Probability Theory

CMPUT 296

Martha White

Winter, 2020

Quick Check on Pre-req Knowledge

- You should know how to take derivatives
- Will rarely, if ever integrate
- I will teach you about Partial Derivatives
- I assume you know about vectors and dot products, hopefully also about matrices
- Need to have learned about probability, I will cover
- Expected Value (Mean)
- Variance
- Random Variables
- Probability Density Functions...

Why do we need probabilities?

- We could just assume a deterministic world
- I see an input x, I can produce the output $y=f(x)$
- Example: in a game (e.g., chess), you take an action, and the outcome is deterministic
- But, even in a deterministic world, we have a problem: partial observability
- Outcomes look random because we don't have enough information
- Example: Imagine a (high-tech) gumball machine, where $f(x=$ has candy, battery charged) $=$ output candy
- You can only see if it has candy

Why do we need probabilities?

- But, even in a deterministic world, we have a problem: partial observability
- Outcomes look random because we don't have enough information
- Example: Imagine a (high-tech) gumball machine, where $f(x=$ has candy, battery charged) = output candy
- You can only see if it has candy
- From your perspective, when $x=$ has candy, sometimes candy is outputted and sometimes not
- Looks stochastic (dependent on hidden battery charge)

Space of outcomes and events

$\Omega=$ sample space, all outcomes of the experiment
$\mathcal{E}=$ event space, set of subsets of Ω
Ω and \mathcal{E} must be non-empty

Sample Spaces

Ω

discrete (countable)
continuous (uncountable)
e.g., Outcome of Dice Roll

$$
\begin{array}{rlrl}
\Omega=\{1,2,3,4,5,6\} & \Omega & =[0,1] \\
\Omega=\mathbb{N} & \Omega=\mathbb{R} \\
\text { e.g., } \mathcal{E}=\{\emptyset,\{1,2\},\{3,4,5,6\},\{1,2,3,4,5,6\}\} & \text { e.g., } \mathcal{E}=\{\emptyset,[0,0.5],(0.5,1.0],[0,1]\}
\end{array}
$$

A FEW COMMENTS ON TERMINOLOGY

- A few new terms, including countable, closure
- only a small amount of terminology used, can google these terms and learn on your own
- notation sheet in notes
- Countable: integers, \{0.1,2.0,3.6\},...
- Uncountable: real numbers, intervals, ...
- Interchangeably I use (though its somewhat loose)
- discrete and countable
- continuous and uncountable

(MEASURABLE) SPACE OF OUTCOMES AND EVENTS

$\Omega=$ sample space, all outcomes of the experiment
$\mathcal{E}=$ event space, set of subsets of Ω
Ω and \mathcal{E} must be non-empty
If the following conditions hold:

1. $A \in \mathcal{E} \quad \Rightarrow \quad A^{c} \in \mathcal{E}$
2. $A_{1}, A_{2}, \ldots \in \mathcal{E} \quad \Rightarrow \quad \bigcup_{i=1}^{\infty} A_{i} \in \mathcal{E}$
\mathcal{E} is an event space
$(\Omega, \mathcal{E})=$ a measurable space

Why is this the Definition?

Intuitively,

1. A collection of outcomes is an event (e.g., either a 1 or 6 was rolled)
2. If we can measure two events separately, then their union should also be a measurable event
3. If we can measure an event, then we should be able to measure that that event did not occur (the complement)
$\Omega=$ sample space, all outcomes of the experiment
$\mathcal{E}=$ event space, set of subsets of Ω
If the following conditions hold:
4. $A \in \mathcal{E} \quad \Rightarrow \quad A^{c} \in \mathcal{E}$
5. $A_{1}, A_{2}, \ldots \in \mathcal{E} \quad \Rightarrow \quad \bigcup_{i=1}^{\infty} A_{i} \in \mathcal{E}$

Quick Check on background

- The complement of a set
- The union of sets
- A set of sets
- Any other confusing notation?

