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Notation Reference

Set notation

X A generic set of values. For example, X = {0,1} is the set containing only 0 and 1,
X =[0,1] is the interval from 0 to 1 and X = R is the set of real numbers. Depending on
occasion, symbols such as A, B, 2, and others will also be used as sets.

P(X) The power set of X', a set containing all possible subsets of X.

[a,b]  Closed interval with a < b, including both a and b.

(a,b)  Open interval with a < b, with neither a nor b in the set.

(a,b]  Open-closed interval with a < b, including b but not a.

[a,b)  Closed-open interval with a < b, including a but not b.

Vector and matrix notation

T Unbold lowercase variables are generally scalars. However, when x € X', where X is
not specified, x may imdicate a vector, a structured object such as graph, etc.

x  Bold lowercase variables are vectors. By default, vectors are column vectors.

X  Bold uppercase variables are matrices. This looks like a multivariate random variable,
X, but the random variable is italicized. It will often be clear from context when this is a
multivariate random variable and when it is a matrix.

X7 The transpose of the matrix. For two matrices A and B, it holds that
(AB)T =BTA".
An n x d matrix consisting of n vectors each of dimension d can be expressed as

X =[x1X3 ... Xp] .

X The i-th row of the matrix. A row vector.

X.;  The j-th column of the matrix. A column vector.
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Tuples, vectors, and sequences

(r1,29,...,24) A tuple; i.e., an ordered list of d elements. When (z1,2,...,24) € R?
the tuple will be treated as a column vector x = [z1 73 ... 4] .
7 S 1o A sequence of m items. Index variables over these sequences are usually the

variables i, j, or k. For example, > i, a; or, if each a; is a vector of dimension d, then the
double index 37" Y0, ag;.

Function notation

f: X =) The function is defined on domain X to co-domain ), taking values x € X
and sending them to f(z) € V.

%(x) The derivative of a function at x € X', where f : X — R for X C R.

Vf(x) The gradient of a function at x € X', where f : X — R for X C R?. It holds that

_(9f of of
vf(x) - (821717 87332’ () 8$d> .

¢:R* 5 R A loss function indicating the error in prediction incurred by the given
weights, ¢(w). If subscripted, ¢; typically indicates the loss on the ith instance, with ¢(w) =

LS | 4;(w) for n instances.

c:RY - R A generic objective function, that we want to minimize, for the learned
variable w. This could be, for example, a loss plus a regularizer.

Random variables and probabilities

X A univariate random variable is written in uppercase.

X The space of values for the random variable.

x  Lowercase variable is an instance or outcome, x € X.

X A multivariate random variable is written bold uppercase.

T Lowercase bold variable is a multivariate instance. In particular cases, when the
variable value is treated as a vector, we will use x.

N(u,a?) A univariate Gaussian distribution, with parameters u, o2.
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~  indicates that a variable is distributed as e.g., X ~ N(u,o?).

Parameters and estimation

D A data set, typically composed of n elements of multivariate inputs X € R**¢ and
univariate outputs y € R™ or multivariate outputs Y € R"*™, The data set will also be
referred to as a set of indexed tuples; i.e., D = {(x1,v1), (T2, Y2), .., (Tn, Yn)}-

F The function class or hypothesis space. Our learning algorithms will be restricted
implicitly to selecting a function from this set. For example, in linear regression, our

function class is F = {f : R = R | f(x) = x'wforsomew € R?}.

w  The true parameters for the (generalized) linear regression and classification models,
typically with w € R?.

w  The approximated parameters for the (generalized) linear regression and classification
models, typically with w € R?. When discussing w as the maximum likelihood solution on
some data, we write wyr, (D), to indicate that the variability arises from D.

maxgepc(a)  The maximum value of a function ¢ across values a in a set B.

argmax,czc(a)  The item a in set B that produces the maximum value c(a).

Norms

x| A norm on x.

|x|la The £ norm on a vector, ||x[2 = /3¢, 2. This norm gives the Euclidean distance
from the origin of the coordinate system to x; that is, it is the length of vector x.

|x|3  The squared £ norm on a vector, ||x||3 = 2%, 22.

|x|l,  The general £, norm on a vector, ||x||, = (X0, |=[?)/P.
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Useful formulas and rules

log (”;) = log(z) — log(y)
log (2¥) = ylog(x)

Z a; / fix)p(x)dx = / Z a; fi(x dx > Can bring sum into integral

/ f(z)p(x)dr = / o f(z)p(x)dz > Can (almost always) bring derivative
Xx axr

into integral



Chapter 1

Introduction to Intermediate Machine Learning

These notes presume you have already read the Basics of Machine Learning notes [28].
If you have not yet read those, you are in luck! They are short and you can do it now.
The Basics of ML notes cover the core concepts in machine learning: probabilistic un-
derpinnings, estimators and formalizing objectives to obtain those estimators, evaluating
confidence in an estimator, bias-variance, generalization and overfitting, regularization and
basic optimization strategies and algorithms such as linear regression.

These notes expand on the basic course in machine learning, primarily by revisiting and
extending each of the concepts and by introducing a key concept not yet covered: data
representation. You will see more complex distributions and maximum likelihood applied
to those distributions (e.g., mixture models and expectation-maximization). With these
more complex distributions, it becomes more sensible to discuss generative models, not
just predictors; this course will cover both more, as opposed to the basics which focused
primarily on prediction. You will also see more advanced ways to learn nonlinear predictors,
beyond simply using polynomial features, including neural networks and kernel (similarity)
features. You will see other regularization approaches and more advanced optimization
strategies (e.g., proximal methods for ¢; regularization). We will revisit generalization, now
with some basic theoretical analysis tools. We will cover Bayesian methods, for more general
distributions.

Throughout, we will see the central concept of data representation. Many methods rely
on re-representing inputs, to facilitate modeling. We already touched on this lightly with
polynomial features. Inputs were transformed into polynomial features, to make it easy
to learn nonlinear predictors using linear regression. We will discuss how high-dimensional
representations can facilitate learning linear regressors and classifiers. We will also dis-
cuss how identifying a (compact) set of latent factors provides a data representation that
facilitates learning generative models (distributions) and handling missing data.

1.1 Generative Models and Predictors

There are two typical goals in machine learning: learning a generative model and learning
a predictor. Many of the concepts are similar between the two, because they both rely
on estimating parameters for a distribution. When we learn the distribution p(z), we are
learning a generative model. When we learned the conditional distribution p(y|z), in
regression and classification, we were learning a predictor.

This distinction, however, is not quite crisp. The real defining difference is how we will
use the models we learn. We typically learn a generative model, to allow us to sample—or
generate—items. For example, we might learn a generative model of faces, to allow us to
generate new images of faces. The model produces hypothetical images, rather than making
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predictions. This means that we could in fact learn a conditional generative model, p(y|z),
where different faces y could be sampled depending on context z. For example, we may
want to set x = narrow to sample only narrow faces. This face distribution p(y|x) is much
more complex than the distributions we considered for regression and classification.

In regression, on the other hand, we are primarily interested in statistics of the distribu-
tion that enable us to make predictions. The distributions themselves can be quite simple.
For example, for linear regression, we assumed p(y|z) is Gaussian with a fixed variance
across all z. Our predictions usually correspond to E[Y |z], though it can also be sensible
to use other statistics like the median(Y|x). The power and complexity is in the features z,
for which we are not trying to estimate the distribution. Using the same example as above,
x could be features and y might be a label such as narrow or not narrow. The distribution
p(yl|x) is a conditional Bernoulli, which is simple even though x is complex. This contrasts
the above where our goal was to learn the distribution over the complex object, namely
over the faces.

In summary, the primary differences are in (a) how we use the distribution and (b) the
complexity of the distribution. Both generative models and prediction models will rely on
similar nonlinear modelling tools, like neural networks and kernels. But, on top of those
approaches, the strategies will look different due to these two differences. The algorithms we
use to learn generative models will typically be slightly more complex, to learn these more
complex distributions. Moreover, we will have to evaluate the generative models differently,
since their use case is different. In the basics, we only discussed evaluating prediction
models; now, we will also discuss how to evaluate generative models.

1.2 Relationship to Statistics and Probability Theory

Machine learning is based on tools from statistics and from probability. You may wonder
why much of machine learning comes out of computer science departments, rather than
statistics. The answer is primarily due to a difference in focus. Statistics historically
focused on understanding data. Consequently, inference more so than prediction is critical.
For prediction, we want to learn a function f on inputs x that give us accurate predictions
of y. For inference, we instead want to understand the relationship between the inputs x
and targets y. Which inputs are most correlated with the target? And is an input variable
positively or negatively correlated?

Simple and interpretable models are useful for inference. For example, linear models
can make the relationship between an input variable z; and y more clear. If the coefficient
is large, x; may be an important predictor for y. Further, if it is negative, the correlation
is negative. Nonlinear models can complicate understanding the relationships.

