Optimization

CMPUT 267: Basics of Machine Learning



Comments (Sept 21)

Assignment 1 due this week
Hope you enjoyed doing the thought questions
My office hours will now be from 10:30 am - 11:30 am on Wednesdays

Any guestions?



Optimization

We often want to find the argument w™* that minimizes an objective function ¢

wW* = arg min c(w)
W

Example: Using linear regression to fit a dataset {(xi, yi)}’fl |
=

» Estimate the targets by y = f(x) = wy + wx

» Each vector w specifies a particular f

n
Objective is the total error c(w) = Z (f(x) — yl-)2
i=1




=xercise: Making your
own optimization algorithm

* |magine | told you that you need to find

wW* = arg min c(w)
weR?

* Pretend you have never heard of gradient descent. What algorithm might
you design to find this”

e Now what if | told youthatw € 7% = {1,2,3,...,1000}. Now how would
YOu solve

wW* = arg min c(w)
wWEW



Optimization Properties

1. Maximizing c(w) is the same as minimizing —c(w):

arg max c(w) = arg min — c(w)

2. Equivalence under constant shifts: Adding, subtracting, or multiplying
by a positive constant does not change the minimizer of a function:

arg min c(w) = arg min c(w)+k = arg min c(w)—k = arg min kc(w) Vk € RT



Stationary Points

Recall that every minimum of an everywhere-differentiable function c(w)
must* occur at a stationary point: A point at which ¢'(w) = 0

* Question: \What is the exception? J\

Local Minima
However, not every stationary point iIs a minimum

Saddlepo_int _

—very stationary point Is either:
 Alocal minimum

 Alocal maximum

A saddlepoint

Global Minimum

The global minimum is either a local minimum, or a boundary point



|dentifying the type of
the stationary point

f function curved upwards (convex) locally,
then local minimum

L ocal Minima

f function curved downwards ( ) locally,
then

Saddlepo_int _

f function flat locally, then might be a saddlepoint
but could also be a local min or local max

Locally, cannot distinguish between local min
and global min (its a global property of the surface) Global Minimum




Second derivative reflects curvature
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Second derivative test

. If " (wg) > 0 then wq is a local minimum.
. If " (wg) < 0 then wy is a local maximum.

. If ¢’(wg) = 0 then the test is inconclusive: we cannot say which type of stationary
point we have and it could be any of the three.

Local Minima

Saddlepo_int _

Global Minimum



lesting optimality without the
second derivative test

Convex functions have a global minimum at every stationary point

cis convex <> c(tw; + (1 — Hw,) < tc(wy) + (1 — He(w,)

f(x)




Proceqgure

» Find a stationary point, namely w,, such that ¢'(w,) = 0

 Sometimes we can do this analytically (closed form solution, namely an
explicit formula for wy)

 Reason about If It Is optimal
* Check if your function is convex

* |f you have only one stationary point and it is a local miniumum, then it is a
global minimum

o Otherwise, If second derivate test says its a local min, can only say that



Numerical Optimization

 We will almost never be able to analytically compute the minimum of the
functions that we want to optimize

* (Linear regression is an important exception)
* |nstead, we must try to find the minimum numerically

* Main techniques: First-order and second-order gradient descent



Taylor Series

Definition: A Taylor series is a way of approximating a function ¢ in a small
neighbourhood around a point a;:

c(a)
k!

cw) ~ c(a) + c'(a)lw—a) + C”;a) (W — a)2 oo

k(@)
= c(a) + Z - ifcz) (w —a)’
=1

(w—a)'




Taylor Series Visualization
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Taylor Series Visualization (2)
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Taylor Series

Definition: A Taylor series is a way of approximating a function ¢ in a small
neighbourhood around a point a;:

4 (k)
c(w) % (@) + c@)(w — a) + - ;a) (W — @)+ e + = k('a)

D
—c(a)+z ( )(w—a)i

(w—a)'

* [ntuition: Following tangent line of the function approximates how It changes
e |.e., following a function with the same first derivative

e Following a function with the same first and second derivatives is a better
approximation; with the same first, second, third derivatives is even better; etc.