Sample Spaces

Ω

discrete (countable)
$\Omega=\{1,2,3,4,5,6\}$
$\Omega=\mathbb{N}$
$e . g ., \mathcal{E}=\{\emptyset,\{1,2\},\{3,4,5,6\},\{1,2,3,4,5,6\}\}$
Typically: $\mathcal{E}=\mathcal{P}(\Omega)$

Power set

Typically: $\mathcal{E}=\mathcal{B}(\Omega)$
continuous (uncountable)

$$
\begin{aligned}
& \Omega=[0,1] \\
& \Omega=\mathbb{R}
\end{aligned}
$$

$$
\text { e.g., } \mathcal{E}=\{\emptyset,[0,0.5],(0.5,1.0],[0,1]\}
$$

axioms of Probability

$(\Omega, \mathcal{E})=$ a measurable space

Any function $P: \mathcal{E} \rightarrow[0,1]$ such that

1. (unit measure) $P(\Omega)=1$
2. (σ-additivity) Any countable sequence of disjoint events $A_{1}, A_{2}, \ldots \in \mathcal{E}$ satisfies $P\left(\cup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)$
is called a probability measure (probability distribution)
$(\Omega, \mathcal{E}, P)=$ a probability space

Finding Probability Distributions

$(\Omega, \mathcal{E})=$ a measurable space
Do you recognize this distribution?
Example: $\quad \Omega=\{0,1\}$

$$
\mathcal{E}=\{\emptyset,\{0\},\{1\}, \Omega\}
$$

$$
P(A)=\left\{\begin{array}{ll}
1-\alpha & A=\{0\} \\
\alpha & A=\{1\} \\
0 & A=\emptyset \\
1 & A=\Omega
\end{array} \quad \alpha \in[0,1]\right.
$$

How can we choose P in practice?
Clearly, we cannot do it arbitrarily.
How can we satisfy all constraints?

Probability Mass Functions

$\Omega=$ discrete sample space
$\mathcal{E}=\mathcal{P}(\Omega)$

Probability mass function:

1. $p: \Omega \rightarrow[0,1]$
2. $\sum_{\omega \in \Omega} p(\omega)=1$

The probability of any event $A \in \mathcal{E}$ is defined as

$$
P(A)=\sum_{\omega \in A} p(\omega)
$$

Arbitrary PMFs

e.g. PMF for a fair die (table of values)

$$
\begin{aligned}
\Omega & =\{1,2,3,4,5,6\} \\
p(\omega) & =1 / 6 \quad \forall \omega \in \Omega
\end{aligned}
$$

$$
1 / 6 \quad 1 / 61 / 6 \quad 1 / 6 \quad 1 / 6 \quad 1 / 6
$$

EXercise: Examples of events

- What is a possible event? What is its probability
-What is the event space?

$$
\Omega=\{1,2,3,4,5,6\}
$$

$$
1 / 6 \quad 1 / 6
$$

EXercise: How are PMFs useful as a model?

- Histograms!
- Imagine you recorded your commute times for a year, in minutes (365 recorded times)
- How do you get $\mathrm{p}(\mathrm{t})$?
- How is $\mathrm{p}(\mathrm{t})$ useful?

EXercise: How are PMFs useful as a model?

- Histograms!
- Imagine you recorded your commute times for a year, in minutes
- Get $p(t)$: count number of times $t=1,2,3, \ldots$ occurs and then normalize probabilities by \# samples

USEFUL PMFS

Bernoulli distribution:

$$
\Omega=\{S, F\} \quad \alpha \in(0,1)
$$

$$
p(\omega)= \begin{cases}\alpha & \omega=S \\ 1-\alpha & \omega=F\end{cases}
$$

Alternatively, $\Omega=\{0,1\}$

$$
p(k)=\alpha^{k} \cdot(1-\alpha)^{1-k}
$$

$\forall k \in \Omega$

Reminders: January 9, 2020

- Assignment 1 is available on the website
- https://marthawhite.github.io/mlbasics/
- You should start reading the notes
- Chapters 1, 2 and 3 (about 30 pages)
- The notes are in-progress
- Some sections still say "Coming soon..."
- Avoid printing the full set of notes (if at all). At most, print what you are reading

A few other notes on Policy

- If you have an issue (sickness, injury, family problem, etc.), and need an extension on an assignment, contact me about it before the assignment deadline.
- I cannot give extensions after.
- You cannot submit Thought Questions late
- only Assignments have a late policy that allows for late submission
- if you submit 1 hour late, we won't penalize you

Useful PMFs

Poisson distribution:

$$
\Omega=\{0,1, \ldots\} \lambda \in(0, \infty)
$$

e.g., amount of mail received in a day number of calls received by call center in an hour

$$
p(k)=\frac{\lambda^{k} e^{-\lambda}}{k!}
$$

UsEFUL PMFs

Poisson distribution:

$$
\Omega=\{0,1, \ldots\} \lambda \in(0, \infty)
$$

e.g., amount of mail received in a day number of calls received by call center in an hour

$$
p(k)=\frac{\lambda^{k} e^{-\lambda}}{k!}
$$

1. Can we use a table for this?
2. How do we know this is a valid pmf? How can you check?

Exercise: Can we use a Poisson for commute times?

