
Multivariate Probability

CMPUT 267: Basics of Machine Learning 
 

§2.2-2.4



Outline

1. Multiple Random Variables 

2. Independence 

3. Expectations and Moments



Multiple Variables

Suppose we observe both a die's number, and where it lands. 

 

Example:  with  and , with
                   

May ask questions like  or   

Ω = {(left,1), (right,1), (left,2), (right,2), …, (right,6)}

X = number 𝒳 = {1,2,3,4,5,6} Y = position
𝒴 = {left, right}

P(X = 1,Y = left) P(X ≥ 4,Y = left)



Joint Distribution
We typically model the interactions of different random variables. 

Joint probability mass function:  

  

Example:  (young, old)   and     (no arthritis, arthritis)

p(x, y) = P(X = x, Y = y)

∑
x∈𝒳

∑
y∈𝒴

p(x, y) = 1

𝒳 = {0,1} 𝒴 = {0,1}

Y=0 Y=1

X=0 P(X=0,Y=0) = 
50/100

P(X=0, Y=1) = 
1/100

X=1 P(X=1, Y=0) = 
10/100

P(X=1, Y=1) = 
39/100



Is this joint distribution valid?
Example:  (young, old)   and     (no arthritis, arthritis)𝒳 = {0,1} 𝒴 = {0,1}

Y=0 Y=1

X=0 P(X=0,Y=0) = 
50/100

P(X=0, Y=1) = 
1/100

X=1 P(X=1, Y=0) = 
10/100

P(X=1, Y=1) = 
39/100

•
Exercise: Check if  ∑

x∈{0,1}
∑

y∈{0,1}

p(x, y) = 1



Is this joint distribution valid?
Example:  (young, old)   and     (no arthritis, arthritis)𝒳 = {0,1} 𝒴 = {0,1}

Y=0 Y=1

X=0 P(X=0,Y=0) = 
50/100

P(X=0, Y=1) = 
1/100

X=1 P(X=1, Y=0) = 
10/100

P(X=1, Y=1) = 
39/100

•
Exercise: Check if  

•

∑
x∈{0,1}

∑
y∈{0,1}

p(x, y) = 1

∑
x∈{0,1}

∑
y∈{0,1}

p(x, y) = 1/2 + 1/100 + 1/10 + 39/100 = 1
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Visualizing the joint table
X ∈ {young, old}

Y ∈ {0,1}

Shows relative proportion 
of each outcome 
 
If I were to throw a dart at this  
rectangle and it hit random locations*,  
then we would see  
(young, 0) half of the time 
(young, 1) a 100th of the time 
(old, 0) a 10th of the time 
(old, 1) almost 4/10 ths of the time 

*I’m really bad at darts



Questions About Multiple Variables
Example:  (young, old)   and     (no arthritis, arthritis)𝒳 = {0,1} 𝒴 = {0,1}

Y=0 Y=1

X=0 P(X=0,Y=0) = 
50/100

P(X=0, Y=1) = 
1/100

X=1 P(X=1, Y=0) = 
10/100

P(X=1, Y=1) = 
39/100

• Are these two variables related at all?  Or do they change independently? 
• Given this distribution, can we determine the distribution over just  ?   

I.e., what is ?  (marginal distribution) 
• If we knew something about one variable, does that tell us something about the distribution 

over the other?  E.g., if I know  (person is young), does that tell me the 
conditional probability ?  (Prob. that person we know is young has arthritis)

Y
P(Y = 1)

X = 0
P(Y = 1 ∣ X = 0)



Marginal Distribution for Y
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p(Y = 0) = ∑
x∈𝒳

p(x,0) = ∑
x∈{young,old}

p(x,0) p(Y = 1) = ∑
x∈𝒳

p(x,1) = ∑
x∈{young,old}

p(x,1)

More generically


p(y) = ∑
x∈𝒳

p(x, y)



Another Exercise
Example:  (young, old)   and     (no arthritis, arthritis)𝒳 = {0,1} 𝒴 = {0,1}

Y=0 Y=1

X=0 P(X=0,Y=0) = 
50/100

P(X=0, Y=1) = 
1/100

X=1 P(X=1, Y=0) = 
10/100

P(X=1, Y=1) = 
39/100

•
Exercise: Compute marginal p(x) = ∑

y∈{0,1}

p(x, y)



Another Exercise
Example:  (young, old)   and     (no arthritis, arthritis)𝒳 = {0,1} 𝒴 = {0,1}

