Optimization

CMPUT 296: Basics of Machine Learning

| ogistics

Updates:

* Delay Assignment 2 deadline by 1 week

 Now Friday, March 19

e Delay Midterm by 1 week
 Now Thursday, March 25

* Thought Question 3 due sooner, but only for Chapter 7 and 8
 Now due Monday, March 15 instead of Thursday March 25

Lab this Week:
o Q&A for Assignment 2

Optimization

We often want to find the argument w™* that minimizes an objective function ¢

wW* = arg min c(w)
W

Example: Using linear regression to fit a dataset {(xi, yi)}’fl |
=

» Estimate the targets by y = f(x) = wy + wx

» Each vector w specifies a particular f

n
Objective is the total error c(w) = Z (f(x) — yl-)2
i=1

Stationary Points

Recall that every minimum of an everywhere-differentiable function c(w)
must* occur at a stationary point: A point at which ¢'(w) = 0

* Question: \What is the exception? J\

Local Minima
However, not every stationary point iIs a minimum

Saddlepo_int _

—very stationary point Is either:
 Alocal minimum

 Alocal maximum

A saddlepoint

Global Minimum

The global minimum is either a local minimum, or a boundary point

|dentifying the type of
the stationary point

f function curved upwards (convex) locally,
then local minimum

Local Minima
f function curved downwards () locally,

then

Saddlepo_int _
f function flat locally, then saddlepoint

Locally, cannot distinguish between local min
and global min (its a global property of the surface)

Global Minimum

Second derivative reflects curvature

y [

104

\ 10
' ‘."*. — —: f -
-2 \ -1 / - [/‘2

| f(x) = 4t - 29 - 12y
204)
- ----/f"(.\') = 48x° - 12x - 24

f'(x) = 16x3 - 6x% - 24x

Numerical Optimization

SO a simple recipe for opt'mzmg a function is to find its stationary points;
one of those must be the minimum (as long as domain is unbounded)

e Question: \Why don't we always just do that?

We will almost never be able to analytically compute the minimum of the
functions that we want to optimize

* (Linear regression is an important exception)
Instead, we must try to find the minimum numerically

Main technigues: First-order and second-order gradient descent

Taylor Series

Definition: A Taylor series is a way of approximating a function ¢ in a small
neighbourhood around a point a;:

c(a)
k!

cw) ~ c(a) + c'(a)lw—a) + C”;a) (W — a)2 oo

k(@)
= c(a) + Z - ifcz) (w —a)’
=1

(w—a)'

Taylor Series Visualization

201
157

107

Taylor Series Visualization (2)

How can you tell?

10
O f(n) (ZIZO) " ¥ /
fa) =3 T @ a6
n=>0 4
Approximating sin function 2 |
at point x0. 0
What is x0? Y D
4
6
8

E pil

-10 -8 -6 4 -2 0 2 4 6 8 10

degree 1, 3, ,7,9,11 and

Taylor Series

Definition: A Taylor series is a way of approximating a function ¢ in a small
neighbourhood around a point a;:

4 (k)
c(w) % (@) + c@)(w — a) + - ;a) (W — @)+ e + = k('a)

D
—c(a)+z ()(w—a)i

(w—a)'

* [ntuition: Following tangent line of the function approximates how It changes
e |.e., following a function with the same first derivative

e Following a function with the same first and second derivatives is a better
approximation; with the same first, second, third derivatives is even better; etc.

Second-Order Gradient Descent
(Newton-Raphson Method)

1. Approximate the target function with a second-order Taylor series around the current
c"(w)

guess w; cw) =c(w) +c’'w)(w —w,) + > (W — wt)2
c'(w,)
Wip1 < W — ()

2. Find the stationary point of the approximation !

Second-Order Gradient Descent
(Newton-Raphson Method)

1. Approximate the target function with a 0- %
second-order Taylor series around the dw

current guess w.

c(a) + c'(a)(w—a) A c”;a) (W — a)zl

C//(a) C//(a)
I =c'(a)+ 2 w—2 a
n , c"(w,) 0 2 2
c(w) =cw) +c'(w)(w —w,) + > (w—w,)
=c'(a) + c"(a)(w — a)
2. FInd the stationary point of the approximation
, <~ —c'(a)=c"(a)(w—a)
C (Wt) /
Pl T W c’'(w,) — (W—a)=— c(a)
! c"(a)
3. Ifthe stationary point of the approximationis ~ _, _ c'(a)
a (good enough) stationary point of the c"(a)

objective, then stop. Else, goto 1.

