Optimization

CMPUT 267: Basics of Machine Learning

Comments (Sept 21)

- Assignment 1 due this week
- Hope you enjoyed doing the thought questions
- My office hours will now be from 10:30 am - 11:30 am on Wednesdays
- Any questions?

Optimization

We often want to find the argument w^{*} that minimizes an objective function c

$$
\mathbf{w}^{*}=\arg \min _{\mathbf{w}} c(\mathbf{w})
$$

Example: Using linear regression to fit a dataset $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$

- Estimate the targets by $\hat{y}=f(x)=w_{0}+w_{1} x$
- Each vector \mathbf{w} specifies a particular f
- Objective is the total error $c(\mathbf{w})=\sum_{i=1}^{n}\left(f\left(x_{i}\right)-y_{i}\right)^{2}$

Exercise: Making your own optimization algorithm

- Imagine I told you that you need to find

$$
\mathbf{w}^{*}=\arg \min _{\mathbf{w} \in \mathbb{R}^{d}} c(\mathbf{w})
$$

- Pretend you have never heard of gradient descent. What algorithm might you design to find this?
- Now what if I told you that $w \in \mathscr{W}=\{1,2,3, \ldots, 1000\}$. Now how would you solve

$$
\mathbf{w}^{*}=\arg \min _{\mathbf{w} \in \mathscr{W}} c(\mathbf{w})
$$

Optimization Properties

1. Maximizing $c(w)$ is the same as minimizing $-c(w)$:

$$
\arg \max _{w} c(w)=\arg \min _{w}-c(w)
$$

2. Equivalence under constant shifts: Adding, subtracting, or multiplying by a positive constant does not change the minimizer of a function:
$\arg \min c(w)=\arg \min c(w)+k=\arg \min c(w)-k=\arg \min k c(w) \quad \forall k \in \mathbb{R}^{+}$

Stationary Points

- Recall that every minimum of an everywhere-differentiable function $c(w)$ must* occur at a stationary point: A point at which $c^{\prime}(w)=0$
* Question: What is the exception?

- However, not every stationary point is a minimum
- Every stationary point is either:
- A local minimum
- A local maximum
- A saddlepoint

- The global minimum is either a local minimum, or a boundary point

Identifying the type of the stationary point

- If function curved upwards (convex) locally, then local minimum
- If function curved downwards (concave) locally, then local maximum
- If function flat locally, then might be a saddllepoint but could also be a local min or local max
- Locally, cannot distinguish between local min and global min (its a global property of the surface)

Second derivative reflects curvature

Second derivative test

1. If $c^{\prime \prime}\left(w_{0}\right)>0$ then w_{0} is a local minimum.
2. If $c^{\prime \prime}\left(w_{0}\right)<0$ then w_{0} is a local maximum.
3. If $c^{\prime \prime}\left(w_{0}\right)=0$ then the test is inconclusive: we cannot say which type of stationary point we have and it could be any of the three.

Testing optimality without the second derivative test

Convex functions have a global minimum at every stationary point

$$
c \text { is convex } \Longleftrightarrow c\left(t \mathbf{w}_{1}+(1-t) \mathbf{w}_{2}\right) \leq t c\left(\mathbf{w}_{1}\right)+(1-t) c\left(\mathbf{w}_{2}\right)
$$

Procedure

- Find a stationary point, namely w_{0} such that $c^{\prime}\left(w_{0}\right)=0$
- Sometimes we can do this analytically (closed form solution, namely an explicit formula for w_{0})
- Reason about if it is optimal
- Check if your function is convex
- If you have only one stationary point and it is a local miniumum, then it is a global minimum
- Otherwise, if second derivate test says its a local min, can only say that

Numerical Optimization

- We will almost never be able to analytically compute the minimum of the functions that we want to optimize
* (Linear regression is an important exception)
- Instead, we must try to find the minimum numerically
- Main techniques: First-order and second-order gradient descent

Taylor Series

Definition: A Taylor series is a way of approximating a function c in a small neighbourhood around a point a :

$$
\begin{aligned}
c(w) & \approx c(a)+c^{\prime}(a)(w-a)+\frac{c^{\prime \prime}(a)}{2}(w-a)^{2}+\cdots+\frac{c^{(k)}(a)}{k!}(w-a)^{k} \\
& =c(a)+\sum_{i=1}^{k} \frac{c^{(i)}(a)}{i!}(w-a)^{i}
\end{aligned}
$$

Taylor Series Visualization

Taylor Series Visualization (2)

Approximating sin function at point $x 0=0$
(How can you tell?)
degree 1, 3, 5, 7, 9, 11 and 13.

