
Review for Quiz  
Chapter 2 (Probability) 
Chapter 3 (Estimation):  

Bias, Variance, Concentration Inequalities

CMPUT 267: Basics of Machine Learning 



Logistics

• Quiz during class on Thursday 

• Join 10 minutes early on Zoom lecture 

• Or come to class physically 

• Any questions/issues with Assignment 2?



Language of Probabilities
• Define random variables, and their distributions 

• Then can formally reason about them 

• Express our beliefs about behaviour of these RVs, and relationships to other RVs 

• Examples:  

• p(x) Gaussian means we believe X is Gaussian distributed 

• p(y | X = x)—or written p(y | x)— is Gaussian this means that conditioned on x,  
y is Gaussian; but p(y) might not be Gaussian 

• p(w) and p(w | Data)



PMFs and PDFs
• Discrete RVs have PMFs 

• outcome space: e.g,   

• examples pmfs: probability tables, Poisson  

• Continuous RVs have PDFs 

• outcome space: e.g.,  

• example pdf: Gaussian, Gamma

Ω = {1,2,3,4,5,6}

p(k) =
λke−λ

k!

Ω = [0,1]



A few questions

• Do PMFs p(x) have to output values between [0,1]? 

• Do PDFs p(x) have to output values between [0,1]? 

• What other condition(s) are put on a function p to make it a valid pmf or pdf? 

• Is the following function a pdf or a pmf? 

•
       i.e.,  for p(x) = {

1
b − a if a ≤ x ≤ b,
0 otherwise.

p(x) =
1

b − a
x ∈ [a, b]



How would you define a uniform 
distribution for a discrete RV

• Imagine  

• What is the uniform pmf for this outcome space? 

•

x ∈ {1,2,3,4,5}

p(x) = {
1
5 if x ∈ {1,2,3,4,5},
0 otherwise.



How do you answer this 
probabilistic question?

• For continuous RV X with a uniform distribution and outcome space [0,10], 
what is the probability that X is greater than 7? 

•

Pr(X > 7) = ∫
10

7
p(x)dx = ∫

10

7

1
10

dx

=
1
10 ∫

10

7
dx =

1
10

x |10
7

=
3
10



Multivariate Setting

•
Conditional distribution, , Marginal  

• Chain Rule  

• Bayes Rule  

•
Law of total probability  

• Question: How do you get the law of total probability from the chain rule?

p(y ∣ x) =
p(x, y)
p(x)

p(y) = ∑
x∈𝒳

p(x, y)

p(x, y) = p(y ∣ x)p(x) = p(x ∣ y)p(y)

p(y ∣ x) =
p(x ∣ y)p(y)

p(x)

p(y) = ∑
x∈𝒳

p(y |x)p(x)



Expectations

 

Eg: , , , map , 
 determined by  , e.g,  

Eg: , , , map  
, 

𝔼[ f(X)] = {
∑x∈𝒳 f(x)p(x) if X is discrete,

∫
𝒳

f(x)p(x) dy if X is continuous.

𝒳 = {1,2,3,4,5} f(x) = x2 Y = f(X) {1,2,3,4,5} → {1,4,9,16,25}
p(y) p(x) p(Y = 4) = p(X = 2)

𝒳 = {−1,0,1} f(x) = |x | Y = f(X) {−1,0,1} → {0,1}
p(Y = 1) = p(X = − 1) + p(X = 1) 𝔼[Y] = ∑

y∈0,1

yp(y) = ∑
x∈{−1,0,1}

f(x)p(x)



Conditional Expectations

 

Definition: 
The expected value of  conditional on  is Y X = x

𝔼[Y ∣ X = x] =
∑y∈𝒴 yp(y ∣ x) if Y is discrete,

∫
𝒴

yp(y ∣ x) dy if Y is continuous.



