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Language of Probabilities

• Define random variables 
• Express our beliefs about behaviour of 

these RVs, and relationships to other RVs 
• Examples:  

• p(x) Gaussian means we believe X is Gaussian 
distributed 

• p(y | X = x)—or written p(y | x)— is Gaussian says 
that conditioned on x, then y is Gaussian; but p(y) 
might not be Gaussian 

• p(w) and p(w | Data)
2



PMFs and PDFs
• Discrete RVs have PMFs 

• outcome space: e.g,   
• event space: powerset (e.g., event {1,2}) 
• examples: probability table, Poisson 

• Continuous RVs have PDFs 
• outcome space: e.g., 
• event space: Borel field (e.g., event 

[0.01, 0.02]) 
• example: Gaussian, Gamma
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PROBABILITY MASS FUNCTIONS
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PROBABILITY DENSITY FUNCTIONS
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Who has never seen an integral?



CONDITIONAL DISTRIBUTIONS

p(y|x) = p(x, y)

p(x)

If p(x,y) is small, does this imply that p(y|x) is small?



AN EXAMPLE FOR CONDITIONAL DISTRIBUTIONS

• Two types of books: fiction (X=0) and non-fiction (X=1) 

• Let Y correspond to number of pages 

• What is the difference between p(Y = 10 | X = 0) and 
p(Y = 10, X = 0)? 

• p(Y = 10, X = 0) = probability that a book is fiction 
and has 10 pages (imagine randomly sampling a 
book with eyes closed in the library) 

• p(Y = 10 | X = 0) = probability that a fiction book has 
10 pages (imagine randomly sampling a book in the 
fiction section of the library with eyes closed)



AN EXAMPLE FOR CONDITIONAL DISTRIBUTIONS

• Two types of books: fiction (X=0) and non-fiction (X=1) 

• Let Y correspond to number of pages 

• What distribution might we have for p(y | X = 0) and p(y | 
X = 1)? 

• How about p(y)?



RECALL THIS THINK-PAIR-SHARE
• How might you use a given Poisson distribution, that 

models commute times? 

• How might you pick lambda for a Poisson distribution, to 
model commute times?  



CHAIN RULE AND BAYES RULE

Recall chain rule: p(x, y) = p(x|y)p(y) = p(y|x)p(x)

p(y|x) = p(x|y)p(y)
p(x)

Bayes rule: 



INDEPENDENCE OF RANDOM VARIABLES

We will drop subscripts and write p(x, y) = p(x)p(y)

p(x, y|z) = p(x|z)p(y|z)



CONDITIONAL INDEPENDENCE EXAMPLES 
EXAMPLE 7 IN THE NOTES

• Imagine you have a biased coin (does not flip 50% 
heads and 50% tails, but skewed towards one) 

• Let Z = bias of a coin (say outcomes are 0.3, 0.5, 0.8 
with associated probabilities 0.7, 0.2, 0.1) 

• what other outcome space could we consider? 
• what kinds of distributions? 

• Let X and Y be consecutive flips of the coin 
• Are X and Y independent? 
• Are X and Y conditionally independent, given Z?

**(Basic example about an important issue in ML: hidden variables)



EXPECTED VALUE (MEAN, AVERAGE)

E [X] =

8
><

>:

P
x2X xp(x) X : discrete

R
X xp(x)dx X : continuous



CONDITIONAL EXPECTATIONS

E [Y |X = x] =

8
><

>:

P
y2Y yp(y|x) Y : discrete

R
Y yp(y|x)dy Y : continuous

Different expected value, depending on which x is observed



PROPERTIES OF EXPECTATIONS

• E[cX] = c E[X], for a constant c 
• E[X + Y] = E[X] + E[Y] (linearity of expectation) 
• If X and Y independent, then E[XY] = E[X] E[Y] 
• E[Y] = E[E[Y | X]], where outer expectation over X 

• called Law of Total Expectation



PROPERTIES OF VARIANCES

• V[c] = 0 for a constant c 
• V[c X] = c^2 V[X] 
• V[X + Y] = V[X] + V[Y] + 2 Cov[X,Y] 
• If X and Y are independent, V[X + Y] = V[X] + V[Y]  

• i.e., Cov[X,Y] = 0



SAMPLE AVERAGE IS AN UNBIASED ESTIMATOR

Obtain instances x1, . . . , xn

What can we say about the sample average?

