Midterm Review

Textbook Ch.1 - 7

CMPUT 267: Basics of Machine Learning

Announcements

- Bayesian Linear Regression chapter updated, to add some clarifying details
 Hybrid Delivery for Midterm: you can above to write it online (like the quiz)
- Hybrid Delivery for Midterm: you can choose to write it online (like the quiz) or in person (in the classroom)
- Please fill out the Discord poll again asking for preferences
- The final exam will be in-person. Please email me asap if you cannot do it in person (e.g., due to visa issues)

Midterm Rules

- See the Exam Instructions link
- If online, you **must** join Zoom and have your camera on
- The exam is open book but you cannot use the internet
 - Everything must be downloaded ahead of time
 - In class you can download materials onto a device, but cannot be \bullet connected to the internet
- New explicit rule: You cannot use any translation services \bullet

Midterm Details

- The content is from Chapters 1 7
 - Chapter 7 is Introduction to Prediction problems
 - Chapter 8 is Linear Regression. Exam does not cover linear regression
- The exam only covers what is in the notes

7

Probability

- Define a random variable
- Define joint and conditional probabilities for continuous and discrete random variables
- Define probability mass functions and probability density functions
- Define independence and conditional independence
- Define expectations for continuous and discrete random variables
- Define variance for continuous and discrete random variables

Probability (2)

- Represent a problem probabilistically
 - e.g., how likely was the outcome?
- Use a provided distribution
 - \bullet
- Apply **Bayes' Rule** to manipulate probabilities

I will always remind you of the density expression for a given distribution

Estimators

- Define estimator \bullet
- Define **bias**
- Demonstrate that an estimator is/is not biased ullet
- Derive an expression for the variance of an estimator
- Define **consistency** •
- Demonstrate that an estimator is/is not consistent \bullet
- Justify when the use of a **biased estimator** is **preferable** \bullet

Go to menti.com and use code 3836 4159

Estimators (2)

- Apply concentration inequalities to derive confidence bounds
- Define **sample complexity** \bullet
- Apply concentration inequalities to derive sample complexity bounds ullet
- Explain when a given concentration inequality can/cannot be used

Optimization

- Represent a problem as an optimization problem
- the minimum value according to the objective
- Solve a continuous optimization problem by finding stationary points
 - Poll: What is a stationary point?

Go to menti.com and use code 3836 4159 or https://www.menti.com/bzhs3fj220

Solve a discrete problem by iterating over options and picking the one with

Optimization

- Represent a problem as an optimization problem
- Solve an analytic optimization problem by finding stationary points
- Define first-order gradient descent
- Define second-order gradient descent
- Define step size and adaptive step size
- Explain the role and importance of step sizes in first-order gradient descent
- Apply gradient descent to numerically find local optima

Exercise

• Imagine
$$c(w) = \frac{1}{2}(xw - y)^2$$
.

- What is the first-order update, assuming we are currently at point w_t ?
 - i.e., the gradient descent update tells us how to modify our current point to descend on our surface c.

Answer:
$$w_{t+1} \leftarrow w_t - \eta_t c'(w_t)$$
 for

$$c'(w) = (xw - y)x \quad \text{so } v$$

for some stepsize $\eta_t > 0$

we have that. $w_{t+1} \leftarrow w_t - \eta_t (xw_t - y)x$

Exercise

• Imagine
$$c(w) = \frac{1}{2}(xw - y)^2$$
.

- What is the first-order update, assuming we are currently at point w_t ?
 - i.e., the gradient descent update tells us how to modify our current point to descend on our surface c.
- What if instead we did $w_{t+1} \leftarrow w_t$
- The second-order update is w_{t+1} be preferable to the first-order?

$$t + \eta_t c'(w_t)$$
. What would happen?
 $\leftarrow w_t - \frac{c'(w_t)}{c''(w_t)}$. Why might this update

Parameter Estimation

Formalize a problem as a parameter estimation problem

- Poisson distribution, using maximum likelihood
- **Describe the differences between MAP, MLE, and Bayesian** \bullet parameter estimation
 - MAP $\max_{\theta} p(\theta \mid \mathscr{D})$ versus MLE $\max_{\theta} p(\mathscr{D} \mid \theta)$
 - Bayesian learns $p(\theta \mid \mathcal{D})$, reasons about plausible parameters
- Define a **conjugate prior**

• e.g., formalize modeling commute times as parameter estimation for a

Prediction

- Describe the differences between regression and classification
- Derive the optimal classification predictor for a given cost
- Derive the optimal regression predictor for a given cost
- Understand that the optimal predictor is different depending on the cost
- Describe the difference between irreducible and reducible error

$$\mathbb{E}[C] = \mathbb{E}\left[\left(f(X) - f^*(X)\right)^2\right] + \mathbb{E}\left[\left(f^*(X) - Y\right)^2\right]$$

Reducible error

Irreducible error

Summary slide for Prediction

- Supervised learning problem: Learn a predictor $f : \mathcal{X} \to \mathcal{Y}$ from a dataset $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$
 - ${\mathcal X}$ is the set of <code>observations</code>, and ${\mathcal Y}$ is the set of <code>targets</code>
- Classification problems have discrete targets
- Regression problems have continuous targets
- Predictor performance is measured by the expected $cost(\hat{y}, y)$ of predicting \hat{y} when the true value is y
- An optimal predictor for a given distribution minimizes the expected cost
- Even an optimal predictor has some irreducible error.
 Suboptimal predictors have additional, reducible error

Is Cost the Same as our Objective c?

- We gave this a **different name** to indicate it might not be
- The Cost is the penalty we incur for inaccuracy in our predictions
- We parameterize our function or distribution with parameters ${\bf W}$
- Our **objective** to find ${\bf W}$ has typically been the negative log likelihood
- Example: we might learn $p(y | \mathbf{x}, \mathbf{w})$ using $c(\mathbf{w}) = -\ln p(\mathcal{D} | \mathbf{w})$
- For the 0-1 cost, we evaluate the predictor $f(\mathbf{x}) = \arg \max_{y} p(y | \mathbf{x}, \mathbf{w})$
- For the medical costs example, we derived a different predictor f in class

Any Questions?

• Switch now to going over the practice midterm(s)