Taylor Series

Definition: A Taylor series is a way of approximating a function c in a small neighbourhood around a point a :

$$
\begin{aligned}
c(w) & \approx c(a)+c^{\prime}(a)(w-a)+\frac{c^{\prime \prime}(a)}{2}(w-a)^{2}+\cdots+\frac{c^{(k)}(a)}{k!}(w-a)^{k} \\
& =c(a)+\sum_{i=1}^{k} \frac{c^{(i)}(a)}{i!}(w-a)^{i}
\end{aligned}
$$

- Intuition: Following tangent line of the function approximates how it changes
- i.e., following a function with the same first derivative
- Following a function with the same first and second derivatives is a better approximation; with the same first, second, third derivatives is even better; etc.

Second-Order Gradient Descent (Newton-Raphson Method)

1. Approximate the target function with a second-order Taylor series around the current
guess $w_{t}: \quad \hat{c}(w)=c\left(w_{t}\right)+c^{\prime}\left(w_{t}\right)\left(w-w_{t}\right)+\frac{c^{\prime \prime}\left(w_{t}\right)}{2}\left(w-w_{t}\right)^{2}$
2. Find the stationary point of the approximation $\frac{w_{t+1} \leftarrow w_{t}-\frac{c^{\prime}\left(w_{t}\right)}{c^{\prime \prime}\left(w_{t}\right)}}{\substack{w_{1}(w)}}$

Second-Order Gradient Descent (Newton-Raphson Method)

1. Approximate the target function with a second-order Taylor series around the

$$
\begin{aligned}
0 & =\frac{d}{d w}\left[c(a)+c^{\prime}(a)(w-a)+\frac{c^{\prime \prime}(a)}{2}(w-a)^{2}\right] \\
& =c^{\prime}(a)+2 \frac{c^{\prime \prime}(a)}{2} w-2 \frac{c^{\prime \prime}(a)}{2} a \\
& =c^{\prime}(a)+c^{\prime \prime}(a)(w-a)
\end{aligned}
$$

2. Find the stationary point of the approximation

$$
w_{t+1} \leftarrow w_{t}-\frac{c^{\prime}\left(w_{t}\right)}{c^{\prime \prime}\left(w_{t}\right)}
$$

$$
\begin{aligned}
& \Longleftrightarrow-c^{\prime}(a)=c^{\prime \prime}(a)(w-a) \\
& \Longleftrightarrow(w-a)=-\frac{c^{\prime}(a)}{c^{\prime \prime}(a)}
\end{aligned}
$$

3. If the stationary point of the approximation is a (good enough) stationary point of the

$$
\Longleftrightarrow w=a-\frac{c^{\prime}(a)}{c^{\prime \prime}(a)}
$$ objective, then stop. Else, goto 1.

(First-Order) Gradient Descent

- We can run Newton-Raphson whenever we have access to both the first and second derivatives of the target function
- Often we want to only use the first derivative (why?)
- First-order gradient descent: Replace the second derivative with a constant $\frac{1}{\eta}$ (the step size) in the approximation:

$$
\begin{gathered}
\hat{c}(w)=c\left(w_{t}\right)+c^{\prime}\left(w_{t}\right)\left(w-w_{t}\right)+\frac{c^{\prime \prime}\left(w_{t}\right)}{2}\left(w-w_{t}\right)^{2} \\
\hat{c}(w)=c\left(w_{t}\right)+c^{\prime}\left(w_{t}\right)\left(w-w_{t}\right)+\frac{1}{2 \eta}\left(w-w_{t}\right)^{2}
\end{gathered}
$$

- By exactly the same derivation as before:

$$
w_{t+1} \leftarrow w_{t}-\eta c^{\prime}\left(w_{t}\right)
$$

Partial Derivatives

- So far: Optimizing univariate function $c: \mathbb{R} \rightarrow \mathbb{R}$
- But actually: Optimizing multivariate function $c: \mathbb{R}^{d} \rightarrow \mathbb{R}$
- d is typically H U G $\mathrm{E}(d \gg 10,000$ is not uncommon)
- First derivative of a multivariate function is a vector of partial derivatives

Definition:

The partial derivative $\frac{\partial f}{\partial x_{i}}\left(x_{1}, \ldots, x_{d}\right)$
of a function $f\left(x_{1}, \ldots, x_{d}\right)$ at x_{1}, \ldots, x_{d} with respect to x_{i} is $g^{\prime}\left(x_{i}\right)$, where

$$
g(y)=f\left(x_{1}, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_{d}\right)
$$

Gradients

The multivariate analog to a first derivative is called a gradient.

