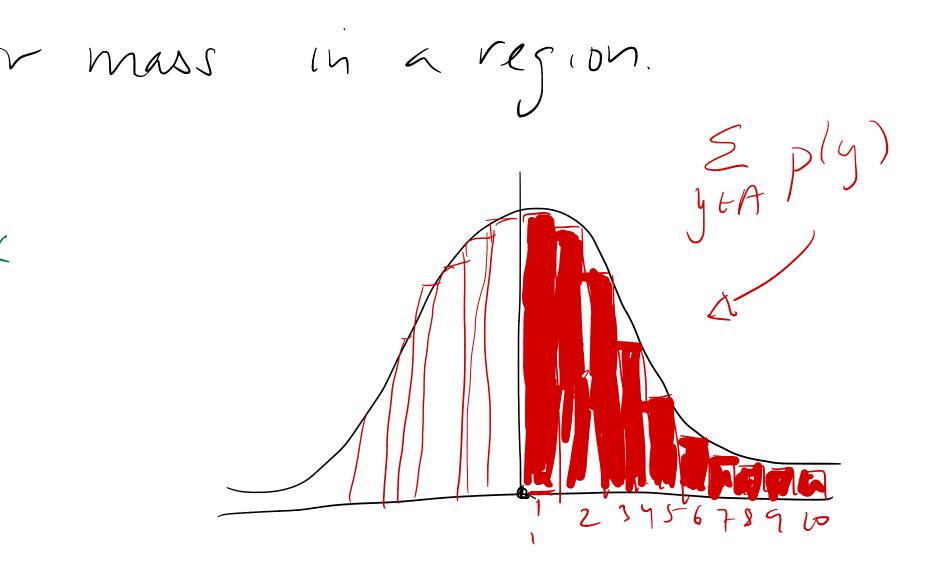




Example comparing integration and summation (cont)

Both reflect density or mass in a region. $\int_{0}^{10} P(x) dx$

Note: technically the red rectangles should go a bit above the Gaussian line, if we really did discretize. My drawing is not perfect here.



