Optimization

CMPUT 267: Basics of Machine Learning

Textbook §4.1-4.4

Comments

- Assignment 1 due this week
- For next Reading Exercises, we will release some Practice Questions
- Two advertisements for student clubs:
 - Undergraduate AI Society is hosting a Computer Hex Tournament: <u>https://</u> <u>hex-tournament.devpost.com/</u>
 - Students for Machine Learning in Business (interdisciplinary, including CS, Engineering, Business, etc) are looking for a Co-Director of Data Science

Clarification for Q5 in Assignment 1

- There is a natural tendency to understand things intuitively. Sometimes mathematical formulas are not intuitive. Intuitive is not necessarily better, applying formulas/algorithms is also important
 - As time passes, having intuition about math actually gets easier. Sometimes in the beginning it is simply better to try executing
 - If you cannot intuit something, then that is ok!
- Simplified Q5b and gave more details about Chebyshev's
- Let's go over what it means to take the expectation of a sample average

Sample Average

Imagine we flip a fair coin 3 times

 $\mathbb{E}[\bar{X}] = \sum p(\mathcal{D}_j) \text{ average}(\mathcal{D}_j) \text{ where } \bar{x} = \text{average}(\mathcal{D}_j) \text{ is a possible outcome}$ i=1

and take
$$\bar{X} = \frac{1}{3} \sum_{i=1}^{N} X_i$$

• 8 possible datasets, $\mathscr{D}_1 = \{0,0,0\}, \mathscr{D}_2 = \{0,0,1\}, \mathscr{D}_3 = \{0,1,0\},$ $\mathcal{D}_4 = \{0,1,1\}, \mathcal{D}_5 = \{1,0,0\}, \mathcal{D}_6 = \{1,0,1\}, \mathcal{D}_7 = \{1,1,0\}, \mathcal{D}_8 = \{1,1,1\}$

Sample Average for continuous RVs

- Uncountably many possible datasets, $\mathcal{D}_1 = \{1.3, 0.11, 0.35674\},\$ $\mathcal{D}_2 = \{-0.33, 0, 9.45\}, \dots$

Imagine we sample from a Gaussian 3 times and take $\bar{X} = \frac{1}{3} \sum X_i$

• $\mathbb{E}[\bar{X}] = \int p(\mathcal{D}) \operatorname{average}(\mathcal{D}) d\mathcal{D} = \int p(x_1, x_2, x_3) \operatorname{average}(x_1, x_2, x_3) dx_1 dx_2 x_3$

Relevance to your assignment

- In the real world, you see precisely one of these dataset and one \bar{x}
- We reason about other datasets you could see, because we want to know: for equally likely datasets, do they have a similar \bar{x} ? If yes, then you all agree and are probably all correct. If no, then who is right? You in a parallel universe or you in this universe? You can't know. So we give an interval around your \bar{x} to say: at least I am confident its somewhere in here
- sample average. (You do not ever do this in practice)

• In your assignment, you get to have multiple universes! We have synthetic data, so we simulate what it would be like to have multiple estimates of the

Question 5 on the assignment

- Changed to only ask you to give the confidence interval for the sample variance
- The sample variance is also an estimator, and we can reason about its bias and variance

• Example:
$$\bar{V} = \frac{1}{n} \sum_{i=1}^{n} X_i^2$$
 has $\mathbb{E}[\bar{V}] = \int p(\mathscr{D})$ squared-average $(\mathscr{D})d\mathscr{D}$

• We can use our CI approaches for this estimator to ask: how much does it deviate from its true mean?

Back to Parameter Estimation

- In class, we started discussing that we will need to solve optimization problems so that we can find the parameters for our distributions/functions
- We won't talk about those optimization problems just yet. Let's first ask: in general, how do we solve optimization problems?

Optimization

 $\mathbf{w}^* = \arg\min c(\mathbf{w})$

Example: Using linear regression to fit a dataset $\{(x_i, y_i)\}_{i=1}^n$

- Estimate the targets by $\hat{y} = f(x) = w_0 + w_1 x$
- Each vector **w** specifies a particular f

The set $\mathcal{W} = \mathbb{R}^2$. What if instead you wanted to find weights between [-10,10]?

