Optimization

CMPUT 267: Basics of Machine Learning



Comments

* Assignment 1 due this week

* For next Reading Exercises, we will release some Practice Questions
* [wo advertisements for student clubs:

 Undergraduate Al Society is hosting a Computer Hex Tournament: https://
hex-tournament.devpost.com/

e Students for Machine Learning in Business (interdisciplinary, including CS,

—ngineering, Business, etc) are looking for a Co-Director of Data Science



https://hex-tournament.devpost.com/
https://hex-tournament.devpost.com/

Clarification for Q5 in Assignment 1

* There is a natural tendency to understand things intuitively. Sometimes
mathematical formulas are not intuitive. Intuitive is not necessarily better,
applying formulas/algorithms is also important

* As time passes, having intuition about math actually gets easier.
Sometimes in the beginning it is simply better to try executing

* [f you cannot intuit something, then that is ok!
o Simplified Q5b and gave more details about Chebyshev’s

* |Let’'s go over what it means to take the expectation of a sample average



Sample Average

_ 1
Imagine we flip a fair coin 3 times and take X = — Z X;
3 i=1
» 8 possible datasets, ¥, = {0,0,0}, ¥, = {0,0,1}, &, = {0,1,0},
P2, =1{0,1,1}, s = {1,0,0}, D = {1,0,1}, D = {1,1,0}, D, = {1,1,1}

3
C[X] = Z p(2;)average(2;) where X = average(Z;) is a possible outcome

j=1



Sample Average for continuous RVs

_ 1
_Imagine we sample from a Gaussian 3 times and take X = ) Z X;
i=1

» Uncountably many possible datasets, &, = {1.3,0.11,0.35674},
I, =1{-0.33,0,9.45}, ...

C[X] = [p(@)average(@)d@ = Jp(xl,xz, Xs)average(Xy, Xy, X3)dX;dx,x5



Relevance to your assignment

* [n the real world, you see precisely one of these dataset and one x

* \We reason about other datasets you could see, because we want to know:

for equally likely datasets, do they have a similar X7 If yes, then you all agree
and are probably all correct. If no, then who is right? You in a parallel
universe or you in this universe” You can’'t know. SO we give an interval

around your X to say: at least | am confident its somewhere in here

* |n your assignment, you get to have multiple universes! We have synthetic
data, so we simulate what it would be like to have multiple estimates of the
sample average. (You do not ever do this in practice)




Question 5 on the assignment

Changed to only ask you to give the confidence interval for the sample
variance
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e variance IS also an estimator, and we can reason about I1ts bias
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Example: V = — Z Xl.2 has E[V] = [ p(D)squared-average(D)d
n

=1

We can use our Cl approaches for this estimator to ask: how much does it
deviate from its true mean”/



Back to Parameter Estimation

* |n class, we started discussing that we will need to solve optimization
oroblems so that we can find the parameters for our distributions/functions

 We won't talk about those optimization problems just yet. Let’s first ask: In
general, how do we solve optimization problems?




Optimization

We often want to find the argument w™* that minimizes an objective function ¢

w* = arg min c(w)
wWEW

Example: Using linear regression to fit a dataset {(xi, yl-)}’,/l |
]=

» Estimate the targets by y = f(x) = wy + wx

» Each vector w specifies a particular f

n
Objective is the total error c(w) = Z (f(x) — yl-)2
i=1

The set # = R”. What if instead you wanted to find weights between [-10,10]?




=xercise: Making your
own optimization algorithm

* |magine | told you that you need to find

wW* = arg min c(w)
weR?

