Brief Review Chapter 1-3

Winter, 2020

Language of Probabilities

- Define random variables
- Express our beliefs about behaviour of these RVs, and relationships to other RVs
- Examples:
- $p(x)$ Gaussian means we believe X is Gaussian distributed
- $p(y \mid X=x)$-or written $p(y \mid x)$ - is Gaussian says that conditioned on x , then y is Gaussian; but $\mathrm{p}(\mathrm{y})$ might not be Gaussian
- $p(w)$ and $p(w \mid$ Data $)$

PMFs and PDFs

- Discrete RVs have PMFs
- outcome space: e.g, $\Omega=\{1,2,3,4,5,6\}$
- event space: powerset (e.g., event $\{1,2\}$)
- examples: probability table, Poisson
- Continuous RVs have PDFs
- outcome space: e.g., $\Omega=[0,1]$
- event space: Borel field (e.g., event [0.01, 0.02])
- example: Gaussian, Gamma

Probability Mass Functions

$\Omega=$ discrete sample space
$\mathcal{E}=\mathcal{P}(\Omega)$

Probability mass function:

1. $p: \Omega \rightarrow[0,1]$
2. $\sum_{\omega \in \Omega} p(\omega)=1$

The probability of any event $A \in \mathcal{E}$ is defined as

$$
P(A)=\sum_{\omega \in A} p(\omega)
$$

Probability Density Functions

$\Omega=$ continuous sample space
$\mathcal{E}=\mathcal{B}(\Omega)$

Probability density function:

$$
\begin{aligned}
& \text { 1. } p: \Omega \rightarrow[0, \infty) \\
& \text { 2. } \int_{\Omega} p(\omega) d \omega=1
\end{aligned}
$$

The probability of any event $A \in \mathcal{E}$ is defined as

$$
P(A)=\int_{A} p(\omega) d \omega \text {. }
$$

Conditional Distributions

Conditional probability distribution:

$$
p(y \mid x)=\frac{p(x, y)}{p(x)}
$$

If $p(x, y)$ is small, does this imply that $p(y \mid x)$ is small?

AN EXAMPLE FOR CONDITIONAL DISTRIBUTIONS

- Two types of books: fiction $(X=0)$ and non-fiction $(X=1)$
- Let Y correspond to number of pages
- What is the difference between $p(Y=10 \mid X=0)$ and $p(Y=10, X=0)$?
- $p(Y=10, X=0)=$ probability that a book is fiction and has 10 pages (imagine randomly sampling a book with eyes closed in the library)
- $p(Y=10 \mid X=0)=$ probability that a fiction book has 10 pages (imagine randomly sampling a book in the fiction section of the library with eyes closed)

AN EXAMPLE FOR CONDITIONAL DISTRIBUTIONS

- Two types of books: fiction $(X=0)$ and non-fiction $(X=1)$
- Let Y correspond to number of pages
- What distribution might we have for $p(y \mid X=0)$ and $p(y \mid$ $X=1$)?
- How about $\mathrm{p}(\mathrm{y})$?

Recall this Think-Pair-Share

- How might you use a given Poisson distribution, that models commute times?
- How might you pick lambda for a Poisson distribution, to model commute times?
.25
.20
.15
.10
.05

Chain rule and Bayes rule

Recall chain rule: $\quad p(x, y)=p(x \mid y) p(y)=p(y \mid x) p(x)$

Bayes rule:

$$
p(y \mid x)=\frac{p(x \mid y) p(y)}{p(x)}
$$

Independence of Random Variables

X and Y are independent if:

$$
p(x, y)=p(x) p(y)
$$

X and Y are conditionally independent given Z if:

$$
p(x, y \mid z)=p(x \mid z) p(y \mid z)
$$

Conditional Independence Examples

EXample 7 In The notes

- Imagine you have a biased coin (does not flip 50\% heads and 50% tails, but skewed towards one)
- Let $Z=$ bias of a coin (say outcomes are 0.3, 0.5, 0.8 with associated probabilities $0.7,0.2,0.1$)
- what other outcome space could we consider?
- what kinds of distributions?
- Let X and Y be consecutive flips of the coin
- Are X and Y independent?
- Are X and Y conditionally independent, given Z ?
**(Basic example about an important issue in ML: hidden variables)

Expected value (MEan, Average)

$$
\mathbb{E}[X]= \begin{cases}\sum_{x \in \mathcal{X}} x p(x) & X: \text { discrete } \\ \int_{\mathcal{X}} x p(x) d x & X: \text { continuous }\end{cases}
$$

Conditional Expectations

$$
\mathbb{E}[Y \mid X=x]= \begin{cases}\sum_{y \in \mathcal{Y}} y p(y \mid x) & Y: \text { discrete } \\ \int_{\mathcal{Y}} y p(y \mid x) d y & Y: \text { continuous }\end{cases}
$$

Different expected value, depending on which x is observed

Properties of Expectations

- $E[c X]=c E[X]$, for a constant c
- $E[X+Y]=E[X]+E[Y]$ (linearity of expectation)
- If X and Y independent, then $E[X Y]=E[X] E[Y]$
- $E[Y]=E[E[Y \mid X]]$, where outer expectation over X
- called Law of Total Expectation

