Probability, continued

CMPUT 296: Basics of Machine Learning

§2.2-2.4

Hecap

- Probabilities are a means of quantifying uncertainty
- sample space and an event space.
- probability mass functions (PMFs)
- probability density functions (PDFs)

• A probability distribution is defined on a measurable space consisting of a

Discrete sample spaces (and random variables) are defined in terms of

• **Continuous** sample spaces (and random variables) are defined in terms of

- 1. Multiple Random Variables
- Independence 2.
- 3. Expectations and Moments

Outline

Recap: Random Variables

probability space in a more straightforward way.

 $\Omega = \{(left, 1), (right, 1), (left, 2), (right, 2), \dots, (right, 6)\}$

without thinking about where it landed.

We could ask about $P(X \ge 4)$, where X = number that comes up.

- **Random variables** are a way of reasoning about a complicated underlying
- **Example:** Suppose we observe both a die's number, and where it lands.

- We might want to think about the probability that we get a large number,

What About Multiple Variables?

- So far, we've really been thinking about a single random variable at a time
- Straightforward to define multiple random variables on a single probability space **Example:** Suppose we observe both a die's number, and where it lands. $\Omega = \{(left, 1), (right, 1), (left, 2), (right, 2), \dots, (right, 6)\}$ $X(\omega) = \omega_2 =$ number $Y(\omega) = \begin{cases} 1 & \text{if } \omega_1 = left \\ 0 & \text{otherwise.} \end{cases} = 1 \text{ if landed on left}$ $P(Y = 1) = P(\{\omega \mid Y(\omega) = 1\})$ $P(X \ge 4 \land Y = 1) = P(\{\omega \mid X(\omega) \ge 4 \land Y(\omega) = 1\})$

Joint Distribution

- We typically be model the interactions of different random variables.
- Joint probability mass function: μ

$$p(x, y) = P(X = x, Y = y)$$

$$p(x, y) = 1$$

$$\mathcal{Y}$$

Example: $\mathcal{X} = \{0,1\}$ (young, old) and $\mathcal{Y} = \{0,1\}$ (no arthritis, arthritis)

Questions About Multiple Variables **Example:** $\mathcal{X} = \{0,1\}$ (young, old) and $\mathcal{Y} = \{0,1\}$ (no arthritis, arthritis)

	Y=0	Y=1
X=0	P(X=0,Y=0) = 1/2	P(X=0, Y=1) = 1/100
X=1	P(X=1, Y=0) = 1/10	P(X=1, Y=1) = 39/100

- Are these two variables related at all? Or do they change independently?
- Given this distribution, can we determine the distribution over just Y? I.e., what is P(Y = 1)? (marginal distribution)
- If we knew something about one variable, does that tell us something about the distribution over the other? E.g., if I know X = 0 (person is young), does that tell me the conditional probability P(Y = 1 | X = 1)? (Prob. that person we know is young has arthritis)

Conditional Distribution

Definition: Conditional probability distribution

 $P(Y = y \mid X = x)$

This same equation will hold for the corresponding PDF or PMF:

 $p(y \mid x$

Question: if p(x, y) is small, does that imply that $p(y \mid x)$ is small? e.g., imagine x = arthritis and y = old

$$f(x) = \frac{P(X = x, Y = y)}{P(X = x)}$$

$$c) = \frac{p(x, y)}{p(x)}$$

PMFs and PDFs of Many Variables

In general, we can consider a d-dimensional random variable $\overline{X} = (X_1, \dots, X_d)$ with vectorvalued outcomes $\vec{x} = (x_1, \dots, x_d)$, with each x_i chosen from some \mathcal{X}_i . Then,

Discrete case:

 $p: \mathscr{X}_1 \times \mathscr{X}_2 \times \ldots \times \mathscr{X}_d \to [0,1]$ is a (joint) probability mass function if $\sum_{x_1 \in \mathcal{X}_1} \sum_{x_2 \in \mathcal{X}_2} \cdots \sum_{x_d \in \mathcal{X}_d} x_d \in \mathcal{X}_d$

Continuous case:

 $p: \mathscr{X}_1 \times \mathscr{X}_2 \times \ldots \times \mathscr{X}_d \to [0, \infty)$ is a (joint) probability density function if $\int_{\mathcal{X}_1} \int_{\mathcal{X}_2} \cdots \int_{\mathcal{X}_d} p(x_1, y)$

$$\sum_{\substack{\substack{i \in \mathcal{X}_d}}} p(x_1, x_2, \dots, x_d) = 1$$

$$x_2, \dots, x_d$$
) $dx_1 dx_2 \dots dx_d = 1$

Marginal Distributions

A marginal distribution is defined for a subset of X by summing or integrating out the remaining variables. (We will often say that we are "marginalizing over" or "marginalizing out" the remaining variables).