Y=0 Y=1

X=0 P(X=0,Y=0) = 
1/2

P(X=0, Y=1) = 
1/100

X=1 P(X=1, Y=0) = 
1/10

P(X=1, Y=1) = 
39/100

•
Exercise: Compute marginal , p(x = 1) = ∑

y∈{0,1}

p(x = 1,y) = 49/100

p(x = 0) = 1 − p(x = 1) = 51/100

Y=0 Y=1

X=0 P(X=0,Y=0) = 
50/100

P(X=0, Y=1) = 
1/100

X=1 P(X=1, Y=0) = 
10/100

P(X=1, Y=1) = 
39/100



Marginal distributions
• For two random variables ,  

•
If they are discrete we have  

•
If they are continuous we have  

•
If  is discrete and  is continuous then  

•
If  is continuous and  is discrete then 

X, Y

p(x) = ∑
y∈𝒴

p(x, y)

p(x) = ∫𝒴
p(x, y)dy

X Y p(x) = ∫𝒴
p(x, y)dy

X Y p(x) = ∑
y∈𝒴

p(x, y)



Marginals for more than two variables

• The formulas extend naturally for more than two variables (see notes) 

• We will almost always marginalize out over one variable 
Question: Why do we write  for  and ? 

• They can't be the same function, they have different domains!
p p(x) p(x, y)



Are these really the same function?

• No.  They're not the same function. 
• But they are derived from the same joint distribution. 

• So for brevity we will write ,  and   
• Even though it would be more precise to write something like                       

,  and  

• We can tell which function we're talking about from context (i.e., arguments)

p(x, y) p(x) p(y)

p(x, y) px(x) py(y)



Now let’s consider PMFs and PDFs for more than two variables



PMFs and PDFs of Many Variables

In general, we can consider a -dimensional random variable 
 with vector-valued outcomes , with each  

chosen from some .  Then, 

Discrete case: 
 is a (joint) probability mass function if 

 

d
X = (X1, …, Xd) x = (x1, …, xd) xi

𝒳i

p : 𝒳1 × 𝒳2 × … × 𝒳d → [0,1]

∑
x1∈𝒳1

∑
x2∈𝒳2

⋯ ∑
xd∈𝒳d

p(x1, x2, …, xd) = 1



PMFs and PDFs of Many Variables
In general, we can consider a -dimensional random variable  with vector-
valued outcomes , with each  chosen from some .  Then, 

Discrete case: 
 is a (joint) probability mass function if 

  

Continuous case: 
 is a (joint) probability density function if 

 

d X = (X1, …, Xd)
x = (x1, …, xd) xi 𝒳i

p : 𝒳1 × 𝒳2 × … × 𝒳d → [0,1]

∑
x1∈𝒳1

∑
x2∈𝒳2

⋯ ∑
xd∈𝒳d

p(x1, x2, …, xd) = 1

p : 𝒳1 × 𝒳2 × … × 𝒳d → [0,∞)

∫𝒳1
∫𝒳2

⋯∫𝒳d

p(x1, x2, …, xd) dx1dx2…dxd = 1



Rules of Probability Already Covered 
the Multidimensional Case

Outcome space is  

Outcomes are multidimensional variables  

Discrete case: 
 is a (joint) probability mass function if   

Continuous case: 

 is a (joint) probability density function if   

But useful to recognize that we have multiple variables

𝒳 = 𝒳1 × 𝒳2 × … × 𝒳d

x = [x1, x2, . . . , xd]

p : 𝒳 → [0,1] ∑
x∈𝒳

p(x) = 1

p : 𝒳 → [0,∞) ∫𝒳
p(x) dx = 1



Conditional Distribution

 

This same equation will hold for the corresponding PDF or PMF: 

  

Question: if  is small, does that imply that  is small? 

Definition: Conditional probability distribution 

 P(Y = y ∣ X = x) =
P(X = x, Y = y)

P(X = x)

p(y ∣ x) =
p(x, y)
p(x)

p(x, y) p(y ∣ x)



Visualizing the conditional 
distribution
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P(X = young |Y = 0) = P(X = young, Y = 0)/P(Y = 0) = (50/100)/(60/100) = 50/60



Announcements

• The first Reading Exercises is due next Thursday, at 11:59 pm 

• You get two attempts, and we use the attempt with the highest mark 

• eClass has some math and probability exercises, with solutions 

• This course will remain heavy on math, because ML is math-heavy 
• One of the goals of this course is to get you more comfortable with math 
• It is a language, and like learning any language, it hurts the brain but gets 

better with practice! You can and will learn it



Chain Rule

From the definition of conditional probability: 