Conditional Expectation Example

•  is the type of a book, 0 for fiction and 1 for non-fiction 
•  is the proportion of all books that are non-fiction 

•  is the number of pages  
•  is the proportion of all books with 100 pages 

•  is different from  

•  is different from  
• e.g.  is different from 

X
p(X = 1)

Y
p(Y = 100)

p(y |X = 0) p(y |X = 1)

𝔼[Y |X = 0] 𝔼[Y |X = 1]
𝔼[Y |X = 0] = 70 𝔼[Y |X = 1] = 150



Conditional Expectation Example (cont)

•                                                           

•  is the expectation over  under distribution  

•  is the expectation over  under distribution 

p(y |X = 0) p(y |X = 1)

𝔼[Y |X = 0] Y p(y |X = 0)

𝔼[Y |X = 1] Y p(y |X = 1)



What if Y is dollars earned?

• Y is now a continuous RV 

• What is ?p(y |x)



What if Y is dollars earned?

• Y is now a continuous RV 

• Notice that  is defined by  and   

• What might be a reasonable choice for  and ?

p(y |x) p(y |X = 0) p(y |X = 1)

p(y |X = 0) p(y |X = 1)



What if Y is dollars earned?
• Notice that  is defined by  and  p(y |x) p(y |X = 0) p(y |X = 1)

pcylx-ot-ffuo.si) plylx-D-mfm.si)

re
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-
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Exercise

• Come up with an example of X and Y, and give possible choice for p(y | x) 

• Do you need to know p(x) to specify p(y | x)?



Properties of Expectations
• Linearity of expectation: 

•  for all constant  
•  

• Products of expectations of 
independent random variables : 

•  

• Law of Total Expectation: 

•

𝔼[cX] = c𝔼[X] c
𝔼[X + Y] = 𝔼[X] + 𝔼[Y]

X, Y
𝔼[XY] = 𝔼[X]𝔼[Y]

𝔼 [𝔼 [Y ∣ X]] = 𝔼[Y]



Properties of Expectations for  
X and Y independent

𝔼[XY] = ∑
x∈𝒳

∑
y∈𝒴

p(x, y)xy

= ∑
x∈𝒳

∑
y∈𝒴

p(y |x)p(x)xy

= ∑
x∈𝒳

xp(x) ∑
y∈𝒴

p(y |x)y

= ∑
x∈𝒳

xp(x)𝔼[Y |x]

= ∑
x∈𝒳

xp(x)𝔼[Y]  since X and Y independent

= 𝔼[X]𝔼[Y]



Variance

 

i.e.,  where . 

Equivalently, 

  

Definition: The variance of a random variable is 

.Var(X) = 𝔼 [(X − 𝔼[X])2]

𝔼[ f(X)] f(x) = (x − 𝔼[X])2

Var(X) = 𝔼 [X2] − (𝔼[X])2



Covariance

 

 

Definition: The covariance of two random variables is 

 
Cov(X, Y) = 𝔼 [(X − 𝔼[X])(Y − 𝔼[Y])]

= 𝔼[XY] − 𝔼[X]𝔼[Y] .



Properties of Variances

•  for constant  

•  for constant  

•  

• For independent , because  
 

Var[c] = 0 c

Var[cX] = c2Var[X] c

Var[X + Y] = Var[X] + Var[Y] + 2Cov[X, Y]

X, Y Cov[X, Y] = 0
Var[X + Y] = Var[X] + Var[Y]



Estimators

Example: Estimating  for r.v. .𝔼[X] X ∈ ℝ
Questions: 

Suppose we can observe a different variable .  Is  a 
good estimator of  in the following cases?  Why or 
why not? 

1.  

2.  

3. , for 

Y Y
𝔼[X]

Y ∼ Uniform[0,10]

Y = 𝔼[X] + Z,  where Z ∼ N(0,1002)

Y =
1
n

n

∑
i=1

Xi Xi ∼ p

Definition: An estimator is a procedure for estimating an unobserved quantity based on data.

random

variable!



Independent and Identically 
Distributed (i.i.d.) Samples

• We usually won't try to estimate anything about a distribution based on only a single sample 
• Usually, we use multiple samples from the same distribution 

• Multiple samples: This gives us more information  
• Same distribution: We want to learn about a single population 

• One additional condition: the samples must be independent  

Definition: When a set of random variables are  are all 
independent, and each has the same distribution , we say they are i.i.d. 
(independent and identically distributed), written  

.