Conversely, for prediction, with the advent of more and more data, it is feasible to learn
larger and more complex models. These more complex models are straightforward to use
for prediction, because the interpretability is not as relevant. Our focus in this course is
on using models—namely to obtain predictive models and generative distributions—rather
than inference.
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1.3 The Blessing and Curse of Dimensionality

This course focuses on high-dimensional vectors of features (representations). High dimen-
sionality can be both a blessing and a curse. The term curse of dimensionality actually arose
from solving high-dimensional dynamic programming problems. Each added dimension can
cause an exponential growth in the search space for such discrete optimization problems.
In machine learning, we typically focus on continuous variables, rather than discrete, but
similar difficulties with increasing dimension do arise. The curse in machine learning usually
takes two forms: the requirements on the number of samples and the fact that similarities
breakdown in high dimensions.

The first issue arises due to how quickly (exponentially) the volume of a d-dimensional
space grows. With more features—higher dimensionality—we require more samples to iden-
tify the correct model. Imagine we have a [0, 1}d space and we want to cover our input space
with a grid. Say, we want to reason about seeing a point x € R? for each region of the input
space, at a spacing of 0.1 (10 per dimension). If d = 1 and we only have an interval, we
only need 10 points to cover the space at a resolution of 0.1. If we have d = 2, then we need
102 = 100 points to cover at the same resolution. In general, we need 10¢, which means
that for d = 3 we need 1000 points, for d = 4 we need 10,000 and quickly this balloons out
of proportion. We do not actually need to fully cover our space in machine learning, but
we can see that in higher dimensions a small number of samples barely covers the space at
all. We see a minuscule fraction of the possible input space.

The second issue arises from counterintuitive concentration phenomena—discussed more
later—that occur in high-dimensions. Namely, the volume of a high-dimensional ball or cube
is concentrated near its surface, rather than the interior. One implication of this phenomena
is that, in high-dimensions, the distance between a vector and any other random vector is
likely to be close to the average distance. More specifically, give a randomly sampled dataset
of points, the distance to the closest and nearest neighbors for a given point in that dataset
approaches one [6]. This means that relying on similarities between feature vectors—as we
do in certain learning algorithms—can be ineffective.

This phenomena, however, also provides a blessing. In high-dimensions, data becomes
separable. That is, if we want to classify individual points differently, then projecting into
higher dimensions quickly makes this feasible. For example, when using a feature expansion,
such as with prototype representations in Chapter 8, we can find a linear classifier in this
new space that perfectly separates the two classes.

More generally, the loaded terminology of curse and blessing detracts from the fact
that different situations warrant different strategies. The properties of high-dimensional
spaces need to be considered carefully, to avoid known failures. But, there is no doubt that
learning high-dimensional data representations is an important way forward for prediction.
We simply need to better understand benefits and failure modes. Already, we are seeing
(positively) surprising results. More complex models, with many many parameters, can
significantly improve performance and do not suffer from some of the overfitting problems
that intuitively might have been expected. Leveraging these nice properties, particularly
given by neural networks, has generated a flurry of work in machine learning.
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1.4 Matrix Methods

The basics course avoided matrix methods. Comfort with linear algebra takes time, and
is not strictly needed to implement some of the most commonly used machine learning
methods. As you learned, many of the estimation approaches can use (stochastic) gradient
descent. Our focus was on understanding how stochastic gradient descent can reach station-
ary points, the role of the stepsize in doing so, and why it is that we would want to reach
stationary points. This procedure is quite generic, requiring simply that we can compute
the gradient of our specified objective. For example, for linear regression, the gradient for
a single sample consisted of the (signed) error of our prediction times the feature vector for
that input.

In some cases, however, we can find closed form solutions using matrix methods. In
linear regression, for example, we could have computed the solution by iterating over the
entire dataset only once—instead of for multiple epochs—and computing a matrix inverse.
We can express the linear regression solution as the inverse of a matrix times a vector, as
we will see in this course. This expression allows us to better understand the properties of
the linear regression solution.

Similarly, matrix approaches can elucidate what is learned under certain data repre-
sentations. For the latent variable methods we consider, formalizing the problem using
matrices will help us understand the latent factors extracted.

For this course, I expect you to recall a few basics. Recall that a m x n matrix A is a
two-dimensional array with m rows and n columns.

ail a2 e QA1n al
A — any ago e aon _ an
aAml Am2 ... Qmn am
def . . . .
where a; = [ai1, a2, ..., ai) is a vector corresponding to the ith row. The symbol is bold,

to indicate it is a vector. Sometimes, this row vector is written using the notation A;. where
the colon indicates the entire row from 1 to n is used. Similarly, to reference a column,
we use A.;. When you multiply a vector x € R" with this matrix, the matrix-vector dot
product corresponds to doing a dot product between x and each row of A:

(a1, x) (A1, x)
Ax — <327 X> _ <A25’ X> cR™
(am,x) (A, x)

The resulting vector is the same dimension as the number of rows of A. More generally, if
we do a matrix-matrix product with another matrix B € R***

Al,:B:71 Al,:B:,Q cee Al,:B:,k
AB = [AB,,AB,s,...,AB,| = | AP AaBa o AaBu o g
Am,:B:,l Am,:B:,Z v Am,:B:,k

To multiply these matrices, the inner dimension n has to match: A is m xn and B is n x k.
The resulting matrix has the same number of rows as A and number of columns as B. It
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is a useful sanity check in derivations, to see if you have made a mistake, to check if all
the dimensions match. If you find yourself multiplying two matrices with different inner
dimensions, something went wrong.

A useful rule is that (AB)" = B"A'. Recall that the transpose involves flipping the
matrix around its diagonal. Namely,

ai ai2 ... Qln aip a1 ... Aamil

a a oo a T a Q R
A — 21 22 2n AT = 12 22 m2

aml am2 ... Amn aln a2n ... Qmn

If A € R™*" then AT € R™¥™,

Exercise 1: Prove that (AB)" = B'A". You can do so by simply computing both the
rhs and lhs and ensuring they are the same. O

1.4.1 Matrix Inverse and Eigenvalue Decomposition

We will also use matrix inverses. Recall that for a scalar number a, it’s inverse o' is 1/a,
because aa~! = 1 (which is the definition of an inverse). For a diagonal matrix A, its inverse
is similarly straightforward:

az 0 ... 0 O 1/a; 0 ... 0 0
A_]| 0 a O 0 A | 0 La 0 ... 0
0 0 0 aq 0 0 0 1/ad

where you can verify that AA™' = I for identity matrix I that has 1s on the diagonal

1 0 0 0
pe | 0010 0
0 0 0 1

We will also use determinants and matrix decompositions—including the eigenvalue
decomposition and singular value decomposition—as well as the rank of a matrix. Ev-

ery matrix X € R™*" has a singular value decomposition X = UXV' where U =
[ug,...,uy] € R™™ is the orthonormal matrix composed of the left singular vectors,
V =[vi,...,vy] € R"™™ is the orthonormal matrix composed of the right singular vectors.

An orthonormal matrix U is square matrix that satisfies U'U =I and UU' =I. The ma-
trix of nonnegative singular values 3 € R™*" is a diagonal matrix with zero padding in the
dimension that is larger. For example, consider the case where m > n. The diagonal entries
in X are the singular values, which we typically order in descending order o1, 09,...,0p,
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giving
(o1 O 0 7
0 o9 0
op O 0
o 0
0 o 0 on | = ﬁ)" where 3, & ?
0 O 0 0
0 O on
: (m—mn) rows of zeros
L0 0 ... 0 0 |

Any matrix X € R"*? can be decomposed into its singular value decomposition, because any
linear transformation can be decomposed into a rotation (multiplication by V), followed
by a scaling (multiplication by 3), followed again by a rotation (multiplication by U).

Sometimes we use the thin SVD, where drop the columns of U and rows of V corre-
sponding to the zero parts of 3. Let us call these U, € R™** and V;, € R¥*" the first
k columns and rows respectively where k = min(m,n). For the above, where we consider
m > n, we have kK = n. We can do this because the zero parts of ¥ remove those rows or
columns in the multiplication:"

X =UZV' =U,%,V,.

In this example, where m > n and k = n, we have that Vi = V; but we still define this Vy
since more generally for the thin SVD we might have m < n and then V is the one that is
made smaller.

This decomposition simplifies analysis of the properties of a matrix. For example, the
number of non-zero singular values constitutes the rank of X. To see why, assume o, = 0,
and o,—1 > 0, meaning X has rank n — 1. Take any vector w € R", and consider Xw. We
can write this product as

USV'w=UZWw forw=V'w.

The product ¥w sets the last dimension of W to zero, effectively removing that dimension
and so projecting W into a lower-dimensional (n — 1) space. Then it rotates that projected
vector afterwards, using U, but cannot undo the projection into a lower-dimensional space.
Therefore, Xw can only produce ¥y = Xw that lie in a n — 1-dimensional plane.

