Midterm Review

CMPUT 267: Basics of Machine Learning

Announcements/Comments

- A few updates are being made to the assignment to make it clearer, to be released tonight.
- If you have already started, do not worry! It does not change the assignment in any way, it just adds clarity.
- How was the practice midterm? It is longer than the quiz because (a) you are more used to this now and (b) you do not have to type.

Midterm Details

- The content is from Chapters 1-7
- Chapter 7 is Introduction to Prediction problems
- Chapter 8 is Linear Regression. Exam does not cover linear regression
- The exam only covers what is in the notes
- The focus is Chapters 4-7, but Chapter 1-3 are important background

Very brief summary of Ch 1-3

- Probability
- Estimators

Probability

- Define a random variable
- Define joint and conditional probabilities for continuous and discrete random variables
- Define probability mass functions and probability density functions
- Define independence and conditional independence
- Define expectations for continuous and discrete random variables
- Define variance for continuous and discrete random variables

Probability (2)

- Represent a problem probabilistically
- e.g., how likely was the outcome?
- Use a provided distribution
- I will always remind you of the density expression for a given distribution
- Apply Bayes' Rule to manipulate probabilities

Estimators

- Define estimator
- Define bias
- Demonstrate that an estimator is/is not biased
- Derive an expression for the variance of an estimator
- Define consistency
- Demonstrate that an estimator is/is not consistent
- Justify when the use of a biased estimator is preferable

Poll Question: When is the use of a biased estimator preferable?

- 1. It is always better because it biases towards the true solution
- 2. If the bias reduces the mean-squared error by reducing the variance
- 3. If the bias reduces the mean-squared error by increasing the variance
- 4. It is rarely justifiable

Answer: 2

Estimators (2)

- Apply concentration inequalities to derive confidence bounds
- Define sample complexity
- Apply concentration inequalities to derive sample complexity bounds
- Explain when a given concentration inequality can/cannot be used

Optimization

- Represent a problem as an optimization problem
- Solve a discrete problem by iterating over options and picking the one with the minimum value according to the objective
- Solve a continuous optimization problem by finding stationary points
- A point w is a stationary point if $c^{\prime}(w)=0$
- or for multivariate $\mathbf{w}, \nabla c(\mathbf{w})=0$

Poll Question: The following are true about stationary points

- 1. A stationary point is the global minimum of a function
- 2. A stationary point is a point where the gradient is zero
- 3. A global minimum is a stationary point, but a stationary point may not be a global minimum
- 4. If we find a stationary point, then we have found the minimum of our function
- 5. We can use the second derivative test to identify the type of stationary point we have

Optimization

- Represent a problem as an optimization problem
- Solve an optimization problem by finding stationary points
- Define first-order gradient descent
- Define second-order gradient descent
- Define step size and adaptive step size
- Explain the role and importance of step sizes in first-order gradient descent
- Apply gradient descent to numerically find local optima

Exercise

- Imagine $c(w)=\frac{1}{2}(x w-y)^{2}$.
- What is the first-order update, assuming we are currently at point w_{t} ?
- i.e., the gradient descent update tells us how to modify our current point to descend on our surface c.

Answer: $w_{t+1} \leftarrow w_{t}-\eta_{t} c^{\prime}\left(w_{t}\right)$ for some stepsize $\eta_{t}>0$

$$
c^{\prime}(w)=(x w-y) x \text { so we have that. } w_{t+1} \leftarrow w_{t}-\eta_{t}\left(x w_{t}-y\right) x
$$

Exercise

- Imagine $c(w)=\frac{1}{2}(x w-y)^{2}$.
- What is the first-order update, assuming we are currently at point w_{t} ?
- i.e., the gradient descent update tells us how to modify our current point to descend on our surface c.
- What if instead we did $w_{t+1} \leftarrow w_{t}+\eta_{t} c^{\prime}\left(w_{t}\right)$. What would happen?
- The second-order update is $w_{t+1} \leftarrow w_{t}-\frac{c^{\prime}\left(w_{t}\right)}{c^{\prime \prime}\left(w_{t}\right)}$. Why might this update be preferable to the first-order? (poll)

Poll Question: Why might the second-order update be preferable?

