
Review for Quiz  
Chapter 2 (Probability)

Chapter 3 (Estimation): 


Bias, Variance, Concentration Inequalities

CMPUT 267: Basics of Machine Learning 



Assignment comments
• The Pluto notebook has a lot of code implemented for you. It is currently 

hidden, to avoid clutter. If you want to see it, press the eye beside a block


• You only have to implement small chunks in the Pluto notebook, but hopefully you have 
started. It takes time!


• Q2 is a messy, complicated derivative, but it is not a deep thinking question. 
Just get started trying to do the messy, complicated derivative and refamiliarize 
yourself with using chain rule, etc. 


• You will never do such complicated derivatives for quizzes, but this stretches 
your abilities so that the quiz derivatives are easy


• I suggested defining g_1 and g_2 to make notation simpler; you do not have 
to use these functions



Logistics
• Quiz during class on Thursday


• Not on Zoom, I will not connect to Zoom that day 

• You can bring a two-page cheat sheet (four pages front and back). Please 
hand it in with the exam (take a picture of it if you want a copy).


• The practice quiz and quiz are similar. Please review the practice quiz!


• But they are definitely not the same. Do not simply try to pattern match. 
You need to understand the practice quiz, and be able to apply that 
knowledge. 


• The quiz is meant to test the basics, not to challenge you; answers can be 
short (the quiz is short so each question is worth a lot)



Language of Probabilities
• Define random variables, and their distributions


• So that we can formally reason about data and estimators


• Express our beliefs about behaviour of these RVs, and relationships to other RVs


• Examples: 


• p(x) Gaussian means we believe X is Gaussian distributed


• p(y | X = x)—or written p(y | x)— is Gaussian means that when conditioned on 
x, y is Gaussian


• p(w) and p(w | Data)



PMFs and PDFs
• Discrete RVs have PMFs


• outcome space: e.g,  


• examples pmfs: probability tables, Poisson 


• Continuous RVs have PDFs


• outcome space: e.g., 


• example pdf: Gaussian, Gamma

Ω = {1,2,3,4,5,6}

p(k) =
λke−λ

k!

Ω = [0,1]



A few questions

• Do PMFs p(x) have to output values between [0,1]?


• Do PDFs p(x) have to output values between [0,1]?


• What other condition(s) are put on a function p to make it a valid pmf or pdf?



A few questions

• Do PMFs p(x) have to output values between [0,1]? Yes


• Do PDFs p(x) have to output values between [0,1]? No (between [0, infinity))


• What other condition(s) are put on a function p to make it a valid pmf or pdf?


•
PMF: 


• PDF: 

∑
x∈𝒳

p(x) = 1

∫𝒳
p(x)dx = 1



A few questions

• Is the following function a pdf or a pmf?


•
       i.e.,  for p(x) = {

1
b − a if a ≤ x ≤ b,
0 otherwise.

p(x) =
1

b − a
x ∈ [a, b]



How would you define a uniform 
distribution for a discrete RV

• Imagine 


• What is the uniform pmf for this outcome space?


•

x ∈ {1,2,3,4,5}

p(x) = {
1
5 if x ∈ {1,2,3,4,5},
0 otherwise.



How do you answer this 
probabilistic question?

• For continuous RV X with a uniform distribution and outcome space [0,10], 
what is the probability that X is greater than 7?


•

Pr(X > 7) = ∫
10

7
p(x)dx = ∫

10

7

1
10

dx

=
1
10 ∫

10

7
dx =

1
10

x |10
7

=
3
10



Multivariate Setting

•
Conditional distribution, , Marginal 


• Chain Rule 


• Bayes Rule 


•
Law of total probability 


• Question: How do you get the law of total probability from the chain rule?

p(y ∣ x) =
p(x, y)
p(x)

p(y) = ∑
x∈𝒳

p(x, y)

p(x, y) = p(y ∣ x)p(x) = p(x ∣ y)p(y)

p(y ∣ x) =
p(x ∣ y)p(y)

p(x)

p(y) = ∑
x∈𝒳

p(y |x)p(x)

p(y) = ∑
x∈𝒳

p(x, y) = ∑
x∈𝒳

p(y |x)p(x)



