Prediction & Optimal Predictors

Textbook §6.1-6.2

CMPUT 267: Basics of Machine Learning

Types of Machine Learning Problems

passive vs. active data collection 1. i.i.d. vs. non-i.i.d. 2. complete vs. incomplete observations 3.

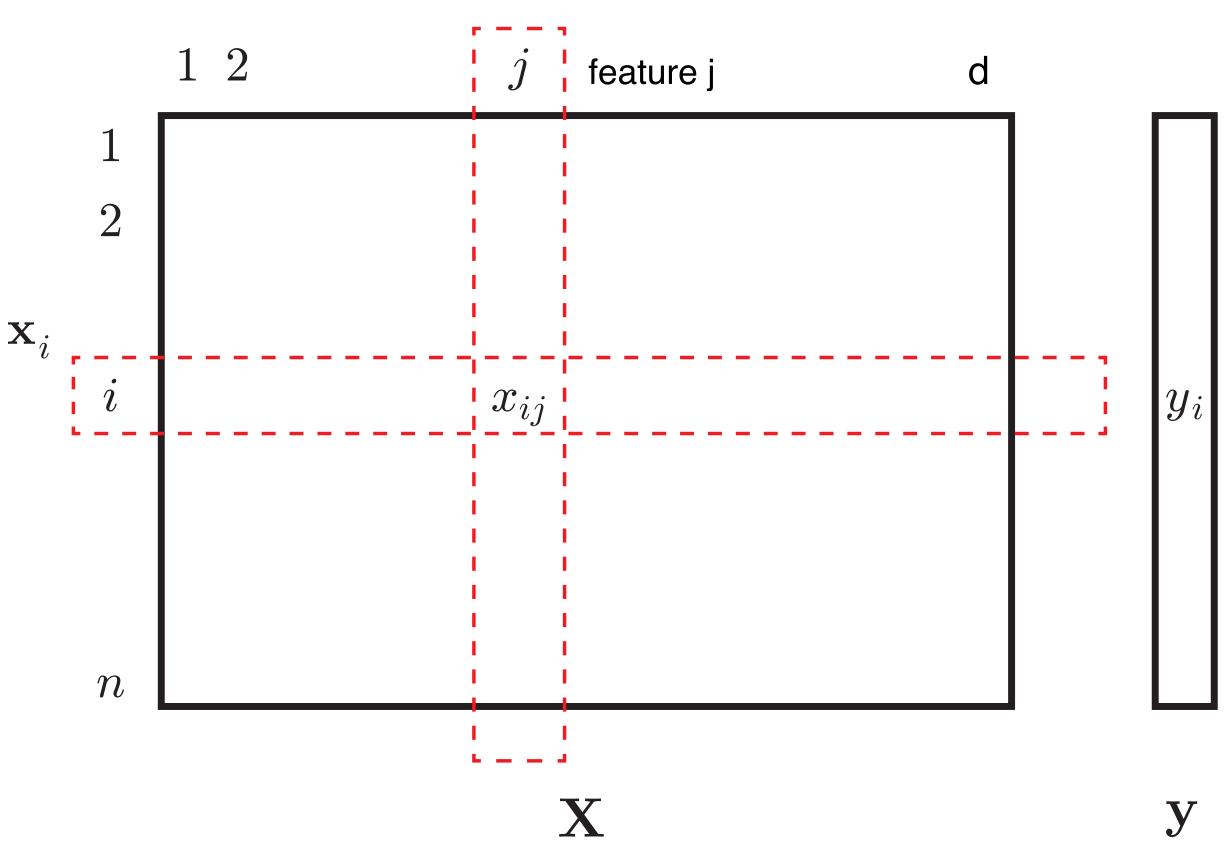
Supervised Prediction

In a supervised prediction problem, we learn a model based on a training dataset of **observations** and their corresponding **targets**, and then use the model to make predictions about new targets based on new observations.