- Used a probability table (histogram) for minutes: count number of times $t=1,2,3$, ... occurs and then normalize probabilities by \# samples
- Can we use a Poisson?
$p(k)=\frac{\lambda^{k} e^{-\lambda}}{k!}$
.25
.20
.15
.10
.05

Probability Density Functions

$\Omega=$ continuous sample space
$\mathcal{E}=\mathcal{B}(\Omega)$

Probability density function:

1. $p: \Omega \rightarrow[0, \infty)$
2. $\int_{\Omega} p(\omega) d \omega=1$

Who has never seen an integral?

Probability Density Functions

$\Omega=$ continuous sample space Probability density function: $\mathcal{E}=\mathcal{B}(\Omega)$

1. $p: \Omega \rightarrow[0, \infty)$
e.g. normal distribution (Gaussian)
2. $\int_{\Omega} p(\omega) d \omega=1$

Population Distribution IQ Scores
$\mu=100 \mid \sigma=15$

Probability Density Functions

$\Omega=$ continuous sample space
$\mathcal{E}=\mathcal{B}(\Omega)$

Probability density function:

$$
\begin{aligned}
& \text { 1. } p: \Omega \rightarrow[0, \infty) \\
& \text { 2. } \int_{\Omega} p(\omega) d \omega=1
\end{aligned}
$$

The probability of any event $A \in \mathcal{E}$ is defined as

$$
P(A)=\int_{A} p(\omega) d \omega \text {. }
$$

PMFs vs. PDFs

$\Omega=$ discrete sample space
Consider a singleton event $\{\omega\} \in \mathcal{E}$, where $\omega \in \Omega$

$$
P(\{\omega\})=p(\omega)
$$

$\Omega=$ continuous sample space
Example:

- Stopping time of a car, in interval $[3,15]$. What is the probability of seeing a stopping time of exactly 3.141596 ? (How much mass or space does it take up in [3,15]?)
- More reasonable to ask the probability of stopping between 3 to 3.5 seconds. How do we get that probability?

Useful PDFs

Uniform distribution: $\Omega=[a, b]$

$\forall \omega \in[a, b]$

UsEFUL PDFS

Gaussian distribution:
$\Omega=\mathbb{R} \quad \mu \in \mathbb{R}, \sigma \in \mathbb{R}^{+}$

$$
p(\omega)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}(\omega-\mu)^{2}}
$$

Useful PDFs

Exponential distribution:
$p(\omega)=\lambda e^{-\lambda \omega}$
$\Omega=[0, \infty) \quad \lambda>0$
$\forall \omega \geq 0$

Why Can the density be above 1?

Consider an interval event $A=[x, x+\Delta x]$, where Δ is small

$$
\begin{aligned}
P(A) & =\int_{x}^{x+\Delta x} p(\omega) d \omega \\
& \approx p(x) \Delta x
\end{aligned}
$$

$p(x)$ can be big, because delta x is small $P(A)$ MUST be less than or equal to 1 $p(x)$ can be bigger than 1

Random Variables

Musician is a random variable (a function) A is a new event, let's call it 1 ; Not-A is 0 Omega is $\{0,1\}$
Can ask $P(M=0)$ and $P(M=1)$

We instinctively create this transformation

Assume Ω is a set of people.

Compute the probability that a randomly selected person $\omega \in \Omega$ has a cold.
Define event $A=\{\omega \in \Omega:$ Disease $(\omega)=\operatorname{cold}\}$.
Disease is our new random variable, $P($ Disease $=\operatorname{cold})$
Disease is a function that maps outcome space to new outcome space $\{$ cold, not cold $\}$

Disease is a function, which is neither a variable nor random BUT, this term is still a good one since we treat Disease as a variable And assume it can take on different values (randomly according to some distribution)

Random Variable: Formal Definition

$(\Omega, \mathcal{E}, P)=$ a probability space
Random variable:

1. $X: \Omega \rightarrow \Omega_{X}$
2. $\forall A \in \mathcal{B}\left(\Omega_{X}\right)$ it holds that $\{\omega: X(\omega) \in A\} \in \mathcal{E}$