Question

• Assume  and  is Gaussian


• We have  is  and  is 


• Does this mean  is Gaussian? (i.e.,  is a Gaussian pdf)

X ∈ {0,1} p(y |X = x)

p(y |X = 0) 𝒩(μ0, σ2
0) p(y |X = 1) 𝒩(μ1, σ2

1)

Y p(y)



Question
• Assume  and  is Gaussian


• We have  is  and  is 


• Does this mean  is Gaussian? (i.e.,  is a Gaussian pdf)


• No. In fact, it is a mixture of two Gaussians (like in your assignment)



• You did not need to know it is a mixture of Gaussians, but you should know 
that the conditional distribution over an RV and its marginals are not 
necessarily the same type of distribution; conditioning on more information 
results in a different distribution over Y (typically a lower variance one)

X ∈ {0,1} p(y |X = x)

p(y |X = 0) 𝒩(μ0, σ2
0) p(y |X = 1) 𝒩(μ1, σ2

1)

Y p(y)

p(y) = p(y |X = 0)p(X = 0) + p(y |X = 1)p(X = 1) = c0𝒩(μ0, σ2
0) + c1𝒩(μ1, σ2

1)



Expectations




Eg: , , , map , 
 determined by  , e.g, 


Eg: , , , map  
, 

𝔼[ f(X)] = {
∑x∈𝒳 f(x)p(x) if X is discrete,

∫
𝒳

f(x)p(x) dy if X is continuous.

𝒳 = {1,2,3,4,5} f(x) = x2 Y = f(X) {1,2,3,4,5} → {1,4,9,16,25}
p(y) p(x) p(Y = 4) = p(X = 2)

𝒳 = {−1,0,1} f(x) = |x | Y = f(X) {−1,0,1} → {0,1}
p(Y = 1) = p(X = − 1) + p(X = 1) 𝔼[Y] = ∑

y∈0,1

yp(y) = ∑
x∈{−1,0,1}

f(x)p(x)



Conditional Expectations




Definition: 
The expected value of  conditional on  is
Y X = x

𝔼[Y ∣ X = x] =
∑y∈𝒴 yp(y ∣ x) if Y is discrete,

∫
𝒴

yp(y ∣ x) dy if Y is continuous.



Recall Conditional Expectation 
Example

•  is the type of a book, 0 for fiction and 1 for non-fiction

•  is the proportion of all books that are non-fiction


•  is the number of pages 

•  is the proportion of all books with 100 pages


•  is different from 


•  is different from 

• e.g.  is different from 

X
p(X = 1)

Y
p(Y = 100)

p(y |X = 0) p(y |X = 1)

𝔼[Y |X = 0] 𝔼[Y |X = 1]
𝔼[Y |X = 0] = 70 𝔼[Y |X = 1] = 150



Conditional Expectation Example (cont)

•                                                          


•  is the expectation over  under distribution 


•  is the expectation over  under distribution 

p(y |X = 0) p(y |X = 1)

𝔼[Y |X = 0] Y p(y |X = 0)

𝔼[Y |X = 1] Y p(y |X = 1)



What if Y is dollars earned?

• Y is now a continuous RV


• Notice that  is defined by  and  


• What might be a reasonable choice for  and ?

p(y |x) p(y |X = 0) p(y |X = 1)

p(y |X = 0) p(y |X = 1)



What if Y is dollars earned?
• Notice that  is defined by  and  p(y |x) p(y |X = 0) p(y |X = 1)

pcylx-ot-ffuo.si) plylx-D-mfm.si)
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Exercises

• Come up with an example of X and Y, and give possible choices for p(y | x)


• Do you need to know p(x) to use p(y | x)?


• If Y is discrete, then does X have to be discrete to specify p(y | x)? 