Discrete case: $p(x_i) = \sum \cdots \sum$ $x_1 \in \mathcal{X}_1 \qquad x_{i-1} \in \mathcal{X}$

$$\sum_{i=1}^{n} \sum_{x_{i+1} \in \mathcal{X}_{i+1}} \cdots \sum_{x_d \in \mathcal{X}_d} p(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_d)$$
$$\int_{\mathcal{X}_d} p(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_d) \, dx_1 \dots dx_{i-1} dx_{i+1} \dots dx_d$$

Back to our example

Example: $\mathscr{X} = \{0,1\}$ (young, old) and $\mathscr{Y} = \{0,1\}$ (no arthritis, arthritis)

Y= P(X=0,Y=1/2 X=0 P(X=1, Y X=1

Exercise: Check if $\sum p(x, y) = 1$ $x \in \{0,1\} \ y \in \{0,1\}$

Exercise: Compute marginal p(y) =

0	Y=1
′=0) =	P(X=0, Y=1) =
2	1/100
Y=0) =	P(X=1, Y=1) =
0	39/100

$$\sum_{x \in \{0,1\}} p(x, y)$$

Back to our example (cont)

Example: $\mathscr{X} = \{0,1\}$ (young, old) and $\mathscr{Y} = \{0,1\}$ (no arthritis, arthritis)

Y=0 X=0 P(X=0,Y= 1/2 P(X=1, Y 1/1(

• Exercise: Check if $\sum_{x \in \{0,1\}} \sum_{y \in \{0,1\}} p(x,y) = 1/2 + 1/100 + 1/10 + 39/100 = 1$

Exercise: Compute marginal p(y = 1) =

 $p(y = 0) = 1 - p(y = 1) = \frac{60}{100}$

0	Y=1
′=0) =	P(X=0, Y=1) =
2	1/100
Y=0) =	P(X=1, Y=1) =
0	39/100

$$= \sum_{x \in \{0,1\}} p(x, y = 1) = 40/100,$$

Marginal Distributions

"marginalizing out" the remaining variables).

Discrete case: $p(x_i) = \sum \cdots \sum$ $x_1 \in \mathcal{X}_1 \qquad x_{i-1} \in \mathcal{X}_{i-1}$ **Continuous:** $p(x_i) = \int_{\mathcal{X}_1} \cdots \int_{\mathcal{X}_{i-1}} \int_{\mathcal{X}_{i+1}} \cdots \int_{\mathcal{X}_d}$

Question: How do we get $p(x_i, x_j)$ for some i, j? **Question:** Why *p* for $p(x_i)$ and $p(x_1, \ldots, x_d)$? • They can't be the same function, they have different domains!

A marginal distribution is defined for a subset of \overline{X} by summing or integrating out the remaining variables. (We will often say that we are "marginalizing over" or

$$\sum_{\substack{1 \ x_{i+1} \in \mathcal{X}_{i+1} \\ x_d \in \mathcal{X}_d}} \cdots \sum_{\substack{x_d \in \mathcal{X}_d}} p(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_d)$$

$$p(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_d) \, dx_1 \dots dx_{i-1} dx_{i+1} \dots dx_d$$

Are these really the same function?

- **No.** They're not the same function. \bullet
- But they are **derived** from the **same joint distribution**. \bullet
- So for brevity we will write

 $p(y \mid x)$

Even though it would be more precise to write something like \bullet

 $p_{Y|X}(y \mid x)$

$$x) = \frac{p(x, y)}{p(x)}$$

$$x) = \frac{p(x, y)}{p_X(x)}$$

• We can tell which function we're talking about from context (i.e., arguments)

Chain Rule

From the definition of conditional probability:

- $\Leftrightarrow p(y \mid x)p(x)$
- $\iff p(y \mid x)p(x) = p(x, y)$

This is called the **Chain Rule**.

