Probabllity, continued

CMPUT 296: Basics of Machine Learning



Recap

Probabillities are a means of quantifying uncertainty

A probabillity distribution is defined on a measurable space consisting of a
sample space and an event space.

Discrete sample spaces (and random variables) are defined in terms of
probability mass functions (PMFs)

Continuous sample spaces (and random variables) are defined in terms of
probability density functions (PDFs)




Outline

1. Multiple Random Variables
2. Independence

3. EXxpectations and Moments



Recap: Random Variables

Random variables are a way of reasoning about a complicated underlying
probabillity space in a more straightforward way.

Example: Suppose we observe both a die's number, and where it lands.
Q = {(left,1), (right,1), (left,2), (right,2), ..., (right,6)}

We might want to think about the probability that we get a large number,
without thinking albout where it landeq.

We could ask about P(X > 4), where X = number that comes up.



What About Multiple Variables®

e 5o far, we've really been thinking about a single random variable at a time
o Straightforward to define multiple random variables on a single probability space

Example: Suppose we observe both a die's number, and where it lands.
Q = {(left,1), (right,1), (left,2), (right,2), ..., (right,6)}

X(w) = @, = number

P
Y(w) = {1 e left} = ] if landed on left

0 otherwise.

PY=1)=P({w | Y(w) =1})
PX>4ANY=1)=P({w | X(w) 24 ANY(w)=1})



Joint Distribution

We typically be model the interactions of different random variables.

Joint probability mass function: p(x,y) = P(X =x,Y = y)

Z Zp(x,y)=1

xXeEX yeY

Example: 2 = {0,1} (young, old) and % = {0,1} (no arthritis, arthritis)

Y=0 Y=1
""" w_g PX=0Y=0)= P(X=0, Y=1)=
1/2 1/100




Questions About Multiple Variables

Example: 2 = {0,1} (young, old) and % = {0,1} (no arthritis, arthritis)

=0 =1
""" weg PX=0Y=0)= P(X=0,Y=1)=
e e 17100
X=1 P(X=1,Y=0) = PX=1, Y=1) =
- 1/10 39/100

* Are these two variables related at all? Or do they change independently?

* Given this distribution, can we determine the distribution over just Y*?
.e., what is P(Y = 1)? (marginal distribution)

* [f we knew something about one variable, does that tell us something albout the distribution
over the other? E.g., if | know X = O (person is young), does that tell me the
conditional probability P(Y =1 | X = 1)? (Prob. that person we know is young has arthritis)




Conditional Distribution

Definition: Conditional probability distribution
PX=x,Y=Yy)

PY=y|X=1x) = POX = 0

This same equation will hold for the corresponding PDF or PMF;

px,y)
p(x)

ply | x) =

Question: if p(x, y) is small, does that imply that p(y | x) is small?

e.g., Imagine x = arthritis and y = old



PVIFs and PDEFs of Many Variaples

In general, we can consider a d-dimensional rando

valued outcomes x = (xq, ..., X,;), Wit

Discrete case:

n each X; C

M variable X = (X, ..., X ;) with vector-

nosen from some &',. Then,

p: X XAy X...X,;— [0,1]is a (joint) probability mass function if

Z Z Z p(Xi, Xy oy xy) = 1

XIESXI Xzeg‘z

Continuous case:

x,€ ,

p: X XAy X ... XX ,;— [0,00)is a (joint) probability density function if

)L

1 2 d

J p(xy, X, ..
q

LX) dxdx,...dx; =1



Marginal Distributions

A marginal distribution is defined for a subset of )_{ oy summing or

integrating out the remaining variables. (We will often say that we are
"marginalizing over" or "marginalizing out" the remaining variables).

Discrete case: p(x) = Z Z Z Z PXYy s Xi_ 15 Xjp 1o - s X )

XEL | X €L 1 X €Ly XE€

l

Continuous: p(x) = J' J J J PX[s oo s X5 X s oo Xg) dXy. . odX;_1dX; .. .dXy
L9 X

t/Cz‘l i—1 i+1 d



Back to our example

Example: 2 = {0,1} (young, old) and % = {0,1} (no arthritis, arthritis)

=0 =1
""" weg PX=0Y=0)= P(X=0,Y=1)=
e e 17100
X=1 P(X=1,Y=0) = PX=1, Y=1) =
- 1/10 39/100

Exercise: Checkif ) ) p(x,y) = I
x€{0,1} ye{0,1}

Exercise: Compute marginal p(y) = Z px,y)
x€{0,1}



Back to our example (cont)