                  

         

   

This is called the Chain Rule.

p(y ∣ x) =
p(x, y)
p(x)

⟺ p(y ∣ x)p(x) =
p(x, y)
p(x)

p(x)

⟺ p(y ∣ x)p(x) = p(x, y)



Multiple Variable Chain Rule
The chain rule generalizes to multiple variables: 

  p(x, y, z) = p(x, y ∣ z)p(z) = p(x ∣ y, z)p(y ∣ z)p(z)

p(y,z)

Definition: Chain rule 

 

p(x1, …, xd) = p(x1 ∣ x2, …, xd)p(x2 ∣ x3, …, xd)…p(xd−1 ∣ xd)p(xd)

= p(xd)
d−1

∏
i=1

p(xi ∣ xi+1, …, xd)



The Order Does Not Matter

The RVs are not ordered, so we can write 

  

All of these probabilities are equal

p(x, y, z) = p(x ∣ y, z)p(y |z)p(z)
= p(x ∣ y, z)p(z |y)p(y)
= p(y ∣ x, z)p(x |z)p(z)
= p(y ∣ x, z)p(z |x)p(x)
= p(z ∣ x, y)p(y |x)p(x)
= p(z ∣ x, y)p(x |y)p(y)



Bayes' Rule
From the chain rule, we have:  

 

• Often,  is easier to compute than  
• e.g., where  is features and  is label 

p(x, y) = p(y ∣ x)p(x)
= p(x ∣ y)p(y)

p(x ∣ y) p(y ∣ x)
x y

Definition: Bayes' rule 

p(y ∣ x) =
p(x ∣ y)p(y)

p(x)



Bayes' Rule
• Bayes’ rule is typically used to reason about our beliefs, given new 

information 
• Example: a scientist might have a belief about the prevalence of cancer in 

smokers (Y), and update with new evidence (X) 
• In ML: we have a belief over our estimator (Y), and we update with new data 

that is like new evidence (X) 
Definition: Bayes' rule 

p(y ∣ x) =
p(x ∣ y)p(y)

p(x)

Posterior Likelihood Prior

Evidence



Example:  
Disease Test

Example:  

 
p(Test = pos ∣ Dis = T) = 0.99
p(Test = pos ∣ Dis = F) = 0.03

p(Dis = T) = 0.005

p(y ∣ x) =
p(x ∣ y)p(y)

p(x)

Questions: 

1. What is ? 

2. What is ?  

p(Dis = F)

p(Dis = T ∣ Test = pos)

Mapping to the formula, let 
X be Test  

Y be presence of the Disease



Example:  
Disease Test

Example:  

 
p(Test = pos ∣ Dis = T) = 0.99
p(Test = pos ∣ Dis = F) = 0.03

p(Dis = T) = 0.005

p(Dis = F) = 1 − p(Dis = T) = 1 − 0.005 = 0.995

Questions: 

1. What is ? 

2. What is ?  

p(Dis = F)

p(Dis = T ∣ Test = pos)

p(y ∣ x) =
p(x ∣ y)p(y)

p(x)



Example:  
Disease Test

Example:  

 
p(Test = pos ∣ Dis = T) = 0.99
p(Test = pos ∣ Dis = F) = 0.03

p(Dis = T) = 0.005

p(Dis = T ∣ Test = pos) =
p(Test = pos ∣ Dis = T)p(Dis = T)

p(Test = pos)

Questions: 

1. What is ? 

2. What is ?  

p(Dis = F)

p(Dis = T ∣ Test = pos)

Need to compute this part

p(y ∣ x) =
p(x ∣ y)p(y)

p(x)



Example:  
Disease Test

Example:  

 
p(Test = pos ∣ Dis = T) = 0.99
p(Test = pos ∣ Dis = F) = 0.03

p(Dis = T) = 0.005

p(Test = pos) = ∑
d∈{T,F}

p(Test = pos, d)

= p(Test = pos, D = F) + p(Test = pos, D = T)
= p(Test = pos |D = F)p(D = F) + p(Test = pos |D = T)p(D = T)
= 0.03 × 0.995 + 0.99 × 0.005 = 0.0348

Questions: 

1. What is ? 

2. What is ?  

p(Dis = F)

p(Dis = T ∣ Test = pos)

p(y ∣ x) =
p(x ∣ y)p(y)

p(x)



Example:  
Disease Test

Example:  

 
p(Test = pos ∣ Dis = T) = 0.99
p(Test = pos ∣ Dis = F) = 0.03

p(Dis = T) = 0.005

p(Test = pos) = 0.0348

Questions: 