- Dataset: $\mathcal{D} = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)\}$
- $\mathbf{x}_i \in \mathcal{X}$ is the *i*-th observation (or input or instance or sample)
- $y_i \in \mathcal{Y}$ is the corresponding **target**
- $\mathbf{x}_i = (x_{i1}, x_{i2}, \dots, x_{id})$ is a *d*-dimension vector (i.e., $\mathcal{X} = \mathbb{R}^d$)
- The *j*-th value of \mathbf{x}_i is the *j*-th feature

- Typically organize dataset into a $n \times d$ matrix **X** and *d*-vector *y*
 - One row for each observation
 - One column for each feature \bullet

Dataset as Matrix



Regression

- A supervised learning problem can typically be classified as either a **regression** problem or a **classification** problem
- **Regression:** Target values are continuous, e.g. $\mathcal{Y} = \mathbb{R}, \mathcal{Y} = [0, \infty)$
- Our house price prediction example is a regression problem; we can extend it to have multiple features:

	S	ize [sqft]	age [yr]	dist [mi]	inc [\$]	dens $[ppl/mi^2]$	y
\mathbf{x}_1		1250	5	2.85	$56,\!650$	12.5	2.35
\mathbf{x}_2		3200	9	8.21	$245,\!800$	3.1	3.95
\mathbf{x}_3		825	12	0.34	$61,\!050$	112.5	5.10

Classification

Classification: Predict discrete **class labels**

- Usually not that many labels, e.g. $\mathcal{Y} = \{\text{healthy}, \text{diseased}\}$
- Multi-label: A single input may be assigned multiple labels, e.g., categories from $\mathcal{Y} = \{\text{sports, politics, travel, medicine}\}$
- Multi-class: Single label per input
 - Multi-class with two labels: binary classification
 - E.g., predicting disease state for a patient given weight, height, temperature, sistolic and diatolic blood pressure

	wt [kg]	ht [m]	$T [^{\circ}C]$	sbp [mmHg]	dbp [mmHg]	y
\mathbf{x}_1	91	1.85	36.6	121	75	-1
\mathbf{x}_2	75	1.80	37.4	128	85	+1
\mathbf{x}_3	54	1.56	36.6	110	62	-1

Questions

- 1. What might be an example of a multilabel disease-state classification problem?
- How could we 2. represent that in the matrix form?

Multi-label vs Multi-class

- We can always turn a multi-label problem into a multi-class one
 - multi-label with $\mathscr{Y} = \{1,2,3\}$ is the same as multi-class with classes $\mathscr{Y} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$
 - but this multi-class problem **scales really poorly** with more labels, so we very rarely use this approach (e.g., how many classes from 10 labels?)
- The simplest solution is to treat each label as a binary prediction problem
 - independently output $f_1(\mathbf{x}) = 0$ or 1 for label 1, $f_2(\mathbf{x}) = 0$ or 1 for label 2, ...
 - or learn $p(y_1 = 1 | \mathbf{x})$ for label 1, $p(y_2 = 1 | \mathbf{x})$ for label 2, ...,

Multi-label vs Multi-class

- We can always turn a multi-label problem into a multi-class one
- The **simplest solution** is to treat each label as a binary prediction problem
 - learn $p(y_1 = 1 | \mathbf{x})$ for label 1, $p(y_2 = 1 | \mathbf{x})$ for label 2, ...,
- Smarter strategies look at relationships between labels
 - $p(y_1, y_2 | \mathbf{x}) \neq p(y_1 | \mathbf{x})p(y_2 | \mathbf{x})$
- For this course, we focus on the **simplest approaches**. Therefore, we will focus on binary classification
 - which provides at least a basic solution for the multi-label problem

Which Formulation to Use?

E.g., output space $\mathcal{Y} = \{0, 1, 2\}$

- Could be classification with three classes
- Could be regression on [0,2]

- **Question:** What considerations would make us choose one category or another? • Regression functions are often easier to learn (even for classification!)
 - If classes have no order (e.g., {likes apples, likes bananas, likes oranges}), then regression will be based on faulty assumptions
 - If classes do have order (e.g., {Good, Better, Best}) then classification will not be able to **exploit that structure**

It's not always clear-cut whether to treat a problem as classification or regression.

Suppose we know the true joint distribution $p(\mathbf{x}, y)$, and we want to use it to make predictions in a classification problem.

The **optimal classification predictor** makes the **best** use of this function.

As with the optimal estimator, we measure the quality of a predictor $f(\mathbf{x})$ by its expected cost $\mathbb{E}[C]$. The optimal predictor minimizes $\mathbb{E}[C]$.

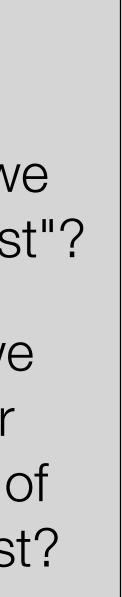
$$\mathbb{E}[C] = \int_{\mathcal{X}} \sum_{y \in \mathcal{Y}} \operatorname{cost} \left(f(\mathbf{x}), y \right) p(\mathbf{x}, y) \, d\mathbf{x},$$

where $cost(\hat{y}, y)$ is the cost for predicting \hat{y} when the true value is y, and $C = \cot(f(X), Y)$ is a random variable.