Example: 2 = {0,1} (young, old) and % = {0,1} (no arthritis, arthritis)

=0 =1
""" wog PX=0Y=0)= P(X=0,Y=1)=
e e 17100
X=1 P(X=1,Y=0) = PX=1, Y=1) =
S 1/10 39/100

Exercise: Checkif ) p(x,y) = 1/2+ 17100 + 1/10 + 39/100 = I
x€{0,1} ye{0,1}

Exercise: Compute marginal p(y = 1) = Z px,y=1) =40/100,
x€{0,1}

py=0)=1-p(y=1)=60/100



Marginal Distributions

A marginal distribution is defined for a subset of X by summing or integrati
out the remaining variables. (We will often say that we are "marginalizing over

"marginalizing out” the remaining variables).

Discrete case: p(x; = Z Z Z Z DXy ooy X3 Xji s e s X7)

€L X €L €Ly XEX

Continuous: p(x) = J

%1 i—1 i+1 d
Question: How do we get p(x;, xj) for some i, |?

Question: Why p for p(x;) and p(x{, ..., X;)?
 [hey can't be the same function, they have different domains!

N9

Or

J J J PX[s oo s Xi (3 Xjp s oo es Xg) dXy...dX;_1dx; .. .dX
L& x



Are these really the same function®

* No. They're not the same function.

 But they are derived from the same joint distribution.
e SO for brevity we will write

p(x,y)

p(x)

* Even though it would be more precise to write something like
p(x,y)
px(x)
* \We can tell which function we're talking about from context (i.e., arguments)

ply | x) =

PY\X(Y | X) =



Chain Rule

-rom the definition of conditional probabillity:

p(y | x) _ PLey)
p(x)
= po | opey =28 0
p(x)
< p(y | x)p(x) = p(x,y)

This is called the Chain Rule.



Multiple Variable Chain Rule

The chain rule generalizes to multiple variables:

px,y,2) = px,y | 2pi) =px |y dpQy| 2)pk)

p(;,z)

Definition: Chain rule

d—1
P(Xpy e Xy) = p(xd)Hp(xi | X g X))
i=1

d
= p(xl)Hp(xi | X X2 p)
=2




Bayes Rule

-rom the chain rule, we have:

px,y) = p(y | x)p(x)

=px | Y)p(y)
 Often, p(x | v) is easier to compute than p(y | x)

* e.g., where x is features and y is label

Definition: Bayes' rule

Posterior

\
7O 17)-

l
px | yp(y)

/

Prior

«

Evidence




EXample: e

. -x _Ipx y)
Dlsease TeS't Py | -<—E idence
Example: Questions:

p(Test = pos | Dis =T) = 0.99
p(Test = pos | Dis = F) = 0.03
p(Dis = T) = 0.005

1. What is the likelihood?

2. What is the prior?

3. Whatis p(Dis =T | Test = pos)?




INndependence of Random Variables

Definition: X and Y are independent if:

px,y) = px)p(y)

X and Y are conditionally independent given Z if:

px,y|z2)=pkx|2pQ|2)




Another Marginalization Example

* |magine you get to draw two random candies from a bag of treats

e Say there are 5 types of candies (1, 2, 3, 4, 5), equally distributed in the bag

e Let X = First Candy You Got and Y = Second Candy You Got

e Whatis p(X = 1)?
e Whatisp(X =1,Y = 3)?



INndependence of Random Variables

Definition: X and Y are independent if:

px,y) = px)p(y)

X and Y are conditionally independent given Z if:

px,y|z2)=pkx|2pQ|2)




Example: Coins
(EX.7 In the course text)

e Suppose you have a biased coin: It does not come up heads with
orobability 0.5. Instead, it is more likely to come up heads.

» Let Z be the bias of the coin, with £ = {0.3,0.5,0.8} and probabilities
P(Z=03)=0.7,PZ=0.5)=02and P(Z=0.8) =0.1.
* Question: \What other outcome space could we consider?
* Question: \What kind of distribution is this?
* Question: \What other kinds of distribution could we consider?



Example: Coins (2)

Now imagine | told you Z = 0.3 (i.e., probability of heads is 0.3)

Let X and Y be two consecutive flips of the coin

What is P(X = Heads |Z = 0.3)? What about P(X = Tails|Z = 0.3)?

What is P(Y = Heads |Z = 0.3)? What about P(Y = Tails|Z = 0.3)?

sPX=x,Y=y|Z=03)=PX=x|Z=03)P(Y=y|Z=0.3)?