This sample is random, so we consider i.i.d. random variables

X1, . . . , Xn

Reflects that we could have seen a di↵erent set of instances xi

E
"
1

n

nX

i=1

Xi

#
=

1

n

nX

i=1

E[Xi]

=
1

n

nX

i=1

µ

= µ

For any one sample x1, . . . , xn, unlikely that
1

n

nX

i=1

xi = µ



Bias and variance

• Bias of the sample average estimator 
• Bias(Xbar) = E[Xbar] - mu = 0 

• Variance of of the sample average 
estimator 
• Var(Xbar) = sigma^2 / n 

• Reflects that variability over possible 
sample averages you could’ve seen
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Concentration Inequality
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Now, let us compute this expectation.

E[X̄] = E
C

1
n

nÿ

i=1
Xi

D

= 1
n

nÿ

i=1
E [Xi] Û E [Xi] = µ, by assumption

= 1
n

nÿ

i=1
µ = 1

n
nµ

= µ

So the bias is zero, because Bias(X̄) = E[X̄] ≠ µ = µ ≠ µ = 0.
We can also characterize the variance of the estimator. If the Xi are i.i.d. random

variables with variance ‡2, then

V
Ë
X̄

È
= V

C
1
n

nÿ

i=1
Xi

D

= 1
n2 V

C
nÿ

i=1
Xi

D

= 1
n2

nÿ

i=1
V [Xi] Û by independence

= 1
n2

nÿ

i=1
‡2 = 1

n
‡2.

Therefore, the variance shrinks proportionally to the number of samples. However, this
does not give us enough information about how close X̄ is to the true mean µ. For this, we
use concentration inequalities in the next section.

3.2 Concentration inequalities
Our goal is to obtain a confidence interval around our estimate, to obtain a measure of
confidence in our estimate, and to show consistency. More specifically, we would likely be
able to say that for any ‘ > 0, there exists ” Ø 0 such that

Pr
1---X̄ ≠ E[X̄]

--- Ø ‘
2

Æ ”. (3.3)

In other words, we want a small probability ” that X̄ deviates by ‘ from the mean E[X̄].
We want the interval given by ‘ to be small—and of course ” to be small—so that we can
be confident in our estimate E[X̄]. This probability tells us that E[X̄] œ [X̄ ≠ ‘, X̄ + ‘]
with high probability, that is with probability 1 ≠ ”. You can see this is the case by notic-
ing that Equation (3.3) can equivalently be written Pr

1---X̄ ≠ E[X̄]
--- Æ ‘

2
Ø 1 ≠ ” because

Pr
1---X̄ ≠ E[X̄]

--- Æ ‘
2

= 1 ≠ Pr
1---X̄ ≠ E[X̄]

--- Ø ‘
2

and that
---X̄ ≠ E[X̄]

--- Ø ‘ =∆ ≠‘ Æ E[X̄] ≠ X̄ Æ ‘

=∆ X̄ ≠ ‘ Æ E[X̄] Æ X̄ + ‘ Û Added X̄ to all three equations.
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Confidence  
Interval:

Chebyshev’s: 

Concentration inequalities let us characterize ” for any given ‘, or ‘ for a given ”. We
will discuss two common concentration inequalities: Hoe�ding’s inequality and Chebyshev’s
inequality. The second applies to more general settings. Let’s start with Hoe�ding’s in-
equality. Assume we have independent and identically distributed (i.i.d.) bounded random
variables X1, . . . , Xn, such that a Æ Xi Æ b for some a, b œ R. Then Hoe�ding’s inequality
states that for any ‘ > 0

Pr(|X̄ ≠ E[X̄]| Ø ‘) Æ 2 exp
A

≠ 2n‘2

(b ≠ a)2

B

.

For a given ‘, we have ” = 2 exp(≠2n‘2/(b ≠ a)2). In many cases, we would actually like
to determine the interval around E[X̄], for some confidence level ”. We can solve for ‘ in
terms of ”, to get

” = 2 exp(≠2n‘2/(b ≠ a)2) =∆ ‘ = (b ≠ a)

Û
ln(2/”)

2n
.

We get that with probability 1 ≠ ”,
---X̄ ≠ E[X̄]

--- Æ ‘ = (b ≠ a)
Ò

ln(2/”)
2n .