1. What is ? 

2. What is ?  

p(Dis = F)

p(Dis = T ∣ Test = pos)

p(Dis = T ∣ Test = pos) =
p(Test = pos ∣ Dis = T)p(Dis = T)

p(Test = pos)
=

0.99 × 0.005
0.0348

≈ 0.142

p(y ∣ x) =
p(x ∣ y)p(y)

p(x)



Independence of Random Variables

Definition:   and  are independent if: 

  

 and  are conditionally independent given  if: 

X Y

p(x, y) = p(x)p(y)

X Y Z

p(x, y ∣ z) = p(x ∣ z)p(y ∣ z)



Example: Coins 
(Ex.7 in the course text)

• Suppose you have a biased coin: It does not come up heads with 
probability 0.5.  Instead, it is more likely to come up heads. 

• Let  be the bias of the coin, with  and probabilities 
,  and . 

• Question: What other outcome space could we consider? 
• Question: What kind of distribution is this? 
• Question: What other kinds of distribution could we consider?

Z 𝒵 = {0.3,0.5,0.8}
P(Z = 0.3) = 0.7 P(Z = 0.5) = 0.2 P(Z = 0.8) = 0.1



Example: Coins (2)

• Now imagine I told you  (i.e., probability of heads is 0.3) 

• Let  and  be two consecutive flips of the coin 

• What is ? What about ? 

• What is ? What about ? 

• Is ? 

Z = 0.3
X Y

P(X = Heads |Z = 0.3) P(X = Tails |Z = 0.3)
P(Y = Heads |Z = 0.3) P(Y = Tails |Z = 0.3)

P(X = x, Y = y |Z = 0.3) = P(X = x |Z = 0.3)P(Y = y |Z = 0.3)



Example: Coins (3)
• Now imagine we do not know  

• e.g., you randomly grabbed it from a bin of coins with probabilities 
,  and  

• What is ?  

Z

P(Z = 0.3) = 0.7 P(Z = 0.5) = 0.2 P(Z = 0.8) = 0.1
P(X = Heads)

P(X = Heads) = ∑
z∈{0.3,0.5,0.8}

P(X = Heads |Z = z)p(Z = z)

= P(X = Heads |Z = 0.3)p(Z = 0.3)
+P(X = Heads |Z = 0.5)p(Z = 0.5)
+P(X = Heads |Z = 0.8)p(Z = 0.8)
= 0.3 × 0.7 + 0.5 × 0.2 + 0.8 × 0.1 = 0.39



Example: Coins (4)
• Now imagine we do not know  

• e.g., you randomly grabbed it from a bin of coins with probabilities 
,  and  

• Is ?  
• For brevity, lets use h for Heads 

Z

P(Z = 0.3) = 0.7 P(Z = 0.5) = 0.2 P(Z = 0.8) = 0.1
P(X = Heads, Y = Heads) = P(X = Heads)p(Y = Heads)

P(X = h, Y = h) = ∑
z∈{0.3,0.5,0.8}

P(X = h, Y = h |Z = z)p(Z = z)

= ∑
z∈{0.3,0.5,0.8}

P(X = h |Z = z)P(Y = h |Z = z)p(Z = z)



Example: Coins (4)
• ,  and  

• Is ?  

P(Z = 0.3) = 0.7 P(Z = 0.5) = 0.2 P(Z = 0.8) = 0.1
P(X = Heads, Y = Heads) = P(X = Heads)p(Y = Heads)

P(X = h, Y = h) = ∑
z∈{0.3,0.5,0.8}

P(X = h, Y = h |Z = z)p(Z = z)

= ∑
z∈{0.3,0.5,0.8}

P(X = h |Z = z)P(Y = h |Z = z)p(Z = z)

= P(X = h |Z = 0.3)P(Y = h |Z = 0.3)p(Z = 0.3)
+P(X = h |Z = 0.5)P(Y = h |Z = 0.5)p(Z = 0.5)
+P(X = h |Z = 0.8)p(Y = h |Z = 0.8)p(Z = 0.8)
= 0.3 × 0.3 × 0.7 + 0.5 × ×0.5 × 0.2 + 0.8 × 0.8 × 0.1
= 0.177 ≠ 0.39 * 0.39 = 0.1521



Example: Coins (4)

• Let  be the bias of the coin, with  and probabilities 
,  and . 

• Let  and  be two consecutive flips of the coin 

• Question: Are  and  conditionally independent given ?  

