
Optimization

CMPUT 267: Basics of Machine Learning

Textbook §4.1-4.4

Comments

• Assignment 1 due this week

• For next Reading Exercises, we will release some Practice Questions

• Two advertisements for student clubs:

• Undergraduate AI Society is hosting a Computer Hex Tournament: https://
hex-tournament.devpost.com/

• Students for Machine Learning in Business (interdisciplinary, including CS,
Engineering, Business, etc) are looking for a Co-Director of Data Science

https://hex-tournament.devpost.com/
https://hex-tournament.devpost.com/

Clarification for Q5 in Assignment 1

• There is a natural tendency to understand things intuitively. Sometimes
mathematical formulas are not intuitive. Intuitive is not necessarily better,
applying formulas/algorithms is also important

• As time passes, having intuition about math actually gets easier.
Sometimes in the beginning it is simply better to try executing

• If you cannot intuit something, then that is ok!

• Simplified Q5b and gave more details about Chebyshev’s

• Let’s go over what it means to take the expectation of a sample average

Sample Average

•
Imagine we flip a fair coin 3 times and take

• 8 possible datasets, , , ,
, , , ,

•
 where is a possible outcome

X̄ =
1
3 ∑

i=1

Xi

𝒟1 = {0,0,0} 𝒟2 = {0,0,1} 𝒟3 = {0,1,0}
𝒟4 = {0,1,1} 𝒟5 = {1,0,0} 𝒟6 = {1,0,1} 𝒟7 = {1,1,0} 𝒟8 = {1,1,1}

𝔼[X̄] =
8

∑
j=1

p(𝒟j)average(𝒟j) x̄ = average(𝒟j)

Sample Average for continuous RVs

•
Imagine we sample from a Gaussian 3 times and take

• Uncountably many possible datasets, ,
, …

•

X̄ =
1
3 ∑

i=1

Xi

𝒟1 = {1.3,0.11,0.35674}
𝒟2 = {−0.33,0,9.45}

𝔼[X̄] = ∫ p(𝒟)average(𝒟)d𝒟 = ∫ p(x1, x2, x3)average(x1, x2, x3)dx1dx2x3

Relevance to your assignment

• In the real world, you see precisely one of these dataset and one

• We reason about other datasets you could see, because we want to know:
for equally likely datasets, do they have a similar ? If yes, then you all agree
and are probably all correct. If no, then who is right? You in a parallel
universe or you in this universe? You can’t know. So we give an interval
around your to say: at least I am confident its somewhere in here

• In your assignment, you get to have multiple universes! We have synthetic
data, so we simulate what it would be like to have multiple estimates of the
sample average. (You do not ever do this in practice)

x̄

x̄

x̄

Question 5 on the assignment
• Changed to only ask you to give the confidence interval for the sample

variance

• The sample variance is also an estimator, and we can reason about its bias
and variance

•
Example: has

• We can use our CI approaches for this estimator to ask: how much does it
deviate from its true mean?

V̄ =
1
n ∑

i=1

X2
i 𝔼[V̄] = ∫ p(𝒟)squared-average(𝒟)d𝒟

Back to Parameter Estimation

• In class, we started discussing that we will need to solve optimization
problems so that we can find the parameters for our distributions/functions

• We won’t talk about those optimization problems just yet. Let’s first ask: in
general, how do we solve optimization problems?

Optimization
We often want to find the argument that minimizes an objective function

Example: Using linear regression to fit a dataset

• Estimate the targets by

• Each vector specifies a particular

•
Objective is the total error

w* c

w* = arg min
w∈𝒲

c(w)

{(xi, yi)}n
i=1

̂y = f(x) = w0 + w1x
w f

c(w) =
n

∑
i=1

(f(xi) − yi)2

x

y

f x()

(,)x y1 1

(,)x y2 2

e f x y1 1 1= () {

The set . What if instead you wanted to find weights between [-10,10]?𝒲 = ℝ2

Exercise: Making your
own optimization algorithm

• Imagine I told you that you need to find

• Pretend you have never heard of gradient descent. What algorithm might
you design to find this?