• If we have p(y | x), can we get p(x | y)? Why or why not?



Exercises
• Do you need to know p(x) to use p(y | x)? No. If I want p(y | x =20) for x 

temperature and y humidity, I do not need to know p(x = 20)


• If Y is discrete, then does X have to be discrete to specify p(y | x)? 


• No. Y and X can be of different types (as we say with the books example). 


• Note: if X is continuous, we can ask p(y | x), because we are not asking 
Probability of x (which is zero), but rather defining the pdf/pmf over Y 
when conditioning on the fact that we observed x happening


• If we have p(y | x), can we get p(x | y)? Why or why not? No, we also need 
p(x) and p(y), and then we can use Bayes rule.



Properties of Expectations

• Linearity of expectation:

•  for all constant 

• 


• Products of expectations of 
independent random variables :


•

𝔼[cX] = c𝔼[X] c
𝔼[X + Y] = 𝔼[X] + 𝔼[Y]

X, Y
𝔼[XY] = 𝔼[X]𝔼[Y]

You should know linearity of expectation



Variance




i.e.,  where .


Equivalently,


 


Definition: The variance of a random variable is


.Var(X) = 𝔼 [(X − 𝔼[X])2]

𝔼[ f(X)] f(x) = (x − 𝔼[X])2

Var(X) = 𝔼 [X2] − (𝔼[X])2



Covariance







Definition: The covariance of two random variables is


 
Cov(X, Y) = 𝔼 [(X − 𝔼[X])(Y − 𝔼[Y])]

= 𝔼[XY] − 𝔼[X]𝔼[Y] .



Properties of Variances

•  for constant 


•  for constant 


• 


• For independent , because  
 

Var[c] = 0 c

Var[cX] = c2Var[X] c

Var[X + Y] = Var[X] + Var[Y] + 2Cov[X, Y]

X, Y Cov[X, Y] = 0
Var[X + Y] = Var[X] + Var[Y]

You should know all these properties

Let Y = 2X. What is Var(X + Y)? Let  for iid samples . What is Var(X + Y)?X = X1, Y = X2 X1, X2



Properties of Variances

•  for constant 


•  for constant 


• 


• For independent , because  
 

Var[c] = 0 c

Var[cX] = c2Var[X] c

Var[X + Y] = Var[X] + Var[Y] + 2Cov[X, Y]

X, Y Cov[X, Y] = 0
Var[X + Y] = Var[X] + Var[Y]

Let Y = 2X. What is Var(X + Y)?

Option 1: Var(X+Y) = Var(X) + Var(2X) + 2 Cov(X,2X)  
                  = Var(X) + 4Var(X) + 4 Var(X) = 9 Var(X) 
Option 2: Var(X+Y) = Var(3X) = 9 Var(X)



Independent and Identically 
Distributed (i.i.d.) Samples

• We usually won't try to estimate anything about a distribution based on only a 
single sample


• Usually, we use multiple samples from the same distribution

• Multiple samples: This gives us more information 

• Same distribution: We want to learn about a single population


• One additional condition: the samples must be independent 


Definition: When a set of random variables are  are all 
independent, and each has the same distribution , we say they are 
i.i.d. (independent and identically distributed)

X1, X2, …
Xi ∼ p



Properties of Variances (cont)
•  for constant 


•  for constant 


• 


• For independent , because  
 

Var[c] = 0 c

Var[cX] = c2Var[X] c

Var[X + Y] = Var[X] + Var[Y] + 2Cov[X, Y]

X, Y Cov[X, Y] = 0
Var[X + Y] = Var[X] + Var[Y]

Let Y = 2X. What is Var(X + Y)?

Option 1: Var(X+Y) = Var(X) + Var(2X) + 2 Cov(X,2X)  
                  = Var(X) + 4Var(X) + 4 Var(X) = 9 Var(X) 
Option 2: Var(X+Y) = Var(3X) = 9 Var(X)

Let  for iid samples . What is Var(X + Y)? 
Let  be variance for . 
 