Example: Coins (3)

« Now imagine we do not know Z
* e.d., you randomly grabbed it from a bin of coins with probabillities

PZ=03)=0.7,PZ=05)=02and P(Z=0.8)=0.1
e What is P(X = Heads)?

P(X = Heads)= ), P(X = Heads|Z=2)p(Z=2)
z€{0.3,0.5,0.8}
= P(X = Heads |Z = 0.3)p(Z = 0.3)
+P(X = Heads |Z = 0.5)p(Z = 0.5)
+P(X = Heads |Z = 0.8)p(Z = 0.8)
=0.3X0.74+05x0.2+4+0.8x%x0.1 =0.39



Example: Coins (4)

* Now imagine we do not know Z
* e.g., you randomly grabbed it from a bin of coins with probabillities

PZ=03)=0.7,P(Z=0.5)=0.2and P(Z=0.8) =0.1
e IsP(X = Heads,Y = Heads) = P(X = Heads)p(Y = Heads)?

* [or brevity, lets use h for Heads

PX=hY=h= ) PX=hY=h|Z=2pZ=2)
z€{0.3,0.5,0.8)
: — Z PX=h|Z=2)P(Y=h|Z=7)p(Z=7)

2€{0.3,0.5,0.8)



Example: Coins (4)

e P(Z=03)=0.7,P(Z=0.5) =0.2and P(Z=0.8) =0.1
e IsP(X = Heads,Y = Heads) = P(X = Heads)p(Y = Heads)"

PX=hY=h= ) PX=hY=hlZ=2pZ=2)
z€{0.3,0.5,0.8}
— Z PX=h|Z=2P(Y=h|Z=2)p(Z=7)
z€{0.3,0.5,0.8}

=PX=h|Z=03)PY=h|Z=0.3)pZ=0.3)
+PX=h|Z=035)PY=h|Z=05)pZ=0.5)

. +PX=h|Z=08)p(Y="nh|Z=0.8)p(Z=0.8)
=0.3x%x0.3X0.74+0.5%Xx0.5%0.2+4+0.8x%x0.8x0.1
= 0.177 # 0.39 ¥0.39 = 0.1521



Example: Coins (4)

Let Z be the bias of the coin, with £ = {0.3,0.5,0.8} and probabilities
P(Z=03)=0.7,P(Z=0.5)=0.2and P(Z=0.8) =0.1.

Let X and Y be two consecutive flips of the coin

Question: Are X and Y conditionally independent given Z?

e e, PX=x,Y=y|Z=2)=PX=x|Z=2)P(Y=y|Z=12)
Question: Are X and Y independent?

- ie. PX=x,Y=y)=PX =x)P(Y =)



The Distribution Changes Based on
VWhat We Know

The colin has some true blas z

f we know that bias, we reason about P(X = x| Z = 7)
 Namely, the probability of x given we know the bias is z

If we know do not know that bias, then from our perspective the coin
outcomes follows probabilities P(X = x)

* [he world still flips the coin with bias z

Conditional independence is a property of the distribution we are reasoning
about, not an objective truth about outcomes




A DIt more Intultion

e |[f we know do not know that bias, then from our perspective the coin
outcomes follows probabilities P(X = x, Y = y)

e and X and Y are correlated

o If we know X = h, do we think it’s more likely Y = h? i.e., is
PX=hY=h>PX=h~hY=1?



My brain hurts, why do | need to
KNnow about coins?

e |.2., how IS this relevant

e [et’simagine you want to infer (or learn) the bias of the coin, from data

« data in this case corresponds to a sequence of flips X, X5, ..., X,

» Youcanask: PZ=z|X,=H,X, =H,X;=T,...,.X =H)

See 10 Heads
p(2) and 2 Tails p(2)
_—
H = H B
0.3 0.5 0.8 0.3 0.5 0.8




More uses for Independence
and conditional Independence

e |f|told you X = roof type was independent of Y = house price, would you
use X as a feature to predict Y7

* |magine you want to predict Y = Has Lung Cancer and you have an indirect
correlation with X = Location since in Location 1 more people smoke on
average. If you could measure Z = Smokes, then X and Y would be

conditionally independent given Z.

e Suggests you could look for such causal variables, that explain these
correlations

 We will see the utility of conditional independence for learning models



=Xpected Value

The expected value of a random variable is the weighted average of that
variable over its domain.

Definition: Expected value of a random variable

er o Xp(x) if X'is discrete

—[X] =

I o xp(x)dx if X is continuous.