* Pretend you have never heard of gradient descent. What algorithm might
you design to find this”

e Now what if | told youthatw € 7% = {1,2,3,...,1000}. Now how would
YOu solve

wW* = arg min c(w)
wWEW



Optimization Properties

1. Maximizing c(w) is the same as minimizing —c(w):

arg max c(w) = arg min — c(w)

2. Equivalence under constant shifts: Adding, subtracting, or multiplying
by a positive constant does not change the minimizer of a function:

arg min c(w) = arg min c(w)+k = arg min c(w)—k = arg min kc(w) Vk € RT



5

e_op  EXample

' 2
3\ (W — 2) arg min (W _ 2)2

] ] | | weR
L | (W — 2)2 = arg min 2(W — 2)2
|| | | | weR
| V | | = arg min (W—2)2+ 1

0 | 9 .W weR
. —(W_2)2 :argIvIVlea[g —(W—2)2

=2




Stationary Points

» Every minimum of an everywhere-differentiable function ¢(w) must occur at
a stationary point: A point at which ¢'(w) = 0

* However, not every stationary point is a minimum Local Minima

e Every stationary point is either: Saddlepoint ,
 Alocal minimum
A local maximum

A saddlepoint

. L o Global Minimum
* The global minimum is either a local minimum (or a boundary point)

Let’s assume for now that w is unconstrained (i.e, w € R ratherthanw > 0O orw € [0,1])



|dentifying the type of
the stationary point

e |f function curved upwards (convex) locally,

then local minimum

L ocal Minima

Saddlepo_int _

Global Minimum



Convex functions /@
ftx; + (1 — Dxy) < tf(xg) + (1 = D)f(x,)

tf (21) + (1 — 1) f (@) [ 5
' Convex = shaped like a bowl
Concave = shaped like an upside bow!
1 txy + (1 — 1)z $!2

* from Wikipedia



|dentifying the type of
the stationary point

f function curved upwards (convex) locally,
then local minimum

L ocal Minima

f function curved downwards ( ) locally,
then

Saddlepo_int _

f function flat locally, then might be a saddlepoint
but could also be a local min or local max

Locally, cannot distinguish between local min
and global min (its a global property of the surface) Global Minimum




Second derivative reflects curvature

y [
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| f(x) = 4t - 29 - 12y
204 )
- ----/f"(.\') = 48x° - 12x - 24

f'(x) = 16x3 - 6x% - 24x



Second derivative test

. If " (wg) > 0 then wq is a local minimum.
. If " (wg) < 0 then wy is a local maximum.

. If ¢’(wg) = 0 then the test is inconclusive: we cannot say which type of stationary
point we have and it could be any of the three.

Local Minima

Saddlepo_int _

Global Minimum



lesting optimality without the
second derivative test

Convex functions have a global minimum at every stationary point

cis convex <> c(tw; + (1 — Hw,) < tc(wy) + (1 — He(w,)

f(x)




Proceqgure

» Find a stationary point, namely w,, such that ¢'(w,) = 0

 Sometimes we can do this analytically (closed form solution, namely an
explicit formula for wy)

 Reason about If It Is optimal
* Check if your function is convex

e |f you have only one stationary point and it is a local minimum, then it is a
global minimum

o Otherwise, If second derivate test says its a local min, can only say that



EXercise

. Find the solution to the optimization problem min(w — 2)% 4+ (w — 3)?
weR

 Recall that the procedure is:

» 1. Find a stationary point, namely w, such that ¢'(w,) = 0

e 2. Do the second derivative test (or reason about If this function is convex)



Solution

c(w) = (w—2)*+ (w—3)°
cw)y=2w—-2)+2w—-3)=4w — 10
c’'(w) =4

cCwy) =0=4w,— 10 = w,=10/4 =25

c"(wy) =4 > 0, so alocal min. Only one stationary point, so its a global
min.



EXErcise: Prove eqguivalence under
constant shifts

Equivalence under constant shifts: Adding, subtracting, or multiplying by a
positive constant does not change the minimizer of a function:

arg min c(w) = arg min c(w)+k = arg min c(w)—k = arg min kc(w) Vk € RT

Show that all of these have the same set of stationary points,
namely points w where ¢’(w) = 0




Numerical Optimization

 We will almost never be able to analytically compute the minimum of the
functions that we want to optimize

* (Linear regression is an important exception)
* |nstead, we must try to find the minimum numerically

* Main techniques: First-order and second-order gradient descent



INtuitive explanation of
gradient descent

‘ ~ but ot o

Wi < w,—nc'(w,)

n > 0 a small stepsize



A more careful explanation

 Why would it work

 What are we really

to take small steps”?

doing?