 

X = X1, Y = X2 X1, X2
σ2 X1, X2

Var(X + Y) = Var(X1) + Var(X2) + 2Cov(X1, X2)
= Var(X1) + Var(X2) = 2σ2



Estimating Expected Value 

via the Sample Mean

We have  i.i.d. samples from the same distribution , with 
 and  for each .  


We want to estimate .


Let's use the sample mean  to estimate .


n p
𝔼[Xi] = μ Var(Xi) = σ2 Xi

μ

X̄ =
1
n

n

∑
i=1

Xi μ










   


𝔼[X̄] = 𝔼 [ 1
n

n

∑
i=1

Xi]
=

1
n

n

∑
i=1

𝔼[Xi]

=
1
n

n

∑
i=1

μ

=
1
n

nμ

= μ . ∎



Bias




• Bias can be positive or negative or zero


• When , we say that the estimator  is unbiased

Definition: The bias of an estimator  is its expected 
difference from the true value of the estimated quantity :


X̂
μ

Bias(X̂) = 𝔼[X̂] − μ

Bias(X̂) = 0 X̂



Variance of the Estimator
• Intuitively, more samples should make the estimator 

"closer" to the estimated quantity


• We can formalize this intuition partly by characterizing 
the variance  of the estimator itself.


• The variance of the estimator should decrease as 
the number of samples increases


• Example:  for estimating :

• The variance of the estimator shrinks linearly as 

the number of samples grows.

Var[X̂]

X̄ μ













  .

Var[X̄] = Var [ 1
n

n

∑
i=1

Xi]
=

1
n2

Var [
n

∑
i=1

Xi]
=

1
n2

n

∑
i=1

Var[Xi]

=
1
n2

n

∑
i=1

σ2

=
1
n2

nσ2 =
1
n

σ2



Mean-Squared Error
• Bias: whether an estimator is correct in expectation


• Consistency: whether an estimator is correct in the limit of infinite data


• Convergence rate: how fast the estimator approaches its own mean

• For an unbiased estimator, this is also how fast its error shrinks


• We don't necessarily care about an estimator being unbiased.

• Often, what we care about is our estimator's accuracy in expectation


Definition: Mean squared error of an estimator  of a quantity :


 

X̂ μ

MSE(X̂) = 𝔼 [(X̂ − μ)2]  where 𝔼[X̂] may not equal μ



Bias-Variance Tradeoff




• If we can decrease variance without increasing bias, error goes down


• Biasing the estimator toward values that are more likely to be true based 
on prior information

 MSE(X̂) = Var[X̂] + Bias(X̂)2



Bias-Variance Tradeoff



• Biasing the estimator toward values that are more likely to be true based on prior 
information


• Example: over five years you have computed that a typical average number of 
accidents  for factories of a medium size


• You want to estimate the average number of accidents for a new factory, but only 
have a weeks worth of data


•
A reasonable (biased) estimator is:   

Or an even lower variance (higher bias) is  

 MSE(X̂) = Var[X̂] + Bias(X̂)2

k = 5

1
8

[k +
7

∑
i=1

xi]

1
10

[3k +
7

∑
i=1

xi]



Why is bias higher?

• Imagine  and the true mean is 


•  


• 


• You can check that the variance is slightly lower for the second one, since it 
is like it has 10 samples instead of 8, and both are lower than the unbiased 
sample mean

k = 5 μ = 4

𝔼 [ 1
8

(k +
7

∑
i=1

Xi)] =
1
8 (k + 𝔼[

7

∑
i=1

Xi]) =
1
8 (k + 7μ) =

1
8 (5 + 7 × 4) =

33
8

= 4.13 ≠ 4

𝔼 [ 1
10

(3k +
7

∑
i=1

Xi)] =
1

10 (3k + 𝔼[
7

∑
i=1

Xi]) =
1

10 (3k + 7μ) =
1
10 (3 × 5 + 7 × 4) =

43
10

= 4.3 ≠ 4



Prior information helps overcome 
high variance in sampling

It’s possible in a small sample to see only data  
between 50 and 100 

 
The sample mean is highly inaccurate 

due to the high variance in this distribution 
 

Once we have lots of data, this problem disappears 
We really only care about introducing bias to reduce  

variance for smaller sample sizes



Downward-biased Mean Estimation
Example: Let's estimate  given i.i.d  with  using:  μ X1, …, Xn 𝔼[Xi] = μ Y =