It follows that: $P_{X}(A)=P(\{\omega: X(\omega) \in A\})$
Example $X: \Omega \rightarrow[0, \infty)$
Ω is set of (measured) people in population
with associated measurements such as height and weight
$X(\omega)=$ height
$A=$ interval $=\left[5^{\prime} 1^{\prime \prime}, 5^{\prime} 2^{\prime \prime}\right]$
$P(X \in A)=P\left(5^{\prime} 1^{\prime \prime} \leq X \leq 5^{\prime} 2^{\prime \prime}\right)=P(\{\omega: X(\omega) \in A\})$

3 minute break and ExERCISE

- Let X be a random variable that corresponds to the ratio of hard-to-easy problems on an assignment. Assume it takes values in $\{0.1,0.25,0.7\}$.
- Is this discrete or continuous? Does it have a PMF or PDF?
- Further, where could the variability come from? i.e., why is this a random variable?
- Let X be the stopping time of a car, taking values in [3,5] union [7,9]. Is this discrete or continuous?
- Think of an example of a discrete random variable (RV) and a continuous RV

What if we have more than two variables...

- So far, we have considered scalar random variables
- Axioms of probability defined abstractly, apply to vector random variables
$\Omega=$ sample space, all outcomes of the experiment $\mathcal{E}=$ event space, set of subsets of Ω

$$
\begin{aligned}
& \Omega=\mathbb{R}^{2}, \text { e.g., } \omega=[-0.5,10] \\
& \Omega=[0,1] \times[2,5], \text { e.g., } \omega=[0.2,3.5]
\end{aligned}
$$

But, when defining probabilities, we will want to consider how the variables interact

Two DISCRETE RANDOM VARIABLES

Random variables X and Y Outcome spaces \mathcal{X} and \mathcal{Y}

$$
\begin{gathered}
p(x, y)=P(X=x, Y=y) \\
\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y)=1
\end{gathered}
$$

$$
\mathcal{X}=\{\text { young }, \text { old }\} \text { and } \mathcal{Y}=\{\text { no arthritis, arthritis }\}
$$

$$
Y
$$

\[

\]

Table 1.1: A joint probability table for random variables X and Y.

* these numbers are completely made up

SOME QUESTIONS WE MIGHT ASK NOW THAT WE HAVE TWO RANDOM VARIABLES

$$
\mathcal{X}=\{\text { young }, \text { old }\} \text { and } \mathcal{Y}=\{\text { no arthritis, arthritis }\}
$$

Are these two variables related?
Or do they change completely independently of each other?
Given this joint distribution, can we determine just the distribution over arthritis? i.e., $P(Y=1)$? (Marginal distribution)

If we knew something about one of the variables, say that the person Is young, do we know the distribution over Y? (Conditional distribution)

Example: Marginal and Conditional Distribution

$$
\mathcal{X}=\{\text { young }, \text { old }\} \text { and } \mathcal{Y}=\{\text { no arthritis }, \text { arthritis }\}
$$

$P(Y=1)=P(Y=1, X=0)+P(Y=1, X=1)=40 / 100$ What is $\mathrm{P}(\mathrm{Y}=0)$?
$P(X=1)=49 / 100$. So what is $P(X=0)$?
$P(Y=1 \mid X=0)=$?
Is it $1 / 100$, where the table tells us $\mathrm{P}(\mathrm{Y}=1, \mathrm{X}=0)$?

Conditional Distributions

Conditional probability distribution:

$$
p(y \mid x)=\frac{p(x, y)}{p(x)}
$$

If $p(x, y)$ is small, does this imply that $p(y \mid x)$ is small?

EXercise: Conditional Distribution

$$
\mathcal{X}=\{\text { young }, \text { old }\} \text { and } \mathcal{Y}=\{\text { no arthritis }, \text { arthritis }\}
$$

$$
p(y \mid x)=\frac{p(x, y)}{p(x)}
$$

$P(Y=1 \mid X=0)=?$
What is $P(Y=0 \mid X=0)$?
Should $P(Y=1 \mid X=0)+P(Y=0 \mid X=0)=1$?