Relationsnhip to Population Average
and Sample Average

Or Population Mean and Sample Mean
Population Mean = Expected Value, Sample Mean estimates this number
e.g., Population Mean = average height of the entire population

For RV X = height, p(x) gives the probability that a randomly selected person
has height X

Sample average: you randomly sample n heights from the population
 Implicitly you are sampling heights proportionally to p

As n gets bigger, the sample average approaches the true expected value



EXpected Value with Functions

The expected value of a function f : & — R of a random variable is the
weighted average of that function's value over the domain of the variable.

Definition: Expected value of a function of a random variable

er o JOp(x) if X'is discrete
ISZ, f(x)p(x)dx if Xis continuous.

—[f(X)] =

Example:
Suppose you get $10 if heads is flipped, or lose $3 if tails is flipped.
What are your winnings on expectation?




EXpected Value Example

Example:
Suppose you get $10 if heads is flipped, or lose $3 if tails is flipped.

What are your winnings on expectation?

X is the outcome of the coin flip, 1 for heads and O for tails
3 ifX=0
X) =
f1x) {1() if X =1
Y = f(X) is a new random variable

(Y] = ELfX0] = ), fp@) = f0)p(0) +f(1p(1) = 5% 3 +.5% 10 = 6.5

xed




Expected Value Is a Lossy Summary

P(X)
P(X)




Conditional Expectations

Definition:
The expected value of ¥ conditional on X = x is

Zyey yp(y | x) if Yis discrete,
_[Y ‘ X = X] —
J? yp(y | x)dy if Yis continuous.




Conditional Expectation Example

« X is the type of a book, O for fiction and 1 for non-fiction

» p(X = 1) is the proportion of all books that are non-fiction

e Y is the number of pages

» p(Y = 100) is the proportion of all books with 100 pages

« E[Y|X = 0] is different from E[Y | X = 1]
» e.9.E[Y|X = 0] =70 is different from E[Y|X = 1] = 150

 Another example: E[X | Z = 0.3] the expected outcome of the coin flip
given that the biasis 0.3 (E[X|Z=0.3] =0x 0.7+ 1 x 0.3 = 0.3)




Conditional Expectation Example (cont)

» What do we mean by p(y| X = 0)? How might it differ from p(y | X = 1)

Lots of shorter books

| ots of medium A long talil, a few very long books

length books



Conditional Expectation Example (cont)

» What do we mean by p(y| X = 0)? How might it differ from p(y | X = 1)

Ml

« E[Y|X = 0] is the expectation over Y under distribution p(y | X = 0)

« E[Y|X = 1]is the expectation over Y under distribution p(y | X = 1)




Conditional Expectations

Definition:
The expected value of ¥ conditional on X = x is

Zyegyp(y | x) if Yis discrete,

-|Y ‘ X =x]|=
J? yp(v | x)dy if Yis continuous.

Question: What is E[Y | X]?




Properties of Expectations

Linearity of expectation: E[Y] = Z yp(y) def. E[Y]
YEY

e [E[cX] = clt[X] for all constant ¢ =Yy Y by et marainal distibuton

e EIX+Y]|=E[X]+[E[Y] V€Y €

. . B Z Z yp(x y) rearrange sums

Products of expectations of independent YeX yeY

random variables X, Y- =Y Y w0 | x)pk) Chain rule
xed yeY

» E[XY] = E[X]E[Y]

Law of Total Expectation: B XZ? [yg;y Py | x)]p )

. -l-[Y\XH = [E[ Y] =Z([E[Y\X=x])p(x) def. E[Y | X = X]
xXeX

Question: How would you prove these? B 2 (ELY | X'= 1) px)

XEX
= E (E[Y | X]) B def. expected value of function



Variance

Definition: [he variance of a random variable Is

Var(X) =

= [(X—

[ X])?|.

.e., E[ f(X)] where f(x) = (x — -[X])z.

—quivalently,
Var(X) =

(Exercise: Show that this is true)

= [X?] = (E1X1)°




Covariance

Definition: The covariance of two random variables Is

[ X])?)

Cov(X,Y) =

- [(x -

- [ XY | =

= [ X ]

-1 Y].

Large Positive
Covariance

Large Negative
Covariance

Near Zero
Covariance

Question: \What is the range of Cov(X, Y)?