• Now what if I told you that . Now how would
you solve

w* = arg min
w∈ℝd

c(w)

w ∈ 𝒲 = {1,2,3,...,1000}

w* = arg min
w∈𝒲

c(w)

Optimization Properties

1. Maximizing is the same as minimizing :

2. Equivalence under constant shifts: Adding, subtracting, or multiplying
by a positive constant does not change the minimizer of a function:

c(w) −c(w)

arg max
w

c(w) = arg min
w

− c(w)

arg min
w

c(w) = arg min
w

c(w)+k = arg min
w

c(w)−k = arg min
w

kc(w) ∀k ∈ ℝ+

Example

(w − 2)2

(w − 2)2
2(w − 2)2

−(w − 2)2

arg min
w∈ℝ

(w − 2)2

= arg min
w∈ℝ

2(w − 2)2

= arg min
w∈ℝ

(w − 2)2 + 1

= arg max
w∈ℝ

−(w − 2)2

= 2

w

Stationary Points
• Every minimum of an everywhere-differentiable function must occur at

a stationary point: A point at which

• However, not every stationary point is a minimum

• Every stationary point is either:
• A local minimum
• A local maximum
• A saddlepoint

• The global minimum is either a local minimum (or a boundary point)

c(w)
c′ (w) = 0

Local Minima

Global Minima

Saddlepoint

Global Minimum

Let’s assume for now that w is unconstrained (i.e, rather than or)w ∈ ℝ w ≥ 0 w ∈ [0,1]

Identifying the type of
the stationary point

• If function curved upwards (convex) locally,
then local minimum

Local Minima

Global Minima

Saddlepoint

Global Minimum

Convex functions

* from Wikipedia

f(tx1 + (1 − t)x2) ≤ tf(x1) + (1 − t)f(x2)

Convex = shaped like a bowl

Concave = shaped like an upside bowl

Identifying the type of
the stationary point

• If function curved upwards (convex) locally,
then local minimum

• If function curved downwards (concave) locally,
then local maximum

• If function flat locally, then might be a saddlepoint 
but could also be a local min or local max

• Locally, cannot distinguish between local min
and global min (its a global property of the surface)

Local Minima

Global Minima

Saddlepoint

Global Minimum

Second derivative reflects curvature

Second derivative test

For example, assume again that we are doing linear regression, with only one feature
and so only one weight w œ R. The derivative of the objective c(w) =

qn
i=1(xiw ≠ yi)2 is

d

dw
c(w) = d

dw

nÿ

i=1
(xiw ≠ yi)2

=
nÿ

i=1

d

dw
(xiw ≠ yi)2

=
nÿ

i=1
2(xiw ≠ yi)xi

where the last step follows from the chain rule. Our goal is to find w such that d
dw c(w) = 0;

once we find such a stationary point, we can then determine if it is a local minimum, local
maximum or saddlepoint.

Sometimes we can infer what type of stationary point we have simply from properties
of the objective. In particular, if the objective is convex, then we know that the stationary
point is a global minima. A function c : Rd æ R is said to be convex if for any w1, w2 œ Rd

and t œ [0, 1],
c(tw1 + (1 ≠ t)w2) Æ tc(w1) + (1 ≠ t)c(w2) (4.1)

This definition means that when we draw a line between any two points on the function
surface, the function values between these two points all lie below this line. Intuitively, this
means the function surface is shaped like a cup, and so the stationary point (or points) are
all at the bottom of the cup and are global minimum.

A corresponding definition is a concave function, which is precisely the opposite: all
points lie above the line. For any convex function c, the negative of that function ≠c is a
concave function.

The second derivative test tells us locally if the stationary point is a local minimum,
local maximum or if it is inconclusive. Namely, the test is

1. If cÕÕ(w0) > 0 then w0 is a local minimum.

2. If cÕÕ(w0) < 0 then w0 is a local maximum.

3. If cÕÕ(w0) = 0 then the test is inconclusive: we cannot say which type of stationary
point we have and it could be any of the three.

To understand this test, notice that the second derivative reflects the local curvature of the
function. It tells us how the derivative is changing. If the slope of the derivative cÕ(w0) is
positive at w0, namely cÕÕ(w0) > 0, then we know that the derivative is increasing and vice
versa.