 $=\frac{p(x,y)}{p(x)}$ $p(y \mid x)$ $=\frac{p(x,y)}{p(x)}p(x)$

Multiple Variable Chain Rule

The chain rule generalizes to multiple variables:

$$p(x, y, z) = p(x, y \mid z)p(z) = p(x \mid y, z)p(y \mid z)p(z)$$

Definition: Chain rule $p(x_1, \dots, x_d) = p$ = p

p(y,z)

d-1 $p(x_1, ..., x_d) = p(x_d) \prod_{i=1}^{n} p(x_i \mid x_{i+1}, ..., x_d)$ i=1 $= p(x_1) \int p(x_i \mid x_i, \dots, x_{i-1})$ i=2

Bayes' Rule

From the chain rule, we have:

- Often, $p(x \mid y)$ is easier to compute than $p(y \mid x)$
 - e.g., where x is features and y is label

 $p(x, y) = p(y \mid x)p(x)$ $= p(x \mid y)p(y)$

Example: Disease Test

Example:

p(Test = pos | Dis = T) = 0.99p(Test = pos | Dis = F) = 0.03p(Dis = T) = 0.005

Questions:

- 1. What is the likelihood?
- 2. What is the prior?

What is p(Dis = T | Test = pos)? 3.

Independence of Random Variables

Definition: X and Y are independent if: p(x, y) = p(x)p(y)X and Y are conditionally independent given Z if:

 $p(x, y \mid z) = p(x \mid z)p(y \mid z)$

Another Marginalization Example

- Imagine you get to draw two random candies from a bag of treats \bullet
- Say there are 5 types of candies (1, 2, 3, 4, 5), equally distributed in the bag
- Let X = First Candy You Got and Y = Second Candy You Got
- What is p(X = 1)?
- What is p(X = 1, Y = 3)?

Independence of Random Variables

Definition: X and Y are independent if: p(x, y) = p(x)p(y)X and Y are conditionally independent given Z if:

 $p(x, y \mid z) = p(x \mid z)p(y \mid z)$

Example: Coins (Ex.7 in the course text)

- Suppose you have a biased coin: It does not come up heads with probability 0.5. Instead, it is more likely to come up heads.
- Let Z be the bias of the coin, with $\mathscr{Z} = \{0.3, 0.5, 0.8\}$ and probabilities P(Z = 0.3) = 0.7, P(Z = 0.5) = 0.2 and P(Z = 0.8) = 0.1.
 - Question: What other outcome space could we consider?
 - **Question:** What kind of distribution is this?
 - Question: What other kinds of distribution could we consider?

Example: Coins (2)

- Now imagine I told you Z = 0.3 (i.e., probability of heads is 0.3)
- Let X and Y be two consecutive flips of the coin
- What is P(X = Heads | Z = 0.3)? What about P(X = Tails | Z = 0.3)?
- What is P(Y = Heads | Z = 0.3)? What about P(Y = Tails | Z = 0.3)?
- | s P(X = x, Y = y | Z = 0.3) = P(X = x | Z = 0.3)P(Y = y | Z = 0.3)?

Example: Coins (3)

- Now imagine we do not know Z
 - e.g., you randomly grabbed it from a bin of coins with probabilities
- What is P(X = Heads)?
 - $P(X = Heads) = \sum_{n=1}^{\infty}$ $z \in \{0.3, 0.5, 0.8\}$
 - = P(X = Head)
 - +P(X = Heads)
 - +P(X = Heads)
 - $= 0.3 \times 0.7 + 0.10$

P(Z = 0.3) = 0.7, P(Z = 0.5) = 0.2 and P(Z = 0.8) = 0.1

$$P(X = Heads | Z = z)p(Z = z)$$

$$|Z = 0.3)p(Z = 0.3)$$
$$|Z = 0.5)p(Z = 0.5)$$
$$|Z = 0.8)p(Z = 0.8)$$
$$0.5 \times 0.2 + 0.8 \times 0.1 = 0.39$$

Example: Coins (4)

- Now imagine we do not know Z
 - e.g., you randomly grabbed it from a bin of coins with probabilities
- |s P(X = Heads, Y = Heads) = P(X = Heads)p(Y = Heads)?
 - For brevity, lets use h for Heads

$$P(X = h, Y = h) = \sum_{z \in \{0.3, 0.5, 0.8\}}$$
$$= \sum_{z \in \{0.3, 0.5, 0.8\}}$$

