Review for Quiz Chapter 2 (Probability) Chapter 3 (Estimation):
 Bias, Variance, Concentration Inequalities

CMPUT 296: Basics of Machine Learning

Logistics

- Quiz during class on Thursday; come to regular zoom lecture earlier
- TAs will go over Assignment 1 in Lab on Wednesday
- Any questions/issues with starting Assignment 2?

Language of Probabilities

- Define random variables, and their distributions
- Then can formally reason about them
- Express our beliefs about behaviour of these RVs, and relationships to other RVs
- Examples:
- $p(x)$ Gaussian means we believe X is Gaussian distributed
- $p(y \mid X=x)$-or written $p(y \mid x)$ - is Gaussian says that conditioned on x, then y is Gaussian; but $\mathrm{p}(\mathrm{y})$ might not be Gaussian
- p(w) and p(w | Data)

PMFs and PDFs

- Discrete RVs have PMFs
- outcome space: e.g, $\Omega=\{1,2,3,4,5,6\}$
- examples pmfs: probability tables, Poisson $p(k)=\frac{\lambda^{k} e^{-\lambda}}{k!}$

- Continuous RVs have PDFs
- outcome space: e.g., $\Omega=[0,1]$
- example pdf: Gaussian, Gamma

A few questions

- Do PMFs $p(x)$ have to output values between $[0,1]$?
- Do PDFs $\mathrm{p}(\mathrm{x})$ have to output values between $[0,1]$?
- What other condition(s) are put on a function p to make it a valid pmf or pdf?
- Is the following function a pdf or a pmf?
. $p(x)=\left\{\begin{array}{ll}\frac{1}{b-a} & \text { if } a \leq x \leq b, \\ 0 & \text { otherwise. }\end{array} \quad\right.$ i.e., $p(x)=\frac{1}{b-a}$ for $x \in[a, b]$

How would you define a uniform distribution for a discrete RV

- Imagine $x \in\{1,2,3,4,5\}$
- What is the uniform pmf for this outcome space?
. $p(x)= \begin{cases}\frac{1}{5} & \text { if } x \in\{1,2,3,4,5\}, \\ 0 & \text { otherwise } .\end{cases}$

How do you answer the probabilistic question?

- For continuous RV X with a uniform distribution and outcome space $[0,10]$, what is the probability that X is greater than 7 ?

$$
\begin{aligned}
\operatorname{Pr}(X>7)=\int_{7}^{10} p(x) d x & =\int_{7}^{10} \frac{1}{10} d x \\
& =\frac{1}{10} \int_{7}^{10} d x=\left.\frac{1}{10} x\right|_{7} ^{10} \\
& =\frac{3}{10}
\end{aligned}
$$

Multivariate Setting

. Conditional distribution, $p(y \mid x)=\frac{p(x, y)}{p(x)}$, Marginal $p(y)=\sum_{x \in \mathscr{X}} p(x, y)$

- Chain Rule $p(x, y)=p(y \mid x) p(x)=p(x \mid y) p(y)$
- Bayes Rule $p(y \mid x)=\frac{p(x \mid y) p(y)}{p(x)}$
- Law of total probability $p(y)=\sum_{x \in X} p(y \mid x) p(x)$
- Question: How do you get the law of total probability from the chain rule?

Conditional Expectations

Definition:

The expected value of Y conditional on $X=x$ is

$$
\mathbb{E}[Y \mid X=x]= \begin{cases}\sum_{y \in \mathscr{Y}} y p(y \mid x) & \text { if } Y \text { is discrete } \\ \int_{\mathscr{Y}} y p(y \mid x) d y & \text { if } Y \text { is continuous. }\end{cases}
$$

Conditional Expectation Example

- X is the type of a book, 0 for fiction and 1 for non-fiction
- $p(X=1)$ is the proportion of all books that are non-fiction
- Y is the number of pages
- $p(Y=100)$ is the proportion of all books with 100 pages
- $p(y \mid X=0)$ is different from $p(y \mid X=1)$
- $\mathbb{E}[Y \mid X=0]$ is different from $\mathbb{E}[Y \mid X=1]$
- e.g. $\mathbb{E}[Y \mid X=0]=70$ is different from $\mathbb{E}[Y \mid X=1]=150$

Conditional Expectation Example (cont)

- $\quad p(y \mid X=0)$

$$
p(y \mid X=1)
$$

- $\mathbb{E}[Y \mid X=0]$ is the expectation over Y under distribution $p(y \mid X=0)$
- $\mathbb{E}[Y \mid X=1]$ is the expectation over Y under distribution $p(y \mid X=1)$

What if Y is dollars earned?