Second-Order Gradient Descent
(Newton-Raphson Method)

1. Approximate the target function with a second-order Taylor series around the current
c"(w)

guess w; cw) =c(w) +c’'w)(w —w,) + > (W — wt)2
c'(w,)
Wip1 < W — ()

2. Find the stationary point of the approximation !




Second-Order Gradient Descent
(Newton-Raphson Method)

1. Approximate the target function with a 0- %
second-order Taylor series around the dw

current guess w.

c(a) + c'(a)(w—a) A c”;a) (W — a)zl

C//(a) C//(a)
I =c'(a)+ 2 w—2 a
n , c"(w,) 0 2 2
c(w) =cw) +c'(w)(w —w,) + > (w—w,)
=c'(a) + c"(a)(w — a)
2. FInd the stationary point of the approximation
, <~ —c'(a)=c"(a)(w—a)
C (Wt) /
Pl T W c’'(w,) — (W—a)=— c(a)
! c"(a)
3. Ifthe stationary point of the approximationis ~ _,  _ c'(a)
a (good enough) stationary point of the c"(a)

objective, then stop. Else, goto 1.



(First-Order) Gradient Descent

We can run Newton-Raphson whenever we have access to both the
first and second derivatives of the target function

Often we want to only use the first derivative (why?)

First-order gradient descent: Replace the second derivative with a

|
constant — (the step size) in the approximation:
H
: , O 2
c(w) =c(w) + c'(w)(w — w)) > (w—w,)
1
cw) =cw) +c'w)(w — w4 o (W — wt)2

Sy exactly the same derivation as before:

Wi < w,—nc'(w,)




Partial Derivatives

« So far: Optimizing univariate function ¢ : R — |

d

— |

« But actually: Optimizing multivariate function ¢ : |

e distypicalyH U G E (d > 10,000 is not uncommon)

* First derivative of a multivariate function is a vector of partial derivatives

Definition:

0
he partial derivative —f(xl, ey X )
@xl-

of a function f(xy, ..., X,) at x{, ..., x, with respect to x; is g'(x,), where

g(Y) :f(x19 °'°’xi—1’y’xi+19 ...,Xd)




(Gradients

The multivariate analog to a first derivative Is called a gradient.

Definition:

partial derivatives of f at X:

The gradient V f(x) of a function f : | d

— R atX € |

VAX) = | %

d IS a vector of all the




Multivariate Gradient Descent

First-order gradient descent for multivariate functions ¢ : | 45 S just:
W, < W, —nVc(w,)
dc
6_(Wt)
Wir1,1 Wil al
C
Wir12 W2 a_(Wt)
: — : —H | ™
Wirl,d Wid




=xtending to stepsize per timestep

Sirst-order gradient descent for multivariate functions ¢ : RY — R is just:

Wit = We T Ve(w)

 Notice the tm

» We can choose a different #, for each iteration

* |ndeed, for univariate functions, Newton-Raphson can be understood as first-

1

order gradient descent that chooses a step size of 77, = o) at each iteration.
c (w;

 (Choosing a good step size is crucial to efficiently using first-order gradient descent



Adaptive Step Sizes

fiw)

w’ w

(a) Step-size too small

f the step size is too small, gradient descent will "work", but take forever

Too big, and we can overshoot the optimum

There are some heuristics that we can use to adaptively guess good values for #,

[deally, we would choose #, = arg min ¢ (Wt — N VC(Wt))
neR™

e But that's another optimization!



| INne Search

Intuition:

A simple heuristic: line search | |
» Big step sizes are better so long as

1. Try some largest-reasonable step size they don't overshoot
0) — | o
N, " = Hmax  Try a big step size! If it increases
(s) the objective, we must have
2. Isc (Wt — 1 VC(Wt)) < c(w)? overshot, so try a smaller one.

A )
tyes, w1 < w,— 1, VC(Wz) e Keep trying smaller ones until you

(s+1) _ . (s) aecrease the objective; then start

3. Otherwise, try 77, 1 teration £ + 1 from gy @gain.
(for T < 1) and goto 2

« Typically 7 € [0.5,0.9]




DO we have 1o use
a scalar stepsize?

 Or can we use a different stepsize per dimension”? And why would we?

\ W anld W2 . ~

\/\/Ll‘jlf’i’i \ Cor AX(/( Wz,?’/ Fovr ‘[1)((0{ ,
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\_/
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=

Stepsize 2¢houn ld be b
Stepsize 1 should ot SW‘"“ .j



Summary

We often want to find the argument w* that minimizes an objective function c:

w* = arg min c(w)
W

—very interior minimum is a stationary point, so check the stationary points
Stationary points usually identified numerically

e TJypically, by gradient descent

Choosing the step size is important for efficiency and correctness

o Common approach: Adaptive step size

e E£.9., by line search