Properties of Variances

- $\mathrm{V}[\mathrm{c}]=0$ for a constant c
- $\mathrm{V}[\mathrm{c} \mathrm{X}]=\mathrm{c}^{\wedge} 2 \mathrm{~V}[\mathrm{X}]$
- $\mathrm{V}[\mathrm{X}+\mathrm{Y}]=\mathrm{V}[\mathrm{X}]+\mathrm{V}[\mathrm{Y}]+2 \operatorname{Cov}[\mathrm{X}, \mathrm{Y}]$
- If X and Y are independent, $\mathrm{V}[\mathrm{X}+\mathrm{Y}]=\mathrm{V}[\mathrm{X}]+\mathrm{V}[\mathrm{Y}]$
- i.e., $\operatorname{Cov}[X, Y]=0$

SAMPLE AVERAGE IS AN UNBIASED ESTIMATOR

Obtain instances x_{1}, \ldots, x_{n}
What can we say about the sample average?
This sample is random, so we consider i.i.d. random variables X_{1}, \ldots, X_{n}
Reflects that we could have seen a different set of instances x_{i}

$$
\begin{aligned}
\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}\right] & =\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right] \\
& =\frac{1}{n} \sum_{i=1}^{n} \mu \\
& =\mu
\end{aligned}
$$

For any one sample x_{1}, \ldots, x_{n}, unlikely that $\frac{1}{n} \sum_{i=1}^{n} x_{i}=\mu$

Bias and variance

- Bias of the sample average estimator
- Bias(Xbar) = E[Xbar] - mu = 0
- Variance of of the sample average estimator
- $\operatorname{Var}($ Xbar $)=$ sigma^2 $/ n$
- Reflects that variability over possible sample averages you could've seen

Concentration Inequality

Confidence Interval:

$$
\operatorname{Pr}(|\bar{X}-\mathbb{E}[\bar{X}]| \geq \epsilon) \leq \delta
$$

Chebyshev's:

$$
\operatorname{Pr}(|\bar{X}-\mathbb{E}[\bar{X}]| \geq \epsilon) \leq \frac{\sigma^{2}}{n \epsilon^{2}} \quad=\text { delta }
$$

Interval under Gaussian Assumption

Gaussian Xi

$$
\operatorname{Pr}(|\bar{X}-\mu| \geq 1.96 \sigma / \sqrt{n})=0.95
$$

Unknown dist. Xi
$\operatorname{Pr}(|\bar{X}-\mu| \geq 4.47 \sigma / \sqrt{n})=0.95$
Population Distribution IQ Scores
$\mu=100 \mid \sigma=15$

Consistency, Convergence Rate

 and Sample Complexity- Consistency: Estimator -> True Value in the limit of infinite data
- Convergence Rate: the speed at which the estimator converges to its limit point
- rate was typically $O(1 / s q r t(n))$ for us
- what is rate of estimator that returns 0 ?
- Sample Complexity: \# of samples needed to reach a level of accuracy epsilon
- upper bounded by 1.96 sigma/sqrt(n)

Question 1. [40 marks]

Recall that the expected value of a random variable X is $\mathbb{E}[X]=\sum_{x \in \mathcal{X}} p(X=x) x$, where \mathcal{X} is the set of possible values of X, and the variance is given by $\operatorname{Var}[X]=\mathbb{E}\left[\left(X^{2}-\mathbb{E}[X]\right)^{2}\right]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$. Suppose you have a coin that has probability p of coming up heads and $1-p$ of coming up tails. You flip the coin n times. Let the random variable X denote the number of heads you see.

Part (a) [5 MARKS]

What is the outcome space \mathcal{X} for this X ?

Part (b) [5 MARKS]

Recall that the probability of seeing k successes in n independent Bernoulli trials is $\binom{n}{k} p^{k}(1-p)^{n-k}$. Write an expression for $P(X=x)$, in terms of x.

Part (c) [5 MARKS]
Let $X_{1}, X_{2}, \ldots, X_{n}$ correspond to the coin flip outcomes for the n flips. Express X in terms of these X_{i}.

Part (d) [10 MARKS]
Show that $\mathbb{E}[X]=n p$.
Part (e) [15 marks]
Derive an expression for the variance, $\operatorname{Var}[X]$.

Question 2. [20 marks]

Imagine you are given an estimator, Y, with $\operatorname{Bias}(Y)=1 / \sqrt{n}$. (Recall that bias is $\operatorname{Bias}(Y) \doteq$ $\mathbb{E}[Y]-\mu$ where μ is the unknown parameter for which Y is an estimate.) Is Y a consistent estimator? Explain why or why not.

Question 3. [40 marks]

Imagine you have n iid random variables $X_{1}, X_{2}, \ldots, X_{n}$, with $\mathbb{E}\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$ for all i. Let $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ be the sample average estimator. To get confidence intervals we used concentration inequalities. Using Chebyshev's inequality, we can say that

$$
\begin{equation*}
P(|\bar{X}-\mathbb{E}[\bar{X}]| \geq \epsilon) \leq \frac{\sigma^{2}}{n \epsilon^{2}} \tag{1}
\end{equation*}
$$

Part (a) [10 MARKS]
What is $\mathbb{E}[\bar{X}]$?
Part (b) [30 MARKS]
Derive a 95% confidence interval for $\mathbb{E}[\bar{X}]$, using the above inequality. Show your steps.