The eigenvalue decomposition is similar to the SVD, but is only defined for square ma-
trices A € R™*™. We will further only consider the eigenvalue decomposition of symmetric
matrices—since that is all that we need for these notes—which slightly simplifies the de-
composition. The eigenvalue decomposition of a square, symmetric matrix is A = UAU'
for orthonormal matrix U € R™*™ and diagonal matrix A € R™*™, where now the entries
can be both positive and negative. The number of non-zero elements again tell us the rank
of the matrix.

You might wonder why we do not simply define the SVD this way, since it has less redundant information.
The reason is that we need U and V to be orthonormal matrices, which means they must be square. The
thin versions still satisfy useful orthogonality properties, namely that for m > n with k£ = n, U, U, = I but
we no longer have U, U} =L
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The eigenvalue decomposition—and the SVD, for that matter—make computation of
the inverse straightfoward. Namely, if A is full rank and so invertible, we get that

AA' = (UAUNUA'UT

=UAU UA U’ >U'U =1 by definition of orthonormal matrices
=UAIA'U’ > Identity operator I has no impact
=UAAT'U’ >AAT =1

= UIU"

=UU" >UU' =1 by definition of orthonormal matrices
=1

Exercise 2: Go through the same steps above, and prove that given the SVD A = UXV'
of a full-rank symmetric, square matrix, the matrix A~ = VXU is the inverse of A. [J

1.4.2 Basic Rules for Gradients with Vectors and Matrices

For derivatives, there are useful rules that you are familiar with, such as %aw =a, %wz =

2w and %ew = e¥. We can similarly write down such rules for the multivariate setting,
to simplify computation of gradients without having to go resort to computing each partial
derivative. Each of the following rules can be verified by computing partial derivatives,
with the rules you are used to for the univariate case. We summarize the key rules for this
document here; for a more complete reference, see the matrix cookbook [19].

ORI -3
’ x'x ‘ 2x ‘
| Ax | AT |
’ x " Ax ‘ Ax+A'x ‘

Table 1.1: Useful derivative formulas of vectors with respect to vectors. The derivative of
vector-valued function f : R&>T — R™X1 with respect to vector x € R is an d x m matriz
M with components M;j = 8Yifoxz;, i € {1,2,...,d} and j € {1,2,...,m}. A derivative of
scalar with respect to a vector, where m = 1, is a special case of this situation that results
in an d X 1 column vector. Note that in the table, m is not the same for each row. For
example, f(x) = x'x is a scalar, whereas for a general matriz A € R™*4, f(x) = Ax is a
m-dimensional vector.

Three useful rules are summarized in Table 1.1. Note to obtain the derivative for the
function f(x) = x' A, one can first obtain the derivative for f(x)" = A"x and then take
its transpose because

(Vi) =V
Therefore, because V(f(x)") = A, we get that Vf(x) = A". Note that because of this

equivalence in the above equation, we will often drop the brackets and simply write V f(x) "

instead of V(f(x)").
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1.5 A Very Brief Refresher of the Basics of Machine Learning

In this section we do a whirlwind refresher of the concepts and terminology learned in Basics
of ML. Our primary goal was to learn a prediction function fy : X — ), parameterized
by a vector of weights w € R¥. This prediction function inputs a vector of observations
x € X C R? and outputs a prediction §§ € Y. If ) is a discrete, unordered set, like
Y = {giraffe, hippo,ostrich}, then we call the problem of finding f a classification
problem. If ) is continuous, then we say it is a regression problem.?

We discussed (a) how to learn such a function and (b) how to evaluate if that function
is good. To learn the function, we needed a clear criterion (objective function) to optimize.
We discussed that the ultimate goal is to find a function f with low expected cost,
E[cost(f(X),Y)], which we later called the generalization error of f. This cost was
different for different problems. For regression, we used cost(f(x),y) = (f(x) — y)? and for
classification we used the 0-1 cost

0 wheny=4g

cost(,y) =
1 wheny # 4§

We found that these choices for costs implied that the optimal predictor for regression
is f*(x) = E[Y]x] and for classification is f*(x) = argmax,cy p(y|x). This motivated
estimating p(y|x), or the mean of this distribution E[Y |x], using data.

Formalizing the problem was fun, but now we have the hard part of estimating these
unknown quantities. We know f*(x) = E[Y|x] for regression, but we don’t have E[Y|x]!
Instead, we only have a dataset of samples D £ {(x;,y;)}7_; where (x;,v;) ~ p where
p(x,y) = p(y|x)p(x). This dataset is a poor proxy, but we will have to make do. The
parameters w for the function we learn are actually parameters for the distribution of
p(y|x). Therefore, we decided to find parameters that were the most likely, given the data:
the MAP objective.

For regression we modeled the conditional distribution as a Gaussian with fixed variance
o2, written as p(y|x) = N'(fw(x),?) . The data gives us clues about the true f* that defines
the conditional mean. We want to pick the fy that is the most likely, given this evidence.
In other words, the MAP objective is

argmax p(w|D) = argmax p(D|w)p(w)
weRF weRk

n
= argmax Z In p(y;|x;, w) + In p(w)
weRF ;1

n
= argmin — Y Inp(y;[x;, w) — Inp(w)
weRF i=1

where the first step drops constants, the second uses monotonicity of log and the third
uses the equivalence between maximizing a function and minimizing the negative of that

2If ) is discrete but ordered, then sometimes this is modeled as an ordinal regression problem. An
example of an ordinal regression problem is one where the goal is to predict the number of injuries in a
day. Then Y = {0,1,2,3,4,...}, and the set is ordered: 4 injuries is more similar to 5 injuries, than to 100
injuries. We did not talk about ordinal regression before, but when we talk about generalized linear models,
we will see how Poisson regression can be used for this ordinal regression problem.
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function. The term p(D|w) is called the likelihood, the term p(w) the prior (before seeing
evidence) and the term p(w|D) the posterior (after seeing evidence).

The prior allows us to inject our own knowledge, and so constrain the space of possible
solutions. We considered a Gaussian prior on w, to encourage the weights to be near zero.
We did so because we concluded large weights can indicate overfitting. Overfitting occurs
when the learned function fy, specializes to the training set, at the cost of generalization
performance. We saw that for very small training sets, with polynomial regression, we
could almost perfectly fit the training dataset, but the resulting function had very poor
generalization error. The true underlying function was actually simpler, and the additional
degrees of freedom from the polynomial was used to fit noise (from variance o2 in Y|x)
rather than identify the pattern E[Y'|x]. This addition of a Gaussian prior corresponded to
{5 regularization.

In some cases, we may not want to constrain solutions with a prior, potentially because
we simply do not know what prior to pick. In that case, we may simply want to maximize the
likelihood. As we discussed, conceptually this is like picking a uniform prior in MAP. This
maximum likelihood (MLE) objective—equivalently negative log likelihood objective—
is

n
argmin — Z In p(yi|xi, w).
weRk i=1

After finding this function fy, using MAP or MLE, we want to evaluate if it is good.
The gold standard is the generalization error of fy: E[(fw(X) — Y)?]. However, again we
cannot directly compute this, as it is an expectation over all possible pairs (x,y). Instead,
we can use data to estimate it and we can reason conceptually (or theoretically) about
whether we should expect fw to have good generalization error.

To estimate the generalization error with data, we use a (hold-out) test set. This
means that we take the dataset and split it into a training set (say 80% of the data)
D = {(xi,v:)}i, and use the rest as a test set Dyegt = {(Xz,yz)}?:t?}rl This ensures that
the test set is independent of the training set: they have independent samples of pairs (x, y).
We can then use a sample average estimate of the generalization error using

A

GE(fw) ~ GE(fw) = % ' (fW(X’L) - yi)2

It is not enough to simply use this sample average estimate, we also want a notion of
confidence in this estimate. In other words, we want a less vague relationship between
GE(fw) and GE(fyw) than our approximately equals to symbol &=. We obtained a more pre-
cise relationship using a confidence interval around GAE( fw). When reporting our estimate
of generalization error, therefore, we provide the interval [GE(fyw) — €, GE(fuw) + €] for an €
that gives the width of the interval, determined by distributional assumptions and the level
of confidence required 1 —4§. For example, if we assumed errors (fyw(X;) —Y;)? are Gaussian
distributed with unknown mean and variance, then we modeled GE(f,,) using a Student
t-distribution. The resulting confidence interval, say if § = 0.05 and m = 10, is given by
€= % X Sy, for S,, the unbiased sample standard deviation of the errors.

In addition to empirical measures, we also reasoned about whether we should expect
fw to generalize well. For example, we reasoned that if fy, is a 9th-order polynomial but

we only have three data points, then likely we will not generalize well due to overfitting.
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This conceptual reasoning is about the bias and variance of different function classes
and algorithms to find these functions. We reasoned that in some cases it was worthwhile
to incur some bias to reduce variance. Ultimately, we combine conceptual reasoning to
select the set of models we consider (e.g., low or high order polynomials, with or without
regularization) with empirical estimates of generalization error to deploy learned functions.