X1, X2, …
X ∼ F

X1, X2, … i.i.d.∼ F



Estimating Expected Value  
via the Sample Mean

Example: We have  i.i.d. samples from the same distribution , 

, 

with  and  for each .   

We want to estimate . 

Let's use the sample mean  to estimate . 

n F

X1, X2, …, Xn
i.i.d∼ F

𝔼[Xi] = μ Var(Xi) = σ2 Xi

μ

X̄ =
1
n

n

∑
i=1

Xi μ

 

 

 

    

𝔼[X̄] = 𝔼 [ 1
n

n

∑
i=1

Xi]
=

1
n

n

∑
i=1

𝔼[Xi]

=
1
n

n

∑
i=1

μ

=
1
n

nμ

= μ . ∎



Bias

 

• Bias can be positive or negative or zero 

• When , we say that the estimator  is unbiased

Definition: The bias of an estimator  is its expected 
difference from the true value of the estimated quantity : 

X̂
X

Bias(X̂) = 𝔼[X̂] − 𝔼[X]

Bias(X̂) = 0 X̂

Questions: 

What is the bias of the 
following estimators of 

? 

1.  

2. , 
where 

 

3. , 
where  

4.

𝔼[X]

Y ∼ Uniform[0,10]

Y = 𝔼[X] + Z

Z ∼ Uniform[0,1]

Y = 𝔼[X] + Z
Z ∼ N(0,1002)

Y =
1
n

n

∑
i=1

Xi



Variance of the Estimator
• Intuitively, more samples should make the estimator 

"closer" to the estimated quantity 

• We can formalize this intuition partly by characterizing 
the variance  of the estimator itself. 

• The variance of the estimator should decrease as 
the number of samples increases 

• Example:  for estimating : 
• The variance of the estimator shrinks linearly as 

the number of samples grows.

Var[X̂]

X̄ μ

 

 

 

 

  .

Var[X̄] = Var [ 1
n

n

∑
i=1

Xi]
=

1
n2

Var [
n

∑
i=1

Xi]
=

1
n2

n

∑
i=1

Var[Xi]

=
1
n2

n

∑
i=1

σ2

=
1
n2

nσ2 =
1
n

σ2



Mean-Squared Error
• Bias: whether an estimator is correct in expectation 

• Consistency: whether an estimator is correct in the limit of infinite data 

• Convergence rate: how fast the estimator approaches its own mean 
• For an unbiased estimator, this is also how fast its error bounds shrink 

• We don't necessarily care about an estimator's being unbiased. 
• Often, what we care about is our estimator's accuracy in expectation 

Definition: Mean squared error of an estimator  of a quantity : 

 

X̂ X

MSE(X̂) = 𝔼 [(X̂ − 𝔼[X])2]
different!



Bias-Variance Tradeoff

 

• If we can decrease bias without increasing variance, error goes down 

• If we can decrease variance without increasing bias, error goes down 

• Question: Would we ever want to increase bias? 

• YES.  If we can increase (squared) bias in a way that decreases variance 
more, then error goes down! 

• Interpretation: Biasing the estimator toward values that are more likely 
to be true (based on prior information)

 MSE(X̂) = Var[X̂] + Bias(X̂)2



Downward-biased Mean Estimation
Example: Let's estimate  given i.i.d  with  using:  μ X1, …, Xn 𝔼[Xi] = μ Y =

1
n+100

n

∑
i=1

Xi

This estimator is biased: 

 

 

 

𝔼[Y] = 𝔼 [ 1
n + 100

n

∑
i=1

Xi]
=

1
n + 100

n

∑
i=1

𝔼[Xi]

=
n

n + 100
μ

Bias(Y) =
n

n + 100
μ − μ =

−100
n + 100

μ

This estimator has low variance: 

 

 

 

Var(Y) = Var [ 1
n + 100

n

∑
i=1

Xi]
=

1
(n + 100)2

Var [
n

∑
i=1

Xi]
=

1
(n + 100)2

n

∑
i=1

Var[Xi]

=
n

(n + 100)2
σ2



  

 

MSE(X̄) = Var(X̄) + Bias(X̄)2

= Var(X̄)

=
1

10

Estimating  Near 0μ
Example: Suppose that , , and σ = 1 n = 10 μ = 0.1

Bias(X̄) = 0

Var(X̄) =
σ2

n

  

 

 

MSE(Y) = Var(Y) + Bias(Y)2

=
n

(n + 100)2
σ2 + ( 100

n + 100
μ)

2

=
10

1102
+ ( 100

110
0.1)

2

≈ 9 × 10−4



Exercise: What is the variance of 
these estimators?