Joint distributions for many variables

In general, we can consider d-dimensional random variable $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{d}\right)$ with vector-valued outcomes $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right)$, such that each x_{i} is chosen from some \mathcal{X}_{i}. Then, for the discrete case, any function $p: \mathcal{X}_{1} \times \mathcal{X}_{2} \times \ldots \times \mathcal{X}_{d} \rightarrow[0,1]$ is called a multidimensional probability mass function if

$$
\sum_{x_{1} \in \mathcal{X}_{1}} \sum_{x_{2} \in \mathcal{X}_{2}} \cdots \sum_{x_{d} \in \mathcal{X} d} p\left(x_{1}, x_{2}, \ldots, x_{d}\right)=1 .
$$

or, for the continuous case, $p: \mathcal{X}_{1} \times \mathcal{X}_{2} \times \ldots \times \mathcal{X}_{d} \rightarrow[0, \infty]$ is a multidimensional probability density function if

$$
\int_{\mathcal{X}_{1}} \int_{\mathcal{X}_{2}} \cdots \int_{\mathcal{X} d} p\left(x_{1}, x_{2}, \ldots, x_{d}\right) d x_{1} d x_{2} \ldots d x_{d}=1
$$

MARGINAL DISTRIBUTIONS

A marginal distribution is defined for a subset of $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{d}\right)$ by summing or integrating over the remaining variables. For the discrete case, the marginal distribution $p\left(x_{i}\right)$ is defined as

$$
p\left(x_{i}\right)=\sum_{x_{1} \in \mathcal{X}_{1}} \cdots \sum_{x_{i-1} \in \mathcal{X}_{i-1}} \sum_{x_{i+1} \in \mathcal{X}_{i+1}} \cdots \sum_{x_{d} \in \mathcal{X}_{d}} p\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{d}\right),
$$

where the variable x_{i} is fixed to some value and we sum over all possible values of the other variables. Similarly, for the continuous case, the marginal distribution $p\left(x_{i}\right)$ is defined as

$$
p\left(x_{i}\right)=\int_{\mathcal{X}_{1}} \cdots \int_{\mathcal{X}_{i-1}} \int_{\mathcal{X}_{i+1}} \cdots \int_{\mathcal{X}_{d}} p\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{d}\right) d x_{1} \ldots d x_{i-1} d x_{i+1} \ldots d x_{d} .
$$

Natural question: Why do you use p for $\mathrm{p}(\mathrm{xi})$ and for $\mathrm{p}(\mathrm{x} 1, \ldots ., \mathrm{xd})$? They have different domains, they can't be the same function!

DROPPING SUBSCRIPTS

Instead of:

$$
p_{Y \mid X}(y \mid x)=\frac{p_{X Y}(x, y)}{p_{X}(x)}
$$

We will write:

$$
p(y \mid x)=\frac{p(x, y)}{p(x)}
$$

ANOTHER EXAMPLE FOR CONDITIONAL DISTRIBUTIONS

- Let \mathbf{X} be a Bernoulli random variable (i.e., 0 or 1 with probability alpha)
- Let \mathbf{Y} be a random variable in $\{10,11, \ldots, 1000\}$
- $p(y \mid X=0)$ and $p(y \mid X=1)$ are different distributions
- Two types of books: fiction $(X=0)$ and non-fiction $(X=1)$
- Let Y correspond to number of pages
- Distribution over number of pages different for fiction and non-fiction books (e.g., average different)

EXAMPLE CONTINUED

- Two types of books: fiction ($\mathrm{X}=0$) and non-fiction ($\mathrm{X}=1$)
- Y corresponds to number of pages
- If most books are non-fiction, $p(X=0, y)$ is small even if y is a likely number of pages for a fiction book
- $p(X=0)$ accounts for the fact that joint probability small if $p(X=0)$ is small
- $p(y \mid X=0)=p(X=0, y) / p(X=0)$
- $p(X=0, y)=$ probability that a book is fiction and has y pages (imagine randomly sampling a book)
- $p(X=0)=$ probability that a book is fiction

Another Example

- Two types of books: fiction ($X=0$) and non-fiction ($X=1$)
- Let Y be a random variable over the reals, which corresponds to amount of money made
- $p(y \mid X=0)$ and $p(y \mid X=1)$ are different distributions
- e.g., even if both $p(y \mid X=0)$ and $p(y \mid X=1)$ are Gaussian, they likely have different means and variances

Think-Pair-Share (5 minutes)

- How might you use a given Poisson distribution, that models commute times? (Hint: recall modes)
- How might you pick lambda for a Poisson distribution, to model commute times? (Hint: the mean of a Poisson is lambda)
.25
.20
.15
.10
.05