A theme underlying the entire course is the notion of a probabilistic formulation to
quantify uncertainty in our estimators. We have sensible ways to obtain sample average
estimators, or parameters of distributions like the variance, or the parameters for a function
that give conditional distributions. But, we may also want to know the uncertainty in our
estimates. For sample averages, we use concentration inequalities to get confidence intervals
to reflect this uncertainty. For our parameterized functions, such as in linear regression, we
use a Bayesian approach to obtain credible intervals over both the parameters and the
predictions.

All of the above equally applies to classification with logistic regression. We used
the same analysis to reason about (a) optimal predictors for classification, (b) the resulting
MAP or MLE optimization problem to approximate the predictor and (c) conceptual and
empirical strategies to evaluating generalization error of the learned functions.

Finally, an important theme throughout the course was optimization algorithms
strategies to actually solve the optimization problems. We spent a lot of time formalizing
and understanding the goals of learning, as described above, but eventually we have to
actually implement it on a computer. We discussed gradient descent to solve our smooth,
continuous optimization problems, and the importance of step-size selection. We then
discussed the clever generalization to mini-batch stochastic gradient descent, which
similarly reaches local minima but with less computation.
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Revisiting Concepts
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Chapter 2
Intermediate Probability Concepts

You have already learned about basic probability concepts, including discrete and contin-
uous random variables; pmfs and pdfs; expectations, covariances and moments; indepen-
dence and conditional independence. In this chapter, we discuss more complex distributions,
including multidimensional distributions and mixture models. We additionally discuss en-
tropy, which provides another piece of information about a distribution, and KL divergences
that allow us to compare two distributions.

2.1 Multidimensional distributions

Recall that discrete random variables have probability mass functions (pmfs) and con-
tinuous random variables have probability density functions (pdfs). You have already seen
several examples of such distributions for univariate random variables (one-dimensional ran-
dom variables). These included Bernoulli, uniform and Poisson distributions for discrete
and uniform, Gaussian, exponential and Gamma distributions for continuous random vari-
ables. In this section we briefly revisit these definitions, generally for multivariate random
variables—which include the univariate ones as a special case—and provide a few examples.

Let X = (X1, X2,...,X4) be a d-dimensional random variable with vector-valued out-
comes x = (x1,x2,...,2q), such that each x; is chosen from some &X;. The sample space
for X is X = X} x &y x ..., xXy. For the discrete case, each X is a countable set, such as

{1,2,3} or the set of integers; for the continuous case, it is a continuous (uncountable) set,
such as [—1, 1] or the set of all reals.

For the discrete case, any function p : X — [0, 1] is called a probability mass function
(pmf) if

Z Z Z p(x1,22,...,2q) = 1.

r1E€X1 T2E€XS rqaeXd

One example of the multidimensional pmf is the multinomial distribution, which generalizes
the binomial distribution to the case when the number of outcomes in any trial is a positive
integer d > 2. The multinomial distribution is used to model a sequence of n independent
and identically distributed (i.i.d.) trials with d outcomes. At each point (x1,x2,...,24) in
the sample space, the multinomial pmf provides the probability that the outcome 1 occurred
x1 times, outcome 2 occurred x4y times, etc. Of course, 0 < x; < n for all 7 and 2?21 T =n.
For example, an experiment consisting of n tosses of a fair six-sided die and counting the
number of occurrences of each number can be described by a multinomial distribution.
More formally, given the sample space X = {0, 1, ... ,n}d, the multinomial pmf is defined

20
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as
n Tr1 T2 Td : —
(oymm)i a® oot i mtaat - tag=n
p(x1, @2, .., 3q) =

0 otherwise

where «;’s are positive coefficients such that 2?21 «; = 1. That is, each coefficient «; gives
the probability of outcome i in any trial. The multinomial coefficient

" _
ki,ko, ..., kq o ki'ks! -+ kg!

generalizes the binomial coefficient by enumerating all ways in which one can distribute n
balls into d boxes such that the first box contains k; balls, the second box ko balls, etc.

This distribution is useful for us for multi-class classification, where we categorize an item
into one of m classes. We will more specifically consider a special case of the multinomial,
where n = 1. Then d corresponds to the number of classes m and only one class is successful,
namely only one z; is 1 and the remainder are 0. The distribution corresponds to the
probability of each class being the correct class (for a given input). Simplifying the above,
we have X = {0, 1}d and pmf

ajtag?.ag? fri o+ +ag=1
p(e1, @2, ..., 2q) =

0 otherwise

When d = 2, this reduces to the Bernoulli distribution. The above pmf for d = 2 is 7" a5?,
where 1 +x2 = 1 and aj + as = 1. If we think of outcome 1 as, say, Heads and outcome 2
as Tails, then we can rewrite this equivalently as a3 = a, ag = 1 — « and x = z1 which is 1
when the outcome is Heads, and 0 when it is tails. Then aj'a3? = a®(1—a)!=2. Therefore,
we can think of this distribution as the multidimensional generalization of the Bernoulli.
Other distributions we discussed for the univariate case can be extended to the mul-
tivariate case. The extension does not simply correspond to separately modelling each
component of the vector, independently. Rather, the multivariate extensions typically al-
low us to reason about relationships between the variables. For the above multinomial,
for example, we know if one variable has a successful outcome, and n = 1, then we know
another cannot have a successful outcome. This is very different from separately modelling
each component with a Bernoulli, which allows for multiple variables to be 1. For example,
(1,1,0,0) might a possible outcome if each entry is modelled separately as a Bernoulli, but
would not be possible under the multinomial with n = 1. Similarly, the extension of the
Poisson to the multivariate Poisson considers relationships—Ilike covariances—between the
variables; we will not use this distribution in these notes, and so we do not discuss it further.

Exercise 3: The extension of the uniform distribution to the multivariate case is relatively
straightforward, because each dimension is independent. Write down the pmf, assuming
X; ={1,2,...,n} for all i. Recall that for a univariate pmf p(xz) = 1/n, with outcome space
x € {1,2,...,n}. Verify that your multidimensional uniform is a valid pmf. ]
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Figure 2.1: The multivariate Gaussian distribution with d = 2, for two different covari-
ances. In (a), the covariance between random variables is zero, with only entries on the
diagonal. In (b) and (c), the two components are correlated. This means that they have
unit variance and a positive correlation, where if one is larger then it is more likely that the
other is larger, and if one is smaller then it is more likely that the other is smaller. This
correlation is emphasized in (c), looking from above, where we can clearly see the strong
positive correlation between x and y: the density is higher for pairs where x and y are
stmilar.

For the continuous case, any function p : X — [0, 00) is a probability density function
(pdf) if

/p(x)dx:/ / p(z1,22,...,2q)dxy - - dzg = 1.
X X1 Xaq

For example, if X; = R, giving X = R?, this integral is

9] o0
/ / p($17$27"-7xd)d$1"'dl‘d.
—00 s

If X; = [—1,1], giving X = [~1,1]¢, this integral is

1 1
/ / p(xlva’??“‘?wd)dl‘l"'d{Ed,
-1 1

Recall that the density p(x) at a point x can be greater than one, which is why the range
of p is [0, 00).

The most useful multivariate generalization for us to consider is that for the Gaussian
distribution. The multivariate Gaussian distribution is a generalization of the Gaussian or
normal distribution to the d-dimensional case, with X = R%. It is defined as

Xzéex —lx— TS (x— 2.1
) = e (50— B (- 1), 2.1)
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with parameters p € R? and a d-by-d covariance matrix ¥ € R¥4 We will refer to this
distribution as N (u, X); it is depicted in Figure 2.1.

This formula contains several new concepts, so let us step through it slowly. First,
recall the definition of the covariance matrix. It is a two-dimensional array, where each
entry corresponds to the covariance between two random variables

Eij = COV[XZ',X]‘]
= E[(X: - E[Xi]) (X; — E[X;])]

where our multivariate random variable is X = (X1, X»,..., Xy). Notice that the diagonal
of this matrix corresponds to the variances of each entry

¥ = Cov[X;, X;] = Var[X}]

The formula includes |X|, which is called the determinant of 3. For us, this determinant
reflects the overall variance: if it is large in most directions, this determinant will be large,
and if there are some directions where the density is very peaked (low variance), then it
could be very small. In this simplest case, when the covariance between random variables is
zero, the covariance is a diagonal matrix. Namely, it has the variances on the main diagonal,
with zeros everywhere else

Var[X1] 0 . 0 0 o2 0 ... 0 0
5 0 Var[Xs] 0 ... 0 10 g2 0 ... 0
0 0 .. 0 Var[Xy] 0 0 ... 0 o3

where we write o? e Var[X;], in other words where o; is the standard deviation for the
ith variable. Then the determinant is || = 0%03...03, the product of these variances.
Therefore, the first term includes a normalization with the magnitudes of the variances.