Example: Estimating  for r.v. .𝔼[X] X ∈ ℝ
Questions: 

Suppose we can observe a different variable .  Is  a 
good estimator of  in the following cases?  Why or 
why not? 

1.  

2.  

3. , for 

Y Y
𝔼[X]

Y ∼ Uniform[0,10]

Y = 𝔼[X] + Z,  where Z ∼ N(0,1002)

Y =
1
n

n

∑
i=1

Xi Xi ∼ p



Exercise: What is the variance of 
these estimators?

Estimators: 

1.  

2.  

3. , for 

Y1 ∼ Uniform[0,10]

Y2 = 𝔼[X] + Z,  where Z ∼ N(0,1002)

Y3 =
1
n

n

∑
i=1

Xi Xi ∼ p

.Var [ 1
n

n

∑
i=1

Xi] =
1
n

σ2

Var(Y1) =
1
12

(10 − 0)2 =
100
12

= 8.3̄

Var(Y2) = Var(𝔼[X] + Z) = ?

Var(Y3) =
σ2

n



Exercise: What is the variance of 
these estimators?

Estimators: 

1.  

2.  

3. , for 

Y1 ∼ Uniform[0,10]

Y2 = 𝔼[X] + Z,  where Z ∼ N(0,1002)

Y3 =
1
n

n

∑
i=1

Xi Xi ∼ p

Var(Y2) = Var(𝔼[X] + Z)
= Var(Z) ▹ Var(c + Y) = Var(Y)
= 1002



MSE of these estimators

Estimators: 

1.  

2.  

3. , for 

Y1 ∼ Uniform[0,10]

Y2 = 𝔼[X] + Z,  where Z ∼ N(0,1002)

Y3 =
1
n

n

∑
i=1

Xi Xi ∼ p

Var(Y1) =
1
12

(10 − 0)2 =
100
12

= 8.3̄

Var(Y2) = Var(𝔼[X] + Z) = 1002

Var(Y3) =
σ2

n

Bias(Y1) = 𝔼[Y1] − 𝔼[X] = 5

Bias(Y2) = 𝔼[Y2] − 𝔼[X] = 0

Bias(Y3) = 0

 MSE(X̂) = Var[X̂] + Bias(X̂)2

MSE(Y1) = 52 + 8.3̄ = 33.3̄

MSE(Y2) = 0 + 1002 = 10000

MSE(Y3) = 0 +
σ2

n



Concentration Inequalities
• We would like to be able to claim   

for some  

•  means that with "enough" data, 

 for any  that we pick   

• Suppose we have  samples, and we know ; so . 

• Question: What is ?

Pr ( X̄ − μ < ϵ) > 1 − δ

δ, ϵ > 0

Var[X̄] =
1
n

σ2

Pr ( X̄ − μ < ϵ) > 1 − δ δ, ϵ > 0

n = 10 σ2 = 81 Var[X̄] = 8.1

Pr ( X̄ − μ < 2)



Knowing the Variance Is Not Enough

Knowing  is not enough to compute ! 

Examples: 

 

 

Var[X̄] = 8.1 Pr( | X̄ − μ | < 2)

p(x̄) = {0.9 if x̄ = μ
0.05 if x̄ = μ ± 9

⟹ Var[X̄] = 8.1 and  Pr( | X̄ − μ | < 2) = 0.9

p(x̄) = {0.999 if x̄ = μ
0.0005 if x̄ = μ ± 90

⟹ Var[X̄] = 8.1 and  Pr( | X̄ − μ | < 2) = 0.999

p(x̄) = {0.1 if x̄ = μ
0.45 if x̄ = μ ± 3

⟹ Var[X̄] = 8.1 and  Pr( | X̄ − μ | < 2) = 0.1



Hoeffding's Inequality
Theorem: Hoeffding's Inequality 

Suppose that  are distributed i.i.d, with . 
Then for any  , 

. 