 We are |locally approximating the function, using a laylor series

* Note: | won’t test you on the Taylor series derivation;

you to understar

d where the algorithm comes from a

differences between first and second-order gradient descent

he goal here |
nd help explal

:Or
the



Taylor Series

Definition: A Taylor series is a way of approximating a function ¢ in a small
neighbourhood around a point a;:

c(a)
k!

cw) ~ c(a) + c'(a)lw—a) + C”;a) (W — a)2 oo

k(@)
= c(a) + Z - ifcz) (w —a)’
=1

(w—a)'




Taylor Series Visualization
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Taylor Series Visualization (2)
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Taylor Series

Definition: A Taylor series is a way of approximating a function ¢ in a small
neighbourhood around a point a;:

4 (k)
c(w) % (@) + c@)(w — a) + - ;a) (W — @)+ e + = k('a)

D
—c(a)+z ( )(w—a)i

(w—a)'

* [ntuition: Following tangent line of the function approximates how It changes
e |.e., following a function with the same first derivative

e Following a function with the same first and second derivatives is a better
approximation; with the same first, second, third derivatives is even better; etc.




Second-Order Gradient Descent
(Newton-Raphson Method)

1. Approximate the target function with a second-order Taylor series around the current
c"(w)

guess w; cw) =c(w) +c’'w)(w —w,) + > (W — wt)2
c'(w,)
Wip1 < W — ()

2. Find the stationary point of the approximation !




Second-Order Gradient Descent

1. Approximate the target function wit
second-order Taylor series arour

current guess w.

cw) =c(w,) +c'(w)(w —w,) +

2. FInd the stationary point of the approximation

Wi < W —

c'(w,)

C//(Wt)

3. If the stationary point of the approximation is

a (good enough) stationary point of the

objective, then stop. Else, goto 1.

d
0=—

dw

C
=c'(a) + 2

=c'(a) + c"(a)(w — a)

<~ —c'(a)=c"(a)(w—a)

c(a) + c'(a)(w—a) A

c’(a)

//(a)

C”(Cl)

w—2

2

@
— (W—a) = (@)
c'(a)
&= w=a—
C//(a)

d

(W — a)2]



(First-Order) Gradient Descent

We can run Second-order GD whenever we have access to both the first and second
derivatives of the target function

Often we want to only use the first derivative
 Not obvious yet why, but for the multivariate case second-order is computationally intensive

1

First-order gradient descent: Replace the second derivative with a constant — (the step
size) in the approximation: T

C”(Wt)

cw) =cw) +c’'w)(w — w4 > (W — wt)2

cw) = c(w) + c'(w)(w — w) » (W —w,)?

By exactly the same derivation as before:

Wip1 < W, —nc'(w,)




1st and 2nd order

Wy Wi

2nd order 1st order, distance controlled by stepsize



Partial Derivatives

« So far: Optimizing univariate function ¢ : R — |

d

— |

« But actually: Optimizing multivariate function ¢ : |

e distypicalyH U G E (d > 10,000 is not uncommon)

* First derivative of a multivariate function is a vector of partial derivatives

Definition:

0
he partial derivative —f(xl, ey X )
@xl-

of a function f(xy, ..., X,) at x{, ..., x, with respect to x; is g'(x,), where

g(Y) :f(x19 °'°’xi—1’y’xi+19 ...,Xd)




Example

c(wy, wy) = 2w, + 4w, — T7)°

oc
(Wl’ W2) — 4(2W1 + 4W2 — 7)
awl

Then we query at a particular point, e.g., (w;, w,) = (1, — 1), giving

oc
(I,—-1)=42-4-7)=—-36
awl

—quivalently, let f(w) = c(w;, — 1) for this fixed w,

oc ac
Then f(w;) = —(wy, — 1), ie., f(1) = —(1, = 1) = — 36
6w1 8w1



(Gradients

The multivariate analog to a first derivative Is called a gradient.

