Brief Review Chapter 1-3

Winter, 2020

1

Language of Probabilities

- Define random variables
- Express our beliefs about behaviour of these RVs, and relationships to other RVs
- Examples:
 - p(x) Gaussian means we believe X is Gaussian distributed
 - p(y | X = x)—or written p(y | x)— is Gaussian says that conditioned on x, then y is Gaussian; but p(y) might not be Gaussian
 - p(w) and p(w | Data)

PMFs and PDFs

- Discrete RVs have PMFs
 - outcome space: e.g, $\Omega = \{1, 2, 3, 4, 5, 6\}$
 - event space: powerset (e.g., event {1,2})
 - examples: probability table, Poisson
- Continuous RVs have PDFs
 - outcome space: e.g., $\Omega = [0, 1]$
 - event space: Borel field (e.g., event [0.01, 0.02])
 - example: Gaussian, Gamma

PROBABILITY MASS FUNCTIONS

 $\Omega = \text{discrete sample space}$ $\mathcal{E} = \mathcal{P}(\Omega)$

Probability mass function:

1.
$$p: \Omega \to [0, 1]$$

2. $\sum_{\omega \in \Omega} p(\omega) = 1$

The probability of any event $A \in \mathcal{E}$ is defined as

$$P(A) = \sum_{\omega \in A} p(\omega)$$

PROBABILITY DENSITY FUNCTIONS

$$\begin{aligned} \Omega &= \text{continuous sample space} \\ \mathcal{E} &= \mathcal{B}(\Omega) \end{aligned}$$

Probability density function:

$$\begin{array}{ll} 1. \ p:\Omega\to [0,\infty)\\ \\ 2. \ \int_\Omega p(\omega)d\omega=1 \end{array} \qquad \qquad & \mbox{Who has never seen an integral?} \end{array}$$

The probability of any event $A \in \mathcal{E}$ is defined as

$$P(A) = \int_{A} p(\omega) d\omega.$$

CONDITIONAL DISTRIBUTIONS

Conditional probability distribution:

$$p(y|x) = \frac{p(x,y)}{p(x)}$$

If p(x,y) is small, does this imply that p(y|x) is small?

AN EXAMPLE FOR CONDITIONAL DISTRIBUTIONS

- Two types of books: fiction (X=0) and non-fiction (X=1)
- Let Y correspond to number of pages
- What is the difference between p(Y = 10 | X = 0) and p(Y = 10, X = 0)?
 - p(Y = 10, X = 0) = probability that a book is fiction and has 10 pages (imagine randomly sampling a book with eyes closed in the library)
 - p(Y = 10 | X = 0) = probability that a fiction book has 10 pages (imagine randomly sampling a book in the fiction section of the library with eyes closed)

AN EXAMPLE FOR CONDITIONAL DISTRIBUTIONS

- Two types of books: fiction (X=0) and non-fiction (X=1)
- Let Y correspond to number of pages
- What distribution might we have for p(y | X = 0) and p(y | X = 1)?
- How about p(y)?

RECALL THIS THINK-PAIR-SHARE

- How might you use a given Poisson distribution, that models commute times?
- How might you pick lambda for a Poisson distribution, to model commute times?

CHAIN RULE AND BAYES RULE

Recall chain rule: p(x, y) = p(x|y)p(y) = p(y|x)p(x)

 $p(y|x) = \frac{p(x|y)p(y)}{p(x)}$

Bayes rule:

INDEPENDENCE OF RANDOM VARIABLES

X and Y are **independent** if:

$$p(x, y) = p(x)p(y)$$

X and Y are **conditionally independent** given Z if:

$$p(x, y|z) = p(x|z)p(y|z)$$

CONDITIONAL INDEPENDENCE EXAMPLES EXAMPLE 7 IN THE NOTES

- Imagine you have a biased coin (does not flip 50% heads and 50% tails, but skewed towards one)
- Let Z = bias of a coin (say outcomes are 0.3, 0.5, 0.8 with associated probabilities 0.7, 0.2, 0.1)
 - what other outcome space could we consider?
 - what kinds of distributions?
- Let X and Y be consecutive flips of the coin
- Are X and Y independent?
- Are X and Y conditionally independent, given Z?