Let us continue with this simpler case, to understand the second component with a
matrix inverse. In Section 1.4, we discussed that the inverse of a diagonal matrix is the
inverse of each scalar on the diagonal

/o3 0 ... 0 0
si_| 0 /o3 0 ... O
0 0 ... 0 1/o2

When we take the matrix-vector product X 7'(x — u), we are scaling each component by
the correspond diagonal element

(x1 — p1)
(w2 — p2)

[~

B )
—~
o
]
~—

T = °

|~

(24 — j1a)

(e

SN
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Let v =X""(x — ). Then, we take the dot product again with (x — p) to get

d
(x— ) B = ) = (x— ) v = (a5 — )y
j=1

d d
= (z; — Mj)(,%z(xj —pg) =Y ()’
j=1

j=1

hw"—‘

Therefore, this term corresponds to a weighted sum of squared differences to the mean.

In fact, recall that the squared fo norm is ||v||3 = ;l:l vjz. We can see that ||[x — |3 =
Z?Zl(a:j — Mj)Z‘ Therefore, this term corresponds to an £ norm, but weighted by the
magnitude of the variance in each dimension. If the variance is small in one direction, this
amplifies the difference; if it is large, it downweights it. This makes sense for a Gaussian. A
big variance implies that outcomes further from the mean still have reasonably high density.
A small variance means that the Gaussian is peaked, and moving even a small amount away

from the mean significantly decreases the density.

Exercise 4: Use the formula for matrix-vector multiplication to show the step for the
equality in Equation (2.2). O

Example 1: Let us look at an example with 2-dimensions, d = 2. Let

| _ | -1 2:a%o:mo
142 0.3 0 o3 0 1
This Gaussian has no covariance between the two variables. The first variable has much
higher variance (10) than the second, which has a variance of 1. This means the Gaussian
is wider in the first dimension—and flatter—and narrower and more peaked in the second

dimension. Further, it is shifted in the first dimension x; to be more negative—centered
around p; = —1—and shifted to be slightly positive in the second dimension xs. ([

l’l’:

Now let us consider what the Gaussian looks like with covariance between the variables,
namely non-zeros on the off-diagonal. This causes the distribution to become more skewed,
as shown in Figure 2.1. Further, the determinant and inverse become a bit more involved
to compute, since X is no longer a diagonal matrix.

The covariance matrix is symmetric and positive semi-definite; i.e., 3 > 0. This means
that the eigenvalues are non-negative. Recall that the eigenvalue decomposition for a sym-
metric matrix is 3 = UAU' for orthonormal matrix U € R%¢ and diagonal matrix
A € R4 Every symmetric matrix has an eigenvalue decomposition, and so 3 has an
eigenvalue decomposition. Now the determinant is

DIESIGEPY (2.3)

where the \; € R are the eigenvalues on the diagonal of A. The determinant reflects the
volume spanned by the matrix. If the eigenvalues are large, then a larger volume is occupied.
You can think of the eigenvalues A as the diagonal variances in the rotated space, where
rotation does not affect the width or variability in each (rotated) dimension.



CHAPTER 2. INTERMEDIATE PROBABILITY CONCEPTS 25

2.2 Properties of Expectations

Expectations for multivariate variables are the same as in the univariate case, where now
we simply consider more general sets in multidimensional spaces. We have

Yoxex Xp(x) if X is discrete

[y xp(x)dx  if X is continuous

Notice further that this expectation is actually element-wise

E[X]= (2.5)
E[X4]
where each expectation E [X;] uses the marginal p(x;). Recall that a marginal is the dis-

tribution over a single variable, computed from the larger joint distribution. For example,
if all the variables are discrete, for a given z; € &,

p(.l‘j): Z Z Z Z p(xl,:vg,...,xj_l,xj,xj+1,...,:vd)

T1€X1  r;1€Xj 1 Tj1€X 41 1g€Xy

This means it is straightforward to define the expectation, even for X composed of both
discrete and continuous variables. For example, if X7 is discrete and X5 is continuous, then
for X = [X1, X3], the expectation for the first element uses sums and for the second element
uses integrals.

The marginals themselves can also be mixed. Imagine we have three variables, where
X, is discrete and X3 is continuous. Then, regardless of the type for X, we can get the
marginal

plx1) = /X p(x1, 22, v3)d2s = /X ( > P(ﬂcl,xz,ﬂﬂs)) drs

T2 EAX, ToEX>

where the order of the sum and integral is not relevant. The definition of the marginal only
relies on the types for the variables we marginalize over, namely Xs and X3. The resulting
marginal is a pmf if X; is discrete and is a pdf if X; is continuous.

Exercise 5: Show that we get the elementwise expectation in Equation (2.5), using the
definition of expectation in Equation (2.4). O

Here we review, without proofs, some useful properties of expectations. We can gener-
ically consider multivariate random variables, X € R and Y € R? for d € N, with
univariate random variables as a special case (for d = 1). For a constant ¢ € R, it holds
that:

1. E[eX] = cE[X]
2. E[X+Y]=E[X]|+E[Y]
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3. Var[c] =0 > the variance of a constant is zero

4. Var [X] = 0 (i.e., is positive semi-definite), where for d = 1, Var [X] > 0 is a scalar.
Note that Var [X] is shorthand for Cov[X, X].

5. Var [cX] = ¢?Var [ X].
6. Cov[X,Y]|=E[(X —E[X])(Y —E[Y])']| =E[XY ] - EX]E[Y]"

7. Var [ X + Y] = Var [X] + Var [Y] + 2Cov[X, Y]

8. Var[ X1+ Xo+ ...+ Xy =Y ) Cov[X;, Xj] =D Var[X;]4+2 Y Cov[X;, X|]
i=1j=1 i=1 1<i<j<m

In addition, if X and Y are independent random variables of the same dimension, it holds
that:

1. E[X;Y]] = E[X;] E[Y;] for all i, j
2. Var[X + Y] = Var [X] + Var [Y]

3. Cov[X,Y]|=0.

2.3 Mixtures of Distributions

In previous sections we saw that random variables are often described using particular fam-
ilies of probability distributions. This approach can be generalized by considering mixtures
of distributions; i.e., linear combinations of other probability distributions. This allows us
to take relatively simply distributions, like Gaussians, and produce much more complex
distributions. An example is given in Figure 2.2, where even with just two Gaussians, we
can already see that we can model many more densities.

Formally, a mizture model p(x) is defined on a set of m probability distributions,

{pi(x)
p(x) = i w;pi(x), (2.6)
i=1

where w = (w1, wa, ..., wy) is a set of non-negative real numbers such that Y ;" w; = 1.
We refer to w as mixing coefficients. A linear combination with such coefficients is called a
convex combination.! For discrete random variables X, the p; : X — [0, 1] must be pmfs,
and the resulting p : X — [0,1] is also a pmf. For continuous random variables X, the
pi + X — [0,00) must be pdfs, and the resulting p : X — [0, 00) is also a pdf.

Exercise 6: Assume X is discrete and verify that p satisfies the rules for pmfs, namely
that p(x) > 0 for all x and >,y p(x) = 1. Use the fact that we know each p; is a valid
pmf, and the constraints on the coefficients w;. O

"Whenever we use non-negative weights that sum to 1, we are interpolating between the set of items.
This interpolation results in a convex set, which is why this is called a convex combination. A set C is
convex if for any two z,y € C' we have Az + (1 — A\)y € C for any A € [0, 1].
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Figure 2.2: A Gaussian Mizture Model, where the two Gaussians are mixed with coefficients
w1 = 0.25 on the red Gaussian (leftmost) and we = 0.75 on the blue Gaussian (rightmost).
Namely, if we label the red Gaussian as p1 and the blue as ps, then the yellow line is
p(z) = wipr(z) + waps(z) = 0.25N(—2,0.75) + 0.75N (1, 1).

Here we will briefly look into the basic expectation functions of the mixture distribution.
Let X; be the (implicit) random variable described by the distribution p;. Note it is implicit,
since we are not modeling X;; rather we are modeling X. We can generically look at the
expectation for any function f on X, where if f is the identity we get the expected value
of X.

E[f(X)] = /X F()p(x)dz

We get the same outcome for discrete X.

Consider the simpler univariate setting, where d = 1. We can apply this formula to
obtain the mean, when f(z) = z and the variance, when f(z) = (z — F[X])?, of the random
variable X as

E[X] =) wE[X{],
=1

and
m m
Var[X] =" w;Var[X;] + > w; (E[X;] — E[X])*.
i=1 i=1
The variance corresponds to the weighted sum of the variances of the individual mixture
components, as well as the weighted sum of the distances between the means of the com-
ponents and the mean of the mixture. Intuitively, this makes sense. Consider when we mix
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two Gaussians, as in Figure 2.2. If the means of the two Gaussians are far apart, then the
mean of the mixture likely lies somewhere between them and these distances in the second
term will be quite large. The samples x from this mixture can vary widely, either centered
around the mode of the first Gaussian or much further away at the mode of the second
Gaussian.

