
Optimization

CMPUT 267: Basics of Machine Learning 
 

Textbook §4.1-4.4



Comments

• Assignment 1 due this week


• For next Reading Exercises, we will release some Practice Questions


• Two advertisements for student clubs:


• Undergraduate AI Society is hosting a Computer Hex Tournament: https://
hex-tournament.devpost.com/


• Students for Machine Learning in Business (interdisciplinary, including CS, 
Engineering, Business, etc) are looking for a Co-Director of Data Science

https://hex-tournament.devpost.com/
https://hex-tournament.devpost.com/


Clarification for Q5 in Assignment 1

• There is a natural tendency to understand things intuitively. Sometimes 
mathematical formulas are not intuitive. Intuitive is not necessarily better, 
applying formulas/algorithms is also important


• As time passes, having intuition about math actually gets easier. 
Sometimes in the beginning it is simply better to try executing


• If you cannot intuit something, then that is ok!


• Simplified Q5b and gave more details about Chebyshev’s


• Let’s go over what it means to take the expectation of a sample average 



Sample Average

•
Imagine we flip a fair coin 3 times and take 


• 8 possible datasets, , , , 
, , , , 


•
  where  is a possible outcome

X̄ =
1
3 ∑

i=1

Xi

𝒟1 = {0,0,0} 𝒟2 = {0,0,1} 𝒟3 = {0,1,0}
𝒟4 = {0,1,1} 𝒟5 = {1,0,0} 𝒟6 = {1,0,1} 𝒟7 = {1,1,0} 𝒟8 = {1,1,1}

𝔼[X̄] =
8

∑
j=1

p(𝒟j)average(𝒟j) x̄ = average(𝒟j)



Sample Average for continuous RVs

•
Imagine we sample from a Gaussian 3 times and take 


• Uncountably many possible datasets, , 
, …


•  

X̄ =
1
3 ∑

i=1

Xi

𝒟1 = {1.3,0.11,0.35674}
𝒟2 = {−0.33,0,9.45}

𝔼[X̄] = ∫ p(𝒟)average(𝒟)d𝒟 = ∫ p(x1, x2, x3)average(x1, x2, x3)dx1dx2x3



Relevance to your assignment

• In the real world, you see precisely one of these dataset and one 


• We reason about other datasets you could see, because we want to know: 
for equally likely datasets, do they have a similar ? If yes, then you all agree 
and are probably all correct. If no, then who is right? You in a parallel 
universe or you in this universe? You can’t know. So we give an interval 
around your  to say: at least I am confident its somewhere in here


• In your assignment, you get to have multiple universes! We have synthetic 
data, so we simulate what it would be like to have multiple estimates of the 
sample average. (You do not ever do this in practice)

x̄

x̄

x̄



Question 5 on the assignment
• Changed to only ask you to give the confidence interval for the sample 

variance


• The sample variance is also an estimator, and we can reason about its bias 
and variance


•
Example:  has 


• We can use our CI approaches for this estimator to ask: how much does it 
deviate from its true mean?

V̄ =
1
n ∑

i=1

X2
i 𝔼[V̄] = ∫ p(𝒟)squared-average(𝒟)d𝒟



Back to Parameter Estimation

• In class, we started discussing that we will need to solve optimization 
problems so that we can find the parameters for our distributions/functions


• We won’t talk about those optimization problems just yet. Let’s first ask: in 
general, how do we solve optimization problems?



Optimization
We often want to find the argument  that minimizes an objective function  


 


Example: Using linear regression to fit a dataset 


• Estimate the targets by 


• Each vector  specifies a particular 


•
Objective is the total error 

w* c

w* = arg min
w∈𝒲

c(w)

{(xi, yi)}n
i=1

̂y = f(x) = w0 + w1x
w f

c(w) =
n

∑
i=1

( f(xi) − yi)2

x

y

f x( )

( , )x y1 1

( , )x y2 2

e f x y1 1 1= ( ) {

The set . What if instead you wanted to find weights between [-10,10]?𝒲 = ℝ2



Exercise: Making your  

own optimization algorithm

• Imagine I told you that you need to find





• Pretend you have never heard of gradient descent. What algorithm might 
you design to find this?


