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Types of  
Machine Learning Problems

1. passive vs. active data collection 

2. i.i.d. vs. non-i.i.d. 

3. complete vs. incomplete observations



Supervised Prediction
In a supervised prediction problem, we learn a model based on a training 
dataset of observations and their corresponding targets, and then use the 
model to make predictions about new targets based on new observations. 

• Dataset:  

•  is the -th observation (or input or instance or sample) 

•  is the corresponding target 

•  is a -dimension vector (i.e., ) 

• The -th value of  is the -th feature

𝒟 = {(x1, y1), …, (xn, yn)}

xi ∈ 𝒳 i

yi ∈ 𝒴

xi = (xi1, xi2, …, xid) d 𝒳 = ℝd

j xi j



Dataset as Matrix (2d array)

• Typically organize dataset into a 
 matrix  and -vector  

• One row for each observation 
• One column for each feature
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Regression
• A supervised learning problem can typically be classified as either a 

regression problem or a classification problem 

• Regression: Target values are continuous, e.g.  

• Our house price prediction example is a regression problem; we can extend 
it to have multiple features:

𝒴 = ℝ, 𝒴 = [0,∞)prediction problems: classification and regression. Generally speaking, we have a regression
problem when Y is continuous and a classification problem if Y is discrete. In regression
possible target set include Y = R or Y = [0, Œ). An example of a regression problem is
shown in Table 6.1.

size [sqft] age [yr] dist [mi] inc [$] dens [ppl/mi2] y

x1 1250 5 2.85 56,650 12.5 2.35
x2 3200 9 8.21 245,800 3.1 3.95
x3 825 12 0.34 61,050 112.5 5.10

Table 6.1: An example of a regression problem: prediction of the price of a house in a
particular region. Here, features indicate the size of the house (size) in square feet, the age
of the house (age) in years, the distance from the city center (dist) in miles, the average
income in a one square mile radius (inc), and the population density in the same area
(dens). The target indicates the price a house is sold at, e.g. in hundreds of thousands of
dollars.

In classification we construct a function that predicts discrete class labels; this function
is typically called a classifier. The cardinality of Y in classification problems is usually small,
e.g. Y = {healthy, diseased}. An example of a data set for classification with n = 3 data
points and d = 5 features is shown in Table 6.2.

Classification problems can be further subdivided into multi-class and multi-label prob-
lems. A multi-class problem consists of providing the single label for an input. For example,
for (simple) blood-type with Y = {A, B, AB, O}, a patient can only be labeled with one of
these labels. Within multi-class problems, if there are only two classes, it is called binary
classification, such as the example in Table 6.2. In multi-label, an input can be associated
with more than one label. An example of a multi-label problem is the classification of text
documents into categories such as {sports, medicine, travel, politics}. Here, a single docu-
ment may be related to more than one value in the set; e.g. an article on sports medicine.
The learned function can now return multiple outputs.

Typically, to make the outputs more consistent between these two settings, the output
for both multi-class and multi-label is an indicator vector. For m = |Y|, the prediction for
blood types might be [0 1 0 0] to indicate blood-type B and the prediction for four article
labels could be [1 1 0 0] if it is both an article pertaining to sports and medicine.

wt [kg] ht [m] T [¶C] sbp [mmHg] dbp [mmHg] y

x1 91 1.85 36.6 121 75 ≠1
x2 75 1.80 37.4 128 85 +1
x3 54 1.56 36.6 110 62 ≠1

Table 6.2: An example of a binary classification problem: prediction of a disease state for
a patient. Here, features indicate weight (wt), height (ht), temperature (T), systolic blood
pressure (sbp), and diastolic blood pressure (dbp). The class labels indicate presence of a
particular disease, e.g. diabetes. This data set contains one positive data point (x2) and two
negative data points (x1, x3). The class label shows a disease state, i.e. yi = +1 indicates
the presence while yi = ≠1 indicates absence of disease.