Review so far

- PMFs (discrete) and PDFs (continuous)
- Joint probabilities
- Marginals
- Conditional probabilities

Chain Rule

Conditional probability distribution:

$$
p\left(x_{k} \mid x_{1}, \ldots, x_{k-1}\right)=\frac{p\left(x_{1}, \ldots, x_{k}\right)}{p\left(x_{1}, \ldots, x_{k-1}\right)}
$$

This leads to:

$$
\begin{aligned}
p\left(x_{1}, \ldots, x_{k}\right) & =p\left(x_{k}\right) \prod_{i=1}^{k-1} p\left(x_{i} \mid x_{i+1}, \ldots, x_{k}\right) \\
& =p\left(x_{1}\right) \prod_{i=2}^{k} p\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)
\end{aligned}
$$

Two variable example $\quad p(x, y)=p(x \mid y) p(y)=p(y \mid x) p(x)$

Chain Rule

Conditional probability distribution:

$$
p\left(x_{k} \mid x_{1}, \ldots, x_{k-1}\right)=\frac{p\left(x_{1}, \ldots, x_{k}\right)}{p\left(x_{1}, \ldots, x_{k-1}\right)}
$$

This leads to:

$$
p\left(x_{1}, \ldots, x_{k}\right)=p\left(x_{k}\right) \prod_{i=1} p\left(x_{i} \mid x_{i+1}, \ldots, x_{k}\right)
$$

Three variable example

$$
\begin{aligned}
p(x, y, z) & =p(y \mid x, z) p(x, z)=p(y \mid x, z) p(x \mid z) p(z) \\
& =p(x \mid y, z) p(y \mid z) p(z) \\
& =p(x \mid y, z) p(z \mid y) p(y)
\end{aligned}
$$

How do we get Bayes rule?

Recall chain rule: $p(x, y)=p(x \mid y) p(y)=p(y \mid x) p(x)$

Bayes rule:

$$
p(y \mid x)=\frac{p(x \mid y) p(y)}{p(x)}
$$

Example: Drug test

- Imagine p(DT = True | User = True) $=0.99$
- Imagine p(User $=$ True) $=0.005$
- Imagine p(DT = True | User = False) $=0.01$
- What is $p($ User $=$ True $\mid \mathrm{DT}=$ True $)$?

Reminders: January 14, 2020

- Thought Questions 1 due on January 23
- Chapters 1-3
- You should be reading now
- if you read the material before I lecture, it will (a) help you understand a lot better and (b) be easier to write coherent thought questions
- Assignment 1 due on January 30
- Any questions?

Independence of Random Variables

X and Y are independent if:

$$
p(x, y)=p(x) p(y)
$$

X and Y are conditionally independent given Z if:

$$
p(x, y \mid z)=p(x \mid z) p(y \mid z)
$$

Conditional Independence Examples

EXample 7 In The notes

- Imagine you have a biased coin (does not flip 50\% heads and 50% tails, but skewed towards one)
- Let $Z=$ bias of a coin (say outcomes are 0.3, 0.5, 0.8 with associated probabilities $0.7,0.2,0.1$)
- what other outcome space could we consider?
- what kinds of distributions?
- Let X and Y be consecutive flips of the coin
- Are X and Y independent?
- Are X and Y conditionally independent, given Z ?
**(Basic example about an important issue in ML: hidden variables)

CONDITIONAL INDEPENDENCE IS RELATIVE TO DISTRIBUTION YOU PICK, NOT OBJECTIVE FOR ALL DISTRIBUTIONS

- Explained on whiteboard
- What is $p(X)$ and $p(X \mid Z)$

Conditional Independence Examples Example 7 in the notes

- Are X and Y independent? (don't know Z) $p(X, Y)=p(X) p(Y)$?
- Are X and Y conditionally independent, given Z ?
$p(X, Y \mid Z)=p(X \mid Z) p(Y \mid Z) ?$

bias

z	0.3	0.5	0.8
$p(z)$	0.7	0.2	0.1

probability of that bias

Imagine don't know Z and flip two 0 s. Does that tell you anything about Z ?
**(Basic example about an important issue in ML: hidden variables)

Expected value (Mean, Average)

$$
\mathbb{E}[X]= \begin{cases}\sum_{x \in \mathcal{X}} x p(x) & X: \text { discrete } \\ \int_{\mathcal{X}} x p(x) d x & X: \text { continuous }\end{cases}
$$