• Now what if I told you that . Now how would 
you solve


w* = arg min
w∈ℝd

c(w)

w ∈ 𝒲 = {1,2,3,...,1000}

w* = arg min
w∈𝒲

c(w)



Optimization Properties

1. Maximizing  is the same as minimizing : 


 


2. Equivalence under constant shifts: Adding, subtracting, or multiplying 
by a positive constant does not change the minimizer of a function:


c(w) −c(w)

arg max
w

c(w) = arg min
w

− c(w)

arg min
w

c(w) = arg min
w

c(w)+k = arg min
w

c(w)−k = arg min
w

kc(w) ∀k ∈ ℝ+



Example

(w − 2)2

(w − 2)2
2(w − 2)2

−(w − 2)2

arg min
w∈ℝ

(w − 2)2

= arg min
w∈ℝ

2(w − 2)2

= arg min
w∈ℝ

(w − 2)2 + 1

= arg max
w∈ℝ

−(w − 2)2

= 2

w



Stationary Points
• Every minimum of an everywhere-differentiable function  must occur at 

a stationary point:  A point at which 


• However, not every stationary point is a minimum


• Every stationary point is either:

• A local minimum

• A local maximum

• A saddlepoint


• The global minimum is either a local minimum (or a boundary point)

c(w)
c′￼(w) = 0

Local Minima

Global Minima

Saddlepoint

Global Minimum

Let’s assume for now that w is unconstrained (i.e,  rather than  or  )w ∈ ℝ w ≥ 0 w ∈ [0,1]



Identifying the type of 

the stationary point

• If function curved upwards (convex) locally, 
then local minimum

Local Minima

Global Minima

Saddlepoint

Global Minimum



Convex functions

* from Wikipedia

f(tx1 + (1 − t)x2) ≤ tf(x1) + (1 − t)f(x2)

Convex = shaped like a bowl

Concave = shaped like an upside bowl



Identifying the type of 

the stationary point

• If function curved upwards (convex) locally, 
then local minimum


• If function curved downwards (concave) locally, 
then local maximum


• If function flat locally, then might be a saddlepoint 
but could also be a local min or local max


• Locally, cannot distinguish between local min  
and global min (its a global property of the surface)

Local Minima

Global Minima

Saddlepoint

Global Minimum



Second derivative reflects curvature



Second derivative test

For example, assume again that we are doing linear regression, with only one feature
and so only one weight w œ R. The derivative of the objective c(w) =

qn
i=1(xiw ≠ yi)2 is

d

dw
c(w) = d

dw

nÿ

i=1
(xiw ≠ yi)2

=
nÿ

i=1

d

dw
(xiw ≠ yi)2

=
nÿ

i=1
2(xiw ≠ yi)xi

where the last step follows from the chain rule. Our goal is to find w such that d
dw c(w) = 0;

once we find such a stationary point, we can then determine if it is a local minimum, local
maximum or saddlepoint.

Sometimes we can infer what type of stationary point we have simply from properties
of the objective. In particular, if the objective is convex, then we know that the stationary
point is a global minima. A function c : Rd æ R is said to be convex if for any w1, w2 œ Rd

and t œ [0, 1],
c(tw1 + (1 ≠ t)w2) Æ tc(w1) + (1 ≠ t)c(w2) (4.1)

This definition means that when we draw a line between any two points on the function
surface, the function values between these two points all lie below this line. Intuitively, this
means the function surface is shaped like a cup, and so the stationary point (or points) are
all at the bottom of the cup and are global minimum.

A corresponding definition is a concave function, which is precisely the opposite: all
points lie above the line. For any convex function c, the negative of that function ≠c is a
concave function.

The second derivative test tells us locally if the stationary point is a local minimum,
local maximum or if it is inconclusive. Namely, the test is

1. If cÕÕ(w0) > 0 then w0 is a local minimum.

2. If cÕÕ(w0) < 0 then w0 is a local maximum.

3. If cÕÕ(w0) = 0 then the test is inconclusive: we cannot say which type of stationary
point we have and it could be any of the three.

To understand this test, notice that the second derivative reflects the local curvature of the
function. It tells us how the derivative is changing. If the slope of the derivative cÕ(w0) is
positive at w0, namely cÕÕ(w0) > 0, then we know that the derivative is increasing and vice
versa.