Optimal Prediction

Questions

- 1. What could we mean by "best"?
- 2. Why aren't we using MAP or MLE instead of expected cost?



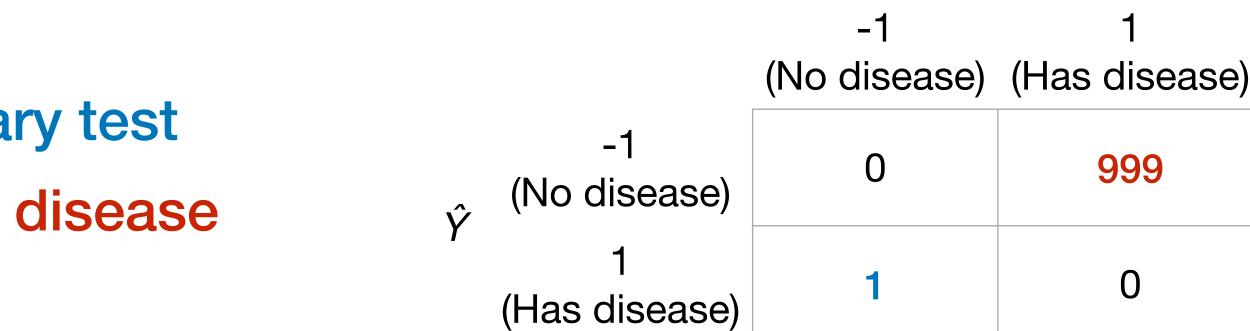
Cost Functions: Classification

• A very common cost function for classification: **0-1 cost**

$$\operatorname{cost}(\hat{y}, y) = \begin{cases} 0 & \text{if } f \\ 1 & \text{if } f \end{cases}$$

- No cost for the right answer; same cost for every wrong answer
- **Question:** when might this be inappropriate?
 - Some wrong answers can be much more costly than others
- E.g., in medical domain:
 - false positive: leads to an unnecessary test
 - false negative: leads to an untreated disease

 $\hat{y} = y$, $\hat{y} \neq y$.