Definition:

The gradient $\nabla f(\mathbf{x})$ of a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ at $\mathbf{x} \in \mathbb{R}^{d}$ is a vector of all the partial derivatives of f at \mathbf{x} :

$$
\nabla f(\mathbf{x})=\left[\begin{array}{c}
\frac{\partial f}{\partial_{x_{1}}}(\mathbf{x}) \\
\frac{\partial f}{\partial_{x_{2}}}(\mathbf{x}) \\
\vdots \\
\frac{\partial f}{\partial_{x_{d}}}(\mathbf{x})
\end{array}\right]
$$

Multivariate Gradient Descent

First-order gradient descent for multivariate functions $c: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is just:

$$
\mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t}-\eta \nabla c\left(\mathbf{w}_{t}\right)
$$

$$
\left[\begin{array}{c}
w_{t+1,1} \\
w_{t+1,2} \\
\vdots \\
w_{t+1, d}
\end{array}\right]=\left[\begin{array}{c}
w_{t, 1} \\
w_{t, 2} \\
\vdots \\
w_{t, d}
\end{array}\right]-\eta\left[\begin{array}{c}
\frac{\partial c}{\partial_{w_{1}}}\left(\mathbf{w}_{t}\right) \\
\frac{\partial c}{\partial_{w_{2}}}\left(\mathbf{w}_{t}\right) \\
\vdots \\
\frac{\partial c}{\partial_{w_{d}}}\left(\mathbf{w}_{t}\right)
\end{array}\right]
$$

Extending to stepsize per timestep

First-order gradient descent for multivariate functions $c: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is just:

$$
\mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t}-\eta_{t} \nabla c\left(\mathbf{w}_{t}\right)
$$

- Notice the t-subscript on η
- We can choose a different η_{t} for each iteration
- Indeed, for univariate functions, Newton-Raphson can be understood as first-
order gradient descent that chooses a step size of $\eta_{t}=\frac{1}{c^{\prime \prime}\left(w_{t}\right)}$ at each iteration.
- Choosing a good step size is crucial to efficiently using first-order gradient descent

Adaptive Step Sizes

(a) Step-size too small

- If the step size is too small, gradient descent will "work", but take forever
- Too big, and we can overshoot the optimum
- There are some heuristics that we can use to adaptively guess good values for η_{t}
- Ideally, we would choose $\eta_{t}=\arg \min _{\eta \in \mathbb{R}^{+}} c\left(\mathbf{w}_{t}-\eta \nabla c\left(\mathbf{w}_{t}\right)\right)$
- But that's another optimization!

Line Search

A simple heuristic: line search

1. Try some largest-reasonable step size $\eta_{t}^{(0)}=\eta_{\max }$
2. Is $c\left(w_{t}-\eta_{t}^{(s)} \nabla c\left(w_{t}\right)\right)<c\left(w_{t}\right)$?

If yes, $w_{t+1} \leftarrow w_{t}-\eta_{t}^{(s)} \nabla c\left(w_{t}\right)$
3. Otherwise, try $\eta_{t}^{(s+1)}=\tau \eta_{t}^{(s)}$ (for $\tau<1$) and goto 2

Do we have to use a scalar stepsize?

- Or can we use a different stepsize per dimension? And why would we?

Stepsize1 should be small Stepsize 2 should be big

Summary

- We often want to find the argument w^{*} that minimizes an objective function c :

$$
\mathbf{w}^{*}=\arg \min c(\mathbf{w})
$$

W

- Every interior minimum is a stationary point, so check the stationary points
- Stationary points usually identified numerically
- Typically, by gradient descent
- Choosing the step size is important for efficiency and correctness
- Common approach: Adaptive step size
- E.g., by line search