Exercise: Biased coin with p(Heads) $=0.8$

EXPECTATIONS WITH FUNCTIONS

Exercise: Imagine you get 10 dollars if a

$$
f: \mathcal{X} \rightarrow \mathbb{R}
$$ Heads is flipped, lose 3 if Tails.

$$
\mathbb{E}[f(X)]= \begin{cases}\sum_{x \in \mathcal{X}} f(x) p(x) & X: \text { discrete } \\ \int_{\mathcal{X}} f(x) p(x) d x & X: \text { continuous }\end{cases}
$$

Conditional Expectations

$$
\mathbb{E}[Y \mid X=x]= \begin{cases}\sum_{y \in \mathcal{Y}} y p(y \mid x) & Y: \text { discrete } \\ \int_{\mathcal{Y}} y p(y \mid x) d y & Y: \text { continuous }\end{cases}
$$

Different expected value, depending on which x is observed

3 Minute Break

Turn to your neighbour and discuss a question that you have If you have nothing, consider the questions below

$$
\mathbb{E}[Y \mid X=x]= \begin{cases}\sum_{y \in \mathcal{Y}} y p(y \mid x) & Y: \text { discrete } \\ \int_{\mathcal{Y}} y p(y \mid x) d y & Y: \text { continuous }\end{cases}
$$

What is the $E[Y \mid x]$ for the following?

- $p(y \mid x)=$ Gaussian with $N(m u=x$, sigma^2 $=10)$
- $p(y \mid x)=$ Gaussian with $N(m u=f(x)$, sigma^2 $=0.1)$
- $\mathrm{p}(\mathrm{y} \mid \mathrm{x})=$ Bernoulli with alpha $=\mathrm{x}$

Properties of Expectations

- $E[c X]=c E[X]$, for a constant c
- $E[X+Y]=E[X]+E[Y]$ (linearity of expectation)
- If X and Y independent, then $E[X Y]=E[X] E[Y]$
- $E[Y]=E[E[Y \mid X]]$, where outer expectation over X
- called Law of Total Expectation
- (prove these on the whiteboard)

Variance

$$
\begin{aligned}
\operatorname{Variance}(X) & =\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right] \\
& =\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}
\end{aligned}
$$

Why? See if you can get this formula

CoVARIANCE

X

Y

$$
\begin{aligned}
\operatorname{Cov}[X, Y] & =\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])] \\
& =\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y],
\end{aligned}
$$

$$
\operatorname{Corr}[X, Y]=\frac{\operatorname{Cov}[X, Y]}{\sqrt{V[X] \cdot V[Y]}},
$$

Properties of Variances

- $\mathrm{V}[\mathrm{c}]=0$ for a constant c
- $\mathrm{V}[\mathrm{c} \mathrm{X}]=\mathrm{c}^{\wedge} 2 \mathrm{~V}[\mathrm{X}]$
- $\mathrm{V}[\mathrm{X}+\mathrm{Y}]=\mathrm{V}[\mathrm{X}]+\mathrm{V}[\mathrm{Y}]+2 \operatorname{Cov}[\mathrm{X}, \mathrm{Y}]$
- If X and Y are independent, $\mathrm{V}[\mathrm{X}+\mathrm{Y}]=\mathrm{V}[\mathrm{X}]+\mathrm{V}[\mathrm{Y}]$
- i.e., $\operatorname{Cov}[X, Y]=0$

Independence and Decorrelation

- Independent RVs have zero correlation
- How can we tell?
- Hint: use $\operatorname{Cov}[\mathrm{X}, \mathrm{Y}]=\mathrm{E}[\mathrm{XY}]$ - $\mathrm{E}[\mathrm{X}] \mathrm{E}[\mathrm{Y}]$
- Uncorrelated RVs (zero correlation) might be dependent
- Correlation (Pearson's correlation) shows linear relationships; can miss nonlinear ones
- Example: X normal RV, Y = X^2 (whiteboard)

Alternatives: Mutual Information (USing KL)

- KL-divergence measures how different two distributions are

Original Gaussian PDF's
$\mathrm{KL}(p \| q)=\sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}$
or
$\mathrm{KL}(p \| q)=\int_{\mathcal{X}} p(x) \log \frac{p(x)}{q(x)} d x$
KL Area to be Integrated