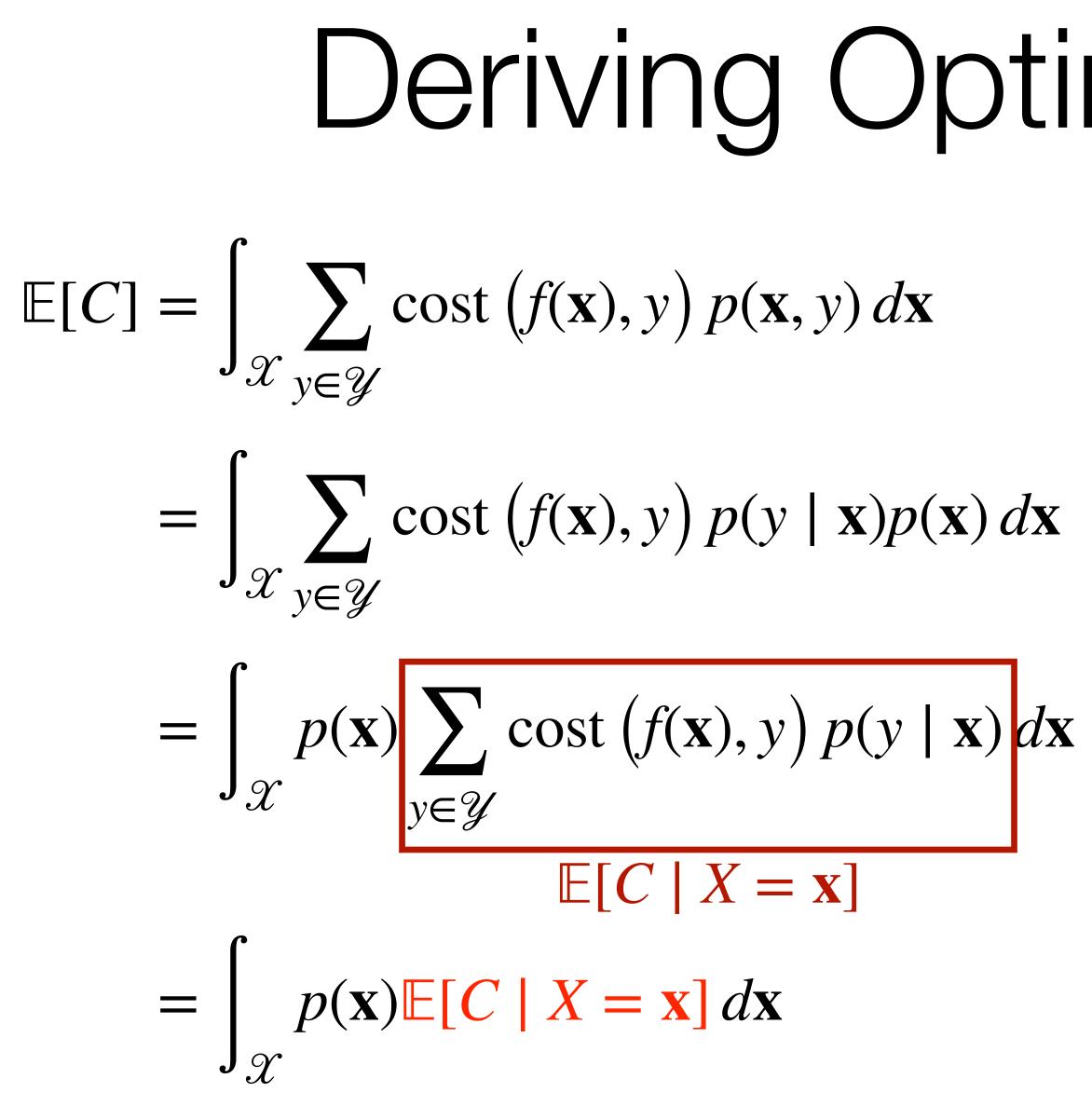
Y

"Optimal" Classifier is Not Always Right

$$\mathbb{E}[C] = \int_{\mathcal{X}} \sum_{y \in \mathcal{Y}} C$$

- Can't actually achieve zero cost when doing multi-class classification
 - $f(\mathbf{x})$ has to output a single label for observation \mathbf{x}
 - But there might be instances with the **same observations** but different labels
 - i.e., in general $\forall \mathbf{x} : p(\mathbf{y} \mid \mathbf{x}) \neq 1$

 $\cot(f(\mathbf{x}), y) p(\mathbf{x}, y) d\mathbf{x}$



Deriving Optimal Classifier

• We can minimize

$$\mathbb{E}[C \mid X = \mathbf{x}] = \sum_{y \in \mathscr{Y}} \operatorname{cost} (f(\mathbf{x}), y) p(y \mid \mathbf{x})$$

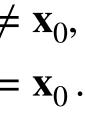
separately for each **x** (**why?**)

• *Proof:* Suppose $f^{\dagger}(\mathbf{x})$ is not optimal for a specific value \mathbf{X}_0

• Then let

$$f^*(\mathbf{x}) = \begin{cases} f^{\dagger}(\mathbf{x}) & \text{if } \mathbf{x} \neq \mathbf{x} \\ \arg\min_{\hat{y} \in \mathscr{Y}} \sum_{y \in \mathscr{Y}} \operatorname{cost}(\hat{y}, y) p(y \mid \mathbf{x}_0) & \text{if } \mathbf{x} \neq \mathbf{x} \end{cases}$$

• f^* has lower expected cost at \mathbf{x}_0 and same expected cost at all other **X**



Deriving Optimal Classifier for 0-1 Cost

 $f^*(\mathbf{x}) = \arg\min_{\hat{y} \in \mathscr{Y}} \sum_{y \in \mathscr{Y}} \operatorname{cost}(\hat{y}, y) p(y \mid \mathbf{x}) = \arg\min_{\hat{y} \in \mathscr{Y}} \sum_{v \in \mathscr{V}} \operatorname{cost}(\hat{y}, y) p(y \mid \mathbf{x}) - 1$ $= \underset{\hat{y} \in \mathscr{Y}}{\arg \max} 1 - \sum_{y \in \mathscr{Y}} \operatorname{cost}(\hat{y}, y) p(y \mid \mathbf{x})$ $= \arg \max_{\hat{y} \in \mathscr{Y}} \sum_{y \in \mathscr{Y}} \left(1 - \operatorname{cost}(\hat{y}, y) \right) p(y \mid \mathbf{x})$ $= \arg \max_{\hat{y} \in \mathscr{Y}} \sum_{y \in \mathscr{Y}, y \neq \hat{y}} 0 \cdot p(y \mid \mathbf{x}) + y$ $= \underset{\hat{y} \in \mathscr{Y}}{\operatorname{arg\,max\,}} p(y \mid \mathbf{x}) \quad \blacksquare \quad \text{This is called the Bayes risk classifier}$