(First-Order) Gradient Descent

We can run Newton-Raphson whenever we have access to both the
first and second derivatives of the target function

Often we want to only use the first derivative (why?)

First-order gradient descent: Replace the second derivative with a

|
constant — (the step size) in the approximation:
H
: , O 2
c(w) =c(w) + c'(w)(w — w)) > (w—w,)
1
cw) =cw) +c'w)(w — w4 o (W — wt)2

Sy exactly the same derivation as before:

Wi < w,—nc'(w,)

Partial Derivatives

« So far: Optimizing univariate function ¢ : R — |

d

— |

« But actually: Optimizing multivariate function ¢ : |

e distypicalyH U G E (d > 10,000 is not uncommon)

* First derivative of a multivariate function is a vector of partial derivatives

Definition:

0
he partial derivative —f(xl, ey X)
@xl-

of a function f(xy, ..., X,) at x{, ..., x, with respect to x; is g'(x,), where

g(Y) :f(x19 °'°’xi—1’y’xi+19 ...,Xd)

(Gradients

The multivariate analog to a first derivative Is called a gradient.

Definition:

partial derivatives of f at X:

The gradient V f(x) of a function f : | d

— R atX € |

VAX) = | %

d IS a vector of all the

Multivariate Gradient Descent

Sirst-order gradient descent for multivariate functions ¢ : R — R is just:

Wit = We T Ve(w)

 Notice the tm

» We can choose a different #, for each iteration

* |ndeed, for univariate functions, Newton-Raphson can be understood as first-

1

order gradient descent that chooses a step size of 77, = o) at each iteration.
c (w;

 (Choosing a good step size is crucial to efficiently using first-order gradient descent

Adaptive Step Sizes

fiw)

x
W W

(a) Step-size too small

f the step size is too small, gradient descent will "work", but take forever

Too big, and we can overshoot the optimum

[deally, we would choose #, = arg min ¢ (Wt /| Vc(wt))
neR™

e But that's another optimization!

There are some heuristics that we can use to adaptively guess good values for #,

| INne Search

Intuition:

A simple heuristic: line search | |
» Big step sizes are better so long as

1. Try some largest-reasonable step size they don't overshoot
0) — | o
N, " = Hmax Try a big step size! If it increases
(s) the objective, we must have
2. Isc (Wt — 1 VC(Wt)) < c(w)? overshot, so try a smaller one.

A)
tyes, w1 < w,— 1, VC(Wz) e Keep trying smaller ones until you

(s+1) _ . (s) aecrease the objective; then start

3. Otherwise, try 77, 1 teration £ + 1 from gy @gain.
(for T < 1) and goto 2

« Typically 7 € [0.5,0.9]

DO we have 1o use
a scalar stepsize?

 Or can we use a different stepsize per dimension”? And why would we?

ad W,

Fovr AXM \"/2.?’/

Fovr ‘[1)((0{ W

\Muyht& W\

|

_ C(l"/l:/l Wz)
7 \/C(w - NS

=

«, Should be b

o(\ JL\omlé(bt SVV\III/'

Optimization Properties

1. Maximizing c(w) is the same as minimizing —c(w):

arg max c(w) = arg min — c(w)

2. Equivalence under constant shifts: Adding, subtracting, or multiplying
by a positive constant does not change the minimizer of a function:

arg min c(w) = arg min c(w)+k = arg min c(w)—k = arg min kc(w) Vk € RT

3. Convex functions have a global minimum at every stationary point

cis convex <> c(tw; + (1 — Hw,) < tc(wy) + (1 = He(w,)

Summary

We often want to find the argument w* that minimizes an objective function c:

w* = arg min c(w)
W

—very interior minimum is a stationary point, so check the stationary points
Stationary points usually identified numerically

e TJypically, by gradient descent

Choosing the step size is important for efficiency and correctness

o Common approach: Adaptive step size

e E£.9., by line search

=xercise: Making your
own optimization algorithm

* |magine | told you that you need to find

wW* = arg min c(w)
weR?

* Pretend you have never heard of gradient descent. What algorithm might
you design to find this”

e Now what if | told youthatw € 7% = {1,2,3,...,1000}. Now how would
YOu solve

wW* = arg min c(w)
wWEW