Alternatives: Mutual Information

- KL-divergence measures how different two distributions are

- Mutual Information between X and Y :
- $I(X ; Y)=K L\left(p _\{x y\}| | p _x p _y\right)$
- only zero when X and Y are independent
- measure of price for encoding (X, Y) as independent RVs, even when they are not

Exercise: Modelling Commute Times

- Let's imagine we have 365 samples of commute times
- Say you wanted to model commute time C as a continuous RV (takes 7.6 minutes to get to work)
- This means we have to specify (or learn) the pdf; how?
- One option: pick distribution type (e.g., Gaussian), and find the "best" parameters that match the data
-What are the parameters to learn?
- Is a Gaussian a good choice? $\quad p(\omega)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}(\omega-\mu)^{2}}$

Exercise: Modelling Commute Times (cont.)

- Note a better choice is actually a Gamma dist.
- Gaussian distribution (or gamma) for commute times extrapolates between recorded time in minutes

EXERCISE: CONDITIONAL PROBABILITIES

- Using conditional probabilities, we can incorporate other external information (features)
- Let y be the commute time, x the day of the year
- Array of conditional probability values $\longrightarrow p(y \mid x)$
- $y=1,2, \ldots$ and $x=1,2, \ldots, 365$
-What other x could we use?

EXERCISE: ADDING IN AUXILIARY INFORMATION (1)

- Mean, variance for $p(y \mid x)$ could depend on value of x
- Example: $\mathrm{X}=1$ if slippery out, and $\mathrm{X}=0$ else

$$
\begin{aligned}
& p(y \mid X=0)=\mathcal{N}\left(\mu_{0}, \sigma_{0}^{2}\right) \\
& p(y \mid X=1)=\mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)
\end{aligned}
$$

EXERCISE: ADDING IN AUXILIARY INFORMATION (2)

- Can incorporate external information (features) by modeling parameter = function(features)

$$
\mu=\sum_{j=1}^{d} w_{i} x_{i}
$$

Mixtures of Distributions

Mixture model:

A set of m probability distributions, $\left\{p_{i}(x)\right\}_{i=1}^{m}$

$$
p(x)=\sum_{i=1}^{m} w_{i} p_{i}(x)
$$

where $\boldsymbol{w}=\left(w_{1}, w_{2}, \ldots, w_{m}\right)$ and non-negative and

$$
\sum_{i=1}^{m} w_{i}=1
$$

Mixtures of Gaussians

Mixture of $m=2$ Gaussian distributions:

$$
w_{1}=0.75, w_{2}=0.25
$$

$$
p(x)=\sum_{i=1}^{m} w_{i} p_{i}(x)
$$

MIXTURES CAN PRODUCE COMPLEX DISTRIBUTIONS

$$
\mathrm{b}=0.4
$$

$b=0.2$

* Image from https://people.ucsc.edu/ ~ealdrich/Teaching/Econ114/LectureNotes/kde.html

Think-Pair-Share (5 minutes)

- Notice that moving to continuous RVs puts more restrictions on the distributions we can define
- For discrete RVs, distributions are tables of probabilities and so are highly flexible
- we can define any possible distribution
- So, why not just discretize our variables?
- Example: imagine you have an RV in range [-10,10]
- You decide to discretize into chunks of size 0.01
- How many variables do you need to define the PMF?
- What if had instead modelled it as a Gaussian? Or a mixture of two Gaussians?

Think-Pair-Share

- Example: imagine you have an RV in range [-10,10]
- You decide to discretize into chunks of size 0.01
- How many variables do you need to define the PMF?
- What if had instead modelled it as a Gaussian? Or mixture of two Gaussians?
- Additional question if you have time: imagine you have a 2-dim. RV (in [-10, 10] x [-10,10]). Now imagine you discretize to the same level. How many variables in this PMF? (i.e., this multidimensional array?)

EXERCISE: SAMPLE AVERAGE IS AN UNBIASED ESTIMATOR

Obtain instances x_{1}, \ldots, x_{n}
What can we say about the sample average?
This sample is random, so we consider i.i.d. random variables X_{1}, \ldots, X_{n}
Reflects that we could have seen a different set of instances x_{i}

$$
\begin{aligned}
\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}\right] & =\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right] \\
& =\frac{1}{n} \sum_{i=1}^{n} \mu \\
& =\mu
\end{aligned}
$$

For any one sample x_{1}, \ldots, x_{n}, unlikely that $\frac{1}{n} \sum_{i=1}^{n} x_{i}=\mu$