P(Z = 0.3) = 0.7, P(Z = 0.5) = 0.2 and P(Z = 0.8) = 0.1

P(X = h, Y = h | Z = z)p(Z = z)

P(X = h | Z = z)P(Y = h | Z = z)p(Z = z)

Example: Coins (4)

- P(Z = 0.3) = 0.7, P(Z = 0.5) = 0.2 and P(Z = 0.8) = 0.1
- ls P(X = Heads, Y = Heads) = P(X = Heads)p(Y = Heads)?
 - $P(X = h, Y = h) = \sum_{z \in 0} P(X = h, Y = h | Z = z)p(Z = z)$
 - $z \in \{0.3, 0.5, 0.8\}$

- $= \sum_{z \in \{0.3, 0.5, 0.8\}} P(X = h | Z = z) P(Y = h | Z = z) p(Z = z)$
- = P(X = h | Z = 0.3)P(Y = h | Z = 0.3)p(Z = 0.3)
- +P(X = h | Z = 0.5)P(Y = h | Z = 0.5)p(Z = 0.5)
- +P(X = h | Z = 0.8)p(Y = h | Z = 0.8)p(Z = 0.8)
- $= 0.3 \times 0.3 \times 0.7 + 0.5 \times 0.5 \times 0.2 + 0.8 \times 0.8 \times 0.1$ $= 0.177 \neq 0.39 * 0.39 = 0.1521$

Example: Coins (4)

- Let Z be the bias of the coin, with $\mathscr{Z} = \{0.3, 0.5, 0.8\}$ and probabilities P(Z = 0.3) = 0.7, P(Z = 0.5) = 0.2 and P(Z = 0.8) = 0.1.
- Let X and Y be two consecutive flips of the coin
- Question: Are X and Y conditionally independent given Z?
 - i.e., P(X = x, Y = y | Z = z) = P(X = x | Z = z)P(Y = y | Z = z)
- Question: Are X and Y independent?
 - i.e. P(X = x, Y = y) = P(X = x)P(Y = y)

The Distribution Changes Based on What We Know

- The coin has some true bias z
- If we know that bias, we reason about P(X = x | Z = z)
 - Namely, the probability of x **given** we know the bias is z
- If we know do not know that bias, then from our perspective the coin outcomes follows probabilities P(X = x)
 - The world still flips the coin with bias z
- Conditional independence is a property of the distribution we are reasoning about, not an objective truth about outcomes

A bit more intuition

- If we know do not know that bias, then from our perspective the coin outcomes follows probabilities P(X = x, Y = y)
 - and X and Y are correlated
- If we know X = h, do we think it's more likely Y = h? i.e., is P(X = h, Y = h) > P(X = h, Y = t)?

My brain hurts, why do I need to know about coins?

- i.e., how is this relevant
- \bullet
- You can ask: $P(Z = z | X_1 = H, X_1)$

See 10 Heads and 2 Tails p(z)0.3 0.5 0.8

Let's imagine you want to infer (or learn) the bias of the coin, from data • data in this case corresponds to a sequence of flips X_1, X_2, \ldots, X_n

$$X_2 = H, X_3 = T, \dots, X_n = H$$

More uses for independence and conditional independence

- use X as a feature to predict Y?
- \bullet average. If you could measure Z = Smokes, then X and Y would be conditionally independent given Z.
 - correlations
- We will see the utility of conditional independence for learning models

• If I told you X = roof type was **independent** of Y = house price, would you

Imagine you want to predict Y = Has Lung Cancer and you have an indirect correlation with X = Location since in Location 1 more people smoke on

• Suggests you could look for such causal variables, that explain these

Expected Value

variable over its domain.

The expected value of a random variable is the weighted average of that

Relationship to Population Average and Sample Average

- Or Population Mean and Sample Mean
- Population Mean = Expected Value, Sample Mean estimates this number
- e.g., Population Mean = average height of the entire population
- For RV X = height, p(x) gives the probability that a randomly selected person has height x
- Sample average: you randomly sample n heights from the population
 - implicitly you are sampling heights proportionally to p
- As n gets bigger, the sample average approaches the true expected value

Expected Value with Functions

The expected value of a function $f: \mathcal{X} \to \mathbb{R}$ of a random variable is the weighted average of that function's value over the domain of the variable.