• i.e.,  

• Question: Are  and  independent? 

• i.e. 

Z 𝒵 = {0.3,0.5,0.8}
P(Z = 0.3) = 0.7 P(Z = 0.5) = 0.2 P(Z = 0.8) = 0.1

X Y

X Y Z

P(X = x, Y = y |Z = z) = P(X = x |Z = z)P(Y = y |Z = z)

X Y

P(X = x, Y = y) = P(X = x)P(Y = y)



The Distribution Changes Based on 
What We Know

• The coin has some true bias z 

• If we know that bias, we reason about  
• Namely, the probability of x given we know the bias is z 

• If we do not know that bias, then from our perspective the coin 
outcomes follows probabilities , which is a weighted average over 
three different worlds (in each world the coin bias is different) 

• The world still flips the coin with bias z 

• Conditional independence is a property of the distribution we are reasoning 
about, not an objective truth about outcomes

P(X = x |Z = z)

P(X = x)



A bit more intuition

• If we do not know that bias, then from our perspective the coin 
outcomes follows probabilities  

• and X and Y are correlated 

• If we know , do we think it’s more likely ? i.e., is 
?

P(X = x, Y = y)

X = h Y = h
P(X = h, Y = h) > P(X = h, Y = t)



How is this relevant to us?

• Let’s imagine you want to infer (or learn) the bias of the coin, from data 
• data in this case corresponds to a sequence of flips   

• You can ask: 

X1, X2, …, Xn

P(Z = z |X1 = H, X2 = H, X3 = T, …, Xn = H)

0.3 0.5 0.8

p(z)

0.3 0.5 0.8

p(z)
See 10 Heads  

and 2 Tails



More uses for independence 
and conditional independence

• If I told you X = roof type was independent of Y = house price, would you 
use X as a feature to predict Y? 

• Imagine you want to predict Y = Has Lung Cancer and you have an indirect 
correlation with X = Location since in Location 1 more people smoke on 
average. If you could measure Z = Smokes, then X and Y would be 
conditionally independent given Z. 

• Suggests you could look for such causal variables, that explain these 
correlations  

• We will see the utility of conditional independence for learning models 



Expected Value

The expected value of a random variable is the weighted average of that 
variable over its domain. 

Definition: Expected value of a random variable 

 𝔼[X] = {
∑x∈𝒳 xp(x) if X is discrete

∫
𝒳

xp(x) dx if X is continuous.



Relationship to Population Average 
and Sample Average

• Or Population Mean and Sample Mean 

• Population Mean = Expected Value, Sample Mean estimates this number 
• e.g., Population Mean = average height of the entire population 

• For RV X = height, p(x) gives the probability that a randomly selected person 
has height x 

• Sample average: you randomly sample n heights from the population  
• implicitly you are sampling heights proportionally to p 

• As n gets bigger, the sample average approaches the true expected value



Connection to Sample Average
• Imagine we have a biased coin, p(x = 1) = 0.75, p(x = 0) = 0.25 

• Imagine we flip this coin 1000 times, and see (x = 1) 700 times 

• The sample average is

 

• The true expected value is 

1
1000

1000

∑
i=1

xi =
1

1000 ∑
i:xi=0

xi + ∑
i:xi=1

xi = 0 ×
300
1000

+ 1 ×
700

1000
= = 0 × 0.3 + 1 × 0.7 = 0.7

∑
x∈{0,1}

p(x)x = 0 × p(x = 0) + 1p(x = 1) = 0 × 0.25 + 1 × 0.75 = 0.75



Expected Value with Functions
The expected value of a function  of a random variable is the 
weighted average of that function's value over the domain of the variable. 

 
Example: 
Suppose you get $10 if heads is flipped, or lose $3 if tails is flipped. 
What are your winnings in expectation?

f : 𝒳 → ℝ

Definition: Expected value of a function of a random variable 

 𝔼[ f(X)] = {
∑x∈𝒳 f(x)p(x) if X is discrete

∫
𝒳

f(x)p(x) dx if X is continuous.



Expected Value Example
Example: 
Suppose you get $10 if heads is flipped, or lose $3 if tails is flipped. 
What are your winnings on expectation? 

, 1 for heads and 0 for tails 

 

 

X is the outcome of the coin flip

f(x) = {−3 if x = 0
10 if x = 1

Y = f(X) is a new random variable
𝔼[Y] = 𝔼[ f(X)] = ∑

x∈𝒳

f(x)p(x) = f(0)p(0) + f(1)p(1) = .5 × −3 + .5 × 10 = 3.5



One More Example
Suppose  

 

. We see  each time we observe 1, 2 or 3. 
We see  each time we observe 4, 5, or 6. 

