Midterm Review

CMPUT 267: Basics of Machine Learning



Announcements

e Bayesian Linear Regression chapter updated, to add some claritying details

* Hybrid Delivery for Midterm: you can choose to write it online (like the quiz)
or In person (in the classroom)

* Please fill out the Discord poll again asking for preferences

- The final exam will be In-person. Please email me asap if you cannot
do it in person (e.g., due to visa issues)



Midterm Rules

e See the Exam Instructions link

* [f online, you must join Zoom and have your camera on

 [he exam is open book but you cannot use the internet

 Everything must be downloaded ahead of time

* |n class you can download materials onto a device, but cannot be
connected to the internet

New explicit rule: You cannot use any translation services



Midterm Detalls

 The contentis from Chapters 1 - 7

o Chapter 7 is Introduction to Prediction problems

 Chapter 8 is Linear Regression. Exam does not cover linear regression

* [he exam only covers what is In the notes



Probability

Deflne a random variable

Define joint and conditional probabilities for continuous and discrete
random variables

Define probability mass functions and probability density functions
Define independence and conditional independence
Define expectations for continuous and discrete random variables

Define variance for continuous and discrete random variables



Probabllity (2)

 Represent a problem probabillistically
* e.g., how likely was the outcome?
 Use a provided distribution
* | will always remind you of the density expression for a given distribution

 Apply Bayes' Rule to manipulate probabillities



Estimators

Define estimator

Define bias

Demonstrate that an estimator is/is not biased
Derive an expression for the variance of an estimator
Define consistency

Demonstrate that an estimator is/is not consistent

Justify when the use of a biased estimator is preferable

Go to menti.com and use code 3836 4159



http://menti.com

Estimators (2)

Apply concentration inequalities to derive confidence bounds
Define sample complexity
Apply concentration inequalities to derive sample complexity bounds

Explain when a given concentration inequality can/cannot be used



Optimization

* Represent a problem as an optimization problem

e Solve a discrete problem by iterating over options and picking the one with
the minimum value according to the objective

e Solve a continuous optimization problem by finding stationary points

Poll: What is a stationary point?

Go to menti.com and use code 3836 4159 or https://www.menti.com/bzhs3f|220



http://menti.com
https://www.menti.com/bzhs3fj22o

Optimization

Represent a problem as an optimization problem

Solve an analytic optimization problem by finding stationary points
Define first-order gradient descent

Define second-order gradient descent

Define step size and adaptive step size

Explain the role and importance of step sizes in first-order gradient descent

Apply gradient descent to numerically find local optima



EXercise

. Imagine c(w) = %(xw — y)*

« \What is the first-order update, assuming we are currently at point w,”?

* |.e., the gradient descent update tells us how to modify our current point
to descend on our surface c.

Answer: w,, | < w, — 1n,c'(w,) for some stepsize , > 0

c'(w) = (xw —y)x sowehavethat. w,_; < w, —n(xw, — y)x



EXercise

Imagine c(w) = %(xw — y)*

What is the first-order update, assuming we are currently at point w,”

* |.e., the gradient descent update tells us how to modify our current point
to descend on our surface c.

What if instead we did w,, ; < w, + 1,c'(w,). What would happen?

c'(wy)

The second-order update is w,, | <= W, — . Why might this update

c’'(w,)
e preferable to the first-order?



Parameter estimation

* Formalize a problem as a parameter estimation problem

* e.g., formalize
P0oIsSson distrib
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 Describe the differences between MAP, MLE, and Bayesian
parameter estimation

. MAP max p(@| <) versus MLE max p(& | 6)
0

0

» Bayesian learns p(0| 9), reasons about plausible parameters

* Define a conjugate prior



Prediction

Describe the differences between regression and classification
Derive the optimal classification predictor for a given cost
Derive the optimal regression predictor for a given cost

Understand that the optimal predictor is different depending on the cost

Describe the difference between irreducible and reducible error

(O] = F [(f(X) —f*(X))zl - [(f*(X) - Y>2]

Reducible error lrreducible error



Summary slide for Prediction

Supervised learning problem: Learn a predictor f : & — % from a dataset
n

» X is the set of observations, and % is the set of targets

Classification problems have discrete targets
Regression problems have continuous targets

Predictor performance is measured by the expected cost(y, y) of predicting y
when the true value is y

An optimal predictor for a given distribution minimizes the expected cost

—ven an optimal predictor has some irreducible error.
Suboptimal predictors have additional, reducible error




s Cost the Same as our Objective c?

* \We gave this a different name to indicate it might not be

 The Cost is the penalty we incur for inaccuracy in our predictions
 \We parameterize our function or distribution with parameters w

Our objective to find w has typically been the negative log likelihood
Example: we might learn p(y | X, w) using ¢(w) = — In p(&Z | w)

For the 0-1 cost, we evaluate the predictor f(X) = arg max p(y | X, w)
y

For the medical costs example, we derived a different predictor f in class



Any Questions”

e Switch now to going over the practice midterm(s)



