Homework Assignment # 2
Due: Friday, March 12, 2021, 11:59 p.m. Mountain time
Total marks: 100

Question 1. [25 MARKS]

Imagine that you would like to predict if your favorite table will be free at your favorite restau-
rant. The only additional piece of information you can collect, however, is if it is sunny or not
sunny. Therefore, you would like to predict whether the table will be free or not given the weather.
You collect paired samples from visit of the form (is sunny, is table free), where it is either sunny
(1) or not sunny (0) and the table is either free (1) or not free(0).

(a) [10 MARKS] How can this be formulated as a maximum likelihood problem? Explain what the
distributions are, what parameters need to be learned and write the (log) likelihood explicitly for
those distributions and parameters. You do not need to solve this maximum likelihood problem.
(b) [10 MARKS] Assume you have collected data for the last 10 days and computed the maximum
likelihood solution to the problem formulated in (a). You do not actually have to do this, just
assume that you did and now have estimated the parameter for your distribution. If it is sunny
today, how would you predict if your table will be free?

(c) [5 MARKS] Imagine you could further gather information about if it is morning, afternoon, or

evening. How does this change the maximum likelihood problem? You do not need to write the log
likelihood explicitly for this question, just explain how the distributions and parameters change.

Question 2. [20 MARKS]

Assume that X is a random variable with density corresponding to an equal mixture of two
Gaussians, with unknown means p1, o and unknown variances o1, os:

p(x) = 0.5N (1, 03) + 0.5N (u2, 03). (1)

Assume you are given a dataset of n iid samples from this distribution: D = {z;} ;. Your goal is
to estimate p1, o, 01 and os.

(a) [10 MARKs] Write down the negative log-likelihood for this problem, for the given dataset

D = {x;}},. Simplify as far as you can, by explicitly writing the densities for a Gaussian. Hint:
You will not be able to simplify very far, and you will be stuck with a few exponentials that the
logs cannot cancel.

(b) [10 MARKS] Derive update rules to estimate j1, p2,01, and 9. More specifically, derive the

gradient descent update rule, for the negative log likelihood you provided above.

Question 3. [55 MARKS]

In this question, you will implement an algorithm to estimate p(y|z), for a batch of data of
pairs of (z,y): D = {(x;,yi)}"; where both z;,y; € R. We have provided you with a simple
code-base in python, to load data and run an algorithm to estimate the parameters for p(y|z). The
main script is called script_regression.py. It uses a simplified Kaggle data-set!, where we use
only the weight (z) and height (y) of 10,000 people. The provided data-loader function splits the

"Mttps://www.kaggle.com/mustafaali96/weight—height

1/5

https://archive.ics.uci.edu/ml/datasets/Relative+location+of+CT+slices+on+axial+axis
https://www.kaggle.com/mustafaali96/weight-height

Winter 2021 CMPUT 296: Basics of Machine Learning

data-set into a training set and testing set, after centering the variables so that the mean values
for random variables x, and y will be zero. The python file regressionalgorithms.py has two
baseline algorithms, for comparison: a mean predictior and random predictor. These baselines are
sanity checks: your algorithm should be able to outperform random predictions, and the mean value
of the target in the training set. When using load_height_weight function, set trainsize and
testsize equal to 4000 and 1000 respectively. Because of randomization in some of the learning
approaches, we run each of the algorithms 50 times for different random training/test splits, and
report the average error and standard error, to see how well each algorithm averaged across splits.

(a) [10 MARKS] Let’s start simple, and assume p(y|z) = N(u = bx,0? = 1.0) for an unknown
weight b € R. For fun, you can derive the stochastic gradient descent update for the negative
log-likelihood for this problem. But, we also provide it for you here. For a randomly sampled
(x4,9i), the stochastic gradient descent update to b is:

biy1=0b—n (xibt - yi)xi (2)

You will run this iterative update by looping over the entire dataset multiple times. Each pass over
the entire dataset is called an epoch. At the beginning of each epoch, you should randomize the order
of the samples (however, for this assignment, if you leave out this step, you will not get penalized).
Then you iterate over the entire dataset, updating with Equation (2). Implement this algorithm to
estimate b, by completing the code in function SimpleRegression. Set the number of epochs to
10. The given barebones code already has epochs as part of the parameters in SimpleRegression.
The default value is set to 1, but you can change the number of epochs in script_regression by
passing the desired parameter value of 10.

