
Homework Assignment # 3
Due: Friday, March 11, 2022, 11:59 p.m.

Total marks: 100

Question 1. [25 marks]

In Assignment 2, you learned p(y|x,w) = N (µ = xw, σ2) where we assumed fixed variance σ2 =
1. Now let’s assume that p(y|x,w) = N (µ = xw1, σ

2 = exp(xw2)) for w = (w1, w2). The objective
is the negative log-likelihood, written as a sum over all datapoints in dataset D = {(xi, yi)}ni=1:

c(w) =
1

n

n∑
i=1

ci(w) where ci(w) = − ln p(yi|xi,w)

(a) [5 marks] Compute the gradient of ci. Show your steps.

(b) [5 marks] Let wt = (wt,1, wt,2) be the weights on iteration t. Write the stochastic gradient

descent update, with a mini-batch size of 1 (one sample), for a given sample (xi, yi).

(c) [5 marks] Unlike all the other objectives we have considered, this objective is non-convex.

Explain why that is a problem in a couple of sentences.

(d) [5 marks] It is useful to reason about the behavior of our learning systems. Let Algorithm 1 be

the (mini-batch SGD) algorithm to learn w for p(y|x,w) = N (µ = xw, σ2 = 1), and let Algorithm
2 be the (mini-batch SGD) algorithm to learn w for p(y|x,w) = N (µ = xw1, σ

2 = exp(xw2)).
Imagine we run them both on Monday (with random seed 1) and w converges to w = 0.1 and w
converges to w = (0.1, 0.05). Then we run them both on Tuesday (with random seed 2) and again
w converges to w = 0.1 but now w converges to w = (0.04, 0.1)! How is this possible?

(e) [5 marks] It is also useful to reason about how to model our problem. Provide one reason why

it might be preferable to learn p(y|x,w) = N (µ = xw1, σ
2 = exp(xw2)) rather than p(y|x,w) =

N (µ = xw, σ2 = 1).

Question 2. [55 marks]

In this question, you will implement multivariate linear regression, and polynomial regression,
and learn their parameters using mini-batch Gradient Descent. You will implement 3 different step-
size adaptation rules—ConstantLR, HeuristicLR, and AdaGrad—and compare their performance.
You will implement linear regression first, with all the stepsize adaptation rules. Then you will use
this implementation to do polynomial regression, by creating polynomial features and then calling
the linear regression procedure. You will compare linear regression and polynomial regression with
a constant learning rate. Then you will compare the three different stepsize adaptation rules, for
polynomial regression where stepsize adaptation matters even more than linear regression. Initial
code has been given to you in a notebook, called A3.jl, to run the regression algorithms on a
dataset. Detailed information for each question is given in the notebook. Baseline algorithms
(random and mean) are sanity checks; we should be able to outperform them.

You will be running the algorithms on the GraduateAdmissions v1.0 data set on Kaggle, which
has n = 500 samples and d = 7 features. The features are composed of GPA, TOEFL grades and a
few other criteria. You are asked to train some models to predict the admission probability based
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on these features. The features are augmented to have a column of ones (to create the bias term),
in A3.jl (not in the data file itself).

(a) [5 marks] Implement the epoch function in the specified cell, needed to do mini-batch gradient

descent.

(b) [5 marks] Implement the mean squared error loss function, to use for linear regression with

mini-batch gradient descent.

(c) [5 marks] Implement the gradient of the mean squared error loss function, for a given mini-

batch.

(d) [5 marks] Fill in the necessary implementation details of the update rule for mini-batch

gradient descent using a constant learning rate under ConstantLR.

(e) [5 marks] Implement the update rule for mini-batch gradient descent using the heuristic

learning rate under HeuristicLR, described in the notebook.

(f) [10 marks] Implement the update rule for mini-batch gradient descent using AdaGrad under

AdaGrad.

(g) [10 marks] Complete the part in the code needed to implement polynomial features with a

p = 2 degree polynomial to create polynomial regression.

(h) [5 marks] Compare the Linear vs. Polynomial models and report their mean errors on the

admissions dataset.

(i) [5 marks] Compare the different learning rate rules on the LinearModel and provide 1 sentence

commenting on the results.