Definition: Expected value of a function of a random variable $\mathbb{E}[f(X)] = \begin{cases} \sum_{x \in \mathcal{X}} f(x)p(x) & \text{if } X \text{ is discrete} \\ \int_{\mathcal{X}} f(x)p(x) \, dx & \text{if } X \text{ is continuous.} \end{cases}$

Example:

Suppose you get \$10 if heads is flipped, or lose \$3 if tails is flipped. What are your winnings **on expectation**?

Expected Value Example

Example:

Suppose you get \$10 if heads is flipped, or lose \$3 if tails is flipped. What are your winnings **on expectation**?

X is the outcome of the coin flip, 1 for heads and 0 for tails

$$f(x) = \begin{cases} 3 & \text{if } X = 0\\ 10 & \text{if } X = 1 \end{cases}$$

Y = f(X) is a new random variable $\mathbb{E}[Y] = \mathbb{E}[f(X)] = \sum f(x)p(x) = f(0)p(0) + f(1)p(1) = .5 \times 3 + .5 \times 10 = 6.5$ $x \in \mathcal{X}$

 $\mathbb{E}[X] = 3$ $\mathbb{E}[X^2] \simeq 10$

Expected Value is a Lossy Summary

 $\mathbb{E}[X] = 3$ $\mathbb{E}[X^2] \simeq 12$

Definition: The expected value of Y conditional on X = x is $\mathbb{E}[Y \mid X = x] = \begin{cases} \sum_{y \in \mathscr{Y}} yp(y \mid x) & \text{if } Y \text{ is discrete,} \\ \int_{\mathscr{Y}} yp(y \mid x) \, dy & \text{if } Y \text{ is continuous.} \end{cases}$

Conditional Expectations

Conditional Expectation Example

- X is the type of a book, 0 for fiction and 1 for non-fiction
 - p(X = 1) is the proportion of all books that are non-fiction
- Y is the number of pages
 - p(Y = 100) is the proportion of all books with 100 pages
- $\mathbb{E}[Y|X=0]$ is different from $\mathbb{E}[Y|X=1]$
 - e.g. $\mathbb{E}[Y|X=0] = 70$ is different from $\mathbb{E}[Y|X=1] = 150$
- Another example: $\mathbb{E}[X|Z=0.3]$ the expected outcome of the coin flip given that the bias is 0.3 ($\mathbb{E}[X|Z=0.3] = 0 \times 0.7 + 1 \times 0.3 = 0.3$)

Conditional Expectation Example (cont)

• What do we mean by p(y | X = 0)? How might it differ from p(y | X = 1)

Lots of shorter books

Lots of medium length books

A long tail, a few very long books

Conditional Expectation Example (cont)

• What do we mean by p(y | X = 0)? How might it differ from p(y | X = 1)

• $\mathbb{E}[Y|X=0]$ is the expectation over Y under distribution p(y|X=0)• $\mathbb{E}[Y|X=1]$ is the expectation over Y under distribution p(y|X=1)

Definition: The expected value of Y conditional on X = x is $\mathbb{E}[Y \mid X = x] = \begin{cases} \sum_{y \in \mathscr{Y}} yp(y \mid x) & \text{if } Y \text{ is discrete,} \\ \int_{\mathscr{Y}} yp(y \mid x) \, dy & \text{if } Y \text{ is continuous.} \end{cases}$

Question: What is $\mathbb{E}[Y \mid X]$?

Conditional Expectations

Properties of Expectations

- Linearity of expectation: \bullet
 - $\mathbb{E}[cX] = c\mathbb{E}[X]$ for all constant c
 - $\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]$
- Products of expectations of independent random variables X, Y:
 - $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$
- Law of Total Expectation:
 - $\mathbb{E}\left[\mathbb{E}\left[Y \mid X\right]\right] = \mathbb{E}[Y]$
- **Question:** How would you prove these?