Let us consider an example to understand this better. Consider a sin curve sin(w) and
the point halfway between the bottom and top of the hill. At one these in-between points,
say w = 0, the derivative is maximally positive: it is cos(0) = +1. As we increase w, the
derivative starts to decrease until it is zero at the top of the hill, at w = fi/2. Then it flips
and gets more and more negative until it reaches w = fi with derivative maximally negative
at cos(fi) = ≠1. In this region between [0, fi], the derivative is constantly decreasing and
the second derivative is negative. At this point, the derivative again begins to increase from
its maximally negative point cos(fi) = ≠1, and becomes less and less negative until reaching

38

Local Minima

Global Minima

Saddlepoint

Global Minimum

Testing optimality without the
second derivative test

Convex functions have a global minimum at every stationary point

c is convex ⟺ c(tw1 + (1 − t)w2) ≤ tc(w1) + (1 − t)c(w2)

Procedure
• Find a stationary point, namely such that

• Sometimes we can do this analytically (closed form solution, namely an
explicit formula for)

• Reason about if it is optimal

• Check if your function is convex

• If you have only one stationary point and it is a local minimum, then it is a
global minimum

• Otherwise, if second derivate test says its a local min, can only say that

w0 c′ (w0) = 0

w0

Exercise

• Find the solution to the optimization problem

• Recall that the procedure is:

• 1. Find a stationary point, namely such that

• 2. Do the second derivative test (or reason about if this function is convex)

min
w∈ℝ

(w − 2)2 + (w − 3)2

w0 c′ (w0) = 0

Solution

•

•

•

•

• , so a local min. Only one stationary point, so its a global
min.

c(w) = (w − 2)2 + (w − 3)2

c′ (w) = 2(w − 2) + 2(w − 3) = 4w − 10

c′ ′ (w) = 4

c′ (w0) = 0 = 4w0 − 10 ⟹ w0 = 10/4 = 2.5

c′ ′ (w0) = 4 > 0

Exercise: Prove equivalence under
constant shifts

Equivalence under constant shifts: Adding, subtracting, or multiplying by a
positive constant does not change the minimizer of a function:

Show that all of these have the same set of stationary points,
namely points w where c’(w) = 0

arg min
w

c(w) = arg min
w

c(w)+k = arg min
w

c(w)−k = arg min
w

kc(w) ∀k ∈ ℝ+

Numerical Optimization

• We will almost never be able to analytically compute the minimum of the
functions that we want to optimize

✴ (Linear regression is an important exception)

• Instead, we must try to find the minimum numerically

• Main techniques: First-order and second-order gradient descent

Intuitive explanation of
gradient descent

OR

wt+1 ← wt − ηc′ (wt)

η > 0 a small stepsize

A more careful explanation

• Why would it work to take small steps?

• What are we really doing?

• We are locally approximating the function, using a Taylor series

• Note: I won’t test you on the Taylor series derivation; the goal here is for
you to understand where the algorithm comes from and help explain the
differences between first and second-order gradient descent

Taylor Series

Definition: A Taylor series is a way of approximating a function in a small
neighbourhood around a point :

c
a

c(w) ≈ c(a) + c′ (a)(w − a) +
c′ ′ (a)

2
(w − a)2 + ⋯ +

c(k)(a)
k!

(w − a)k

= c(a) +
k

∑
i=1

c(i)(a)
i!

(w − a)i

Taylor Series Visualization

Taylor Series Visualization (2)

Appendix A

Optimization background

A.1 Second order optimization: Newton-Raphson

method

A function f(x) in the neighborhood of point x0, can be approximated using the
Taylor series as

f(x) =
1X

n=0

f (n)(x0)

n!
(x� x0)

n,

where f (n)(x0) is the n-th derivative of function f(x) evaluated at point x0. Also,
f(x) is considered to be infinitely differentiable. For practical reasons, we will
approximate this function using the first three terms of the series as

f(x) ⇡ f(x0) + (x� x0)f
0(x0) +

1

2
(x� x0)

2f 00(x0).

The optimum of this function can be found by finding the first derivative and setting
it to zero (technically, one should check the second derivative as well)

f 0(x) ⇡ f 0(x0) + (x� x0)f
00(x0) = 0.

Solving this equation for x gives us

x = x0 �
f 0(x0)

f 00(x0)
.

Note that the approach assumes that a good enough solution x0 already exists.
However, this equation, also provides a basis for an iterative process in finding the
optimum of function f(x). For example, if x(i) is the value of x in the i-th step,
then the value in step i+ 1 can be obtained as

x(i+1) = x(i) � f 0(x(i))

f 00(x(i))
. (A.1)

This method is called the Newton-Raphson method of optimization. We can gener-
alize this approach to functions of vector variables x =(x1, x2, . . . , xk). The Taylor
approximation for a vector function can be written as

123

degree 1, 3, 5, 7, 9, 11 and 13.