X is the outcome of a dice role

f(x) = {−1 if x ≤ 3
1 if x ≥ 4

Y = f(X) is a new random variable Y = − 1
Y = 1

𝔼[Y] = 𝔼[ f(X)] = ∑
x∈𝒳

f(x)p(x)

= (−1)(p(X = 1) + p(X = 2) + p(X = 3))
+ (1)(p(X = 4) + p(X = 5) + p(X = 6))



One More Example
Suppose  

 

. We see  each time we observe 1, 2 or 3. 
We see  each time we observe 4, 5, or 6. 

X is the outcome of a dice role

f(x) = {−1 if x ≤ 3
1 if x ≥ 4

Y = f(X) is a new random variable Y = − 1
Y = 1

𝔼[Y] = 𝔼[ f(X)] = ∑
x∈𝒳

f(x)p(x) = ∑
y∈{−1,1}

yp(y)

= (−1)(p(X = 1) + p(X = 2) + p(X = 3))
+ (1)(p(X = 4) + p(X = 5) + p(X = 6)) = − 1(0.5) + 1(0.5)

p(Y = − 1) = p(X = 1) + p(X = 2) + p(X = 3) = 0.5

p(Y = 1) = p(X = 4) + p(X = 5) + p(X = 6) = 0.5

Summing over x with p(x) is equivalent, and can be simpler (no need to infer p(y))



Expected Value is a Lossy Summary

1 2 3 4 51 2 3 4 5

𝔼[X] = 3 𝔼[X] = 3

𝔼[X2] ≃ 10 𝔼[X2] ≃ 12

X X

P(
X

)

P(
X

)



Conditional Expectations

 

Definition: 
The expected value of  conditional on  is Y X = x

𝔼[Y ∣ X = x] =
∑y∈𝒴 yp(y ∣ x) if Y is discrete,

∫
𝒴

yp(y ∣ x) dy if Y is continuous.



Another way to Write Conditional 
Expectations

 

,   

The expected value of  conditional on  is Y X = x

𝔼[Y ∣ X = x] =
∑y∈𝒴 yp(y ∣ x) if Y is discrete,

∫
𝒴

yp(y ∣ x) dy if Y is continuous.

Let px(y) ≐ p(y |x) 𝔼[Y ∣ X = x] =
∑y∈𝒴 ypx(y) if Y is discrete,

∫
𝒴

ypx(y) dy if Y is continuous.



Conditional Expectation Example

•  is the type of a book, 0 for fiction and 1 for non-fiction 
•  is the proportion of all books that are non-fiction 

•  is the number of pages  
•  is the proportion of all books with 100 pages 

•  is different from  
• e.g.  is different from 

X
p(X = 1)

Y
p(Y = 100)

𝔼[Y |X = 0] 𝔼[Y |X = 1]
𝔼[Y |X = 0] = 70 𝔼[Y |X = 1] = 150



Conditional Expectation Example (cont)
• What do we mean by ? How might it differ from p(y |X = 0) p(y |X = 1)

Lots of shorter books
Lots of medium 

length books
A long tail, a few very long books

p(y) for X = 0, fiction books p(y) for X = 1, nonfiction books



Conditional Expectation Example (cont)

• What do we mean by ? How might it differ from  

•  is the expectation over  under distribution  

•  is the expectation over  under distribution 

p(y |X = 0) p(y |X = 1)

𝔼[Y |X = 0] Y p(y |X = 0)

𝔼[Y |X = 1] Y p(y |X = 1)



Conditional Expectations

 

Question: What is ?

Definition: 
The expected value of  conditional on  is Y X = x

𝔼[Y ∣ X = x] =
∑y∈𝒴 yp(y ∣ x) if Y is discrete,

∫
𝒴

yp(y ∣ x) dy if Y is continuous.

𝔼[Y ∣ X]



Conditional Expectations

 

Question: What is ? 
Answer:  is a random variable,  is an outcome

Definition: 
The expected value of  conditional on  is Y X = x

𝔼[Y ∣ X = x] =
∑y∈𝒴 yp(y ∣ x) if Y is discrete,

∫
𝒴

yp(y ∣ x) dy if Y is continuous.

𝔼[Y ∣ X]
Z = 𝔼[Y ∣ X] z = 𝔼[Y ∣ X = x]



Properties of Expectations
• Linearity of expectation: 

•  for all constant  
•  

• Products of expectations of independent 
random variables : 

•  

• Law of Total Expectation: 

•  

• Question: How would you prove these?

