
Final Exam Topics

CMPUT 267: Basics of Machine Learning 
 

Chapters 1 - 12



Goal of these Slides

• Highlight key concepts to be tested 

• Additionally highlight what I will not test 
• It is in the notes for your knowledge, but hard to directly test 

• Do a couple of exercises along the way



Probability
• Understand the following concepts 

• random variables 

• joint and conditional probabilities for continuous and discrete random 
variables 

• probability mass functions and probability density functions 

• independence and conditional independence 

• expectations for continuous and discrete random variables  

• variance for continuous and discrete random variables



Probability (2)

• Know how to represent a problem probabilistically 

• Use a provided distribution 

• I will always remind you of the density expression for a given distribution 

• Apply Bayes' Rule to derive probabilities 

• Will not be directly tested: 

• I will not expect you to know specific pdf and pmfs



Estimators
• Understand the following concepts 

• estimators 

• bias 

• consistency 

• how to show that an estimator is/is not biased  

• how to derive an expression for the variance of an estimator  

• how to show that an estimator is/is not consistent 

• when the use of a biased estimator is preferable



Estimators (2)

• Apply concentration inequalities to derive confidence bounds 

• Define sample complexity 

• Understand how concentration inequalities can be used to characterize the 
sample complexity of an estimator 

• Explain when a given concentration inequality can/cannot be used 

• Will not be directly tested 

• You do not need to know concentration inequality formulas



Estimators (3)

• Understand the sample average estimator and its properties 

• unbiased estimator, characterize variance 

• Understand the maximum likelihood estimator (MLE) 

• Understand the MAP estimator, and contrast to MLE 

• Will not be directly tested 

• You will not need to derive parameters for MLE and MAP on the exam



Estimators (4)

• Understand that MAP and MLE are point estimates, and the Bayesian 
estimator maintains the full posterior p(w | D) 

• Understand the role of conjugate priors priors 

• Will not be directly tested 

• Do not need to know specific conjugate priors 



Optimization
• Represent a problem as an optimization problem 

• Solve an optimization problem by finding stationary points 

• Define first-order gradient descent  

• Define second-order gradient descent  

• Define step size and adaptive step size 

• Explain the role and importance of step sizes in first-order gradient descent 

• Will not be directly tested 

• Specific stepsize adaptation algorithms



Stochastic gradient descent
•

If , then we can be more computationally efficient by using a 

stochastic approximation to the gradient on each step 

• Each update consists of taking a mini-batch  and updating with 

•
 

•
Contrast to gradient descent update:  

• Question: why is it called stochastic gradient descent?
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Prediction
• Describe the differences between regression and classification 

• Understand the optimal classification predictor for a given cost  

• Understand the optimal regression predictor for a given cost 

• Describe the difference between irreducible and reducible error 

• Will not be directly tested 

• Deriving optimal predictors 

• Multi-label vs multi-class classification



Linear Regression
• Understand that we assume  is Gaussian and that the resulting MLE 

objective corresponds to the sum of squared errors  

• Understand the computational cost of the gradient descent and 
stochastic gradient descent solutions to linear regression 

• Represent a polynomial regression problem as linear regression 

• Will not be directly tested 

• Do not need to know the closed-form solution with matrices
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Generalization Error

• Describe the difference between test error and generalization error 

• Explain why training error is a biased estimator of generalization error 

• Describe how to estimate generalization error given a dataset 

• Understand that we can use statistical significance tests to compare 
two models 

• Will not be directly tested 

• Specific statistical significance tests



Regularization
• Understand that regularization constrains the solutions to mitigate overfitting  

• Understand that L2-regularized linear regression is the MAP objective with 
a Gaussian prior 

• Describe the effects of the regularization hyperparameter  

• Understand that l1 regularization does feature selection 

• Will not be directly tested 

• The Laplace distribution 

• Deriving the MAP solution

λ



Bias-Variance Tradeoff
• Explain the implications of the bias-variance decomposition for estimators 

• Describe the advantages and disadvantages of the MAP estimator for linear 
regression (Gaussian prior) 

• Explain how the choice of hypothesis class can affect the bias and 
variance of predictions  

• Will not be directly tested 

• Do not need to know the bias and variance formulas of the MLE and MAP 
estimators for linear regression



Bias of MAP goes to zero with  
more samples

•
The objective was  or equivalently 

  

•
i.e,  for  

• We scale the weight on the penalty by , which goes to zero as n gets big 
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Question

• Which of the following estimators have higher bias and variance? 

• MLE for linear regression ( ) 

• MAP for linear regression  with  

• MAP for linear regression  with 

λ = 0

λ = 0.1

λ = 0.5



Logistic Regression
• Define linear classifier, sigmoid function, logistic regression 

• Understand that we parameterize  

• Understand that the objective (cross-entropy) and update underlying logistic 
regression is different from linear regression 

• Understand that we estimate , and predict  

• Understand that we can extend logistic regression just like linear regression, to use 
polynomials, l2 regularization and l1 regularization 

• Will not be directly tested 

• You do not need to memorize the logistic regression update

p(y = 1 |x) ≈ σ(x⊤w)

p(y = 1 |x) arg max
y∈{0,1}

p(y |x)



Bayesian linear regression
• Understand the goals of obtaining  for regression 

• For the scalar case: Know that  is Gaussian, the conjugate prior for 
Gaussian likelihood , giving Gaussian posterior  

• More generally, for vector case, know that the Gaussian prior is also the 
conjugate prior for the Gaussian likelihood 

• Understand that having  lets us reason about uncertainty in our 
predictions  

• Will not be directly tested 

• You do not need to know the explicit formula for the posteriors

p(w |𝒟)

p(w)
p(y |x) = 𝒩(xw, σ2) p(w |𝒟)

p(w |𝒟)
p(x⊤w |𝒟)



Question
• Assume we are in the realizable setting, namely we are learning a linear 

function with no intercept and the true function is linear with no intercept 

• So the true  

• Assume we have the posterior  (and we also had a 
Gaussian prior ) 

• A 95% credible interval is  for  

• Does this mean , with 95% probability? (Hint: 
consider if the answer changes for big or small )

p(y |x) = 𝒩(xw*, σ2)

p(w |𝒟) = 𝒩(μn, σ2
n)

p(w) = 𝒩(0,σ2
0)

[μn − ϵ, μn + ϵ] ϵ = 1.96σn

w* ∈ [μn − ϵ, μn + ϵ]
σ2

0



Some Case Studies

• AKA how does anything we learned here connect to the real world? 