Notice that it is very different to take a convex combination of random variables versus
a convex combination of their distributions. Mixture models use convex combinations of
distributions. For the above example, consider if we instead use Y = > /" w; X;. Then the
expectation of this Y is actually the same as the mixture X, but the variances are different

Var[Y] = Var [Z wiXi] = Zinar[Xi] + Z Z Cov[X;, Xj]
i=1 i=1 i=1j=1

For example, if the X; are independent, then the covariance terms disappear and the vari-
ance is simply >, w;Var[X;]. In general, the distributions can be very different. For
example, if Y is the convex combination of two Gaussian random variables X;, then Y is
itself again Gaussian. Namely, it is described by a relatively simple density. The mixture
model of these two Gaussians, however, has the bimodal structure we see in Figure 2.2.

Example 2: We use a signal communications example to give another example that the
distribution for a convex combination of two random variables X and Y does not correspond
to a combination of their distributions. Consider transmission of a single binary digital
signal (bit) over a noisy communication channel. The magnitude of the signal X emitted
by the source is equally likely to be 0 or 1 Volt. The signal is sent over a transmission
line (e.g., radio communication, optical fiber, magnetic tape) in which a Gaussian noise
component Y is added to X, and receive Z = X +Y.

We can model this as follows. We have X : Bernoulli(a) and Y : Gaussian(p, 0?). It
can be shown that

1 — oz (z—p—1)? 1 — Lo (z—p)?
p(z) =a- e 202 +(1—-a) ——=e 252 ,
Y N
though we omit the steps to obtain this, because that is not the point of this example.
Therefore, p(z) is a mixture of two normal distributions A (x + 1,02) and N (u, 0?) with
coefficients w; = a and we = 1 — . But the underlying variables producing Z involve the
sum of a Gaussian and a Bernoulli random variable.

O

2.4 Entropy and KL Divergence

We have so far mainly discussed statistics on distributions. Another set of metrics reflects
their information content, which can be seen as the level of stochasticity or randomness in
the random variables. The entropy of a random variable is defined as

H(X) = — Y sex (@) logp(z) if X is discrete
- Sy p(x)logp(x)der if X is continuous

For continuous RVs it is more specifically called the differential entropy. The uniform
distribution has the highest entropy, and a perfectly peaked (deterministic) distribution has
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the lowest entropy. The entropy, for us, is primarily useful to define the Kullback-Leibler
(KL) divergence and mutual information.

The KL divergence between two probability distributions p(z) and ¢(x) is defined on

X =Ras

[e.e]

Dcolle) = [ ple)tog 2

oo q(x)
In information theory, KL divergence has a natural interpretation of the inefficiency of signal
compression when the code is constructed using a suboptimal distribution ¢(z) instead of the
correct (but unknown) distribution p(z) according to which the data has been generated.
However, more often than not, KL divergence is simply considered to be a measure of
divergence between two probability distributions. Although this divergence is not a metric
(it is not symmetric and does not satisfy the triangle inequality) it has important theoretical
properties in that (i) it is always non-negative and (ii) it is equal to zero if and only if
p(x) = q(2).

One interesting note is the relationship between maximum likelihood estimation and KL
divergence. Let p(z|@) be the estimated probability distribution and p(x|6p) the underlying
(true) distribution according to which the data set D = {z;}I'; was generated. The KL
divergence between p = p(:|6p) and ¢ = p(-|9) is?

Dxr(p(-[60)|Ip(-16)) =Lp<wl90>logp(f|fé)))dx

= [ plaioo o — w)m | plato)tog pialb)dz

— [ plalooyios s = | plato)og piaib0)dz.
1

:/Xp(xwo)log o |9)daz—/Xp(x\90)logp(x|eo)da:.

The second term in the above equation is simply the (differential) entropy of the true
distribution and is not influenced by our choice of the model #. The first term, on the other
hand, can be expressed as

xZ.

/X (x|60) log e w)da:— —/Xp(xlﬁo)logp(x!@dw— ~Eflog p(X|0)].

where the expectation is taken with respect to p(z|6). To see why, define f(z) = log p(z]6).

Then E[f(X)] = [, p(z|60) f(x)dz = [, p(x]6o) log p(x|0)dz.
Therefore, minimizing the expected negative log-likelihood ~E[log p(X |#)] minimizes the
KL divergence between p(x|6) and p(z|0o):

argmin Dii, (p(:100)IIp(-10)) = argmin ~Eflog p(X10)].

ZNote that if functions have two variables f(z,y), when we want to talk about the function on one
variable, with the other variable y fixed, then we write function g = f(-,y). Here, we write p(+|0) to indicate
that we have the density over x for a given 0. If we wrote p(z|@), that is the density for a specific z. Our
goal is to specify the KL between the two densities, across all z, so we write p(-|6o) and p(-|0).
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Using the strong law of large numbers, we know

]- n a.s.
~2 logp(wilf) =% Ellogp(X|0)
=1

when n — oco. Thus, when the data set is sufficiently large, minimizing the negative log
likelihood is very nearly like minimizing this KL divergence.



Chapter 3

Revisiting Linear Regression

Given a data set D = {(x;, ;) };—; the objective is to learn the relationship between features
and the target. In linear regression, we assumed the function f is a linear function

d
fx) = ijxj =x'w
j=0

where we assume xg = 1 so that wg corresponds to an intercept term. We derived updates
to obtain the maximum likelihood solution—the ordinary least squares solution—and the
{5 regularized solution, sometimes called the ridge regression solution. The SGD update for
linear regression is

Wil = Wi — Tt (XzTWt - Z/z) Xq
For /5 regularization, with regularization parameter \ > 0, we have update
Witl = Wi — )¢ [(XZTWt - y7,> Xi + )\Wt}
In this chapter, we revisit the properties of this solution. We first look at the closed
form solution for OLS and ridge regression, and then analyze the stability of this solution.
3.1 Ordinary Least-Squares (OLS) Regression

Recall that when we wrote down the maximum likelihood formulation for linear regression,
it corresponded to solving the following minimization problem

n
WyLg = argmin Z(xiw — yi)Q.
weRdt!
We found that the gradient of this objective was
n n n
\% Z(xiw —y)? =2 (Z xixj> W — Zinyi
i=1 i=1 i=1

allowing us to solve for VY7, (x;w — y;)? = 0 to get
n -1 n

W = <Z X,L'XZT> Z X3Yi
i=1 i=1

31
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Let us now rewrite this a bit more compactly using matrices. Notice first that when we
multiply matrices, we are essentially summing over the inner dimension, with outer products
for rows and columns of the matrices: for A € R™*" B € R"*P,

AB = z": A(:,1)B(,:)

=1

where A(:,4) is the ¢th column of A and B(7,:) is the ith row of B. We can see this by
noticing that if we index into a specific element C(j, k) for C = AB, then it is the dot
product between the jth row in A and kth column in B:

n
C(j,k) = A(j,)B(:, k) = > A(j,1)B(i, k).
i=1
We can similarly rewrite the sum of the outer products of x; above using
n n
XX =>"X(i,:) ' X(i,:) = > xix]
i=1 i=1
where the dataset consists of X € R"™ 4 and y € R", where X(i,:) = x; and y(i) = v;.
Additionally, we can write 3. ; x;4; = X "y where again the dot product plays the role of
the sum. Then we can write the OLS solution as
-1
w = (XTX) XTy
We could also have started by writing the objective using these matrices and vectors

Wy = argmin HXW - Y||§
weRd+1

where the ¢ norm is defined as ||a]|3 = a’a = >_7 ; a?. Then we could use the simple rules

for computing gradients for vectors, in Table 1.1.
Exercise 7: Use the rules from Table 1.1 to compute the gradient of |Xw — y||5 wrt w. [J
In either case, when we set the derivative to zero, and rearrange, we get

X' Xw=X"y = wyp=(X"X)"'X"y (3.1)

We can see that the predictions on the training set from this OLS solution are
¥ =Xwyue=X(X'X)'X"y.

The matrix X(X'X) 'X" is called the projection matriz, because it projects y to the
column space of X. In machine learning, we might say that it projects y to the space

representable a linear combination of our features: ¥y is the best linear approximation to y
for the given features.

Example 3: Consider the data set D = {(1,1.2),(2,2.3),(3,2.3),(4,3.3)}. We want to
find the optimal coefficients of the least-squares fit for f(z) = wo + w1z and then calculate
the sum of squared errors on D after the fit. The OLS solution can be obtained using

11 1.2
12 [ wg | 23
X=113 ’W[wl Y= 93 |
1 4 3.3
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where a column of ones was added to x to allow for a non-zero intercept. Substituting
X and y into Eq. (3.1) results in w = (0.7,0.63) and the sum of square errors is 0.223.
This solution is obtained by using a numerical library, which involves computing the matrix
products and inverses. O

3.1.1 Extension to a Weighted Error Function

In some applications it is useful to consider minimizing the weighted error function

2
n d
Err(w) = Zbi ( Wiks5 — yz) )
; =

=1

where b; > 0 is a weighting for data point i. Expressing this in a matrix form, the goal is to
minimize (Xw —y)' B (Xw — y), where B = diag (b, b, ..., b,). Using a similar approach
as above, it can be shown that the weighted least-squares solution w, can be expressed as

-1
Wy, = (XTBX) X "By.
In addition, it can be derived that
—1
w, = Wy + (X'BX) X' (I-B) (XwWye - y),

where wy g is provided by Eq. (3.1). We can see the solutions are identical when B =1,
but also when Xwy, x = y. In other words, if we can perfectly fit to y, then the weighting
does not influence the solution. This makes sense, since the weighting is trading off the
error for different samples. If there is zero error for every sample, then there is no trade-off.