Question 3. [20 marks]

Suppose you are rating apples for quality, to ensure the restaurants you serve get the highest quality
apples. The ratings are {1, 2, 3}, where 1 means bad, 2 is ok and 3 is excellent. But, you want to
err on the side of giving lower ratings: you prefer to label an apple as bad if you are not sure, to
avoid your customers being dissatisfied with the apples. Better to be cautious, and miss some good
apples, than to sell low quality apples.

You decide to encode this into the cost function. Your cost is as follows

cost(ŷ, y) =

{
|ŷ − y| ŷ ≤ y
2|ŷ − y| ŷ > y

(1)

This cost is twice as high when your prediction for quality ŷ is greater than the actual quality y.
The cost is zero when ŷ = y. To make your predictions, you get access to a vector of attributes
(features) x describing the apple.

(a) [10 marks] Assume you have access to the true distribution p(y|x). You want to reason about

the optimal predictor, for each x. Assume you are given a feature vector x. Define

c(ŷ)
.
= E[cost(ŷ, Y )|X = x]

Let p1 = p(y = 1|x), p2 = p(y = 2|x) and p3 = p(y = 3|x). Write down c(ŷ) for each ŷ ∈ {1, 2, 3} ,
in terms of p1, p2, p3.

(b) [10 marks] Now notice that the optimal predictor is f∗(x) = arg minŷ∈{1,2,3} c(ŷ). In practice,
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you won’t have access to p(y|x), but you can approximate it. Imagine you have a procedure to learn
this p (it is not hard to do, the algorithm is called multinomial logistic regression). Assume you
can query this learned function, phat for an input vector x. This function returns a 3-dimensional
vector of the estimated probabilities p̂1, p̂2, p̂3 for y = 1, y = 2, y = 3 respectively given x. Your
goal is to return predictions using f(x) = arg minŷ∈{1,2,3} ĉ(ŷ) where ĉ is the same as c that you
derive in part a, but with the true p replaced with our estimates p̂.

Write a piece of pseudocode that implements this f , namely that inputs x and returns a predic-
tion ŷ. Err on the side of the pseudocode being more complete. The goal of this question is to show
that you can go from an abstract description of our predictor to a more concrete implementation.

Homework policies:

Your assignment should be submitted as two pdf documents and a .jl notebook, on eClass.
There is no need to submit the 3 into a zip file. One pdf is for the written work, the other pdf
is generated from .jl notebook. The pdf version of .jl notebook can be generated by clicking the
button on the top-right corner of the notebook and choose an option.

Ths first pdf containing your answers of the write-up questions must be written legibly and
scanned or must be typed (e.g., Latex). This .pdf should be named Firstname LastName Sol.pdf,
For your code, we want you to submit it both as .pdf and .jl. To generate the .pdf format of a
Pluto notebook, you can easily click on the circle-triangle icon on the right top corner of the screen,
called Export, and then generate the .pdf file of your notebook. The .pdf of your Pluto notebook
as Firstname LastName Code.pdf while the .jl of your Pluto notebook as Firstname LastName.jl.
All code should be turned in when you submit your assignment.

Because assignments are more for learning, and less for evaluation, grading will be based on
coarse bins. The grading is atypical. For grades between (1) 80-100, we round-up to 100; (2)
60-80, we round-up to 80; (3) 40-60, we round-up to 60; and (4) 0-40, we round down to 0. The
last bin is to discourage quickly throwing together some answers to get some marks. The goal for
the assignments is to help you learn the material, and completing less than 50% of the assignment
is ineffective for learning.

We will not accept late assignments. Plan for this and aim to submit at least a day early.
If you know you will have a problem submitting by the deadline, due to a personal issue that
arises, please contact the instructor as early as possible to make a plan. If you have an emergency
that prevents submission near the deadline, please contact the instructor right away. Retroactive
reasons for delays are much harder to deal with in a fair way.

All assignments are individual. All the sources used for the problem solution must be acknowl-
edged, e.g. web sites, books, research papers, personal communication with people, etc. Academic
honesty is taken seriously; for detailed information see the University of Alberta Code of Student
Behaviour.

Good luck!
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