(b) [5 MARKS] Run script_regression.py, with algorithms Random, Mean and SimpleRegression.
Set the stepsize for SimpleRegression to 0.01 and report the average performance and standard
deviation of the error for each of the three approaches.

(c) [10 mARKsS] Next implement a mini-batch approach to estimate b, in BatchSimpleRegression.

The idea is similar to stochastic gradient descent, but now you use blocks (or mini-batches) of Npaten
samples to estimate the gradient for each update. For each epoch, you iterate over the dataset in
order. For the first mini-batch update, the update equation is

1 Nbatch
biy1 =b —ng: where g; = (2ibe — yi) s 3)
Nbatch ZZ:; ! v
Then the next update uses the next mini-batch of points, (TN, ., +1s YUNparen+1)5 - -+ » (L2Nparen > Y2 Nbmeer) -

In total, for one epoch, you will complete n/Npatch updates. (Note that the final mini-batch might
be smaller than Npaien if the number of samples is not divisible by Npatcn, but for you we have
made sure it is 4000/32 = 125). In script_regression.py, set the stepsize equal to n = 0.01 and
the batch size equal to Nyaten = 32.

(d) [10 mMARKs] Next you will implement a more sensible strategy to pick stepsizes. You will

implement the heuristic for adaptive stepsizes given in the notes

me=(1+]g|)~" (4)

where ¢; is the gradient in the update wyi; = wy — n1g;. Implement this heuristic both for
SimpleRegression and BatchSimpleRegression. Note for SimpleRegression, the update uses

N
Nbatch Dottt (wibe — yi)zi.

(e) [5 MARKS] Run the mini-batch approach and the stochastic approach, both with the adaptive

gt = (x;b — y;)x; and for BatchSimpleRegression the update uses g; =

2/5

Winter 2021 CMPUT 296: Basics of Machine Learning

stepsizes given by Equation (4). Compare the performance of them before and after using adaptive
stepsize selection strategies based on the average error after 10 epochs.

3/5

Winter 2021 CMPUT 296: Basics of Machine Learning

(f) [10 MARKS] Now let’s also estimate the conditional variance, rather than assuming it is 1.0.

Let’s assume that p(y|r) = N(u = xb,0? = exp(xa)). Let w = (a,b) and w; = (az, b;) be the
weights on iteration t. If you write down the maximum likelihood problem, and derive the update
for both b and a, you get the following update for a randomly sampled x;, y;:

oc(wy) —xi(yi — xiby)
o exp(ziar) “
868(2]t) = 0.52;(1 — (y; — 2ib)” exp(—wiay)) (6)

where ¢(w) is the loss function, proportional to the negative log likelihood for this problem. We
can use the same heuristic stepsize as above, where now the gradient has two elements, to get the
following update equations

-1

o= (1 (P (2l 0

B Oc(wy)
bip1 = by —n 9% (8)
0
Ag+1 = Qg — M Ca(z}t) (9)

Implement these updates in DistributionRegression class.

(g) [5 MARKS] Report the performance of SimpleRegression and DistributionRegression, by

reporting the average error and standard error after 1 epoch and after 10 epochs. Additionally,
compute the runtimes of the two methods, across the entire experiment, and report these runtimes.

4/5

Winter 2021 CMPUT 296: Basics of Machine Learning

Homework policies:

Your assignment should be submitted as a single pdf document and a zip file with code, on
eClass. The answers must be written legibly and scanned or must be typed (e.g., Latex). All code
should be turned in when you submit your assignment.

Because assignments are more for learning, and less for evaluation, grading will be based on
coarse bins. The grading is atypical. For grades between (1) 80-100, we round-up to 100; (2)
60-80, we round-up to 80; (3) 40-60, we round-up to 60; and (4) 0-40, we round down to 0. The
last bin is to discourage quickly throwing together some answers to get some marks. The goal for
the assignments is to help you learn the material, and completing less than 50% of the assignment
is ineffective for learning.

We will not accept late assignments. Plan for this and aim to submit at least a day early.
If you know you will have a problem submitting by the deadline, due to a personal issue that
arises, please contact the instructor as early as possible to make a plan. If you have an emergency
that prevents submission near the deadline, please contact the instructor right away. Retroactive
reasons for delays are much harder to deal with in a fair way.

All assignments are individual. All the sources used for the problem solution must be acknowl-
edged, e.g. web sites, books, research papers, personal communication with people, etc. Academic
honesty is taken seriously; for detailed information see the University of Alberta Code of Student
Behaviour.

Good luck!

5/5