We often want to find the argument w^* that minimizes an objective function c

Exercise: Making your own optimization algorithm

Imagine I told you that you need to find \bullet

- Pretend you have never heard of gradient descent. What algorithm might you design to find this?
- Now what if I told you that $w \in \mathcal{W} = \{1, 2, 3, ..., 1000\}$. Now how would you solve

 $\mathbf{w}^* = \arg\min_{\mathbf{w}\in\mathbb{R}^d} c(\mathbf{w})$

 $\mathbf{w}^* = \arg\min c(\mathbf{w})$ w∈‴

Optimization Properties

1. Maximizing c(w) is the same as minimizing -c(w):

 $\operatorname{arg\,max} c(w)$ ${\mathcal W}$

2. Equivalence under constant shifts: Adding, subtracting, or multiplying by a positive constant **does not change** the minimizer of a function:

 $\arg\min c(w) = \arg\min c(w) + k = \arg\min c(w) - k = \arg\min kc(w)$ $\forall k \in \mathbb{R}^+$ ${\mathcal W}$ W W

$$= \underset{w}{\operatorname{arg\,min}} - c(w)$$

 $\operatorname{arg\,min}(w-2)^2$ $w \in \mathbb{R}$ $= \arg \min 2(w - 2)^2$ $w \in \mathbb{R}$ $= \arg \min (w - 2)^2 + 1$ $w \in \mathbb{R}$ $= \arg \max -(w - 2)^2$ $w \in \mathbb{R}$ = 2

Stationary Points

- Every minimum of an everywhere-differentiable function c(w) must occur at a stationary point: A point at which c'(w) = 0
- However, not every stationary point is a minimum \bullet
- Every stationary point is either: ullet
 - A local minimum
 - A local maximum
 - A saddlepoint
- The **global minimum** is either a local minimum (or a boundary point)

Let's assume for now that w is unconstrained (i.e, $w \in \mathbb{R}$ rather than $w \geq 0$ or $w \in [0,1]$)

Global Minimum

Local Minima

Saddlepoint

Identifying the type of the stationary point

 If function curved upwards (convex) locally, then local minimum

$$f(tx_{1} + (1 - t)f(x_{2})) \leq t$$

$$f(tx_{1} + (1 - t)x_{2}) \leq t$$

$$f(tx_{1} + (1 - t)x_{2})$$

$$x_{1} \quad tx_{1} + (1 - t)x_{2}$$

* from Wikipedia

Identifying the type of the stationary point

- If function curved upwards (**convex**) locally, then local minimum
- If function curved downwards (concave) locally, then local maximum
- If function **flat** locally, then might be a **saddlepoint** but could also be a local min or local max
- Locally, cannot distinguish between local min and global min (its a global property of the surface)

Second derivative reflects curvature х $f(x) = 4x^4 - 2x^3 - 12x^2$ $=48x^2 - 12x - 24$ f''(x)

Second derivative test

- 1. If $c''(w_0) > 0$ then w_0 is a local minimum.
- 2. If $c''(w_0) < 0$ then w_0 is a local maximum.
- 3. If $c''(w_0) = 0$ then the test is inconclusive: we cannot say which type of stationary point we have and it could be any of the three.

Testing optimality without the second derivative test

Convex functions have a **global** minimum at every stationary point

 $c \text{ is convex } \iff c(t\mathbf{w}_1 + (1-t)\mathbf{w}_2) \le tc(\mathbf{w}_1) + (1-t)c(\mathbf{w}_2)$

Procedure

- Find a stationary point, namely w_0 such that $c'(w_0) = 0$
 - Sometimes we can do this analytically (closed form solution, namely an explicit formula for w_0)
- Reason about if it is optimal
 - Check if your function is convex
 - If you have only one stationary point and it is a local minimum, then it is a global minimum
 - Otherwise, if second derivate test says its a local min, can only say that

Exercise

- Recall that the procedure is:
 - 1. Find a stationary point, namely w_0 such that $c'(w_0) = 0$

• Find the solution to the optimization problem $\min(w-2)^2 + (w-3)^2$ $w \in \mathbb{R}$

• 2. Do the second derivative test (or reason about if this function is convex)

- $c(w) = (w 2)^2 + (w 3)^2$
- c'(w) = 2(w 2) + 2(w 3) = 4w 10
- c''(w) = 4
- $c'(w_0) = 0 = 4w_0 10 \implies w_0 = 10/4 = 2.5$
- min.

Solution

• $c''(w_0) = 4 > 0$, so a local min. Only one stationary point, so its a global

Exercise: Prove equivalence under constant shifts

Equivalence under constant shifts: Adding, subtracting, or multiplying by a positive constant **does not change** the minimizer of a function:

 $\arg\min c(w) = \arg\min c(w) + k = \arg\min c(w) - k = \arg\min kc(w) \quad \forall k \in \mathbb{R}^+$ ${\mathcal W}$ ${\mathcal W}$ ${\mathcal W}$ ${\mathcal W}$ Show that all of these have the same set of stationary points,

namely points w where c'(w) = 0

- We will *almost never* be able to **analytically** compute the minimum of the functions that we want to optimize
 - * (Linear regression is an important exception)
- Instead, we must try to find the minimum **numerically**
- Main techniques: First-order and second-order gradient descent