- 1. It is easier to compute than the first-order one.
- 2. It tells us how to pick a good stepsize.
- 3. The second-order update is more likely to get stuck at a saddlepoint
- 4. The first-order update might get stuck in local minimum, but not the second-order update

Closed-form solutions

- $c(w)=(w-3)^{2}$ has a closed-form solution because

$$
c^{\prime}(w)=2(w-3)=0 \Longrightarrow w-3=0 \Longrightarrow w=3 .
$$

- $c(w)=w^{2}+\exp (w)$ does not have a closed-form solution because

$$
c^{\prime}(w)=2 w+\exp (w)=0 \Longrightarrow \exp (w)=-2 w
$$

- Can't isolate w on one side, to get an explicit formula (closed-form)
- Note: this c is not a hard optimization problem, it is convex

Second-order update

Example 14: Let us revisit our example $c(w)=w^{2}+\exp (w)$, where $c^{\prime}(w)=2 w+\exp (w)$ and $c^{\prime \prime}(w)=2+\exp (w)$. Let us start $w_{0}=0$ and do one second-order update.

$$
\begin{aligned}
w_{1} & =w_{0}-\frac{c^{\prime}\left(w_{0}\right)}{c^{\prime \prime}\left(w_{0}\right)} \\
& =0-\frac{0+\exp (0)}{2+\exp (0)} \\
& =-\frac{1}{3}
\end{aligned}
$$

Now let us do the next update.

$$
\begin{aligned}
w_{2} & =w_{1}-\frac{c^{\prime}\left(w_{1}\right)}{c^{\prime \prime}\left(w_{1}\right)} \\
& =-\frac{1}{3}-\frac{-\frac{2}{3}+\exp \left(-\frac{1}{3}\right)}{2+\exp \left(-\frac{1}{3}\right)} \\
& =-0.3516893316
\end{aligned}
$$

red line is $c(w)$,
blue line is second-order Taylor approximation

$$
\text { around w = } 0
$$

$$
\begin{aligned}
\hat{c}(w) & =c\left(w_{0}\right)+\left(w-w_{0}\right) c^{\prime}\left(w_{0}\right)+\frac{1}{2}\left(w-w_{0}\right)^{2} c^{\prime \prime}\left(w_{0}\right) \\
& =\exp (0)+w \exp (0)+(2+\exp (0)) \frac{1}{2} w^{2}=1+w+\frac{3}{2} w^{2}
\end{aligned}
$$

Stochastic gradient descent

- If $c(\mathbf{w})=\frac{1}{n} \sum_{i=1}^{n} c_{i}(\mathbf{w})$, then we can be more computationally efficient by
using a stochastic approximation to the gradient on each step
- Each update consists of taking a mini-batch \mathscr{B} and updating with
- $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t}-\eta_{t} \frac{1}{b} \sum_{i \in \mathscr{B}} \nabla c_{i}\left(\mathbf{w}_{t}\right)$

Stochastic gradient descent

- Each update consists of taking a mini-batch \mathscr{B} and updating with
- $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t}-\eta_{t} \frac{1}{b} \sum_{i \in \mathscr{B}} \nabla c_{i}\left(\mathbf{w}_{t}\right)$
- We do this for T iterations (where T is likely more than the number of iterations used for GD)
- Example, if $T=640, \mathrm{n}=4096$ and the mini-batch size is $\mathrm{b}=32$, then we need to do numepochs $=5$ to get $\mathrm{T}=(\mathrm{n} / \mathrm{b})^{\star}$ numepochs $=640$ updates

You do not need to know

- Specific step-size selection algorithms
- Adagrad
- Line search
- I won't get you to tell me about stopping criteria, for GD or SGD
- for GD we usually check if the gradient norm becomes small enough
- for SGD we just fixed the number of epochs (in practice, you might periodically check if improvement in the objective function has plateaued)

Parameter Estimation

- Formalize a problem as a parameter estimation problem
- e.g., formalize modeling commute times as parameter estimation for a Poisson distribution, using maximum likelihood
- Describe the differences between MAP, MLE, and Bayesian parameter estimation
- MAP $\max p(w \mid \mathscr{D})$ versus MLE $\max p(\mathscr{D} \mid w)$
w
w
- Bayesian learns $p(w \mid \mathscr{D})$, reasons about plausible parameters
- Define a conjugate prior