𝔼[cX] = c𝔼[X] c
𝔼[X + Y] = 𝔼[X] + 𝔼[Y]

X, Y
𝔼[XY] = 𝔼[X]𝔼[Y]

𝔼 [𝔼 [Y ∣ X]] = 𝔼[Y]



Linearity of Expectation

𝔼[X + Y] = ∑
(x,y)∈𝒳×𝒴

p(x, y)(x + y)

= ∑
y∈𝒴

∑
x∈𝒳

p(x, y)(x + y)

= ∑
y∈𝒴

∑
x∈𝒳

p(x, y)x + ∑
y∈𝒴

∑
x∈𝒳

p(x, y)y

∑
y∈𝒴

∑
x∈𝒳

p(x, y)x = ∑
x∈𝒳

∑
y∈𝒴

p(x, y)x

= ∑
x∈𝒳

x ∑
y∈𝒴

p(x, y) ▹ p(x) = ∑
y∈𝒴

p(x, y)

= ∑
x∈𝒳

xp(x)

= 𝔼[X]



Linearity of Expectation

𝔼[X + Y] = ∑
(x,y)∈𝒳×𝒴

p(x, y)(x + y)

= ∑
y∈𝒴

∑
x∈𝒳

p(x, y)(x + y)

= ∑
y∈𝒴

∑
x∈𝒳

p(x, y)x + ∑
y∈𝒴

∑
x∈𝒳

p(x, y)y

= 𝔼[X] + 𝔼[Y]

∑
y∈𝒴

∑
x∈𝒳

p(x, y)x = ∑
x∈𝒳

∑
y∈𝒴

p(x, y)x

= ∑
x∈𝒳

x ∑
y∈𝒴

p(x, y) ▹ p(x) = ∑
y∈𝒴

p(x, y)

= ∑
x∈𝒳

xp(x)

= 𝔼[X]



What if the RVs are continuous?
𝔼[X + Y] = ∑

(x,y)∈𝒳×𝒴

p(x, y)(x + y)

= ∑
y∈𝒴

∑
x∈𝒳

p(x, y)(x + y)

= ∑
y∈𝒴

∑
x∈𝒳

p(x, y)x + ∑
y∈𝒴

∑
x∈𝒳

p(x, y)y

= 𝔼[X] + 𝔼[Y]

𝔼[X + Y] = ∫𝒳×𝒴
p(x, y)(x + y)d(x, y)

= ∫𝒴 ∫𝒳
p(x, y)(x + y)dxdy

= ∫𝒴 ∫𝒳
p(x, y)xdxdy + ∫𝒴 ∫𝒳

p(x, y)ydxdy

= ∫𝒳
x∫𝒴

p(x, y)dydx + ∫𝒴
y∫𝒳

p(x, y)dxdy

= ∫𝒳
xp(x)dx + ∫𝒴

yp(y)dy

= 𝔼[X] + 𝔼[Y]



Properties of Expectations
• Linearity of expectation: 

•  for all constant  
•  

• Products of expectations of independent 
random variables : 

•  

• Law of Total Expectation: 

•  

• Notice:  

𝔼[cX] = c𝔼[X] c
𝔼[X + Y] = 𝔼[X] + 𝔼[Y]

X, Y
𝔼[XY] = 𝔼[X]𝔼[Y]

𝔼 [𝔼 [Y ∣ X]] = 𝔼[Y]

f(x) = E[Y |X = x]
𝔼[ f(X)] = 𝔼 [𝔼 [Y ∣ X]] = 𝔼[Y]

 

 

 

 

 

 

 

𝔼[Y ] = ∑
y∈𝒴

yp(y)

𝔼[Y ] = ∑
y∈𝒴

y ∑
x∈𝒳

p(x, y)

𝔼[Y ] = ∑
x∈𝒳

∑
y∈𝒴

yp(x, y)

𝔼[Y ] = ∑
x∈𝒳

∑
y∈𝒴

yp(y ∣ x)p(x)

𝔼[Y ] = ∑
x∈𝒳

∑
y∈𝒴

yp(y ∣ x) p(x)

𝔼[Y ] = ∑
x∈𝒳

(𝔼[Y ∣ X = x]) p(x)

𝔼[Y ] = ∑
x∈𝒳

(𝔼[Y ∣ X = x]) p(x)

𝔼[Y ] = 𝔼 (𝔼[Y ∣ X]) ∎

def. marginal distribution

def. E[Y]

rearrange sums

Chain rule

def. E[Y | X = x]

def. expected value of function



Variance

 

Equivalently, 

  

 (Exercise: Show that this is true)

Definition: The variance of a random variable is 

.Var(X) = 𝔼 [(X − 𝔼[X])2]

Var(X) = 𝔼 [X2] − (𝔼[X])2



Covariance

 

 
Question: What is the range of ?