- Y is now a continuous RV
- What is $p(y \mid x)$?

What if Y is dollars earned?

- Y is now a continuous RV
- Notice that $p(y \mid x)$ is defined by $p(y \mid X=0)$ and $p(y \mid X=1)$
- What might be a reasonable choice for $p(y \mid X=0)$ and $p(y \mid X=1)$?

What if Y is dollars earned?

- Notice that $p(y \mid x)$ is defined by $p(y \mid X=0)$ and $p(y \mid X=1)$

Exercise

- Come up with an example of X and Y, and give possible choice for $p(y \mid x)$
- Do you need to know $p(x)$ to specify $p(y \mid x)$?

Properties of Expectations

- Linearity of expectation:
- $\mathbb{E}[c X]=c \mathbb{E}[X]$ for all constant c
- $\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]$
- Products of expectations of independent random variables X, Y :
- $\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$
- Law of Total Expectation:
- $\mathbb{E}[\mathbb{E}[Y \mid X]]=\mathbb{E}[Y]$

Linearity of Expectation for any X and Y

$$
\begin{aligned}
\mathbb{E}[X+Y] & =\sum_{x \in \mathscr{X}} \sum_{y \in \mathscr{Y}} p(x, y)(x+y) \\
& =\sum_{x \in \mathscr{X}} \sum_{y \in \mathscr{Y}} p(x, y) x+\sum_{x \in \mathscr{X}} \sum_{y \in \mathscr{Y}} p(x, y) y \\
& =\sum_{x \in \mathcal{X}} x \sum_{y \in \mathscr{y}} p(x, y)+\sum_{y \in \mathscr{y}} y \sum_{x \in \mathscr{X}} p(x, y) \\
& =\sum_{x \in \mathscr{X}} x p(x)+\sum_{y \in \mathscr{y}} y p(y) \\
& =\mathbb{E}[X]+\mathbb{E}[Y]
\end{aligned}
$$

Properties of Expectations for X and Y independent

$$
\begin{aligned}
\mathbb{E}[X Y] & =\sum_{x \in \mathscr{X}} \sum_{y \in \mathscr{Y}} p(x, y) x y \\
& =\sum_{x \in \mathscr{X}} \sum_{y \in \mathscr{Y}} p(y \mid x) p(x) x y \\
& =\sum_{x \in \mathscr{X}} x p(x) \sum_{y \in \mathscr{Y}} p(y \mid x) y \\
& =\sum_{x \in \mathscr{X}} x p(x) \mathbb{E}[Y \mid x] \\
& =\sum_{x \in \mathscr{X}} x p(x) \mathbb{E}[Y] \quad \text { since } X \text { and } Y \text { independent } \\
& =\mathbb{E}[X] \mathbb{E}[Y]
\end{aligned}
$$

Variance

Definition: The variance of a random variable is

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right] .
$$

i.e., $\mathbb{E}[f(X)]$ where $f(x)=(x-\mathbb{E}[X])^{2}$.

Equivalently,

$$
\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}
$$

Covariance

Definition: The covariance of two random variables is

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])] \\
& =\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y] .
\end{aligned}
$$

 Covariance

Properties of Variances

- $\operatorname{Var}[c]=0$ for constant c
- $\operatorname{Var}[c X]=c^{2} \operatorname{Var}[X]$ for constant c
- $\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]+2 \operatorname{Cov}[X, Y]$
- For independent X, Y, because $\operatorname{Cov}[X, Y]=0$

$$
\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]
$$

Estimators

Definition: An estimator is a procedure for estimating an unobserved quantity based on data.

Example: Estimating $\mathbb{E}[X]$ for r.v. $X \in \mathbb{R}$.

random

Questions:

Suppose we can observe a different variable Y. Is Y a good estimator of $\mathbb{E}[X]$ in the following cases? Why or why not?