1
n+100

n

∑
i=1

Xi

This estimator is biased:











𝔼[Y] = 𝔼 [ 1
n + 100

n

∑
i=1

Xi]
=

1
n + 100

n

∑
i=1

𝔼[Xi]

=
n

n + 100
μ

Bias(Y) =
n

n + 100
μ − μ =

−100
n + 100

μ

This estimator has low variance:











Var(Y) = Var [ 1
n + 100

n

∑
i=1

Xi]
=

1
(n + 100)2

Var [
n

∑
i=1

Xi]
=

1
(n + 100)2

n

∑
i=1

Var[Xi]

=
n

(n + 100)2
σ2



 





MSE(X̄) = Var(X̄) + Bias(X̄)2

= Var(X̄)

=
1

10

Estimating  Near 0μ
Example: Suppose that , , and σ = 1 n = 10 μ = 0.1

Bias(X̄) = 0

Var(X̄) =
σ2

n

 








MSE(Y) = Var(Y) + Bias(Y)2

=
n

(n + 100)2
σ2 + ( 100

n + 100
μ)

2

=
10

1102
+ ( 100

110
0.1)

2

≈ 9 × 10−4



Exercise: What is the variance of 
these estimators?

Questions:


Suppose we can observe a different variable .  Is  a good estimator of  in the following cases?  Why or why not?


1. 


2. 


3. , for 

Y Y 𝔼[X]

Y ∼ Uniform[0,10]

Y = 𝔼[X] + Z,  where Z ∼ N(0,1002)

Y =
1
n

n

∑
i=1

Xi Xi ∼ p



Exercise: What is the variance of 
these estimators?

Estimators: 

1. 


2. 


3. , for 

Y1 ∼ Uniform[0,10]

Y2 = 𝔼[X] + Z,  where Z ∼ N(0,1002)

Y3 =
1
n

n

∑
i=1

Xi Xi ∼ p

Var(Y1) =
1
12

(10 − 0)2 =
100
12

= 8.3̄

Var(Y2) = Var(𝔼[X] + Z) = ?

Var(Y3) =
σ2

n



Exercise: What is the variance of 
these estimators?

Estimators: 

1. 


2. 


3. , for 

Y1 ∼ Uniform[0,10]

Y2 = 𝔼[X] + Z,  where Z ∼ N(0,1002)

Y3 =
1
n

n

∑
i=1

Xi Xi ∼ p

Var(Y2) = Var(𝔼[X] + Z)
= Var(Z) ▹ Var(c + Y) = Var(Y)
= 1002



MSE of these estimators

Estimators: 

1. 


2. 


3. , for 

Y1 ∼ Uniform[0,10]

Y2 = 𝔼[X] + Z,  where Z ∼ N(0,1002)

Y3 =
1
n

n

∑
i=1

Xi Xi ∼ p

Var(Y1) =
1
12

(10 − 0)2 =
100
12

= 8.3̄

Var(Y2) = Var(𝔼[X] + Z) = 1002

Var(Y3) =
σ2

n

Bias(Y1) = 𝔼[Y1] − 𝔼[X] = 5

Bias(Y2) = 𝔼[Y2] − 𝔼[X] = 0

Bias(Y3) = 0

 MSE(X̂) = Var[X̂] + Bias(X̂)2

MSE(Y1) = 52 + 8.3̄ = 33.3̄

MSE(Y2) = 0 + 1002 = 10000

MSE(Y3) = 0 +
σ2

n



Concentration Inequalities

• We would like to be able to claim   

for some 

Pr ( X̄ − μ < ϵ) > 1 − δ

δ, ϵ > 0



Hoeffding's Inequality
Theorem: Hoeffding's Inequality


Suppose that  are distributed i.i.d, with . 
Then for any  ,


.