Definition: The covariance of two random variables is 

 
Cov(X, Y) = 𝔼 [(X − 𝔼[X])(Y − 𝔼[Y])]

= 𝔼[XY] − 𝔼[X]𝔼[Y] .

Cov(X, Y)



Correlation

 

 
Question: What is the range of ? 
hint: 

Definition: The correlation of two random variables is 

 Corr(X, Y) =
Cov(X, Y)
Var(X)Var(Y)

Corr(X, Y)
Var(X) = Cov(X, X)



Properties of Variances

•  for constant  

•  for constant  

•  

• For independent ,  
 (why?) 

• Recall if X and Y are independent, then  

Var[c] = 0 c

Var[cX] = c2Var[X] c

Var[X + Y] = Var[X] + Var[Y] + 2Cov[X, Y]

X, Y
Var[X + Y] = Var[X] + Var[Y]

𝔼[XY] = 𝔼[X]𝔼[Y]



Properties of Variances
•  for constant  

•  for constant  

•  

• For independent ,  
  

• Recall if X and Y are independent, then   
•

Var[c] = 0 c

Var[cX] = c2Var[X] c

Var[X + Y] = Var[X] + Var[Y] + 2Cov[X, Y]

X, Y
Var[X + Y] = Var[X] + Var[Y]

𝔼[XY] = 𝔼[X]𝔼[Y]
Cov[X, Y] = 𝔼[XY] − 𝔼[X]𝔼[Y]



Independence and Decorrelation
• Independent RVs have zero correlation 

• Uncorrelated RVs (i.e., ) might be dependent  
(i.e., ). 

• Correlation (Pearson's correlation coefficient) shows linear relationships; 
but can miss nonlinear relationships 

• Example: ,  
•  
•  
• So 

Cov(X, Y) = 0
p(x, y) ≠ p(x)p(y)

X ∼ Uniform{−2, − 1,0,1,2} Y = X2

𝔼[XY] = .2(−2 × 4) + .2(2 × 4) + .2(−1 × 1) + .2(1 × 1) + .2(0 × 0) = 0
𝔼[X] = 0

Cov(X, Y) = 𝔼[XY] − 𝔼[X]𝔼[Y] = 0 − 0𝔼[Y] = 0



Summary
• Random variables takes different values with some probability 

• The value of one variable can be informative about the value of another 
• Distributions of multiple random variables are described by the joint probability 

distribution (joint PMF or joint PDF) 
• You can have a new distribution over one variable when you condition on the other 

• The expected value of a random variable is an average over its values, weighted by 
the probability of each value 

• The variance of a random variable is the expected squared distance from the mean 

• The covariance and correlation of two random variables can summarize how changes 
in one are informative about changes in the other.



Exercise applying your knowledge
• Let’s revisit the commuting example, and assume we collect continuous 

commute times 

• We want to model commute time as a Gaussian  

• What parameters do I have to specify (or learn) to model commute times 
with a Gaussian? 

• Is a Gaussian a good choice?

p(x) =
1

2πσ2
exp (−

1
2σ2

(x − μ)2)



Exercise applying your knowledge

• A better choice is actually what is called a Gamma distribution



Exercise applying your knowledge

• We can also consider conditional distributions  

•  is the commute time, let  be the month 

• Why is it useful to know  and ? 

• What else could we use for  and why pick it?

p(y |x)

Y X

p(y |X = Feb) p(y |X = Sept)

X



Exercise applying your knowledge

• Let’s use a simple , where it is 1 if it is slippery out and 0 otherwise 

• Then we could model two Gaussians, one for the two types of conditions

X

p(y|X = 0) = N
�
µ0,�

2
0

�

p(y|X = 1) = N
�
µ1,�

2
1

�
<latexit sha1_base64="urhoOP+QZFfszXmFHWgTPXYAT+k="></latexit>

Gaussian denoted by N

How might  and  be different  
for these two?

μ σ



Exercise applying your knowledge

• Eventually we will see how to model the distribution over  using functions 
of other variables (features) , e.g, 

Y
X

p(y|x) = N

0

@µ =
dX

j=1

wixi,�
2

1

A
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