1. $Y \sim$ Uniform $[0,10]$
2. $Y=\mathbb{E}[X]+Z$, where $Z \sim N\left(0,100^{2}\right)$
3. $Y=\frac{1}{n} \sum_{i=1}^{n} X_{i}$, for $X_{i} \sim p$

Independent and Identically Distributed (i.i.d.) Samples

- We usually won't try to estimate anything about a distribution based on only a single sample
- Usually, we use multiple samples from the same distribution
- Multiple samples: This gives us more information
- Same distribution: We want to learn about a single population
- One additional condition: the samples must be independent

Definition: When a set of random variables are X_{1}, X_{2}, \ldots are all independent, and each has the same distribution $X \sim F$, we say they are i.i.d. (independent and identically distributed), written

$$
X_{1}, X_{2}, \ldots \stackrel{i . i . d .}{\sim} F .
$$

Estimating Expected Value via the Sample Mean

Example: We have n i.i.d. samples from the same distribution F,

$$
X_{1}, X_{2}, \ldots, X_{n} \stackrel{i . i d}{\sim} F,
$$

with $\mathbb{E}\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$ for each X_{i}.

$$
\begin{aligned}
\mathbb{E}[\bar{X}] & =\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}\right] \\
& =\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right] \\
& =\frac{1}{n} \sum_{i=1}^{n} \mu
\end{aligned}
$$

We want to estimate μ.
Let's use the sample mean $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ to estimate μ.

$$
=\frac{1}{n} n \mu
$$

$$
=\mu .
$$

Bias

Definition: The bias of an estimator \hat{X} is its expected difference from the true value of the estimated quantity X :

$$
\operatorname{Bias}(\hat{X})=\mathbb{E}[\hat{X}]-\mathbb{E}[X]
$$

- Bias can be positive or negative or zero
- When $\operatorname{Bias}(\hat{X})=0$, we say that the estimator \hat{X} is unbiased

Questions:

What is the bias of the following estimators of $\mathbb{E}[X]$?

1. $Y \sim$ Uniform $[0,10]$
2. $Y=\mathbb{E}[X]+Z$, where
$Z \sim$ Uniform[0,1]
3. $Y=\mathbb{E}[X]+Z$, where $Z \sim N\left(0,100^{2}\right)$
4. $Y=\frac{1}{n} \sum_{i=1}^{n} X_{i}$

Variance of the Estimator

- Intuitively, more samples should make the estimator "closer" to the estimated quantity
- We can formalize this intuition partly by characterizing the variance $\operatorname{Var}[\hat{X}]$ of the estimator itself.
- The variance of the estimator should decrease as the number of samples increases
- Example: \bar{X} for estimating μ :
- The variance of the estimator shrinks linearly as the number of samples grows.

$$
\begin{aligned}
\operatorname{Var}[\bar{X}] & =\operatorname{Var}\left[\frac{1}{n} \sum_{i=1}^{n} X i\right] \\
& =\frac{1}{n^{2}} \operatorname{Var}\left[\sum_{i=1}^{n} X_{i}\right] \\
& =\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right] \\
& =\frac{1}{n^{2}} \sum_{i=1}^{n} \sigma^{2} \\
& =\frac{1}{n^{2}} n \sigma^{2}=\frac{1}{n} \sigma^{2} .
\end{aligned}
$$

Concentration Inequalities

- We would like to be able to claim $\operatorname{Pr}(|\bar{X}-\mu|<\epsilon)>1-\delta$ for some $\delta, \epsilon>0$
- $\operatorname{Var}[\bar{X}]=\frac{1}{n} \sigma^{2}$ means that with "enough" data, $\operatorname{Pr}(|\bar{X}-\mu|<\epsilon)>1-\delta$ for any $\delta, \epsilon>0$ that we pick
- Suppose we have $n=10$ samples, and we know $\sigma^{2}=81$; so $\operatorname{Var}[\bar{X}]=8.1$.
- Question: What is $\operatorname{Pr}(|\bar{X}-\mu|<2)$?

Variance Is Not Enough

Knowing $\operatorname{Var}[\bar{X}]=8.1$ is not enough to compute $\operatorname{Pr}(|\bar{X}-\mu|<2)$!