$$\sum_{y \in \mathcal{Y}, y = \hat{y}} 1 \cdot p(y \mid \mathbf{x})$$

Cost Functions: Regression

- Two most common cost functions for regression:
 - 1. Squared error: $cost(\hat{y}, y) = (\hat{y} y)^2$
 - 2. **Absolute error:** $cost(\hat{y}, y) = |\hat{y} y|$
- Squared error penalizes large errors more heavily than absolute error
- Other possibilities that depend on the size of the target
 - E.g., percentage error: cost

$$(\hat{y}, y) = \frac{\left|\hat{y} - y\right|}{\left|y\right|}$$

Deriving Optimal Regressor for Squared Error

$$\mathbb{E}[C] = \int_{\mathcal{X}} \int_{\mathcal{Y}} \operatorname{cost} (f(\mathbf{x}), y) p(\mathbf{x}, y)$$
$$= \int_{\mathcal{X}} \int_{\mathcal{Y}} (f(\mathbf{x}) - y)^2 p(\mathbf{x}, y) dx$$
$$= \int_{\mathcal{X}} p(\mathbf{x}) \iint_{\mathcal{Y}} (f(\mathbf{x}) - y)^2 p(y)$$
$$\mathbb{E}[C \mid X = \mathbf{x}]$$
$$= \int_{\mathcal{X}} p(\mathbf{x}) \mathbb{E}[C \mid X = \mathbf{x}] d\mathbf{x}$$

 $) dy d\mathbf{x}$

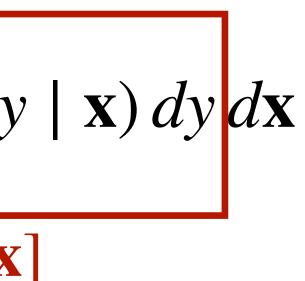
• Once again, we can directly optimize $\mathbb{E}[C \mid X = \mathbf{x}]$:

$$f^*(\mathbf{x}) = \arg\min_{\hat{y} \in \mathscr{Y}} g(\hat{y})$$

where

$$g(\hat{y}) = \int_{\mathscr{Y}} (\hat{y} - y)^2 p(y \mid \mathbf{x}) dx$$

 $dy d\mathbf{x}$



Deriving Opt
for Square
$$g(\hat{y}) = \int_{\mathcal{Y}} (\hat{y} - y)^2 p(y | \mathbf{x}) dx$$
$$\frac{\partial g(\hat{y})}{\partial \hat{y}} = 2 \int_{\mathcal{Y}} (\hat{y} - y) p(y | \mathbf{x}) dx$$
$$\Leftrightarrow \int_{\mathcal{Y}} \hat{y} p(y | \mathbf{x}) dy = \int_{\mathcal{Y}} y p(y | \mathbf{x}) dy$$
$$\Leftrightarrow \hat{y} \int_{\mathcal{Y}} p(y | \mathbf{x}) dy = \int_{\mathcal{Y}} y p(y | \mathbf{x}) dy$$
$$= \mathbf{1} = \int_{\mathcal{Y}} y p(y | \mathbf{x}) dy$$

timal Regressor ed Error, cont.

dy

 $\mathbf{x})\,dy=0$

So,

 \mathbf{x}) dy

 $f^*(\mathbf{x}) = \arg\min_{\hat{y} \in \mathscr{Y}} g(\hat{y})$ $= \mathbb{E}[Y \mid X = \mathbf{x}]$

 \mathbf{x}) dy

 $X = \mathbf{x}$

Irreducible Error

What is our expected squared error when we use the optimal predictor? $f^*(\mathbf{x}) = \mathbb{E}[Y \mid X = \mathbf{x}], \text{ so}$ $\mathbb{E}[C] = \int_{\mathscr{V}} p(\mathbf{x}) \int_{\mathscr{V}} (f^*(\mathbf{x}) - y)^2 \mu$ $= \int_{\mathcal{X}} p(\mathbf{x}) \int_{\mathcal{V}} \left(\mathbb{E}[Y \mid X = \mathbf{x}] \right)$ $= \int_{\mathcal{X}} p(\mathbf{x}) \operatorname{Var}[Y \mid X = \mathbf{x}] d\mathbf{x}$

$$p(y \mid X = \mathbf{x}) \, dy \, d\mathbf{x}$$

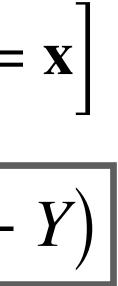
$$[X] - y)^2 p(y \mid X = \mathbf{x}) \, dy \, d\mathbf{x}$$