Approximating sin function

at point x0 = 0 

(How can you tell?)

Taylor Series

• Intuition: Following tangent line of the function approximates how it changes

• i.e., following a function with the same first derivative
• Following a function with the same first and second derivatives is a better

approximation; with the same first, second, third derivatives is even better; etc.

Definition: A Taylor series is a way of approximating a function in a small
neighbourhood around a point :

c
a

c(w) ≈ c(a) + c′ (a)(w − a) +
c′ ′ (a)

2
(w − a)2 + ⋯ +

c(k)(a)
k!

(w − a)k

= c(a) +
k

∑
i=1

c(i)(a)
i!

(w − a)i

Wtt , minimumthan)µ.we , of i

•
. I Notice↳Wtt c(w* ,) < clwt)((w) , l

l l

l l

-i¥w
W WTH

Second-Order Gradient Descent
(Newton-Raphson Method)

1. Approximate the target function with a second-order Taylor series around the current

guess :

2. Find the stationary point of the approximation

wt ̂c(w) = c(wt) + c′ (wt)(w − wt) +
c′ ′ (wt)

2
(w − wt)2

wt+1 ← wt −
c′ (wt)
c′ ′ (wt)

Second-Order Gradient Descent
1. Approximate the target function with a

second-order Taylor series around the
current guess :

2. Find the stationary point of the approximation

3. If the stationary point of the approximation is

a (good enough) stationary point of the
objective, then stop. Else, goto 1.

wt

̂c(w) = c(wt) + c′ (wt)(w − wt) +
c′ ′ (wt)

2
(w − wt)2

wt+1 ← wt −
c′ (wt)
c′ ′ (wt)

0 =
d

dw [c(a) + c′ (a)(w − a) +
c′ ′ (a)

2
(w − a)2]

= c′ (a) + 2
c′ ′ (a)

2
w − 2

c′ ′ (a)
2

a

= c′ (a) + c′ ′ (a)(w − a)

⟺ − c′ (a) = c′ ′ (a)(w − a)

⟺ (w − a) = −
c′ (a)
c′ ′ (a)

⟺ w = a −
c′ (a)
c′ ′ (a)

(First-Order) Gradient Descent
• We can run Second-order GD whenever we have access to both the first and second

derivatives of the target function
• Often we want to only use the first derivative

• Not obvious yet why, but for the multivariate case second-order is computationally intensive

• First-order gradient descent: Replace the second derivative with a constant (the step
size) in the approximation:

• By exactly the same derivation as before:

1
η

̂c(w) = c(wt) + c′ (wt)(w − wt)+
c′ ′ (wt)

2
(w − wt)2

̂c(w) = c(wt) + c′ (wt)(w − wt)+
1
2η

(w − wt)2

wt+1 ← wt − ηc′ (wt)

1st and 2nd order
OR

2nd order 1st order, distance controlled by stepsize

Partial Derivatives
• So far: Optimizing univariate function
• But actually: Optimizing multivariate function

• is typically h u g e (is not uncommon)
• First derivative of a multivariate function is a vector of partial derivatives

c : ℝ → ℝ
c : ℝd → ℝ

d d ≫ 10,000

Definition:  

The partial derivative

of a function at with respect to is , where

∂f
∂xi

(x1, …, xd)

f(x1, …, xd) x1, …, xd xi g′ (xi)

g(y) = f(x1, …, xi−1, y, xi+1, …, xd)

Example
•

•

• Then we query at a particular point, e.g., , giving

• Equivalently, let for this fixed

• Then , i.e.,

c(w1, w2) = (2w1 + 4w2 − 7)2

∂c
∂w1

(w1, w2) = 4(2w1 + 4w2 − 7)

(w1, w2) = (1, − 1)
∂c

∂w1
(1, − 1) = 4(2 − 4 − 7) = − 36

f(w1) = c(w1, − 1) w2

f′ (w1) =
∂c

∂w1
(w1, − 1) f′ (1) =

∂c
∂w1

(1, − 1) = − 36

Gradients
The multivariate analog to a first derivative is called a gradient.