Examples:

$$
\begin{aligned}
& p(\bar{x})=\left\{\begin{array}{ll}
0.9 & \text { if } \bar{x}=\mu \\
0.05 & \text { if } \bar{x}=\mu \pm 9
\end{array} \Longrightarrow \operatorname{Var}[\bar{X}]=8.1 \text { and } \operatorname{Pr}(|\bar{X}-\mu|<2)=0.9\right. \\
& p(\bar{x})=\left\{\begin{array}{ll}
0.999 & \text { if } \bar{x}=\mu \\
0.0005 & \text { if } \bar{x}=\mu \pm 90
\end{array} \Longrightarrow \operatorname{Var}[\bar{X}]=8.1 \text { and } \operatorname{Pr}(|\bar{X}-\mu|<2)=0.999\right. \\
& p(\bar{x})=\left\{\begin{array}{ll}
0.1 & \text { if } \bar{x}=\mu \\
0.45 & \text { if } \bar{x}=\mu \pm 3
\end{array} \Longrightarrow \operatorname{Var}[\bar{X}]=8.1 \text { and } \operatorname{Pr}(|\bar{X}-\mu|<2)=0.1\right.
\end{aligned}
$$

Hoeffding's Inequality

Theorem: Hoeffding's Inequality
Suppose that X_{1}, \ldots, X_{n} are distributed i.i.d, with $a \leq X_{i} \leq b$. Then for any $\epsilon>0$,

$$
\operatorname{Pr}(|\bar{X}-\mathbb{E}[\bar{X}]| \geq \epsilon) \leq 2 \exp \left(-\frac{2 n \epsilon^{2}}{(b-a)^{2}}\right)
$$

Equivalently, $\operatorname{Pr}\left(|\bar{X}-\mathbb{E}[\bar{X}]| \leq(b-a) \sqrt{\frac{\ln (2 / \delta)}{2 n}}\right) \geq 1-\delta$.

Chebyshev's Inequality

Theorem: Chebyshev's Inequality

Suppose that X_{1}, \ldots, X_{n} are distributed i.i.d. with variance σ^{2}.
Then for any $\epsilon>0$,

$$
\operatorname{Pr}(|\bar{X}-\mathbb{E}[\bar{X}]| \geq \epsilon) \leq \frac{\sigma^{2}}{n \epsilon^{2}}
$$

Equivalently, $\operatorname{Pr}\left(|\bar{X}-\mathbb{E}[\bar{X}]| \leq \sqrt{\frac{\sigma^{2}}{\delta n}}\right) \geq 1-\delta$.

When to Use Chebyshev, When to Use Hoeffding?

- If $a \leq X_{i} \leq b$, then $\operatorname{Var}\left[X_{i}\right] \leq \frac{1}{4}(b-a)^{2}$
. Hoeffding's inequality gives $\epsilon=(b-a) \sqrt{\frac{\ln (2 / \delta)}{2 n}}=\sqrt{\frac{\ln (2 / \delta)}{2}}(b-a) \sqrt{\frac{1}{n}}$;
Chebyshev's inequality gives $\epsilon=\sqrt{\frac{\sigma^{2}}{\delta n}} \leq \sqrt{\frac{(b-a)^{2}}{4 \delta n}}=\frac{1}{2 \sqrt{\delta}}(b-a) \sqrt{\frac{1}{n}}$
- Hoeffding's inequality gives a tighter bound*, but it can only be used on bounded random variables

$$
\text { * whenever } \sqrt{\frac{\ln (2 / \delta)}{2}}<\frac{1}{2 \sqrt{\delta}} \Longleftrightarrow \delta<\sim 0.232
$$

- Chebyshev's inequality can be applied even for unbounded variables

Sample Complexity

Definition:

The sample complexity of an estimator is the number of samples required to guarantee an expected error of at most ϵ with probability $1-\delta$, for given δ and ϵ.

- We want sample complexity to be small
- Sample complexity is determined by:

1. The estimator itself

- Smarter estimators can sometimes improve sample complexity

2. Properties of the data generating process

- If the data are high-variance, we need more samples for an accurate estimate
- But we can reduce the sample complexity if we can bias our estimate toward the correct value

Sample Complexity

Definition:

The sample complexity of an estimator is the number of samples required to guarantee an expected error of at most ϵ with probability $1-\delta$, for given δ and ϵ.