Exercise 8: Derive the above weighted solution, similarly to how we derived the closed
form solution for linear regression. (|

Exercise 9: We assumed b; > 0. What if we set b; = 0 for one sample 7 How does it
change the solution? What about if we set b, = —17 O

3.1.2 Predicting Multiple Outputs Simultaneously

The extension to multiple outputs is straightforward, where now the target is an m-
dimensional vector, y € R™, rather than a scalar, giving target matrix Y € R"*™. Corre-
spondingly, the weights are also a matrix W € R¥™ giving prediction x' W € R™, with
error

Err(W) = |XW - Y% = Z |X;. W - Y, |3 > Frobenius norm
i=1
= trace ((XW - Y)(XW - Y))

where the Frobenius norm is defined as ||A[|% = >ij A?j and the trace is the sum of the
diagonal of a matrix. The resulting solution is

Wys = (X'X)'X'Y.
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Note that we give this solution without derivation, and it is not an obvious conclusion.
But it is relatively straightforward to derive, using partial derivatives or using the matrix
derivative rules.

Exercise 10: Derive this solution, by taking partial derivatives or by using gradient rules
for matrix variables. l

Looking at this solution, we can see that it is actually equivalent to computing a separate
linear regression solution for each output separately. Namely, for yi € R™ the k-th target
for each sample, with Y = [y1,y2,...,ym] € R"*"™,

WMLE = (XTX)ile [y17 yo,... 7ym] = [(XTX)ileYD (XTX)AXTY% K} (XTX)ileym]

= [W1,Wa,..., Wy

where wi, = (X' X) ' X"y}, the linear regression solution for scalar target v, in the target
vector y = (Y1, Y2, - -+, Ym]-

This result is almost disappointing: shouldn’t learning all of the targets at once be more
useful than simply learning than separately? The reason is that we do not constrain the
models to consider relationships between the targets. In the absence of such constraints, the
best way to minimize the squared error is to get the best linear fit for each scalar target. We
can impose constraints on W so that some of the weights must be shared between targets.
For linear regression, one way to do this is called reduced rank regression. When we move
to learning features in Chapter 9, we will see another way to encourage solutions to jointly
consider the targets.

3.2 Stability and the Bias-Variance of the OLS Solution

The OLS solution can be unstable. In this section, we show why this is the case, and
discuss how regularization can be used to mitigate this problem. We will then revisit the
bias-variance trade-off, and discuss the bias and variance of the OLS solution.

3.2.1 Sensitivity of the OLS solution

The OLS solution is unstable if X' X is not invertible. This can occur for two main reasons:
linearly dependent features and small datasets. Data sets often include large numbers of
features, which are sometimes linearly dependent or highly correlated (linear dependence
except for noise). If the dataset is small, it is feasible that some features are the same across
samples, again resulting in low-rank X. When XX is not invertible—or ill-conditioned—
the OLS solution is highly sensitive to small perturbations in y and X.

To see why, we will look at the singular value decomposition (SVD) of X. As with
the previous linear algebra constructs, it allows us to easily examine properties of X. We
overviewed the SVD in Section 1.4.1. Let’s consider the common case, where n > d: the
number of samples is greater than the input dimension. The singular value decomposition of
X = UXV' for orthonormal matrices U € R™", V € R**? and non-negative (rectangular)
diagonal matrix 3 € R™*¢. The diagonal entries in ¥ are the singular values, which we
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typically order in descending order o1, 09, ..., 04, giving
(o1 0 O 0 7
0 oo O 0
ocp 0 ... O
0 o9 0
€10 0 0 od = [z(ﬂ where X, &
0 O 0 0
0 O 04
(n —d) rows of zeros
L0 0 0 0 |

The matrix U = [uy, ..., u,] € R"*" is the orthonormal matrix composed of the left singular
vectors, and V = [vy,...,vg| € R4 is the orthonormal matrix composed of the right
singular vectors. Recall that we can equivalently write this with the thin SVD, assuming
n > d, using Uy = [uy, ..., uyg] € R the first d left singular vectors: X = UyX4V . This
is because the zeros in 3 multiply the columns in U at positions d + 1,...,n. Nonetheless,
we still write the full SVD because it will be easier to deal with orthonormal U than the
non-square Uy, at least to start.

Now we can discuss the least-squares solution, in terms of the singular value decompo-
sition of X. Notice that

X'X=VvZ'U'UZV' =Vx2V'

because U is orthonormal and so U' U = I the identity matrix (I is a diagonal matrix with
ones on the diagonal) and because

DIF

'y = [zd 0} [0

] = 3%, + 00 = X2
The inverse of XX exists if X is full rank, i.e., 34 has no zeros on the diagonal, because
(X"X)™" =VX;?V". The resulting solution for w looks like!
d u’
w=(X'X)"'X'y=VE'Uyy=>_ ﬁvj (3.2)
j=1 7

The solution in Equation (3.3) makes it clear why the linear regression solution can be
sensitive to perturbations. For small singular values, 0]71 is large and amplifies any changes
in y. For example, for slightly different noise component ¢; for the ith sample, the solution
vector w could be very different. A common strategy to deal with this instability is to drop
or truncate small singular values. This is a form of regularization.

Remark: In the general case, where X is not full rank, we can still obtain a least-squares
solution to X'Xw = X'y. Now, there are potentially infinitely many solutions. The
common choice is to select the minimum variance solution, which corresponds to dropping
the components (singular vectors) for the zero singular values:

rank of X .. T
_ J .
w = E T (3.3)

!The last step in the below equation, writing the matrix product as a sum, is not immediately obvious.
But it is not hard to find by simply multiplying out each matrix-vector product: first a = Uy, then
b = X;'a and finally Vb. As an exercise, see if you can derive this last equality.
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Example 4: [Dependent or correlated features] Let’s look at a simple example of why
X € R™*? might have small singular values. First, assume d = 2 and x5 = 1, i.e., that
the second features is a copy of the first and simply redundant. Then X = U3,V ' is the
thin SVD of X, where Us only has the first two columns of the full SVD. We can write this
thin SVD because X = U3V = UZVT, where the zero singular values zero out the
remaining columns of U.

The SVD of just the first column a; € R™*! is straightforward: a; = ujoiv;, where
w; = aj/||ai|, o1 = ||ai|| and v; = 1. The SVD of X = [a; ay] is therefore, for any n-
dimensional unit vector uy that is orthogonal to uy, and right singular vectors v, vy € R2,

1.4140; 0 V0.5 V0.5
0 0 /0.5 V0.5

where we extended vy to two-dimensions (since d = 2), and defined va to be orthogonal to
that vector, and had to rescale oy by 1/1/0.5 ~ 1.414 to maintain unit singular vectors. So
because as is dependent on aj, the rank does not increase when we add it as a column and
the singular value g9 = 0.

If instead ag = a; + € for a small noise vector ¢ € R" (linearly correlated), then instead
we would find that o9 would no longer be zero, but would be very close to zero, because u;
and the first singular value o; would largely be able to recreate as. (|

X = [U_l ug]Z[vl Vg]T = [u1 112] [ ‘| = 1110'1[1.0 1.0]

This example highlights that the rank of X might be lower if there is redundancy in the
features. Similarly, we can have an X with nearly zero singular values if there is redundancy
in the training samples. Even with n > d, for n close to d, two input feature vectors could
accidentally be similar; they are randomly sampled, after all. This is why in linear regression
overfitting can manifest in large weights. It is actually fitting to the noise, such as the €
in the above example, instead of to actual patterns. This noise is recognizable by the fact
that the singular values are very small, resulting in large weights.

3.2.2 Improving Stability with ¢/, Regularization

The OLS solution is the maximum likelihood solution. But, we can also propose a MAP
objective. Instead of specifying no prior over w, we can select a prior to help regularize
overfitting to the observed data. Here we discuss /o regularization—which corresponds to
a Gaussian prior—which helps improve the stability of the solution.

Let us use the zero-mean Gaussian prior, N'(0,0?\™'I), where we get to pick regular-
ization parameter A > 0. The choice of variance o2A™'I will be made clear below, but
intuitively we scale the regularization to be higher if the variance in targets is higher. To
write down the log of the posterior, we need the log of the likelihood and the log of the
prior. We have already taken the log for the MLE solution, so lets focus on the log of the
prior.