**(Basic example about an important issue in ML: hidden variables)

EXPECTED VALUE (MEAN, AVERAGE)

$$\mathbb{E}[X] = \begin{cases} \sum_{x \in \mathcal{X}} xp(x) & X : \text{discrete} \\ \\ \int_{\mathcal{X}} xp(x) dx & X : \text{continuous} \end{cases}$$

CONDITIONAL EXPECTATIONS

$$\mathbb{E}\left[Y|X=x\right] = \begin{cases} \sum_{y \in \mathcal{Y}} yp(y|x) & Y : \text{discrete} \\ \\ \int_{\mathcal{Y}} yp(y|x)dy & Y : \text{continuous} \end{cases}$$

Different expected value, depending on which x is observed

PROPERTIES OF EXPECTATIONS

- E[cX] = c E[X], for a constant c
- E[X + Y] = E[X] + E[Y] (linearity of expectation)
- If X and Y independent, then E[XY] = E[X] E[Y]
- E[Y] = E[E[Y | X]], where outer expectation over X
 - called Law of Total Expectation

PROPERTIES OF VARIANCES

- V[c] = 0 for a constant c
- V[c X] = c^2 V[X]
- V[X + Y] = V[X] + V[Y] + 2 Cov[X,Y]
- If X and Y are independent, V[X + Y] = V[X] + V[Y]
 - i.e., Cov[X,Y] = 0

SAMPLE AVERAGE IS AN UNBIASED ESTIMATOR

Obtain instances x_1, \ldots, x_n

What can we say about the sample average?

This sample is random, so we consider i.i.d. random variables X_1, \ldots, X_n

Reflects that we could have seen a different set of instances x_i

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}[X_{i}]$$
$$= \frac{1}{n}\sum_{i=1}^{n}\mu$$
$$= \mu$$
For any one sample x_{1}, \dots, x_{n} , unlikely that $\frac{1}{n}\sum_{i=1}^{n}x_{i} = \mu$

Bias and variance

- Bias of the sample average estimator
 - Bias(Xbar) = E[Xbar] mu = 0
- Variance of of the sample average estimator
 - Var(Xbar) = sigma² / n
- Reflects that variability over possible sample averages you could've seen

Concentration Inequality

Confidence
$$\Pr\left(\left|\bar{X} - \mathbb{E}[\bar{X}]\right| \ge \epsilon\right) \le \delta.$$

Chebyshev's: $\Pr(|\bar{X} - \mathbb{E}[\bar{X}]| \ge \epsilon) \le \frac{\sigma^2}{n\epsilon^2}$ = delta

Interval:

Interval under Gaussian Assumption

Gaussian Xi
$$\Pr(|\bar{X}-\mu| \geq 1.96\sigma/\sqrt{n}) = 0.95$$

Unknown dist. Xi $\Pr(|ar{X}-\mu| \geq$ 4.47 $\sigma/\sqrt{n})=0.95$

Population Distribution IQ Scores

 $\mu = 100 | \sigma = 15$

IQ Score

Consistency, Convergence Rate and Sample Complexity

- Consistency: Estimator -> True Value in the limit of infinite data
- Convergence Rate: the speed at which the estimator converges to its limit point
 - rate was typically O(1/sqrt(n)) for us
 - what is rate of estimator that returns 0?
- Sample Complexity: # of samples needed to reach a level of accuracy epsilon
 - upper bounded by 1.96 sigma/sqrt(n)

Question 1. [40 Marks]

Recall that the expected value of a random variable X is $\mathbb{E}[X] = \sum_{x \in \mathcal{X}} p(X = x)x$, where \mathcal{X} is the set of possible values of X, and the variance is given by $\operatorname{Var}[X] = \mathbb{E}[(X^2 - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$. Suppose you have a coin that has probability p of coming up heads and 1 - p of coming up tails. You flip the coin n times. Let the random variable X denote the number of heads you see.

Part (a) [5 MARKS]

What is the outcome space \mathcal{X} for this X?

Part (b) [5 MARKS]

Recall that the probability of seeing k successes in n independent Bernoulli trials is $\binom{n}{k}p^k(1-p)^{n-k}$. Write an expression for P(X = x), in terms of x.

Part (c) [5 MARKS]

Let X_1, X_2, \ldots, X_n correspond to the coin flip outcomes for the *n* flips. Express X in terms of these X_i .

Part (d) [10 MARKS]

Show that $\mathbb{E}[X] = np$.

Part (e) [15 MARKS]

Derive an expression for the variance, Var[X].

Question 2. [20 MARKS]

Imagine you are given an estimator, Y, with $\operatorname{Bias}(Y) = 1/\sqrt{n}$. (Recall that bias is $\operatorname{Bias}(Y) \doteq \mathbb{E}[Y] - \mu$ where μ is the unknown parameter for which Y is an estimate.) Is Y a consistent estimator? Explain why or why not.

Question 3. [40 MARKS]

Imagine you have *n* iid random variables X_1, X_2, \ldots, X_n , with $\mathbb{E}[X_i] = \mu$ and $\operatorname{Var}(X_i) = \sigma^2$ for all *i*. Let $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ be the sample average estimator. To get confidence intervals we used concentration inequalities. Using Chebyshev's inequality, we can say that

$$P(|\bar{X} - \mathbb{E}[\bar{X}]| \ge \epsilon) \le \frac{\sigma^2}{n\epsilon^2} \tag{1}$$

Part (a) [10 MARKS] What is $\mathbb{E}[\bar{X}]$?

Part (b) [30 MARKS]

Derive a 95% confidence interval for $\mathbb{E}[\bar{X}]$, using the above inequality. Show your steps.