Example 8: Let’s assume you have n i.i.d. random variables, with a = 0 and b = 1.
Imagine you get n = 30 samples, with X̄ = 0.6. Now you want to get a 95% confidence
interval around the true mean, i.e., ” = 0.05. Then the resulting interval, using Hoe�ding’s
inequality, has ‘ = (1 ≠ 0)

Ò
ln(2/0.05)

2◊30 = 0.248. ⇤
Hoe�ding’s inequality assumes bounded random variables, but there are other concen-

tration inequalities for unbounded random variables. Chebyshev’s inequality let’s us say
that, for i.i.d. random variables X1, . . . , Xn with variance ‡2,

Pr(|X̄ ≠ E[X̄]| Ø ‘) Æ ‡2

n‘2 . (3.4)

Again, we can solve for ‘ in terms of ”, to get

” = ‡2

n‘2 =∆ ‘ =

Û
‡2

”n
.

For this setting, where we know the variance by the variables are not bounded between
some a and b, we still get an interval proportional to


1/n. Notice that the conditions

for Chebyshev’s inequality are actually less stringent, because the variance of any random
variable bounded between [a, b] is at most ‡2 = 1

12(b ≠ a)2. So, Chebyshev’s can be applied
to such random variables, by using this upper bound on the variance. However, Hoe�ding’s
bound is a better choice, since it gives a tighter bound.

3.3 Consistency
Chebyshev’s inequality let’s us easily show consistency of the sample average estimator.
Consistency means that

X̄ æ µ as n æ Œ. (3.5)
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As n gets larger, ‘ =
Ò

‡2
”n gets smaller and smaller. In fact,

Û
‡2

”n
æ 0 as n æ Œ. (3.6)

This means that for arbitrarily small ”, X̄ æ E[X̄] as n æ Œ. Because the sample average
is unbiased, we know E[X̄] = µ, and so X̄ æ µ. This convergence in probability is also
called the (weak) law of large numbers.

3.4 Rate of Convergence and Sample Complexity
The sample complexity n is the number of samples needed to obtain an ‘ accurate estimate.
Our goal is to make the sample complexity small, so that we can get a good estimate with
as few samples as possible—to be data e�cient. The sample complexity is determined both
by the properties of the data and by our estimator. We can improve the sample complexity
by using smarter estimators, but will inherently have higher sample complexity for certain
types of data. For example, if the data has high variance, the bound above tells us that
we need more samples to obtain an accurate estimate. But, we can reduce the sample
complexity if we could bias or initialize our sample average estimate to be closer to the true
mean.

The convergence rate indicates how quickly the error in our estimate decays, in terms
of the number of samples. For example, using Chebyshev’s inequality, we obtained a con-
vergence rate of O(1/

Ô
n):

---X̄ ≠ E[X̄]
--- Æ

Û
‡2

”n
with high probability 1 ≠ ”.

This concentration inequality—Chebyshev’s inequality—makes few assumptions about the
random variables. For example, it does not make any distributional assumptions about
each Xi. We can actually reduce the sample complexity, by making stronger assumptions
on the Xi.

To see why, let’s revisit Equation (3.3), but now assume that the Xi are i.i.d. Gaussian
random variables, with variance ‡2 and unknown mean µ. We know that X̄ ≠µ is zero-mean
Gaussian with variance ‡2/n. We can look at the tails of the Gaussian to determine that,
say for ” = 0.05, ‘ = 1.96‡/

Ô
n

Pr(|X̄ ≠ µ| Ø 1.96‡/
Ô

n) = 0.95

Chebyshev’s inequality would give a larger number of ‘ = 4.47‡/
Ô

n. This is 2.28x larger
than if we knew the distribution of the Xi were Gaussian, showing what we lose when we
do not know the distribution and so cannot take advantage of that information to improve
the confidence interval.

Notice that though sample complexity is better, the convergence rate is still O(1/
Ô

n).
Does this mean we are always stuck with this rate? For many distributions, yes, but
for certain distributions, we can actually get even faster convergence. For example, for
independent Bernoulli Xi, the Cherno� bound—yes, yet another concentration inequality—
let’s us obtain a convergence rate of O(1/n), which is significantly faster.
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Interval under  
Gaussian Assumption

As n gets larger, ‘ =
Ò

‡2
”n gets smaller and smaller. In fact,

Û
‡2

”n
æ 0 as n æ Œ. (3.6)

This means that for arbitrarily small ”, X̄ æ E[X̄] as n æ Œ. Because the sample average
is unbiased, we know E[X̄] = µ, and so X̄ æ µ. This convergence in probability is also
called the (weak) law of large numbers.