For $\delta=0.05$, Chebyshev gives

$$
\begin{aligned}
& \epsilon=\sqrt{\frac{\sigma^{2}}{\delta n}}=\frac{1}{\sqrt{0.05}} \frac{\sigma}{\sqrt{n}} \\
& \Longleftrightarrow \epsilon=4.47 \frac{\sigma}{\sqrt{n}} \\
& \Longleftrightarrow \sqrt{n}=4.47 \frac{\sigma}{\epsilon} \\
& \Longleftrightarrow n=19.98 \frac{\sigma^{2}}{\epsilon^{2}}
\end{aligned}
$$

$$
\begin{array}{r}
\epsilon=1.96 \frac{\sigma}{\sqrt{n}} \\
\Longleftrightarrow \sqrt{n}=1.96 \frac{\sigma}{\epsilon} \\
\Longleftrightarrow n=3.84 \frac{\sigma^{2}}{\epsilon^{2}}
\end{array}
$$

Mean-Squared Error

- Bias: whether an estimator is correct in expectation
- Consistency: whether an estimator is correct in the limit of infinite data
- Convergence rate: how fast the estimator approaches its own mean
- For an unbiased estimator, this is also how fast its error bounds shrink
- We don't necessarily care about an estimator's being unbiased.
- Often, what we care about is our estimator's accuracy in expectation

Definition: Mean squared error of an estimator \hat{X} of a quantity X :

$$
\operatorname{MSE}(\hat{X})=\mathbb{E}\left[\left(\hat{X}-\underset{\text { different! }}{\mathbb{E}[X])^{2}}\right]\right.
$$

Bias-Variance Tradeoff

$\operatorname{MSE}(\hat{X})=\operatorname{Var}[\hat{X}]+\operatorname{Bias}(\hat{X})^{2}$

- If we can decrease bias without increasing variance, error goes down
- If we can decrease variance without increasing bias, error goes down
- Question: Would we ever want to increase bias?
- YES. If we can increase (squared) bias in a way that decreases variance more, then error goes down!
- Interpretation: Biasing the estimator toward values that are more likely to be true (based on prior information)

Downward-biased Mean Estimation

Example: Let's estimate μ given i.i.d X_{1}, \ldots, X_{n} with $\mathbb{E}\left[X_{i}\right]=\mu$ using: $Y=\frac{1}{n+100} \sum_{i=1}^{n} X_{i}$

This estimator is biased:

$$
\begin{aligned}
\mathbb{E}[Y] & =\mathbb{E}\left[\frac{1}{n+100} \sum_{i=1}^{n} X_{i}\right] \\
& =\frac{1}{n+100} \sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right] \\
& =\frac{n}{n+100} \mu
\end{aligned}
$$

$\operatorname{Bias}(Y)=\frac{n}{n+100} \mu-\mu=\frac{-100}{n+100} \mu$

This estimator has low variance:

$$
\begin{aligned}
\operatorname{Var}(Y) & =\operatorname{Var}\left[\frac{1}{n+100} \sum_{i=1}^{n} X_{i}\right] \\
& =\frac{1}{(n+100)^{2}} \operatorname{Var}\left[\sum_{i=1}^{n} X_{i}\right] \\
& =\frac{1}{(n+100)^{2}} \sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right] \\
& =\frac{n}{(n+100)^{2}} \sigma^{2}
\end{aligned}
$$

Estimating μ Near 0

Example: Suppose that $\sigma=1, n=10$, and $\mu=0.1$

$\operatorname{Bias}(\bar{X})=0$

$$
\begin{aligned}
\operatorname{MSE}(\bar{X}) & =\operatorname{Var}(\bar{X})+\operatorname{Bias}(\bar{X})^{2} \\
& =\operatorname{Var}(\bar{X}) \quad \operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{n} \\
& =\frac{1}{10}
\end{aligned}
$$

$\operatorname{MSE}(Y)=\operatorname{Var}(Y)+\operatorname{Bias}(Y)^{2}$

$$
\begin{aligned}
& =\frac{n}{(n+100)^{2}} \sigma^{2}+\left(\frac{100}{n+100} \mu\right)^{2} \\
& =\frac{10}{110^{2}}+\left(\frac{100}{110} 0.1\right)^{2} \\
& \approx 9 \times 10^{-4}
\end{aligned}
$$

Summary

- Concentration inequalities let us bound the probability of a given estimator being at least ϵ from the estimated quantity
- Sample complexity is the number of samples needed to attain a desired error bound ϵ at a desired probability $1-\delta$
- The mean squared error of an estimator decomposes into bias (squared) and variance
- Using a biased estimator can have lower error than an unbiased estimator
- Bias the estimator based some prior information
- But this only helps if the prior information is correct, cannot reduce error by adding in arbitrary bias