54

X y



Another regression example

• x = [house size, temperature outside, temperature inside] 

• d = 3, three-dimensional input vector (array) 

• y = gas usage for the day (real-valued)



Classification
Classification: Predict discrete class labels 

• Usually not that many labels, e.g.  
• Multi-label: A single input may be assigned multiple labels, e.g., 

categories from  
• Multi-class: Single label per input 

• Multi-class with two labels: binary classification 
• E.g., predicting disease state for a patient given weight, height, 

temperature, sistolic and diatolic blood pressure

𝒴 = {healthy, diseased}

𝒴 = {sports, politics, travel, medicine}

prediction problems: classification and regression. Generally speaking, we have a regression
problem when Y is continuous and a classification problem if Y is discrete. In regression
possible target set include Y = R or Y = [0, Œ). An example of a regression problem is
shown in Table 6.1.

size [sqft] age [yr] dist [mi] inc [$] dens [ppl/mi2] y

x1 1250 5 2.85 56,650 12.5 2.35
x2 3200 9 8.21 245,800 3.1 3.95
x3 825 12 0.34 61,050 112.5 5.10

Table 6.1: An example of a regression problem: prediction of the price of a house in a
particular region. Here, features indicate the size of the house (size) in square feet, the age
of the house (age) in years, the distance from the city center (dist) in miles, the average
income in a one square mile radius (inc), and the population density in the same area
(dens). The target indicates the price a house is sold at, e.g. in hundreds of thousands of
dollars.

In classification we construct a function that predicts discrete class labels; this function
is typically called a classifier. The cardinality of Y in classification problems is usually small,
e.g. Y = {healthy, diseased}. An example of a data set for classification with n = 3 data
points and d = 5 features is shown in Table 6.2.

Classification problems can be further subdivided into multi-class and multi-label prob-
lems. A multi-class problem consists of providing the single label for an input. For example,
for (simple) blood-type with Y = {A, B, AB, O}, a patient can only be labeled with one of
these labels. Within multi-class problems, if there are only two classes, it is called binary
classification, such as the example in Table 6.2. In multi-label, an input can be associated
with more than one label. An example of a multi-label problem is the classification of text
documents into categories such as {sports, medicine, travel, politics}. Here, a single docu-
ment may be related to more than one value in the set; e.g. an article on sports medicine.
The learned function can now return multiple outputs.

Typically, to make the outputs more consistent between these two settings, the output
for both multi-class and multi-label is an indicator vector. For m = |Y|, the prediction for
blood types might be [0 1 0 0] to indicate blood-type B and the prediction for four article
labels could be [1 1 0 0] if it is both an article pertaining to sports and medicine.

wt [kg] ht [m] T [¶C] sbp [mmHg] dbp [mmHg] y

x1 91 1.85 36.6 121 75 ≠1
x2 75 1.80 37.4 128 85 +1
x3 54 1.56 36.6 110 62 ≠1

Table 6.2: An example of a binary classification problem: prediction of a disease state for
a patient. Here, features indicate weight (wt), height (ht), temperature (T), systolic blood
pressure (sbp), and diastolic blood pressure (dbp). The class labels indicate presence of a
particular disease, e.g. diabetes. This data set contains one positive data point (x2) and two
negative data points (x1, x3). The class label shows a disease state, i.e. yi = +1 indicates
the presence while yi = ≠1 indicates absence of disease.
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Another classification example

• x = [house size, temperature outside, temperature inside] 

• d = 3, three-dimensional input vector (array) 

• for regression we had y = gas usage for the day (real-valued) 

• for classification, we might have y ∈ {Low, Med, High}



Multi-label vs Multi-class
• We can always turn a multi-label problem into a multi-class one 

• multi-label with  is the same as multi-class with classes
 

• but this multi-class problem scales really poorly with more labels, so we 
very rarely use this approach (e.g., how many classes from 10 labels?) 

