
Optimization

CMPUT 296: Basics of Machine Learning 
 

Textbook §4.1-4.4

Logistics
Updates:

• Delay Assignment 2 deadline by 1 week

• Now Friday, March 19

• Delay Midterm by 1 week

• Now Thursday, March 25

• Thought Question 3 due sooner, but only for Chapter 7 and 8

• Now due Monday, March 15 instead of Thursday March 25

Lab this Week:
• Q&A for Assignment 2

Optimization
We often want to find the argument that minimizes an objective function

Example: Using linear regression to fit a dataset

• Estimate the targets by

• Each vector specifies a particular

•
Objective is the total error

w* c

w* = arg min
w

c(w)

{(xi, yi)}n
i=1

̂y = f(x) = w0 + w1x
w f

c(w) =
n

∑
i=1

(f(xi) − yi)2

x

y

f x()

(,)x y1 1

(,)x y2 2

e f x y1 1 1= () {

Stationary Points
• Recall that every minimum of an everywhere-differentiable function

must* occur at a stationary point: A point at which

✴ Question: What is the exception?

• However, not every stationary point is a minimum

• Every stationary point is either:

• A local minimum

• A local maximum

• A saddlepoint

• The global minimum is either a local minimum, or a boundary point

c(w)
c′￼(w) = 0

Local Minima

Global Minima

Saddlepoint

Global Minimum

Identifying the type of

the stationary point

• If function curved upwards (convex) locally, 
then local minimum

• If function curved downwards (concave) locally, 
then local maximum

• If function flat locally, then saddlepoint

• Locally, cannot distinguish between local min  
and global min (its a global property of the surface)

Local Minima

Global Minima

Saddlepoint

Global Minimum

Second derivative reflects curvature

Numerical Optimization
• So a simple recipe for optimizing a function is to find its stationary points;

one of those must be the minimum (as long as domain is unbounded)

• Question: Why don't we always just do that?

• We will almost never be able to analytically compute the minimum of the
functions that we want to optimize

✴ (Linear regression is an important exception)

• Instead, we must try to find the minimum numerically

• Main techniques: First-order and second-order gradient descent

Taylor Series

Definition: A Taylor series is a way of approximating a function in a small
neighbourhood around a point :

c
a

c(w) ≈ c(a) + c′￼(a)(w − a) +
c′￼′￼(a)

2
(w − a)2 + ⋯ +

c(k)(a)
k!

(w − a)k

= c(a) +
k

∑
i=1

c(i)(a)
i!

(w − a)i

Taylor Series Visualization

Taylor Series Visualization (2)

Appendix A

Optimization background

A.1 Second order optimization: Newton-Raphson

method

A function f(x) in the neighborhood of point x0, can be approximated using the
Taylor series as

f(x) =
1X

n=0

f (n)(x0)

n!
(x� x0)

n,

where f (n)(x0) is the n-th derivative of function f(x) evaluated at point x0. Also,
f(x) is considered to be infinitely differentiable. For practical reasons, we will
approximate this function using the first three terms of the series as

f(x) ⇡ f(x0) + (x� x0)f
0(x0) +

1

2
(x� x0)

2f 00(x0).

The optimum of this function can be found by finding the first derivative and setting
it to zero (technically, one should check the second derivative as well)

f 0(x) ⇡ f 0(x0) + (x� x0)f
00(x0) = 0.

Solving this equation for x gives us

x = x0 �
f 0(x0)

f 00(x0)
.

Note that the approach assumes that a good enough solution x0 already exists.
However, this equation, also provides a basis for an iterative process in finding the
optimum of function f(x). For example, if x(i) is the value of x in the i-th step,
then the value in step i+ 1 can be obtained as

x(i+1) = x(i) � f 0(x(i))

f 00(x(i))
. (A.1)

This method is called the Newton-Raphson method of optimization. We can gener-
alize this approach to functions of vector variables x =(x1, x2, . . . , xk). The Taylor
approximation for a vector function can be written as

123

degree 1, 3, 5, 7, 9, 11 and 13.

Approximating sin function

at point x0.  
What is x0? 

How can you tell?

Taylor Series

• Intuition: Following tangent line of the function approximates how it changes

• i.e., following a function with the same first derivative

• Following a function with the same first and second derivatives is a better

approximation; with the same first, second, third derivatives is even better; etc.

Definition: A Taylor series is a way of approximating a function in a small
neighbourhood around a point :

c
a

c(w) ≈ c(a) + c′￼(a)(w − a) +
c′￼′￼(a)

2
(w − a)2 + ⋯ +

c(k)(a)
k!

(w − a)k

= c(a) +
k

∑
i=1

c(i)(a)
i!

(w − a)i

Wtt , minimumthan)µ.we , of i

•
. I Notice↳Wtt c(w* ,) < clwt)((w) , l

l l

l l

-i¥w
W WTH

Second-Order Gradient Descent
(Newton-Raphson Method)

1. Approximate the target function with a second-order Taylor series around the current

guess :

2. Find the stationary point of the approximation

wt ̂c(w) = c(wt) + c′￼(wt)(w − wt) +
c′￼′￼(wt)

2
(w − wt)2

wt+1 ← wt −
c′￼(wt)
c′￼′￼(wt)

Second-Order Gradient Descent
(Newton-Raphson Method)

1. Approximate the target function with a
second-order Taylor series around the
current guess :

2. Find the stationary point of the approximation

3. If the stationary point of the approximation is

a (good enough) stationary point of the
objective, then stop. Else, goto 1.