Definition:

partial derivatives of f at X:

The gradient V f(x) of a function f : | d

at X € |

VAX) = | %

d IS a vector of all the




Multivariate Gradient Descent

First-order gradient descent for multivariate functions ¢ : | 45 S just:
W, < W, —nVc(w,)
dc
6_(Wt)
Wir1,1 Wil al
C
Wir12 W2 a_(Wt)
: — : —H | ™
Wirl,d Wid




=xtending to stepsize per timestep

Sirst-order gradient descent for multivariate functions ¢ : RY — R is just:

Wit = We T Ve(w)

 Notice the tm

» We can choose a different #, for each iteration

* |ndeed, for univariate functions, Newton-Raphson can be understood as first-

1

order gradient descent that chooses a step size of 77, = o) at each iteration.
c (w;

 (Choosing a good step size is crucial to efficiently using first-order gradient descent



Adaptive Step Sizes
K ¢ (w)

»
w

( «) ‘HCFS”Z:'C oo J‘Wm[l (L

f the step size is too small, gradient descent will "work", but take forever

Too big, and we can overshoot the optimum

There are some heuristics that we can use to adaptively guess good values for #,

[deally, we would choose #, = arg min ¢ (Wt — N VC(Wt))
neR™

e But that's another optimization!



| INne Search

Intuition:

A simple heuristic: line search | |
» Big step sizes are better so long as

1. Try some largest-reasonable step size they don't overshoot
0) — | o
N, " = Hmax  Try a big step size! If it increases
(s) the objective, we must have
2. Isc (Wt — 1 VC(Wt)) < c(w)? overshot, so try a smaller one.

A )
tyes, w1 < w,— 1, VC(Wz) e Keep trying smaller ones until you

(s+1) _ . (s) aecrease the objective; then start

3. Otherwise, try 77, 1 teration £ + 1 from gy @gain.
(for T < 1) and goto 2

« Typically 7 € [0.5,0.9]




Adaptive stepsize algorithms

Stepsize selection is very important, and so there is a vast array of
algorithms for adaptive stepsizes

Line search is a bit onerous to use, and not common with something called
stochastic gradient descent (which is what we will use later)

We will see smarter stepsize algorithms then, and in your assignment



DO we have 1o use
a scalar stepsize?

 Or can we use a different stepsize per dimension”? And why would we?

\ W anld W2 . ~

\/\/Ll‘jlf’i’i \ Cor AX(/( Wz,?’/ Fovr ‘[1)((0{ ,

N \ \/C(W WL’() w
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Stepsize 2¢houn ld be b
Stepsize 1 should ot SW‘"“ .j



Now what If we have constraints’

* [or this course, we almost always only deal with unconstrained problems

» We will only consider constraints like w > Q orw € [a, b]

 [hen the procedure is:

1. Find a stationary point

e 2. \Verity that it is the only stationary point, and a local min according to the
second derivative test

e 3. Additionally check if the boundary points have a smaller value



Visualizing the eftect of constraints

lonvex ﬁmb{wm Non con v4X ({moﬁb’n (pnshants on

w

Ohlj (fa honavy Coid i
TDMJL | Lol mAPKimina~
610 bol Mty Sw(ﬂ(.[ero P (" 750)




Summary

We often want to find the argument w* that minimizes an objective function c:

w* = arg min c(w)
W

—very interior minimum is a stationary point, so check the stationary points
Stationary points usually identified numerically

e TJypically, by gradient descent

Choosing the step size is important for efficiency and correctness

o Common approach: Adaptive step size

e E£.9., by line search