• The simplest solution is to treat each label as a binary prediction problem 

• independently output  for label 1,  for label 2, … 

• or learn  for label 1,  for label 2, …, 

𝒴 = {1,2,3}
𝒴 = {Ø, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}

f1(x) = 0 or 1 f2(x) = 0 or 1

p(y1 = 1 |x) p(y2 = 1 |x)



Multi-label vs Multi-class
• We can always turn a multi-label problem into a multi-class one 

• The simplest solution is to treat each label as a binary prediction problem 

• learn  for label 1,  for label 2, …,  

• Smarter strategies look at relationships between labels 

•  

• For this course, we focus on the simplest approaches. Therefore, we will 
focus on binary classification 

• which provides at least a basic solution for the multi-label problem

p(y1 = 1 |x) p(y2 = 1 |x)

p(y1, y2 |x) ≠ p(y1 |x)p(y2 |x)



Which Formulation to Use?
It's not always clear-cut whether to treat a problem as classification or regression. 

E.g., output space  
• Could be classification with three classes 
• Could be regression on  

Question: What considerations would make us choose one category or another? 
• Regression functions are often easier to learn (even for classification!) 
• If classes have no order (e.g., ), 

then regression will be based on faulty assumptions 
• If classes do have order (e.g., ) then classification will not 

be able to exploit that structure

𝒴 = {0,1,2}

[0,2]

{likes apples, likes bananas, likes oranges}

{Good, Better, Best}



Optimal Prediction
Suppose we know the true joint distribution , and we want to use it 
to make predictions in a classification problem. 

The optimal classification predictor makes the best use of this function. 

As with the optimal estimator, we measure the quality of a predictor  by 
its expected cost . The optimal predictor minimizes . 

, 

where  is the cost for predicting  when the true value is , 
and  is a random variable.

p(x, y)

f(x)
𝔼[C] 𝔼[C]

𝔼[C] = ∫𝒳
∑
y∈𝒴

cost (f(x), y) p(x, y) dx

cost( ̂y, y) ̂y y
C = cost (f(X), Y)

Questions 

1. Why aren't we 
using MAP or 
MLE instead of 
expected cost?



Cost Functions: Classification
• A very common cost function for classification: 0-1 cost 

  

• No cost for the right answer; same cost for every wrong answer 
• Question: when might this be inappropriate? 

• Some wrong answers can be much more costly than others 
• E.g., in medical domain: 

• false positive: leads to an unnecessary test 
• false negative: leads to an untreated disease

cost( ̂y, y) = {0 if  ̂y = y,
1 if  ̂y ≠ y .

Y

-1

(No disease)

1 
(Has disease)

Ŷ

-1 
(No disease) 0 999

1 
(Has disease) 1 0



"Optimal" Classifier  
is Not Always Right

  

• Can't actually achieve zero cost when doing multi-class classification 

•  has to output a single label for observation  
• But there might be instances with the same observations but 

different labels 

• i.e., in general 

𝔼[C] = ∫𝒳
∑
y∈𝒴

cost (f(x), y) p(x, y) dx

f(x) x

∀x : p(y ∣ x) ≠ 1



Deriving Optimal Classifier
 

 

 

𝔼[C] = ∫𝒳
∑
y∈𝒴

cost (f(x), y) p(x, y) dx

= ∫𝒳
∑
y∈𝒴

cost (f(x), y) p(y ∣ x)p(x) dx

= ∫𝒳
p(x) ∑

y∈𝒴

cost (f(x), y) p(y ∣ x) dx

= ∫𝒳
p(x)𝔼[C ∣ X = x] dx

• We can minimize 

  

    separately for each  (why?) 