• (And obviously none of this will be tested)



Historical Example:  
US Postal Service (1990)

• Problem: automatically sort mail based on destination, by reading the 
handwritten zip code on the envelopes 

• Strategy:  

• 1. Snap a picture of the envelope front 

• 2. Segment the image, extracting first the zip code and then each digit in 
the zip code 

• 3. Input the segmented digit x into the classifier f(x) to get a prediction of the 
class from {0,1,2,3,4,5,6,7,8,9}



Step 3 is what we are doing

• The input x is a non-color image, with entries either 0 or 1 representing a 
black pixel (writing, dirt) and 0 representing a white pixel (no writing) 

• The image is 2d, but can be flattened into a vector input 

• e.g., 30x30 pixel image becomes a vector of size 900 (d = 900)  

• Our goal is to learn p(y | x) so that we can predict  

•                              f(x) = arg max
y∈{0,1,…,9}

p(y |x)



Multi-class Classification

• Need to use multinomial logistic regression instead of logistic regression 

• Idea is very similar. Learn weights  for each class to predict 

•  

• Pick the class k where  is the highest 

•
Small nuance: we normalize predictions so that 

wk

̂p(y = k |x) ∝ σ(x⊤wk)

σ(x⊤wk)

∑
y∈{0,1,…,9}

̂p(y |x) = 1



Moving from linear to nonlinear

• Is it sensible to learn a linear function of the image? 

• What is an alternative? Do polynomials make sense here?



Nonlinearity beyond polynomials

• The general concept behind polynomial regression is that we  

• mapped  to a new set of features  

• learning a linear function on  gives us a nonlinear function on  

• This general concept can be applied with many nonlinear functions, not just 
polynomials 

• Other examples: radial basis functions, Fourier basis, wavelets, neural 
networks

x ϕ(x)

ϕ(x) x



General idea

Input image

Nonlinear  
transformation 

(possibly learned  
with a neural network)

 
Logistic  

Regression
x ϕ(x)



General idea

Input image

Nonlinear  
transformation 

(possibly learned  
with a neural network)

 
Logistic  

Regression
x ϕ(x)

This course was focused on the underlying  
probabilistic concepts for this part, which stays 

the same for more complex models 
Also focused on the conceptual goals for ϕ(x)



General idea

Input image

Nonlinear  
transformation 

(possibly learned  
with a neural network)

 
Logistic  

Regression
x ϕ(x)

A huge part of machine learning 
is about how to get these  
nonlinear transformations  

(up next in future ML courses)



Fun Case Study 2

• A big part of machine learning is also learning more complex distributions  

• Mixture models and modal regression 

• Generative Models 

• Same concepts about finding parameters from the distribution, using 
maximum likelihood objectives 

• but the distributions are just more complex than Gaussians and Gammas



Example: Modal Regression

p(y|x) has is multimodal 
it has three modes 

When making predictions 
it can be useful to know  
that the central mode is  

most likely but that these 
other two very different 


outcomes can occur



Case Study 3
• Let’s apply our knowledge. Imagine you are learning a neural network 

 to do binary classification 

• Say to predict whether a patient has a disease, based on 100 attributes 
about them (age, medical info, etc.) 

• Just like polynomial logistic regression, you use the cross-entropy 

•  

• Imagine you get 70% accuracy on training and 60% on test. Not great. 

• What could be the problem? (Let’s brainstorm together)

fw(x) ≈ p(y = 1 |x)

ci(w) = − yi ln fw(xi) − (1 − yi)ln(1 − fw(xi))

x

NN with 
parameters 

w ̂p(y = 1 |x)
i.e.,fw(x)



Case Study 3
• Imagine you get 70% accuracy on training and 60% on test. Not great. 

• What could be the problem and how might we check if it is a problem? 
(Let’s brainstorm together) 

• Optimization issues: 

• Nonconvex objective, maybe got stuck in a local min. Test: run multiple 
times from different random starts and check variability 

• Not enough epochs. Test: look a cross-entropy curve on training data. 
Has it flattened? Or is it still decreasing and you are not a stationary 
point?



Case Study 3

• Imagine you get 70% accuracy on training and 60% on test. Not great. 

• What could be the problem and how might we check if it is a problem? 
(Let’s brainstorm together) 

• Optimization issues (nonconvexity, did not converge) 

• Model complexity issues: Overfitting or underfitting? Doesn’t seem like 
much overfitting, but there is a little. Test: compare to a simpler linear 
model as a baseline, and also test a more complex model (bigger NN)



Case Study 3

• Imagine you get 70% accuracy on training and 60% on test. Not great. 

• What could be the problem and how might we check if it is a problem? 
(Let’s brainstorm together) 

• Optimization issues (nonconvexity, did not converge) 

• Model complexity issues 

• Partial observability: true . Inherent error (even on 
training) is 70%, cannot be overcome.  

p(y = 1 |x) = 0.7