Let us consider an example to understand this better. Consider a sin curve sin(w) and
the point halfway between the bottom and top of the hill. At one these in-between points,
say w = 0, the derivative is maximally positive: it is cos(0) = +1. As we increase w, the
derivative starts to decrease until it is zero at the top of the hill, at w = fi/2. Then it flips
and gets more and more negative until it reaches w = fi with derivative maximally negative
at cos(fi) = ≠1. In this region between [0, fi], the derivative is constantly decreasing and
the second derivative is negative. At this point, the derivative again begins to increase from
its maximally negative point cos(fi) = ≠1, and becomes less and less negative until reaching

38

Local Minima

Global Minima

Saddlepoint

Global Minimum



Testing optimality without the 
second derivative test

Convex functions have a global minimum at every stationary point


c is convex ⟺ c(tw1 + (1 − t)w2) ≤ tc(w1) + (1 − t)c(w2)



Procedure
• Find a stationary point, namely  such that 


• Sometimes we can do this analytically (closed form solution, namely an 
explicit formula for )


• Reason about if it is optimal


• Check if your function is convex


• If you have only one stationary point and it is a local minimum, then it is a 
global minimum


• Otherwise, if second derivate test says its a local min, can only say that 

w0 c′￼(w0) = 0

w0



Exercise

• Find the solution to the optimization problem 


• Recall that the procedure is: 


• 1. Find a stationary point, namely  such that 


• 2. Do the second derivative test (or reason about if this function is convex)

min
w∈ℝ

(w − 2)2 + (w − 3)2

w0 c′￼(w0) = 0



Solution

• 


• 


• 


• 


• , so a local min. Only one stationary point, so its a global 
min.

c(w) = (w − 2)2 + (w − 3)2

c′￼(w) = 2(w − 2) + 2(w − 3) = 4w − 10

c′￼′￼(w) = 4

c′￼(w0) = 0 = 4w0 − 10 ⟹ w0 = 10/4 = 2.5

c′￼′￼(w0) = 4 > 0



Exercise: Prove equivalence under 
constant shifts

Equivalence under constant shifts: Adding, subtracting, or multiplying by a 
positive constant does not change the minimizer of a function:





Show that all of these have the same set of stationary points,  
namely points w where c’(w) = 0

arg min
w

c(w) = arg min
w

c(w)+k = arg min
w

c(w)−k = arg min
w

kc(w) ∀k ∈ ℝ+



Numerical Optimization

• We will almost never be able to analytically compute the minimum of the 
functions that we want to optimize


✴ (Linear regression is an important exception)


• Instead, we must try to find the minimum numerically


• Main techniques: First-order and second-order gradient descent



Intuitive explanation of  
gradient descent

OR

wt+1 ← wt − ηc′￼(wt)

η > 0 a small stepsize



A more careful explanation

• Why would it work to take small steps? 


• What are we really doing?


• We are locally approximating the function, using a Taylor series


• Note: I won’t test you on the Taylor series derivation; the goal here is for 
you to understand where the algorithm comes from and help explain the 
differences between first and second-order gradient descent



Taylor Series




Definition: A Taylor series is a way of approximating a function  in a small 
neighbourhood around a point :


 

c
a

c(w) ≈ c(a) + c′￼(a)(w − a) +
c′￼′￼(a)

2
(w − a)2 + ⋯ +

c(k)(a)
k!

(w − a)k

= c(a) +
k

∑
i=1

c(i)(a)
i!

(w − a)i



Taylor Series Visualization



Taylor Series Visualization (2)

Appendix A

Optimization background

A.1 Second order optimization: Newton-Raphson

method

A function f(x) in the neighborhood of point x0, can be approximated using the
Taylor series as

f(x) =
1X

n=0

f (n)(x0)

n!
(x� x0)

n,

where f (n)(x0) is the n-th derivative of function f(x) evaluated at point x0. Also,
f(x) is considered to be infinitely differentiable. For practical reasons, we will
approximate this function using the first three terms of the series as

f(x) ⇡ f(x0) + (x� x0)f
0(x0) +

1

2
(x� x0)

2f 00(x0).