The Likelihood Term and the Prior

- Likelihood:

$$
p(\mathscr{D} \mid w)=\prod_{i=1}^{n} p\left(x_{i} \mid w\right)
$$

- e.g., Poisson

$$
p\left(x_{i} \mid w\right)=\frac{w^{x_{i}} \exp (-w)}{x_{i}!}
$$

- Prior:
$p\left(w \mid \theta_{0}\right)$ for pdf or pmf parameters θ_{0}
- e.g., conjugate prior for Poisson is Gamma with

$$
\begin{aligned}
& \text { parameters } \theta_{0}=(a, b) \\
& p\left(w \mid \theta_{0}\right)=\frac{w^{a-1} \exp (-w / b)}{b^{a} \Gamma(a)}
\end{aligned}
$$

The Likelihood Term and the Prior

- Likelihood:

$$
p(\mathscr{D} \mid w)=\prod_{i=1}^{n} p\left(x_{i} \mid w\right)
$$

- e.g., Poisson

$$
p\left(x_{i} \mid w\right)=\frac{w^{x_{i}} \exp (-w)}{x_{i}!}
$$

- MLE: maximize

$$
p(\mathscr{D} \mid w)=\prod_{i=1}^{n} p\left(x_{i} \mid w\right)
$$

- MAP: maximize

$$
p(\mathscr{D} \mid w) p\left(w \mid \theta_{0}\right)=p\left(w \mid \theta_{0}\right) \Pi_{i=1}^{n} p\left(x_{i} \mid w\right)
$$

- Prior:
$p\left(w \mid \theta_{0}\right)$ for pdf or pmf parameters θ_{0}
- e.g., conjugate prior for Poisson is Gamma with parameters $\theta_{0}=(a, b)$ $p\left(w \mid \theta_{0}\right)=\frac{w^{a-1} \exp (-w / b)}{b^{a} \Gamma(a)}$

The Likelihood Term and the Prior

- MLE: maximize

$$
p(\mathscr{D} \mid w)=\prod_{i=1}^{n} p\left(x_{i} \mid w\right)
$$

- MAP: maximize

$$
p(\mathscr{D} \mid w) p\left(w \mid \theta_{0}\right)=p\left(w \mid \theta_{0}\right) \Pi_{i=1}^{n} p\left(x_{i} \mid w\right)
$$

- Bayesian: obtain posterior $p(w \mid \mathscr{D})$
- e.g., if Poisson likelihood with conjugate prior Gamma with prior parameters $\theta_{0}=(a, b)$, then posterior is Gamma with $\theta_{n}=\left(a_{n}, b_{n}\right)$ where $a_{n}=a+\sum_{i=1}^{n} x_{i}$ and $b_{n}=\frac{1}{n+1 / b}$
- Prior: $p\left(w \mid \theta_{0}\right)$ for pdf or pmf parameters θ_{0}
- e.g., conjugate prior for Poisson is Gamma with parameters $\theta_{0}=(a, b)$ $p\left(w \mid \theta_{0}\right)=\frac{w^{a-1} \exp (-w / b)}{b^{a} \Gamma(a)}$

Gamma Prior and Posterior

$$
p\left(w \mid \theta_{0}\right)=\frac{w^{a-1} \exp (-w / b)}{b^{a} \Gamma(a)}
$$

- For $\mathrm{a}=3$ and $\mathrm{b}=1$, we have $p(w)=\frac{1}{2} w^{2} \exp (-w)$ because $\Gamma(3)=2$
- For $\mathscr{D}=\{2,5,9,5,4,8\}$ we have $\sum_{i=1}^{n} x_{i}=33$
- $a_{n}=a+\sum_{i=1}^{n} x_{i}=36$ and $b_{n}=\frac{1}{n+1 / b}=1 / 7$
- $p(w \mid \mathscr{D})=\frac{w^{a_{n}-1} \exp \left(-w / b_{n}\right)}{b_{n}^{a_{n}} \Gamma\left(a_{n}\right)}=\frac{w^{35} \exp (-7 w)}{7^{-36} \Gamma(36)}$

Gamma Prior and Posterior

- For $\mathrm{a}=3$ and $\mathrm{b}=1$, we have $p(w)=\frac{1}{2} w^{2} \exp (-w)$ as $\Gamma(k)=(k-1)$!
- $p(w \mid \mathscr{D})=\frac{w^{a_{n}-1} \exp \left(-w / b_{n}\right)}{b_{n}^{a_{n}} \Gamma\left(a_{n}\right)}=\frac{w^{35} \exp (-7 w)}{7^{-36} \Gamma(36)}($ Red $)$

What is not a conjugate prior?