Numerical Optimization

Intuitive explanation of gradient descent

$$w_{t+1} \leftarrow w_t - \eta c'(w_t)$$

$\eta > 0$ a small stepsize

A more careful explanation

- Why would it work to take small steps?
- What are we really doing? \bullet
- We are locally approximating the function, using a Taylor series
 - differences between first and second-order gradient descent

 Note: I won't test you on the Taylor series derivation; the goal here is for you to understand where the algorithm comes from and help explain the

Taylor Series

Definition: A **Taylor series** is a way of approximating a function c in a small neighbourhood around a point a:

$$c(w) \approx c(a) + c'(a)(w-a) + \frac{c''(a)}{2}(w-a)^2 + \dots + \frac{c^{(k)}(a)}{k!}(w-a)^k$$
$$= c(a) + \sum_{i=1}^k \frac{c^{(i)}(a)}{i!}(w-a)^i$$

Taylor Series Visualization

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

Approximating sin function at point x0 = 0(How can you tell?)

degree 1, 3, 5, 7, 9, 11 and 13.

Taylor Series Visualization (2)

Taylor Series

Definition: A **Taylor series** is a way of approximating a function *c* in a small neighbourhood around a point *a*:

$$c(w) \approx c(a) + c'(a)(w-a) + \frac{c''(a)}{2}(w-a)^2 + \dots + \frac{c^{(k)}(a)}{k!}(w-a)^k$$
$$= c(a) + \sum_{i=1}^k \frac{c^{(i)}(a)}{i!}(w-a)^i$$

- Intuition: Following tangent line of the function approximates how it changes \bullet
 - i.e., following a function with the same first derivative
 - Following a function with the same first and second derivatives is a better approximation; with the same first, second, third derivatives is even better; etc.

Second-Order Gradient Descent (Newton-Raphson Method)

guess w_t : $\hat{c}(w) = c(w_t) + c'(w_t)(w - w_t) + \frac{c''(w_t)}{2}(w - w_t)^2$

Find the stationary point of the approximation 2.

Approximate the target function with a second-order Taylor series around the current

$$w_{t+1} \leftarrow w_t - \frac{c'(w_t)}{c''(w_t)}$$

 $\begin{array}{c}
\hat{c}(w) & W_{t+1} & minimum \\
\hat{c}(w_{k}) & of \hat{c} \\
 & Vofice \\
 & c(w_{t+1}) & c(w_{t})
\end{array}$

Second-Order Gradient Descent

1. Approximate the target function with a second-order Taylor series around the current guess
$$w_t$$
:
 $\hat{c}(w) = c(w_i) + c'(w_i)(w - w_i) + \frac{c''(w_i)}{2}(w - w_i)^2$
2. Find the stationary point of the approximation
 $w_{t+1} \leftarrow w_t - \frac{c'(w_i)}{c''(w_i)}$
3. If the stationary point of the approximation is a (good enough) stationa

$$w_{t+1} \leftarrow w_t - \frac{c'(w_t)}{c''(w_t)}$$

objective, then stop. Else, goto 1.

(First-Order) Gradient Descent

- derivatives of the target function
- Often we want to only use the first derivative
- **size**) in the approximation:

$$\hat{c}(w) = c(w_t) + c'(w_t)(w - w_t) + \frac{c''(w_t)}{2}(w - w_t)^2$$
$$\hat{c}(w) = c(w_t) + c'(w_t)(w - w_t) + \frac{1}{2\eta}(w - w_t)^2$$

$$\begin{aligned} f(w) &= c(w_t) + c'(w_t)(w - w_t) + \frac{c''(w_t)}{2}(w - w_t)^2 \\ \hat{c}(w) &= c(w_t) + c'(w_t)(w - w_t) + \frac{1}{2\eta}(w - w_t)^2 \end{aligned}$$

By exactly the same derivation as before:

 W_{t+}

• We can run Second-order GD whenever we have access to both the first and second

• Not obvious yet why, but for the multivariate case second-order is computationally intensive First-order gradient descent: Replace the second derivative with a constant — (the step η

$$\leftarrow w_t - \eta c'(w_t)$$

2nd order

1st order, distance controlled by stepsize

Partial Derivatives

- So far: Optimizing univariate function $c : \mathbb{R} \to \mathbb{R}$
- **But actually:** Optimizing multivariate function $c : \mathbb{R}^d \to \mathbb{R}$ \bullet
 - d is typically H U G E ($d \gg 10,000$ is not uncommon)
- First derivative of a multivariate function is a vector of partial derivatives

Definition:

The partial derivative $\frac{\partial f}{\partial x_i}(x_1, \dots, x_d)$ of a function $f(x_1, \ldots, x_d)$ at x_1, \ldots, x_d with respect to x_i is $g'(x_i)$, where $g(y) = f(x_1, \dots, x_{i-1}, y, x_{i+1}, \dots, x_d)$

$$(z_d)$$

Example

• $c(w_1, w_2) = (2w_1 + 4w_2 - 7)^2$

•
$$\frac{\partial c}{\partial w_1}(w_1, w_2) = 4(2w_1 + 4w_2 - 7)$$

- Then we query at a particular point, e.g., $(w_1, w_2) = (1, -1)$, giving $\frac{\partial c}{\partial w_1}(1, -1) = 4(2 - 4 - 7) = -36$
- Equivalently, let $f(w_1) = c(w_1, -1)$ for this fixed w_2

• Then
$$f'(w_1) = \frac{\partial c}{\partial w_1}(w_1, -1)$$
, i.e., $f'(1) = \frac{\partial c}{\partial w_1}(1, -1) = -36$

Gradients

The multivariate analog to a first derivative is called a gradient.

Definition:

partial derivatives of f at **x**:

Multivariate Gradient Descent

$$\begin{array}{c} w_{t+1,1} \\ w_{t+1,2} \\ \vdots \\ w_{t+1,d} \end{array} =$$

First-order gradient descent for multivariate functions $c : \mathbb{R}^d \to \mathbb{R}$ is just:

 $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - \eta \,\nabla c(\mathbf{w}_t)$

$$\begin{bmatrix} W_{t,1} \\ W_{t,2} \\ \vdots \\ W_{t,d} \end{bmatrix} - \eta \begin{bmatrix} \frac{\partial c}{\partial_{w_1}} (\mathbf{w}_t) \\ \frac{\partial c}{\partial_{w_2}} (\mathbf{w}_t) \\ \vdots \\ \frac{\partial c}{\partial_{w_d}} (\mathbf{w}_t) \end{bmatrix}$$

Extending to stepsize per timestep

- Notice the *t*-subscript on η \bullet
- We can choose a **different** η_t for each iteration
 - Indeed, for univariate functions, Newton-Raphson can be understood as first-order gradient descent that chooses a step size of $\eta_t = \frac{1}{c''(w_t)}$ at each iteration.
- Choosing a good step size is crucial to efficiently using first-order gradient descent

 $\mathbf{W}_{t+1} \leftarrow \mathbf{W}_t - \eta_t \nabla c(\mathbf{W}_t)$

- If the step size is too small, gradient descent will "work", but take forever
- • Too big, and we can overshoot the optimum
- There are some heuristics that we can use to **adaptively** guess good values for η_t
- Ideally, we would choose $\eta_t = \arg$ \bullet
 - But that's another optimization!

Adaptive Step Sizes

$$\min_{\eta \in \mathbb{R}^+} c\left(\mathbf{w}_t - \eta \nabla c(\mathbf{w}_t)\right)$$

A simple heuristic: line search

1. Try some largest-reasonable step size $\eta_{t}^{(0)} = \eta_{\max}$

2. Is
$$c(w_t - \eta_t^{(s)} \nabla c(w_t)) < c(w_t)$$
?
If yes, $w_{t+1} \leftarrow w_t - \eta_t^{(s)} \nabla c(w_t)$

3. Otherwise, try $\eta_t^{(s+1)} = \tau \eta_t^{(s)}$ (for $\tau < 1$) and goto 2

Line Search

Intuition:

- Big step sizes are better so long as they don't overshoot
- Try a big step size! If it *increases* the objective, we must have overshot, so try a smaller one.
- Keep trying smaller ones until you *decrease* the objective; then start iteration t + 1 from η_{max} again.
- Typically $\tau \in [0.5, 0.9]$

Adaptive stepsize algorithms

- Stepsize selection is very important, and so there is a vast array of algorithms for adaptive stepsizes
- stochastic gradient descent (which is what we will use later)
- lacksquare

• Line search is a bit onerous to use, and not common with something called

We will see smarter stepsize algorithms then, and in your assignment

Do we have to use a scalar stepsize?

Or can we use a different stepsize per dimension? And why would we?

Now what if we have constraints?

- We will only consider constraints like $w \ge 0$ or $w \in [a, b]$
- Then the procedure is:
 - 1. Find a stationary point
 - second derivative test
 - 3. Additionally check if the boundary points have a smaller value

• For this course, we almost always only deal with unconstrained problems

• 2. Verify that it is the only stationary point, and a local min according to the

Nonconvex function Convex function Dnly Local maximum Saddlepoint (c" is 0) 6lobal min

Summary

- We often want to find the argument w^* that minimizes an objective function c: $\mathbf{w}^* = \arg\min c(\mathbf{w})$ W
- Every interior minimum is a stationary point, so check the stationary points Stationary points usually identified numerically
- - Typically, by gradient descent
- Choosing the step size is important for efficiency and correctness
 - Common approach: Adaptive step size
 - E.g., by line search