• Proof: Suppose  is not optimal for a 
specific value  

• Then let

 

•  has lower expected cost at  and same 
expected cost at all other 

𝔼[C ∣ X = x] = ∑
y∈𝒴

cost (f(x), y) p(y ∣ x)

x

f †(x)
x0

f*(x) = {
f †(x) if x ≠ x0,
arg min ̂y∈𝒴 ∑y∈𝒴 cost( ̂y, y)p(y ∣ x0) if x = x0 .

f* x0
x

𝔼[C ∣ X = x]



Deriving Optimal Classifier 
for 0-1 Cost

  

 

 

 

  

f*(x) = arg min
̂y∈𝒴 ∑

y∈𝒴

cost( ̂y, y)p(y ∣ x)

= arg max
̂y∈𝒴

1 − ∑
y∈𝒴

cost( ̂y, y)p(y ∣ x)

= arg max
̂y∈𝒴 ∑

y∈𝒴
(1 − cost( ̂y, y)) p(y ∣ x)

= arg max
̂y∈𝒴 ∑

y∈𝒴,y≠ ̂y

0 ⋅ p(y ∣ x) + ∑
y∈𝒴,y= ̂y

1 ⋅ p(y ∣ x)

= arg max
̂y∈𝒴

p(y ∣ x) ∎

= arg min
̂y∈𝒴 ∑

y∈𝒴

cost( ̂y, y)p(y ∣ x)−1



Cost Functions: Regression
• Two most common cost functions for regression: 

1. Squared error:   

2. Absolute error:  

• Squared error penalizes large errors more heavily than absolute error 

• Other possibilities that depend on the size of the target 

• E.g., percentage error: 

cost( ̂y, y) = ( ̂y − y)2

cost( ̂y, y) = ̂y − y

cost( ̂y, y) =
̂y − y

|y |



Deriving Optimal Regressor 
for Squared Error

 

 

 

 

𝔼[C] = ∫𝒳 ∫𝒴
cost (f(x), y) p(x, y) dy dx

= ∫𝒳 ∫𝒴
(f(x) − y)2 p(x, y) dy dx

= ∫𝒳
p(x)∫𝒴

(f(x) − y)2 p(y ∣ x) dy dx

= ∫𝒳
p(x)𝔼[C ∣ X = x] dx

𝔼[C ∣ X = x]

• Once again, we can directly 
optimize : 

  

where 

𝔼[C ∣ X = x]

f*(x) = arg min
̂y∈𝒴

g( ̂y)

g( ̂y) = ∫𝒴
( ̂y − y)2 p(y ∣ x) dy



 

 

 

 

g( ̂y) = ∫𝒴
( ̂y − y)2 p(y ∣ x) dy

∂g( ̂y)
∂ ̂y

= 2∫𝒴
( ̂y − y) p(y ∣ x) dy = 0

⟺ ∫𝒴
̂yp(y ∣ x) dy = ∫𝒴

yp(y ∣ x) dy

⟺ ̂y∫𝒴
p(y ∣ x) dy = ∫𝒴

yp(y ∣ x) dy

⟺ ̂y = ∫𝒴
yp(y ∣ x) dy

Deriving Optimal Regressor 
for Squared Error, cont.

= 1

= 𝔼[Y ∣ X = x]

So,  

f*(x) = arg min
̂y∈𝒴

g( ̂y)

= 𝔼[Y ∣ X = x] ∎



Irreducible Error
What is our expected squared error when we use the optimal predictor? 

, so 

 

 

f*(x) = 𝔼[Y ∣ X = x]

𝔼[C] = ∫𝒳
p(x)∫𝒴

(f*(x) − y)2 p(y ∣ X = x) dy dx

= ∫𝒳
p(x)∫𝒴

(𝔼[Y ∣ X = x] − y)2 p(y ∣ X = x) dy dx

= ∫𝒳
p(x)Var[Y ∣ X = x] dx



Error for any predictor f
What is our expected squared error when we use a suboptimal predictor? 