- Assume $\mathrm{p}(\mathrm{x})$ is Poisson.
- Imagine we pick the prior $p(w)$ to be a uniform distribution on $[1,5]$, reflecting that we are 100\% sure the average number of accidents is between 1 and 5 for the factory (before seeing data)
- but we have no idea what the average is beyond that, all equally likely
- Then the posterior is just some integral we cannot solve

Poll Question: Why is MAP useful, namely why is it useful to include a prior over the weights? (Select all that apply)

- 1. It incorporates bias to reduce the variance
- 2. The prior makes our solution closer to the true solution
- 3. It lets us reason about uncertainty in our parameters
- 4. It let's us incorporate expert knowledge about plausible weight values

You do not need to know

- Any specific conjugate priors, or specific formulas for pmfs/pdfs
- I will tell you if something is a conjugate prior, you just need to know what that means
- I will not get you to do complex derivations, to solve MLE or MAP

Formalizing Prediction

- Supervised learning problem: Learn a predictor $f: \mathscr{X} \rightarrow \mathscr{Y}$ from a dataset $\mathscr{D}=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1}^{n}$
- \mathscr{X} is the set of observations, and \mathscr{Y} is the set of targets
- Classification problems have discrete, unordered targets
- Regression problems have continuous targets
- Predictor performance is measured by the expected $\operatorname{cost}(\hat{y}, y)$ of predicting \hat{y} when the true value is y
- An optimal predictor for a given distribution minimizes the expected cost

Difference between Classification and Regression

- If I learn a classifier $f(x)$, for classes $\{0,1,2,3\}$, what is the range of the predictor f?
- What is the optimal predictor for 0-1 cost for classification?
- Can I use classes like \{apples, oranges, pineapples\}? How would we write our optimal predictor for this set of classes?
- What is the optimal prediction for squared error costs for regression?

Prediction Concepts

- Describe the differences between regression and classification
- Derive the optimal classification predictor for a given cost
- Derive the optimal regression predictor for a given cost
- Understand that the optimal predictor is different depending on the cost
- Describe the difference between irreducible and reducible error
- Even an optimal predictor has some irreducible error. Suboptimal predictors have additional, reducible error

$$
\mathbb{E}[C]=\frac{\mathbb{E}\left[\left(f(X)-f^{*}(X)\right)^{2}\right]}{\text { Reducible error }}+\frac{\mathbb{E}\left[\left(f^{*}(X)-Y\right)^{2}\right]}{\text { Irreducible error }}
$$

Is Cost the Same as our Objective c?

- We gave this a different name to indicate it might not be
- The Cost is the penalty we incur for inaccuracy in our predictions
- We parameterize our function or distribution with parameters \mathbf{w}
- Our objective to find \mathbf{w} has typically been the negative log likelihood
- Example: we might learn $p(y \mid \mathbf{x}, \mathbf{w})$ using $c(\mathbf{w})=-\ln p(\mathscr{D} \mid \mathbf{w})$
. For the 0-1 cost, we evaluate the predictor $f(\mathbf{x})=\arg \max p(y \mid \mathbf{x}, \mathbf{w})$

Optimal predictors vs MLE/MAP

- Why do we learn $p(y \mid \mathbf{x})$ if we only care about $\mathbb{E}[Y \mid x]$?
- Why do we have to learn a predictor $f(\mathbf{x})$ that returns one prediction \hat{y} instead of just learning $p(y \mid \mathbf{x})$ and returning the whole distribution?
- Is the optimal predictor an MLE or MAP estimator?

Optimal predictors vs MLE/MAP

- Why do we learn $p(y \mid \mathbf{x})$ if we only care about $\mathbb{E}[Y \mid x]$?
- We still want to recognize that y is stochastic for a given x , so we reason about $p(y \mid \mathbf{x})$ and about modelling it
- For regression, we don't need $p(y \mid \mathbf{x})$, but we do for other predictors
- Why do we have to learn a predictor $f(\mathbf{x})$ that returns one prediction \hat{y} instead of just learning $p(y \mid \mathbf{x})$ and returning the whole distribution?
- At some point you have to make a decision: are you going to treat or not?
- Is the optimal predictor an MLE or MAP estimator?
- The optimal predictor f^{*} has nothing to do with data. We learn f on data (using MAP or MLE) to try to best approximate f^{\star}. Chapter 7 is not about learning nor data

Any Questions?

- Switch now to going over the practice midterm