Equivalently, for , .

X1, …, Xn a ≤ Xi ≤ b
ϵ > 0

Pr ( X̄ − 𝔼[X̄] ≥ ϵ) ≤ 2 exp (−
2nϵ2

(b − a)2 )
δ ∈ (0,1) Pr ( X̄ − 𝔼[X̄] ≤ (b − a)

ln(2/δ)
2n ) ≥ 1 − δ



Chebyshev's Inequality
Theorem: Chebyshev's Inequality


Suppose that  are distributed i.i.d. with variance .  
Then for any ,


.


Equivalently, for , .

X1, …, Xn σ2

ϵ > 0

Pr ( X̄ − 𝔼[X̄] ≥ ϵ) ≤
σ2

nϵ2

δ ∈ (0,1) Pr X̄ − 𝔼[X̄] ≤
σ2

δn
≥ 1 − δ



When to Use Chebyshev,

When to Use Hoeffding?

• If , then 


• Hoeffding's inequality gives ; 

Chebyshev's inequality gives 


• Hoeffding's inequality gives a tighter bound*, but it can only be used on bounded random 
variables


✴
whenever 


• Chebyshev's inequality can be applied even for unbounded variables

a ≤ Xi ≤ b Var[Xi] ≤
1
4

(b − a)2

ϵ = (b − a)
ln(2/δ)

2n
=

ln(2/δ)
2

(b − a)
1
n

ϵ =
σ2

δn
≤

(b − a)2

4δn
=

1

2 δ
(b − a)

1
n

ln(2/δ)
2

<
1

2 δ
⟺ δ < ∼ 0.232



Sample Complexity

 

• We want sample complexity to be small 


• Sample complexity is determined by:

1. The estimator itself


• Smarter estimators can sometimes improve sample complexity (e.g., smart priors)

2. Properties of the data generating process


• If the data are high-variance, we need more samples for an accurate estimate

• But we can reduce the sample complexity if we can bias our estimate toward the 

correct value

Definition: 
The sample complexity of an estimator is the number of samples required to guarantee an 
error of at most  with probability , for given  and .
ϵ 1 − δ δ ϵ



Sample Complexity

For , Chebyshev gives


 








δ = 0.05

ϵ =
σ2

δn
=

1

0.05

σ

n

⟺ ϵ = 4.47
σ

n

⟺ n = 4.47
σ
ϵ

⟺ n = 19.98
σ2

ϵ2

With Gaussian assumption and 


     





δ = 0.05,

ϵ = 1.96
σ

n

⟺ n = 1.96
σ
ϵ

⟺ n = 3.84
σ2

ϵ2

Definition: 
The sample complexity of an estimator is the number of samples required to guarantee an expected error 
of at most  with probability , for given  and .
ϵ 1 − δ δ ϵ



Summary
• Concentration inequalities let us bound the probability of a given estimator being at 

least  from its mean (expected value)


• Sample complexity is the number of samples needed to attain a desired error bound  
at a desired probability 


• We only discussed sample complexity for unbiased estimators


• The mean squared error of an estimator decomposes into bias (squared) and variance


• Using a biased estimator can have lower error than an unbiased estimator


• Bias the estimator based on some prior information


• But this only helps if the prior information is correct, cannot reduce error by adding in 
arbitrary bias

ϵ

ϵ
1 − δ



Things you do not need to  
know for the quiz

• You do not need to know the formulas for any pdfs or pmfs


• You should be comfortable with Bayes rule, chain rule for probability and 
expectation/variance rules, though I will typically remind you of these rules


• You should know basic math rules, like ln exp (a) = a


• You do not have to remember the Chebyshev’s or Hoeffding’s inequality, but 
you do have to know how to use them


• You will not have to compute any derivatives or integrals 