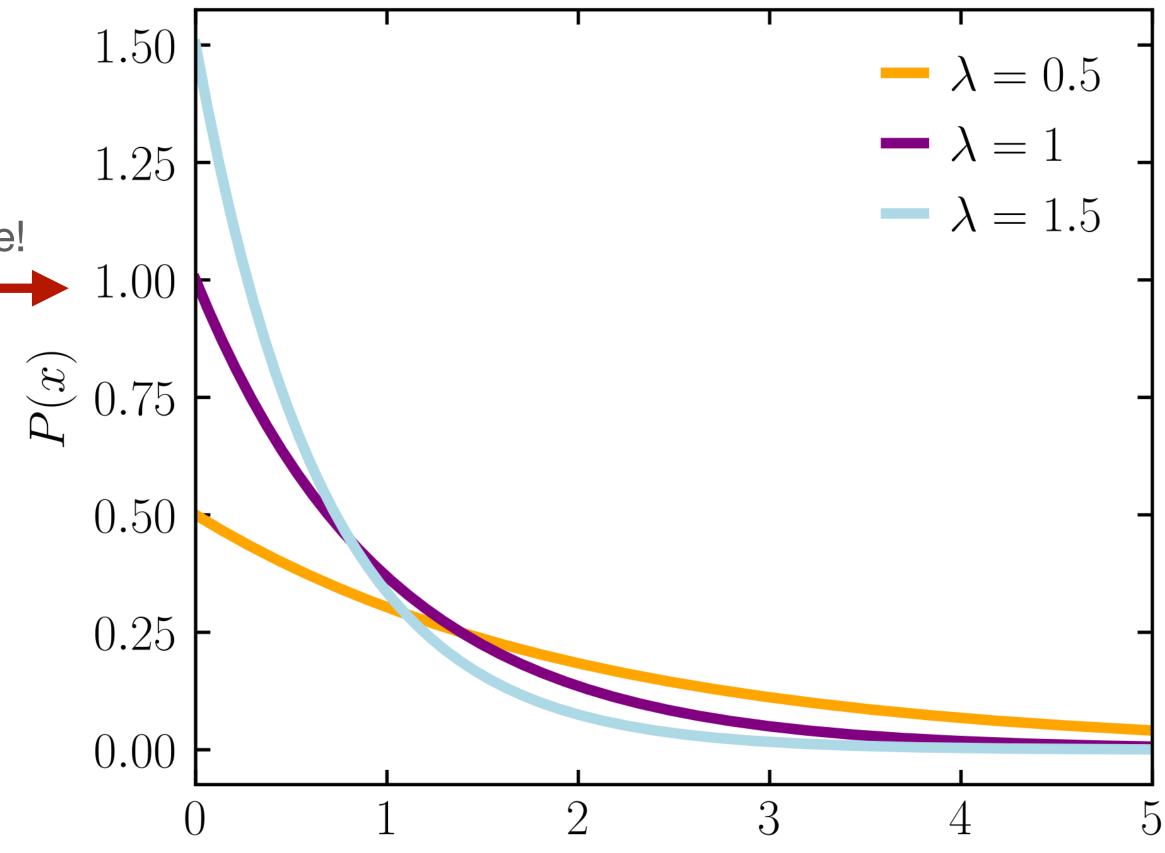
Useful PDFs: Exponential

An exponential distribution is a disparameter $\lambda > 0$.

 $\mathcal{X} = \mathbb{R}^+$

 $p(x) = \lambda \exp(-\lambda x)$ 1 is here!

An exponential distribution is a distribution over the positive reals. It has one



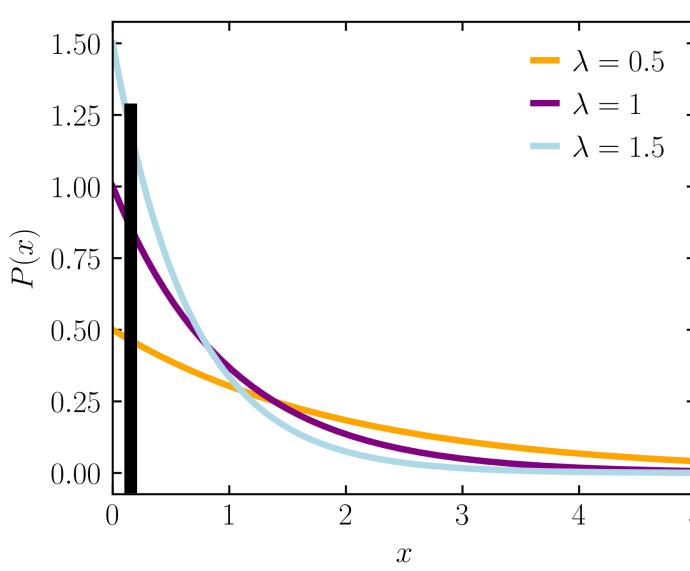
 \mathcal{X}

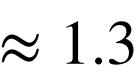
Why can the density be above 1?

Consider an interval event $A = [x, x + \Delta x]$, for small Δx . $P(A) = \int_{-\infty}^{x + \Delta x} p(x) \, dx \quad \text{e.g.}, x = 0.1, \ \Delta x = 0.01 \ p(x) = 1.5 \exp(-1.5x), \ p(0.1) \approx 1.3$ $\approx p(x)\Delta x$

- p(x) can be big, because Δx can be very small
 - In particular, p(x) can be bigger than 1
- But P(A) must be less than or equal to 1

- $p(X \in [0.1, 0.11]) \approx 1.3 \times 0.01 = 0.013$





Exercise

- \bullet 10 or July 9.
 - What is the outcome space and what is the event for this question? • Would we use a PMF or PDF to model these probabilities?
- Imagine I asked you to tell me the probability that the Uber would be here in between 3-5 minutes
 - What is the outcome space and what is the event for this question? • Would we use a PMF or PDF to model these probabilities?

Imagine I asked you to tell me the probability that my birthday is on February

Summary

- Probabilities are a means of quantifying uncertainty
- sample space and an event space.
- \bullet probability mass functions (PMFs)
- probability density functions (PDFs)
- abstract level with boolean expressions

• A probability distribution is defined on a measurable space consisting of a

Discrete sample spaces (and random variables) are defined in terms of

Continuous sample spaces (and random variables) are defined in terms of

Random variables let us reason about probabilistic questions at a more