Correlation

Definition: The correlation of two random variables IS
Cov(X, Y)

\/ Var(X)Var(Y)

Corr(X, Y) =

Large Negative Near Zero Large Positive
Covariance Covariance Covariance

Question: \What is the range of Corr(X, Y)?
hint: Var(X) = Cov(X, X)




Properties of Varlances

» Var|c] = O for constant ¢

e Var[cX] = ¢*Var[X] for constant ¢

e Var|X + Y| = Var|X] + Var| Y] + 2Cov| X, Y]

* Forindependent X, Y,

Var| X + Y| = Var| X | + Var[ Y] (why?)



INndependence and Decorrelation

e Recallif Xand Y are independent, then E[ XY | = E[X]|[E| Y]

* [ndependent RVs have zero correlation (why?)

hint: Cov| X, Y| = E|XY]| — E[X]E[Y]

» Uncorrelated RVs (i.e., Cov(X, Y) = 0) might be dependent

(i.e., p(x,y) # p(xX)p(y)).

* Correlation (Pearson's correlation coefficient) shows linear relationships; but can
Miss nonlinear relationships

. Example: X ~ Unifoom{—=2, — 1,0,1,2}, Y = X?
e EIXY]=2(-2%x4)+ 22%x4)+ 2(-1x1)+.2(1x1)+.2(0x0)
. E[X]=0
. So E[XY] - E[X]E[Y]=0—-0E[Y]=0




Summary

Random variables takes different values with some probability

The value of one variable can be informative about the value of another

e Distributions of multiple ranc

distribution (joint

O

PMFE or joir

’[

M variables are described by the joint probability

PDF)

* You can have a new distribution over one variable when you condition on the other

The expected value of a random variable is an average over its values, weighted by
the probabillity of each value

The variance of a random variable is the expected squared distance from the mean

ne covariance and correlation of two random variables can summarize how changes

h

one are informative about changes in the other.



EXercise applying your knowledge

25 1
20 1
19 1
10 1

Le

CO

We want to model commute time as a Gaussian 210

1

'S revisit the commuting example, and assume we collect continuous
Mmmute times

2
o~ 357 (W—p)

What parameters do | have to specify (or learn) to model commute times
with a Gaussian®?

s a Gaussian a good choice?

O

o

O

Clorme s oo oeoo—>

05 1 ‘
o

4 6 8

10 12 14 16 18 20 22 24 ¢

0.7 .

0.6 |

0.5

0.4

0.3F

0.2

0.1F

O :




EXercise applying your knowledge

* A better choice is actually what is called a Gamma distribution

0.7 .
—_ ,u=8,0=(1).5
0.6 —T Z;'é,a_ |
0.5}
0.5 IIIIIIII | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | IIIIIIIII | IIIIIIIII | IIIIIIIII | IIIIIIIII | IIIIIIII J__
0.4+ k=1.0,0=2.0 -
0.3 : k=2.0,0=2.0 :
=l U k=3.0,08=2.0 :
0.2} - k=5.0,0=1.0
03 E k=9.0,0=0.5
25 1 0-1r I k=7.5,0=1.0
. \ : k=0.5,0=1.0
20 ¢ ol|© -4 0.2 -
= -
15 1 . :
]_O T v ]
05 1 ° 0 b | e OO vrvee e L FTPPE:
e} °khm ) 0 2 4 6 8 10 12 14 16 18

4 6 8 10 12 14 16 18 20 22 24 ¢



EXercise applying your knowledge

 We can also consider conditional distributions p(y | x)

e Yisthe commute time, let X be the month

« Why is it useful to know p(y | X = Feb) and p(y | X = Sept)?

« What else could we use for X and why pick it?

25 1
20 1 o|®
19 1
10 1 ©

05 1 °r, ©

4 6 8 10 12 14 16 18 20 22 24 ¢




EXercise applying your knowledge

o Letuse asimple X, whereitis 1 ifitis slippery out and O otherwise

 T[Then we could model two Gaussians, one for the two types of conditions

p(y| X =0) =N (po,05)
p(y| X =1) :N(Mlyff%) 07—

— 1=0,0=0.5
— p=00=1
25 T \ 06 Z=-2,ac7=0.75
0.5}

20 1 o|® Gaussian denoted by N 0al
A5 1 0.3}

10 + o 0.2}

05 1 (o) 0.1} /
I . \IPAEP AN
- -4 -3 -2 :

4 6 8 10 12 14 16 18 20 22 24 ¢




EXercise applying your knowledge

e Eventually we will see how to model the distribution over Y using functions
of other variables (features) X

p(y|x) = szzu

0.7 —

4 3 -2
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