Definition:
The gradient of a function at is a vector of all the
partial derivatives of at :

∇f(x) f : ℝd → ℝ x ∈ ℝd

f x

∇f(x) =

∂f
∂x1

(x)

∂f
∂x2

(x)

⋮
∂f
∂xd

(x)

Multivariate Gradient Descent

First-order gradient descent for multivariate functions is just:

c : ℝd → ℝ

wt+1 ← wt − η∇c(wt)

wt+1,1
wt+1,2

⋮
wt+1,d

=

wt,1
wt,2

⋮
wt,d

− η

∂c
∂w1

(wt)

∂c
∂w2

(wt)

⋮
∂c
∂wd

(wt)

Extending to stepsize per timestep

• Notice the subscript on

• We can choose a different for each iteration

• Indeed, for univariate functions, Newton-Raphson can be understood as first-

order gradient descent that chooses a step size of at each iteration.

• Choosing a good step size is crucial to efficiently using first-order gradient descent

First-order gradient descent for multivariate functions is just:

c : ℝd → ℝ

wt+1 ← wt − ηt ∇c(wt)

t η
ηt

ηt =
1

c′ ′ (wt)

¥ : 8
{
•

0
0

E

÷

.
÷

☒
£

I

÷÷ .•
•

§
I ¥÷ .

.

¥ ¥

Adaptive Step Sizes

• If the step size is too small, gradient descent will "work", but take forever
• Too big, and we can overshoot the optimum

• There are some heuristics that we can use to adaptively guess good values for

• Ideally, we would choose

• But that's another optimization!

ηt

ηt = arg min
η∈ℝ+

c (wt − η∇c(wt))

Line Search
A simple heuristic: line search

1. Try some largest-reasonable step size

2. Is ?
If yes,

3. Otherwise, try
(for) and goto 2

η(0)
t = ηmax

c (wt − η(s)
t ∇c(wt)) < c(wt)

wt+1 ← wt − η(s)
t ∇c(wt)

η(s+1)
t = τη(s)

t
τ < 1

Intuition:

• Big step sizes are better so long as
they don't overshoot

• Try a big step size! If it increases
the objective, we must have
overshot, so try a smaller one.

• Keep trying smaller ones until you
decrease the objective; then start
iteration from again.

• Typically

t + 1 ηmax

τ ∈ [0.5,0.9]

Adaptive stepsize algorithms

• Stepsize selection is very important, and so there is a vast array of
algorithms for adaptive stepsizes

• Line search is a bit onerous to use, and not common with something called
stochastic gradient descent (which is what we will use later)

• We will see smarter stepsize algorithms then, and in your assignment

Do we have to use
a scalar stepsize?

• Or can we use a different stepsize per dimension? And why would we?

Wtt , minimumthan)µ. we ,
of i

&
,

I Notice¥¥t', c(w* ,) < clwt)
l l

l l

i
w white

Weights w
,
and wz

For fixed wheel
For fired w,

Vann. '
Wz

W
,

L
,
should be small 42 should be big

Stepsize 1
Stepsize 2

Now what if we have constraints?

• For this course, we almost always only deal with unconstrained problems

• We will only consider constraints like or

• Then the procedure is:

• 1. Find a stationary point

• 2. Verify that it is the only stationary point, and a local min according to the
second derivative test

• 3. Additionally check if the boundary points have a smaller value

w ≥ 0 w ∈ [a, b]

Visualizing the effect of constraints
§

I
s

8
←
⇐

✗

6
9
s

.

:[
d
-

§
←
d
-

S
F

S
'

o
f

5
d
-

☐
-

I
s

u
r
g
o
5

I ☐
£
8
S

s

o
8

→
s

e s
'

}
£

•

C

i
s

s
a

-
¥
;

.
✗

I
s

?
P S

E
.
{

a
0 J
u

g:

E
E

o
o

a
*

f
f
f

s
•

a
•
u

T

÷¥
€

: 5
.

w
e
?

I

8
-

É
O s

}

Summary
• We often want to find the argument that minimizes an objective function :

• Every interior minimum is a stationary point, so check the stationary points
• Stationary points usually identified numerically

• Typically, by gradient descent
• Choosing the step size is important for efficiency and correctness

• Common approach: Adaptive step size
• E.g., by line search

w* c
w* = arg min

w
c(w)