 

 

 

𝔼[C ∣ X] = 𝔼 [(f(x) − Y)2 X = x] = 𝔼 [(f(x)−𝔼[Y ∣ X = x] + 𝔼[Y ∣ X = x]−Y)2 X = x]
= 𝔼 [(f(x) − 𝔼[Y ∣ X = x])2 + 2 (f(x) − 𝔼[Y ∣ X = x]) (𝔼[Y ∣ X = x] − Y)

+(𝔼[Y ∣ X = x] − Y)2 X = x]
= 0

We'll take expectation again at the

end to get to 𝔼[C] = 𝔼[𝔼[C |X]]



Middle Term is 0

 

 

 

 

𝔼 [(f(x) − 𝔼[Y ∣ X = x]) (𝔼[Y ∣ X = x] − Y) X = x]
= (f(x) − 𝔼[Y ∣ X = x]) 𝔼 [(𝔼[Y ∣ X = x] − Y) X = x]
= (f(x) − 𝔼[Y ∣ X = x]) (𝔼[Y ∣ X = x] − 𝔼[Y |X = x])
= (f(x) − 𝔼[Y ∣ X = x]) 0

= 0



Expected Cost for f

What is our expected squared error when we use a suboptimal predictor? 

 𝔼 [𝔼[C |X]] = 𝔼 [(f(X) − 𝔼[Y ∣ X])2] + 𝔼 [(𝔼[Y ∣ X] − Y)2]
𝔼[C] = 𝔼 [(f(X) − f*(X))2] + 𝔼 [(f*(X) − Y)2]

Reducible error Irreducible error

= 0



How do we reduce reducible error?

• i.e., how do we make the difference between f and f* smaller 

• Imagine you learn f from a batch of n samples 

• Further, let’s imagine you decide to learn a linear function



Linear vs Nonlinear Functions

• Linear functions: functions that weight features and add them 

• e.g.,  

• Nonlinear functions: any functions that are not linear

f(x) = w0 + w1x1 + w2x2



Linear functions (1d)

• .  
What is w_1 and w_0?
f(x) = w0 + w1x1



Linear functions (2d)

y I:÷:¥÷÷÷÷

⇐
X 2

f(x) = w0 + w1x1 + w2x2



How do we reduce reducible error?

• i.e., how do we make the difference between f and f* smaller 

• Imagine you learn f from a batch of n samples 

• Further, let’s imagine you decide to learn a linear function 

• What are the sources of inaccuracy? 𝔼 [(f(X) − f*(X))2]



How do we reduce reducible error?
• Imagine you learn f from a batch of n samples 

• Further, let’s imagine you decide to learn a linear function 

• What are the sources of inaccuracy?  

• Source 1: limited hypothesis space. f is a linear function, f* might be a 
nonlinear function 

• Source 2: optimization was insufficient. Maybe we used gradient 
descent, and didn’t fully optimize f (stopped too early) 

• Source 3: limited data. Not enough samples to identify a good f

𝔼 [(f(X) − f*(X))2]



How do we reduce reducible error?

• Source 1: limited hypothesis space. f is a linear function, f* might be a 
nonlinear function 

• Solution: make the hypothesis space bigger (e.g., learn polynomials) 

• Source 2: optimization was insufficient. Maybe we used gradient 
descent, and didn’t fully optimize f (stopped too early) 

• Solution: more carefully ensure you get to a stationary point 

• Source 3: limited data. Not enough samples to identify a good f 

• Solution: gather more data



Can we reduce irreducible error?
• It’s called irreducible for a reason… 

• It is the variance of Y given X:   

• Improving our learned function f cannot change the inherent variance in Y 

• But, can you think of a way to reduce the variance of Y conditioned on our 
inputs? What is the source of variance in Y given x? 

• hint: think about the gumball machine example from earlier 

• hint: think about why gas usage was variable, conditioned on house size, 
temperature outdoors and desired indoor temperature

Var(Y |X = x)



Summary
• Supervised learning problem: Learn a predictor  from a dataset 

 

•  is the set of observations, and  is the set of targets 
• Classification problems have discrete targets 
• Regression problems have continuous targets 
• Predictor performance is measured by the expected  of predicting  

when the true value is  
• An optimal predictor for a given distribution minimizes the expected cost 
• Even an optimal predictor has some irreducible error. 

Suboptimal predictors have additional, reducible error

f : 𝒳 → 𝒴
𝒟 = {(xi, yi)}n

i=1

𝒳 𝒴

cost( ̂y, y) ̂y
y