3.4 Rate of Convergence and Sample Complexity
The sample complexity n is the number of samples needed to obtain an ‘ accurate estimate.
Our goal is to make the sample complexity small, so that we can get a good estimate with
as few samples as possible—to be data e�cient. The sample complexity is determined both
by the properties of the data and by our estimator. We can improve the sample complexity
by using smarter estimators, but will inherently have higher sample complexity for certain
types of data. For example, if the data has high variance, the bound above tells us that
we need more samples to obtain an accurate estimate. But, we can reduce the sample
complexity if we could bias or initialize our sample average estimate to be closer to the true
mean.

The convergence rate indicates how quickly the error in our estimate decays, in terms
of the number of samples. For example, using Chebyshev’s inequality, we obtained a con-
vergence rate of O(1/

Ô
n):

---X̄ ≠ E[X̄]
--- Æ

Û
‡2

”n
with high probability 1 ≠ ”.

This concentration inequality—Chebyshev’s inequality—makes few assumptions about the
random variables. For example, it does not make any distributional assumptions about
each Xi. We can actually reduce the sample complexity, by making stronger assumptions
on the Xi.

To see why, let’s revisit Equation (3.3), but now assume that the Xi are i.i.d. Gaussian
random variables, with variance ‡2 and unknown mean µ. We know that X̄ ≠µ is zero-mean
Gaussian with variance ‡2/n. We can look at the tails of the Gaussian to determine that,
say for ” = 0.05, ‘ = 1.96‡/

Ô
n

Pr(|X̄ ≠ µ| Ø 1.96‡/
Ô

n) = 0.95

Chebyshev’s inequality would give a larger number of ‘ = 4.47‡/
Ô

n. This is 2.28x larger
than if we knew the distribution of the Xi were Gaussian, showing what we lose when we
do not know the distribution and so cannot take advantage of that information to improve
the confidence interval.

Notice that though sample complexity is better, the convergence rate is still O(1/
Ô

n).
Does this mean we are always stuck with this rate? For many distributions, yes, but
for certain distributions, we can actually get even faster convergence. For example, for
independent Bernoulli Xi, the Cherno� bound—yes, yet another concentration inequality—
let’s us obtain a convergence rate of O(1/n), which is significantly faster.
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Unknown dist. Xi 4.47



Consistency, Convergence Rate 
and Sample Complexity

• Consistency: Estimator -> True Value in the 
limit of infinite data 

• Convergence Rate: the speed at which the 
estimator converges to its limit point  
• rate was typically O(1/sqrt(n)) for us 
• what is rate of estimator that returns 0? 

• Sample Complexity: # of samples needed to 
reach a level of accuracy epsilon 
• upper bounded by 1.96 sigma/sqrt(n)

21



Name:

Question 1. [40 marks]

Recall that the expected value of a random variable X is E[X] =
P

x2X p(X = x)x, where X is the
set of possible values of X, and the variance is given by Var[X] = E[(X2�E[X])2] = E[X2]�E[X]2.
Suppose you have a coin that has probability p of coming up heads and 1 � p of coming up tails.
You flip the coin n times. Let the random variable X denote the number of heads you see.

Part (a) [5 marks]

What is the outcome space X for this X?

Part (b) [5 marks]

Recall that the probability of seeing k successes in n independent Bernoulli trials is
�n
k

�
pk(1�p)n�k.

Write an expression for P (X = x), in terms of x.

Part (c) [5 marks]

Let X1, X2, . . . , Xn correspond to the coin flip outcomes for the n flips. Express X in terms of
these Xi.

Part (d) [10 marks]

Show that E[X] = np.

Part (e) [15 marks]

Derive an expression for the variance, Var[X].

Question 2. [20 marks]

Imagine you are given an estimator, Y , with Bias(Y ) = 1/
p
n. (Recall that bias is Bias(Y )

.
=

E[Y ] � µ where µ is the unknown parameter for which Y is an estimate.) Is Y a consistent
estimator? Explain why or why not.

Question 3. [40 marks]

Imagine you have n iid random variables X1, X2, . . . , Xn, with E[Xi] = µ and Var(Xi) = �2 for
all i. Let X̄ = 1

n

Pn
i=1Xi be the sample average estimator. To get confidence intervals we used

concentration inequalities. Using Chebyshev’s inequality, we can say that

P (|X̄ � E[X̄]| � ✏)  �2

n✏2
(1)

Part (a) [10 marks]

What is E[X̄]?

Part (b) [30 marks]

Derive a 95% confidence interval for E[X̄], using the above inequality. Show your steps.

# 1 # 2 # 3 Total

/40 /20 /40 /100

Total Pages = 2 Page 2 End of Examination
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