The optimum of this function can be found by finding the first derivative and setting
it to zero (technically, one should check the second derivative as well)

f 0(x) ⇡ f 0(x0) + (x� x0)f
00(x0) = 0.

Solving this equation for x gives us

x = x0 �
f 0(x0)

f 00(x0)
.

Note that the approach assumes that a good enough solution x0 already exists.
However, this equation, also provides a basis for an iterative process in finding the
optimum of function f(x). For example, if x(i) is the value of x in the i-th step,
then the value in step i+ 1 can be obtained as

x(i+1) = x(i) � f 0(x(i))

f 00(x(i))
. (A.1)

This method is called the Newton-Raphson method of optimization. We can gener-
alize this approach to functions of vector variables x =(x1, x2, . . . , xk). The Taylor
approximation for a vector function can be written as

123

degree 1, 3, 5, 7, 9, 11 and 13.

Approximating sin function 

at point x0 = 0 

(How can you tell?)



Taylor Series



• Intuition: Following tangent line of the function approximates how it changes


• i.e., following a function with the same first derivative

• Following a function with the same first and second derivatives is a better 

approximation; with the same first, second, third derivatives is even better; etc.

Definition: A Taylor series is a way of approximating a function  in a small 
neighbourhood around a point :


 

c
a

c(w) ≈ c(a) + c′￼(a)(w − a) +
c′￼′￼(a)

2
(w − a)2 + ⋯ +

c(k)(a)
k!

(w − a)k

= c(a) +
k

∑
i=1

c(i)(a)
i!

(w − a)i
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Second-Order Gradient Descent 
(Newton-Raphson Method)

1. Approximate the target function with a second-order Taylor series around the current 

guess :       


2. Find the stationary point of the approximation    

wt ̂c(w) = c(wt) + c′￼(wt)(w − wt) +
c′￼′￼(wt)

2
(w − wt)2

wt+1 ← wt −
c′￼(wt)
c′￼′￼(wt)



Second-Order Gradient Descent
1. Approximate the target function with a 

second-order Taylor series around the 
current guess :





2. Find the stationary point of the approximation


 

3. If the stationary point of the approximation is 

a (good enough) stationary point of the 
objective, then stop.  Else, goto 1.

wt

̂c(w) = c(wt) + c′￼(wt)(w − wt) +
c′￼′￼(wt)

2
(w − wt)2

wt+1 ← wt −
c′￼(wt)
c′￼′￼(wt)
















0 =
d

dw [c(a) + c′￼(a)(w − a) +
c′￼′￼(a)

2
(w − a)2]

= c′￼(a) + 2
c′￼′￼(a)

2
w − 2

c′￼′￼(a)
2

a

= c′￼(a) + c′￼′￼(a)(w − a)

⟺ − c′￼(a) = c′￼′￼(a)(w − a)

⟺ (w − a) = −
c′￼(a)
c′￼′￼(a)

⟺ w = a −
c′￼(a)
c′￼′￼(a)



(First-Order) Gradient Descent
• We can run Second-order GD whenever we have access to both the first and second 

derivatives of the target function

• Often we want to only use the first derivative 


• Not obvious yet why, but for the multivariate case second-order is computationally intensive


• First-order gradient descent: Replace the second derivative with a constant  (the step 
size) in the approximation:


 


 


• By exactly the same derivation as before:


1
η

̂c(w) = c(wt) + c′￼(wt)(w − wt)+
c′￼′￼(wt)

2
(w − wt)2

̂c(w) = c(wt) + c′￼(wt)(w − wt)+
1
2η

(w − wt)2

wt+1 ← wt − ηc′￼(wt)



1st and 2nd order
OR

2nd order 1st order, distance controlled by stepsize



Partial Derivatives
• So far: Optimizing univariate function 

• But actually: Optimizing multivariate function 


•  is typically h u g e  (  is not uncommon)

• First derivative of a multivariate function is a vector of partial derivatives


c : ℝ → ℝ
c : ℝd → ℝ

d d ≫ 10,000

Definition:  

The partial derivative   

of a function  at  with respect to  is , where


 