wt

̂c(w) = c(wt) + c′￼(wt)(w − wt) +
c′￼′￼(wt)

2
(w − wt)2

wt+1 ← wt −
c′￼(wt)
c′￼′￼(wt)

0 =
d

dw [c(a) + c′￼(a)(w − a) +
c′￼′￼(a)

2
(w − a)2]

= c′￼(a) + 2
c′￼′￼(a)

2
w − 2

c′￼′￼(a)
2

a

= c′￼(a) + c′￼′￼(a)(w − a)

⟺ − c′￼(a) = c′￼′￼(a)(w − a)

⟺ (w − a) = −
c′￼(a)
c′￼′￼(a)

⟺ w = a −
c′￼(a)
c′￼′￼(a)

(First-Order) Gradient Descent
• We can run Newton-Raphson whenever we have access to both the

first and second derivatives of the target function

• Often we want to only use the first derivative (why?)

• First-order gradient descent: Replace the second derivative with a

constant (the step size) in the approximation:

• By exactly the same derivation as before:

1
η

̂c(w) = c(wt) + c′￼(wt)(w − wt)+
c′￼′￼(wt)

2
(w − wt)2

̂c(w) = c(wt) + c′￼(wt)(w − wt)+
1
2η

(w − wt)2

wt+1 ← wt − ηc′￼(wt)

Partial Derivatives
• So far: Optimizing univariate function

• But actually: Optimizing multivariate function

• is typically h u g e (is not uncommon)

• First derivative of a multivariate function is a vector of partial derivatives

c : ℝ → ℝ
c : ℝd → ℝ

d d ≫ 10,000

Definition:  

The partial derivative  

of a function at with respect to is , where

∂f
∂xi

(x1, …, xd)

f(x1, …, xd) x1, …, xd xi g′￼(xi)

g(y) = f(x1, …, xi−1, y, xi+1, …, xd)

Gradients
The multivariate analog to a first derivative is called a gradient.

Definition: 
The gradient of a function at is a vector of all the
partial derivatives of at :

∇f(x) f : ℝd → ℝ x ∈ ℝd

f x

∇f(x) =

∂f
∂x1

(x)

∂f
∂x2

(x)

⋮
∂f
∂xd

(x)

Multivariate Gradient Descent

• Notice the subscript on

• We can choose a different for each iteration

• Indeed, for univariate functions, Newton-Raphson can be understood as first-

order gradient descent that chooses a step size of at each iteration.

• Choosing a good step size is crucial to efficiently using first-order gradient descent

First-order gradient descent for multivariate functions is just:

c : ℝ → ℝ

wt+1 ← wt − ηt ∇c(wt)

t η
ηt

ηt =
1

c′￼′￼(wt)

(a) Step-size too small (b) Step-size too big (c) Adaptive step-size

Adaptive Step Sizes

• If the step size is too small, gradient descent will "work", but take forever

• Too big, and we can overshoot the optimum

• Ideally, we would choose

• But that's another optimization!

• There are some heuristics that we can use to adaptively guess good values for

ηt = arg min
η∈ℝ+

c (wt − η∇c(wt))

ηt

Line Search
A simple heuristic: line search

1. Try some largest-reasonable step size

2. Is ? 
If yes,

3. Otherwise, try  
(for) and goto 2

η(0)
t = ηmax

c (wt − η(s)
t ∇c(wt)) < c(wt)

wt+1 ← wt − η(s)
t ∇c(wt)

η(s+1)
t = τη(s)

t
τ < 1

Intuition:

• Big step sizes are better so long as
they don't overshoot

• Try a big step size! If it increases
the objective, we must have
overshot, so try a smaller one.

• Keep trying smaller ones until you
decrease the objective; then start
iteration from again.

• Typically

t + 1 ηmax

τ ∈ [0.5,0.9]

Do we have to use

a scalar stepsize?

• Or can we use a different stepsize per dimension? And why would we?

Wtt , minimumthan)µ. we ,
of i

&
,

I Notice¥¥t', c(w* ,) < clwt)
l l

l l

i
w white

Weights w
,
and wz

For fixed wheel
For fired w,

Vann. '
Wz

W
,

L
,
should be small 42 should be big

Optimization Properties
1. Maximizing is the same as minimizing :

2. Equivalence under constant shifts: Adding, subtracting, or multiplying
by a positive constant does not change the minimizer of a function:

3. Convex functions have a global minimum at every stationary point

c(w) −c(w)

arg max
w

c(w) = arg min
w

− c(w)

arg min
w

c(w) = arg min
w

c(w)+k = arg min
w

c(w)−k = arg min
w

kc(w) ∀k ∈ ℝ+

c is convex ⟺ c(tw1 + (1 − t)w2) ≤ tc(w1) + (1 − t)c(w2)

Summary
• We often want to find the argument that minimizes an objective function :

• Every interior minimum is a stationary point, so check the stationary points

• Stationary points usually identified numerically

• Typically, by gradient descent

• Choosing the step size is important for efficiency and correctness

• Common approach: Adaptive step size

• E.g., by line search

w* c
w* = arg min

w
c(w)

Exercise: Making your

own optimization algorithm

• Imagine I told you that you need to find

• Pretend you have never heard of gradient descent. What algorithm might
you design to find this?

• Now what if I told you that . Now how would
you solve

w* = arg min
w∈ℝd

c(w)

w ∈ 𝒲 = {1,2,3,...,1000}

w* = arg min
w∈𝒲

c(w)