Error for any predictor f

What is our expected squared error when we use a suboptimal predictor?

$$\mathbb{E}[C \mid X] = \mathbb{E}\left[\left(f(\mathbf{x}) - Y\right)^2 \mid X = \mathbf{x}\right] = \mathbb{E}\left[\left(f(\mathbf{x}) - \mathbb{E}[Y \mid X = \mathbf{x}] + \mathbb{E}[Y \mid X = \mathbf{x}] - Y\right)^2 \mid X = \mathbf{x}\right]$$
$$= \mathbb{E}\left[\left(f(\mathbf{x}) - \mathbb{E}[Y \mid X = \mathbf{x}]\right)^2 + 2\left[\left(f(\mathbf{x}) - \mathbb{E}[Y \mid X = \mathbf{x}]\right) \left(\mathbb{E}[Y \mid X = \mathbf{x}] - Y\right)^2 + 2\left[\left(f(\mathbf{x}) - \mathbb{E}[Y \mid X = \mathbf{x}]\right) \left(\mathbb{E}[Y \mid X = \mathbf{x}] - Y\right)^2 + 2\left[\left(f(\mathbf{x}) - \mathbb{E}[Y \mid X = \mathbf{x}]\right) \left(\mathbb{E}[Y \mid X = \mathbf{x}] - Y\right)^2 + 2\left[\left(f(\mathbf{x}) - \mathbb{E}[Y \mid X = \mathbf{x}]\right) \left(\mathbb{E}[Y \mid X = \mathbf{x}] - Y\right)^2 + 2\left[\left(f(\mathbf{x}) - \mathbb{E}[Y \mid X = \mathbf{x}]\right) \left(\mathbb{E}[Y \mid X = \mathbf{x}] - Y\right)^2 + 2\left[\left(f(\mathbf{x}) - \mathbb{E}[Y \mid X = \mathbf{x}]\right) \left(\mathbb{E}[Y \mid X = \mathbf{x}] - Y\right)^2 + 2\left[\left(f(\mathbf{x}) - \mathbb{E}[Y \mid X = \mathbf{x}]\right) \left(\mathbb{E}[Y \mid X = \mathbf{x}] - Y\right)^2 + 2\left[\left(f(\mathbf{x}) - \mathbb{E}[Y \mid X = \mathbf{x}]\right) \left(\mathbb{E}[Y \mid X = \mathbf{x}] - Y\right)^2 + 2\left[\left(f(\mathbf{x}) - \mathbb{E}[Y \mid X = \mathbf{x}]\right) \left(\mathbb{E}[Y \mid X = \mathbf{x}] - Y\right)^2 + 2\left[\left(f(\mathbf{x}) - \mathbb{E}[Y \mid X = \mathbf{x}]\right) \left(\mathbb{E}[Y \mid X = \mathbf{x}]\right) - 1\right]$$

We'll take expectation again at the end to get to $\mathbb{E}[C] = \mathbb{E}[\mathbb{E}[C|X]]$



Middle

 $\mathbb{E}\left[\left(f(\mathbf{x}) - \mathbb{E}[Y \mid X = \mathbf{x}]\right)\left(\mathbb{E}[Y \mid X = \mathbf{x}]\right)\right]$ $= \left(f(\mathbf{x}) - \mathbb{E}[Y \mid X = \mathbf{x}] \right) \mathbb{E} \left[\left(\mathbb{E}[Y \mid X = \mathbf{x}] \right) \mathbb{E} \right]$ $= \left(f(\mathbf{x}) - \mathbb{E}[Y \mid X = \mathbf{x}] \right) \left(\mathbb{E}[Y \mid X = \mathbf{x}] \right)$ $= \left(f(\mathbf{x}) - \mathbb{E}[Y \mid X = \mathbf{x}] \right) \mathbf{0}$ = ()

Term is 0

$$X = \mathbf{x} - Y = \mathbf{x}$$

$$X = \mathbf{x} - Y = \mathbf{x}$$

$$X = \mathbf{x} - \mathbb{E}[Y | X = \mathbf{x}]$$

Expected Cost for f

$\mathbb{E}\left[\mathbb{E}[C|X]\right] = \mathbb{E}\left[\left(f(X) - \mathbb{E}[Y|X]\right)^2\right] + \mathbb{E}\left[\left(\mathbb{E}[Y|X] - Y\right)^2\right]$ $\mathbb{E}[C] = \mathbb{E}\left[\left(f(X) - f^*(X)\right)^2\right] + \mathbb{E}\left[\left(f^*(X) - Y\right)^2\right]$ Reducible error

What is our expected squared error when we use a suboptimal predictor?