Equivalently, .

X1, …, Xn a ≤ Xi ≤ b
ϵ > 0

Pr ( X̄ − 𝔼[X̄] ≥ ϵ) ≤ 2 exp (−
2nϵ2

(b − a)2 )
Pr ( X̄ − 𝔼[X̄] ≤ (b − a)

ln(2/δ)
2n ) ≥ 1 − δ



Chebyshev's Inequality
Theorem: Chebyshev's Inequality 

Suppose that  are distributed i.i.d. with variance .  
Then for any , 

. 

Equivalently, .

X1, …, Xn σ2

ϵ > 0

Pr ( X̄ − 𝔼[X̄] ≥ ϵ) ≤
σ2

nϵ2

Pr X̄ − 𝔼[X̄] ≤
σ2

δn
≥ 1 − δ



When to Use Chebyshev, 
When to Use Hoeffding?

• If , then  

• Hoeffding's inequality gives ; 

Chebyshev's inequality gives  

• Hoeffding's inequality gives a tighter bound*, but it can only be used on bounded random 
variables 

✴
whenever  

• Chebyshev's inequality can be applied even for unbounded variables

a ≤ Xi ≤ b Var[Xi] ≤
1
4

(b − a)2

ϵ = (b − a)
ln(2/δ)

2n
=

ln(2/δ)
2

(b − a)
1
n

ϵ =
σ2

δn
≤

(b − a)2

4δn
=

1

2 δ
(b − a)

1
n

ln(2/δ)
2

<
1

2 δ
⟺ δ < ∼ 0.232



Sample Complexity

 

• We want sample complexity to be small  

• Sample complexity is determined by: 
1. The estimator itself 

• Smarter estimators can sometimes improve sample complexity 
2. Properties of the data generating process 

• If the data are high-variance, we need more samples for an accurate estimate 
• But we can reduce the sample complexity if we can bias our estimate toward the 

correct value

Definition: 
The sample complexity of an estimator is the number of samples required to guarantee an 
error of at most  with probability , for given  and . ϵ 1 − δ δ ϵ



Sample Complexity

For , Chebyshev gives 

  

 

 

δ = 0.05

ϵ =
σ2

δn
=

1

0.05

σ

n

⟺ ϵ = 4.47
σ

n

⟺ n = 4.47
σ
ϵ

⟺ n = 19.98
σ2

ϵ2

With Gaussian assumption and  

      

 

δ = 0.05,

ϵ = 1.96
σ

n

⟺ n = 1.96
σ
ϵ

⟺ n = 3.84
σ2

ϵ2

Definition: 
The sample complexity of an estimator is the number of samples required to guarantee an expected error 
of at most  with probability , for given  and . ϵ 1 − δ δ ϵ



Exercise: Sample Complexity for a 
Biased Estimator

• The concentration inequalities only tell us how the estimator concentrates 
around it’s mean 

• But if it is biased, then the mean of the estimator  the true mean 

• We can reduce the sample complexity (by reducing variance and/or by 
making stronger assumptions), but need to be careful about how much bias 
we introduce

≠



Consistency of Downward-biased Mean Estimation

Example:   Y =
1

n+100

n

∑
i=1

Xi

This estimator is biased: 

Bias(Y) =
n

n + 100
μ − μ =

−100
n + 100

μ

This estimator has low variance: 

Var(Y) =
n

(n + 100)2
σ2

Does this estimator have lower sample complexity than the sample average?

Is this estimator consistent?  
(Namely, in the limit of samples, does it approach the true mean?) 

(In other words, does it’s bias go to zero?)



Summary
• Concentration inequalities let us bound the probability of a given estimator 

being at least  from the estimated quantity 

• Sample complexity is the number of samples needed to attain a desired error 
bound  at a desired probability  

• The mean squared error of an estimator decomposes into bias (squared) and 
variance 

• Using a biased estimator can have lower error than an unbiased estimator 

• Bias the estimator based on some prior information 

• But this only helps if the prior information is correct, cannot reduce error by 
adding in arbitrary bias

ϵ

ϵ 1 − δ