$$\mathbb{E}[Y] = \sum_{y \in \mathscr{Y}} yp(y) \qquad \text{def. marginal distr}$$

$$= \sum_{y \in \mathscr{Y}} \sum_{y \in \mathscr{Y}} p(x, y) \qquad \text{def. marginal distr}$$

$$= \sum_{x \in \mathscr{X}} \sum_{y \in \mathscr{Y}} yp(x, y) \qquad \text{rearrange}$$

$$= \sum_{x \in \mathscr{X}} \sum_{y \in \mathscr{Y}} yp(y \mid x)p(x) \qquad \text{Cha}$$

$$= \sum_{x \in \mathscr{X}} \left(\sum_{y \in \mathscr{Y}} yp(y \mid x) \right) p(x) \qquad \text{def. E[Y]}$$

$$= \sum_{x \in \mathscr{X}} \left(\mathbb{E}[Y \mid X = x] \right) p(x) \qquad \text{def. E[Y]}$$

$$= \mathbb{E} \left(\mathbb{E}[Y \mid X] \right) \blacksquare \qquad \text{def. expected value of full}$$

Variance

Definition: The variance of a random variable is

i.e., $\mathbb{E}[f(X)]$ where $f(x) = (x - \mathbb{E}[X])^2$. Equivalently,

 $Var(X) = \mathbb{E}\left[X^2\right] - \left(\mathbb{E}[X]\right)^2$

(**Exercise:** Show that this is true)

 $\operatorname{Var}(X) = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right].$

Covariance

Definition: The **covariance** of two random variables is

Large Negative Covariance

Question: What is the range of Cov(X, Y)?

- $Cov(X, Y) = \mathbb{E}\left[(X \mathbb{E}[X])^2\right]$ $= \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y].$

Near Zero Covariance

Large Positive

Covariance

Correlation

Definition: The **correlation** of two random variables is

Large Negative Covariance

Question: What is the range of Corr(X, Y)? hint: Var(X) = Cov(X, X)

 $Corr(X, Y) = \frac{Cov(X, Y)}{\sqrt{Var(X)Var(Y)}}$

Near Zero Covariance

Large Positive Covariance

- Var[c] = 0 for constant c
- $Var[cX] = c^2 Var[X]$ for constant c
- Var[X + Y] = Var[X] + Var[Y] + 2Cov[X, Y]
- For independent X, Y, Var[X + Y] = Var[X] + Var[Y] (why?)

Properties of Variances

Independence and Decorrelation • Recall if X and Y are independent, then $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$

- Independent RVs have zero correlation (**why?**) \bullet hint: $Cov[X, Y] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$
- Uncorrelated RVs (i.e., Cov(X, Y) = 0) might be dependent (i.e., $p(x, y) \neq p(x)p(y)$).
 - Correlation (Pearson's correlation coefficient) shows linear relationships; but can miss nonlinear relationships
 - **Example:** $X \sim \text{Uniform}\{-2, -1, 0, 1, 2\}, Y = X^2$ • $\mathbb{E}[XY] = .2(-2 \times 4) + .2(2 \times 4) + .2(-1 \times 1) + .2(1 \times 1) + .2(0 \times 0)$
- - $\mathbb{E}[X] = 0$
 - So $\mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y] = 0 0\mathbb{E}[Y] = 0$

Summary

- Random variables takes different values with some probability
- The value of one variable can be informative about the value of another
 - Distributions of multiple random variables are described by the **joint** probability distribution (joint PMF or joint PDF)
 - You can have a new distribution over one variable when you condition on the other
- The expected value of a random variable is an average over its values, weighted by the probability of each value
- The variance of a random variable is the expected squared distance from the mean
- The **covariance** and **correlation** of two random variables can summarize how changes in one are informative about changes in the other.

- commute times
- We want to model commute time as a Gaussian
- with a Gaussian?

Let's revisit the commuting example, and assume we collect continuous

$$p(\omega) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(\omega-\mu)^2}$$

What parameters do I have to specify (or learn) to model commute times

A better choice is actually what is called a Gamma distribution

- We can also consider conditional distributions p(y | x)
- Y is the commute time, let X be the month
- Why is it useful to know p(y | X = Feb) and p(y | X = Sept)?
- What else could we use for X and why pick it?

- Let use a simple X, where it is 1 if it is slippery out and 0 otherwise \bullet

p(y|X =p(y|X =

Then we could model two Gaussians, one for the two types of conditions

$$0) = \mathcal{N}\left(\mu_0, \sigma_0^2\right)$$
$$1) = \mathcal{N}\left(\mu_1, \sigma_1^2\right)$$

Gaussian denoted by N

Eventually we will see how to model
 of other variables (features) X

$$p(y|\mathbf{x}) = \mathcal{N}$$

• Eventually we will see how to model the distribution over Y using functions