Irreducible error

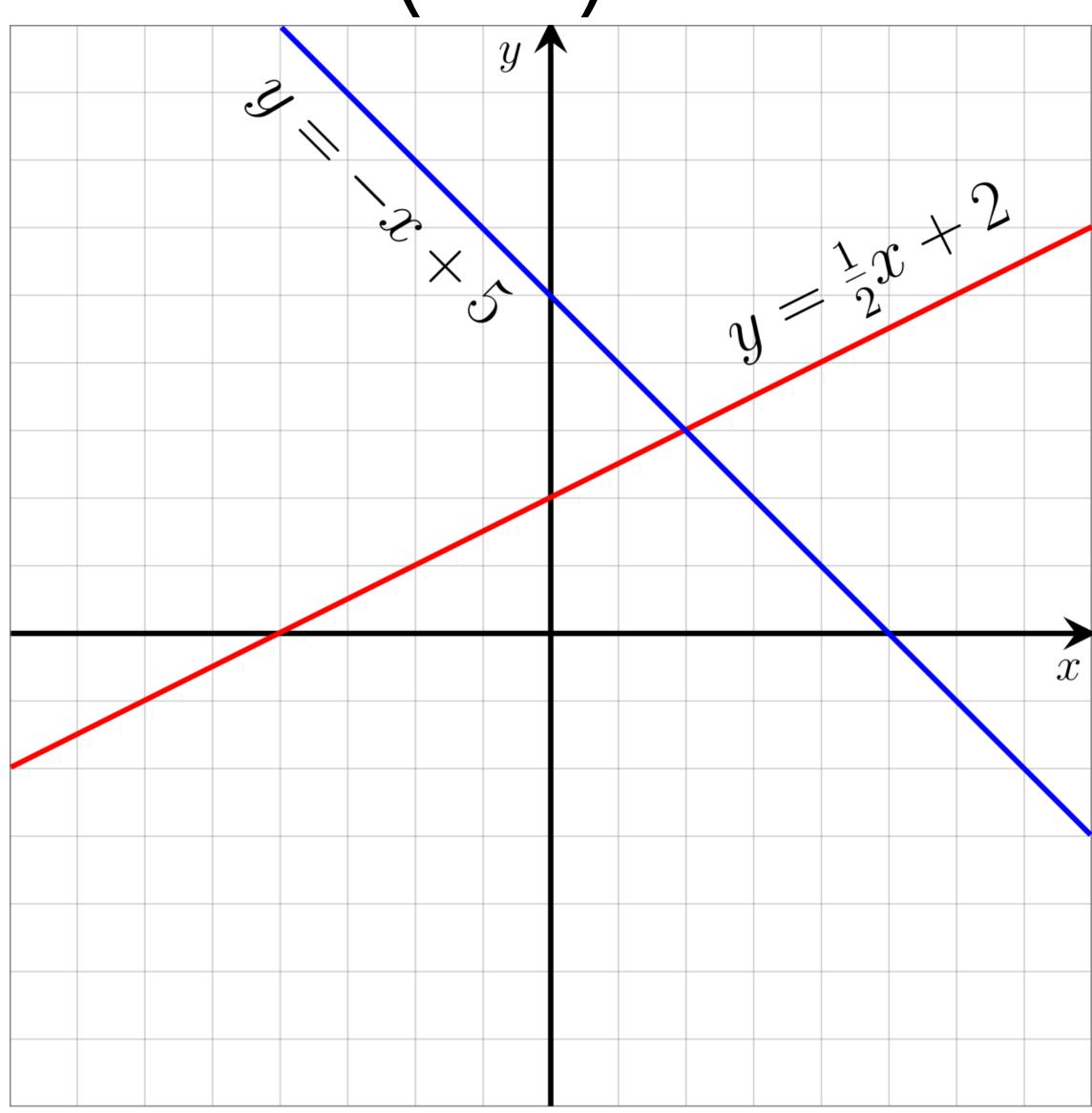
- i.e., how do we make the difference between f and f* smaller
- Imagine you learn f from a batch of n samples
- Further, let's imagine you decide to learn a linear function

Linear vs Nonlinear Functions

- Linear functions: functions that weight features and add them
 - e.g., $f(x) = w_0 + w_1 x_1 + w_2 x_2$
- Nonlinear functions: any functions that are not linear