∂f
∂xi

(x1, …, xd)

f(x1, …, xd) x1, …, xd xi g′￼(xi)

g(y) = f(x1, …, xi−1, y, xi+1, …, xd)



Example
• 


• 


• Then we query at a particular point, e.g., , giving 




• Equivalently, let  for this fixed 


• Then , i.e., 

c(w1, w2) = (2w1 + 4w2 − 7)2

∂c
∂w1

(w1, w2) = 4(2w1 + 4w2 − 7)

(w1, w2) = (1, − 1)
∂c

∂w1
(1, − 1) = 4(2 − 4 − 7) = − 36

f(w1) = c(w1, − 1) w2

f′￼(w1) =
∂c

∂w1
(w1, − 1) f′￼(1) =

∂c
∂w1

(1, − 1) = − 36



Gradients
The multivariate analog to a first derivative is called a gradient.


Definition: 
The gradient  of a function  at  is a vector of all the 
partial derivatives of  at :


∇f(x) f : ℝd → ℝ x ∈ ℝd

f x

∇f(x) =

∂f
∂x1

(x)

∂f
∂x2

(x)

⋮
∂f
∂xd

(x)



Multivariate Gradient Descent




                                

First-order gradient descent for multivariate functions  is just:


 

c : ℝd → ℝ

wt+1 ← wt − η∇c(wt)

wt+1,1
wt+1,2

⋮
wt+1,d

=

wt,1
wt,2

⋮
wt,d

− η

∂c
∂w1

(wt)

∂c
∂w2

(wt)

⋮
∂c
∂wd

(wt)



Extending to stepsize per timestep




• Notice the  subscript on 


• We can choose a different  for each iteration


• Indeed, for univariate functions, Newton-Raphson can be understood as first-

order gradient descent that chooses a step size of  at each iteration.


• Choosing a good step size is crucial to efficiently using first-order gradient descent

First-order gradient descent for multivariate functions  is just:


 

c : ℝd → ℝ

wt+1 ← wt − ηt ∇c(wt)

t η
ηt

ηt =
1

c′￼′￼(wt)
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Adaptive Step Sizes

• If the step size is too small, gradient descent will "work", but take forever

• Too big, and we can overshoot the optimum


• There are some heuristics that we can use to adaptively guess good values for 


• Ideally, we would choose 


• But that's another optimization!

ηt

ηt = arg min
η∈ℝ+

c (wt − η∇c(wt))



Line Search
A simple heuristic: line search


1. Try some largest-reasonable step size 



2. Is ? 
If yes, 


3. Otherwise, try    
(for ) and goto 2

η(0)
t = ηmax

c (wt − η(s)
t ∇c(wt)) < c(wt)

wt+1 ← wt − η(s)
t ∇c(wt)

η(s+1)
t = τη(s)

t
τ < 1

Intuition: 

• Big step sizes are better so long as 
they don't overshoot


• Try a big step size!  If it increases 
the objective, we must have 
overshot, so try a smaller one.


• Keep trying smaller ones until you 
decrease the objective; then start 
iteration  from  again.


• Typically 

t + 1 ηmax

τ ∈ [0.5,0.9]



Adaptive stepsize algorithms

• Stepsize selection is very important, and so there is a vast array of 
algorithms for adaptive stepsizes


• Line search is a bit onerous to use, and not common with something called 
stochastic gradient descent (which is what we will use later)


• We will see smarter stepsize algorithms then, and in your assignment



Do we have to use 

a scalar stepsize?

• Or can we use a different stepsize per dimension? And why would we?
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Now what if we have constraints?

• For this course, we almost always only deal with unconstrained problems


• We will only consider constraints like  or  


• Then the procedure is:


• 1. Find a stationary point


• 2. Verify that it is the only stationary point, and a local min according to the 
second derivative test


• 3. Additionally check if the boundary points have a smaller value

w ≥ 0 w ∈ [a, b]



Visualizing the effect of constraints
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Summary
• We often want to find the argument  that minimizes an objective function  :


 


• Every interior minimum is a stationary point, so check the stationary points

• Stationary points usually identified numerically


• Typically, by gradient descent

• Choosing the step size is important for efficiency and correctness


• Common approach: Adaptive step size

• E.g., by line search

w* c
w* = arg min

w
c(w)