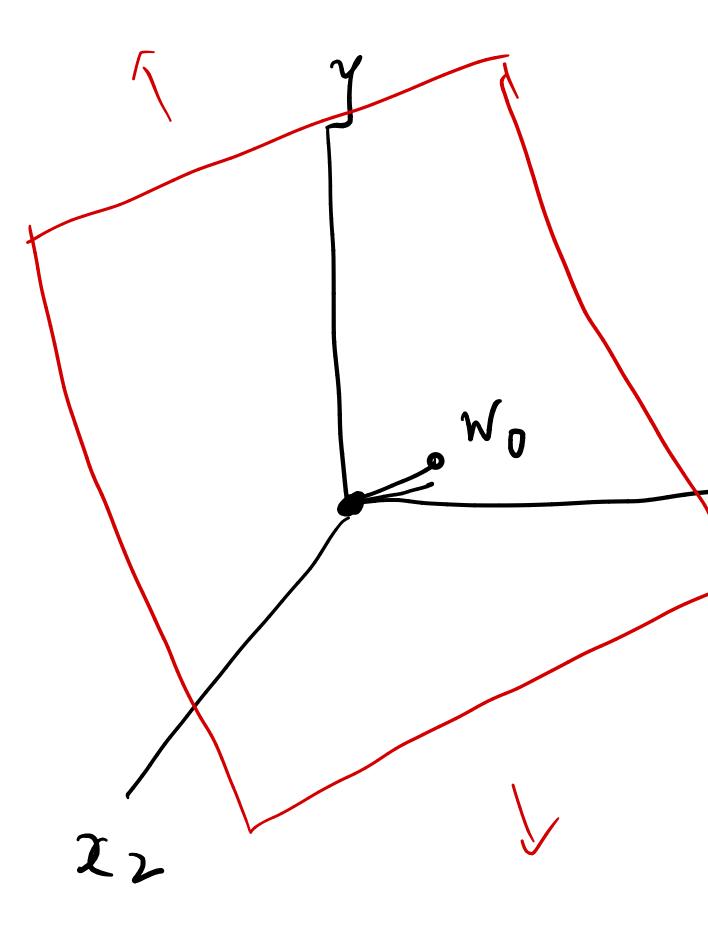
Linear functions (1d)

• $f(x) = w_0 + w_1 x_1$. What is w_1 and w_0?



Linear functions (2d)

X



Wo shifts plane away from origin (positive here)

 $f(x) = w_0 + w_1 x_1 + w_2 x_2$

- i.e., how do we make the difference between f and f* smaller
- Imagine you learn f from a batch of n samples
- Further, let's imagine you decide to learn a linear function
- What are the sources of inaccurac

sy?
$$\mathbb{E}\left[\left(f(X) - f^*(X)\right)^2\right]$$

- Imagine you learn f from a batch of n samples
- Further, let's imagine you decide to learn a linear function
- What are the sources of inaccurac
- Source 1: limited hypothesis space. f is a linear function, f* might be a nonlinear function
- Source 2: optimization was insufficient. Maybe we used gradient descent, and didn't fully optimize f (stopped too early)
- Source 3: limited data. Not enough samples to identify a good f

$$\text{ by ? } \mathbb{E}\left[\left(f(X) - f^*(X)\right)^2\right]$$

- Source 1: limited hypothesis space. f is a linear function, f* might be a nonlinear function
 - Solution: make the hypothesis space bigger (e.g., learn polynomials)
- Source 2: optimization was insufficient. Maybe we used gradient descent, and didn't fully optimize f (stopped too early)
 - Solution: more carefully ensure you get to a stationary point
- Source 3: limited data. Not enough samples to identify a good f
 - Solution: gather more data

Can we reduce irreducible error?

- It's called irreducible for a reason...
- It is the variance of Y given X: Var(Y|X = x)
- Improving our learned function f cannot change the inherent variance in Y
- But, can you think of a way to reduce the variance of Y conditioned on our inputs? What is the source of variance in Y given x?
 - hint: think about the gumball machine example from earlier
 - hint: think about why gas usage was variable, conditioned on house size, temperature outdoors and desired indoor temperature

Summary

- Supervised learning problem: Learn a predictor $f : \mathcal{X} \to \mathcal{Y}$ from a dataset $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$
 - ${\mathcal X}$ is the set of <code>observations</code>, and ${\mathcal Y}$ is the set of <code>targets</code>
- Classification problems have discrete targets
- Regression problems have continuous targets
- Predictor performance is measured by the expected $cost(\hat{y}, y)$ of predicting \hat{y} when the true value is y
- An optimal predictor for a given distribution minimizes the expected cost
- Even an optimal predictor has some irreducible error.
 Suboptimal predictors have additional, reducible error