T
W W

A
_ 1 2,1 1 2 T
—Inp(w) = 5§ In(27|o° X" '1]) + 2oy = 2 In(27) — dIn(\/o%) + ﬁw w.

because |02\ 'I| = (62/)\)9, where |A| is the determinant of the matrix A. We can drop
the first constant which does not affect the selection of w.
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Now we can combine the negative log-likelihood and the negative log prior. Then ignor-
ing constants, we can add up the negative log-likelihood and negative log prior to get
T
w

1
argmin — In(p(y[X, w)) — Inp(w) = argmin - || Xw — y[3 + 55w
w w 20 20

1 A
= argmin — | Xw — y||2 + 0’ - Sw'w
w 2 20’2
where the second line follows from multiplying both the first and second term by o2. There-
fore if we assume that the weights have a zero-mean Gaussian prior N'(0, \"'¢?I), then we
get the following ridge regression problem:

2 2

where A is a user-selected parameter that is called the regularization parameter. The idea is
to penalize weight coefficients that are too large. The larger the A, the more large weights
are penalized. Correspondingly, larger A corresponds to a smaller covariance in the prior,
pushing the weights to stay near zero. The MAP estimate, therefore, has to balance between
this prior on the weights, and fitting the observed data.

If we solve this equation in a similar manner as before, we obtain

Wiar = (XX 4+ )Xy,

This has the nice effect of shifting the squared singular values in Efl by A, removing stability
issues with dividing by small singular values, as long as A is itself large enough. In particular,

d

Uj T
Whiap = Z —5 U, YV (3.4)
ey + A

Notice that when A = 0, then we have o;/ 0]2- =o0; ', which is the solution we found for
MLE. With A > 0, we ensure that we do not divide by very small singular values 0]2-, and
so improve stability. In the next section, we discuss how this can reduce the variance of the

solution significantly, albeit with some introduction of bias.

3.2.3 The Bias-Variance Trade-off

A natural question to ask is how this regularization parameter can be selected, and the
impact on the final solution vector. The selection of this regularization parameter leads
to a bias-variance trade-off. To understand this trade-off, we need to understand what it
means for the solution to be biased, and how to characterize the variance of the solution,
across possible datasets.

Let us begin by presuming that the distributional assumptions behind linear regression
are true. This means that there exists a true parameter w such that for each of the data
points Y; = E?:o w;jX;; + €;, where the ¢; are i.i.d. random variables drawn according to
N(0,0?). We can characterize the solution vector (estimator) wyp as a random variable,
where the randomness is across possible datasets that could have been observed. In this
sense, we are considering the dataset D to be a random variable, and the solution wy g (D)
from that dataset as a function of this random variable.



CHAPTER 3. REVISITING LINEAR REGRESSION 38

The reason we care about the bias and variance of wyz because the expected mean-
squared error to the true weights can be decomposed into the bias and variance.

d d
E [|lw(D) - w|f}| =E [ij(v) - %)2] = "B [(w(D) — w;)?]
j=1 Jj=1
where we can then further simplify this inner term
E [(w;(D) —w;)?] = E [(w;(D) - E [w;(D)] + E [w;(D)] - w;)?]
= E |(w;(D) — E [w;(D)])?] + E [(E [w; (D)] — wy)?]
where the second step follows from the fact that

—2E [(w;(DP) — E [w; (D)) (E [w;(D)] = wj)] = (B [w;(D)] - w))E [w;(D) - E [w;(D)]
0.

The first term above in E [(w;(D) — E [w;j(D)])?] is the variance of the jth weight and the
second term is the bias of the jth weight, where E [(E [w;(D)] — w;)?] = (E [w;(D)] — w;)?
because nothing is random in this term so the outer expectation is dropped. This gives

I
M=~
=
=
3
£
=

E [||w(D) - wlf3]

<.
Il
-

(D)) = wj)? + Var [w;(D)] (3-5)

I
M=
Gl
£

<.
Il
-

showing that the expected mean-squared error to the true weight vector w decomposes into
the squared bias—where the bias is E [w;(D)] — w;—and the variance.

The bias-variance trade-off reflects the fact that we could potentially reduce the mean-
squared error by incurring some bias, as long as the variance is decreased more than the
squared bias. Note that we do not directly optimize the bias-variance trade-off. We can-
not actually measure the bias, so we do not directly minimize these terms. Rather, this
decomposition guides how we select models.

Let us now look at the expected value (with respect to training data set D) for the
weight vector wy g, with € = (e1,€9,...,6p):

Efuwns(D)] = E [(XTX) X (Xw + e)}
_E [(XTX)_I (XTX)w} +E {(XTX)_l XTE}
—E[w] +E {(XTX)l XT} E[e]

where the third equality follows from the fact that the noise terms € are independent of the
features and the last equality because w is a constant vector (non-random) and E[e] = 0.
An estimator whose expected value is the true value of the parameter is called an unbiased
estimator.
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The covariance matrix for the optimal set of parameters can be expressed as
Covlwye(D)] = E [ (whns(D) = w) (wain(D) ~ w)"|
— ]E _wMLE(D)wMLE(D)T} - wa

Taking® X' = (XTX)71 X", we have wys(D) = w + X'g, so

r T
Coviwye(D)] = E (w + XTE) (w + X%) } —ww'
=ww' +E [XTEETXTT} —ww '
because E [X'ew'] = E [X'|E[e]w’ = 0. Now because the noise terms are independent
of the inputs, i.e., E [ee"|X] = E [ee "] = 0*I, we can use the law of total probability (also
called the tower rule), to get

E|[X'ee X'T| =E[E [X'ee X'T[X]]
—E |X'E [ee” [X] X']
= o’E [X'X"T].

Thus, we have

Cov|wyis(D)] = o°E [(XTX)*} = o’E [VE;QVT}

where o2 is the variance of y given x. Naturally, the covariance of the weights across datasets
is higher if the variance of the targets is higher.

As discussed above, the matrix X'X = VEV can be poorly conditioned, with some
zero or near-zero singular values. Consequently, this covariance matrix can be poorly con-
ditioned, with high magnitude co-variance values. This implies that, across datasets, the
solution wy(D) can vary widely. This type of behavior is suggestive of overfitting, and is
not desirable. If our solution could be very different across several different random subsets
of data, we cannot be confident in any one of these solutions.

We can also reason about how this variance suggests high MSE. To characterize the
MSE, we only need the diagonal of this covariance matrix, as shown in Equation (3.5). We
need Z?:l Var [w;j(D)], which is the sum of the diagonals of this covariance matrix, also
called the trace of the matrix. Fortunately for us, the trace of a square matrix corresponds
to the sum of the eigenvalues of the matrix, which for the above are Ec_lQ. Therefore we
have that

d
ZVar [wmLE,j(D)] = trace(Cov]wwes(D)])
j=1
=o’E [trace (VE;QVT)] > linearity of trace
=o’E Z 0]72 .
j=1

2This matrix is called the pseudo-inverse of X. The idea of a pseudo-inverse generalizes the concept of
inverses to non-invertible matrices, including rectangular matrices. This includes low-rank X, where the
pseudoinverse uses the inverse of non-zero singular values and otherwise sets the entry to zero. It is a useful
concept, but not one we will need to use again and so is not explained in-depth here.
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This formula makes it clear that the variance of the weights is tied to the magnitudes of
the inverse of the singular values. If we have very small singular values, then this sum is
much larger. The singular values will not be small for all datasets that could have been
observed, but in cases where overfitting is possible (small n), we expect it to happen for a
large proportion of datasets.

The regularized solution, on the other hand, is much less likely to have high covariance,
but will no longer be unbiased. Let wyap(D) be the MAP estimate for the ¢y regularized
problem with A > 0. Using a similar analysis to above, the expected value of wy,p(D) is

E[wyar(D)] = E {(XTX L)X (X + s)} —E {(XTX A1) (XTX)w} £ w.

As A — 0, the MAP solution gets closer and closer to being unbiased. If we let Ay be a
diagonal matrix with values 0]2- / (032- + A)? on the diagonal, then the covariance is

Covlwyap(D)] = o’E [(X7X + A1) (X X)(X X + A1) |
— o°E [VAdVT] .
because X 'X = VI2VT and X X + A\ = V2V + A1 = V(22 + AI)V' giving

(XX +A) (X' X)X X+ M) = V(2 A) 'V VEEVTV(E2 4 A1) VT
= V(2472322417 > V'V=I
= VALV’ > Ag = 23224+ A1)72

This covariance is much less susceptible to ill-conditioned X "X, because the shift by \
improves the condition. The covariance is now dictated instead by the eigenvalues Ay,
which only have 03 + A on the denominator. Consequently, we expect wyp to have lower
variance across different datasets. This correspondingly implies that we are less likely to
overfit to any one dataset. Notice that as A — oo, the variance decreases to zero, but the
bias increases to its maximal value (i.e., the norm of the true weights). There is an optimal
choice of A that minimizes this bias-variance trade-off—if we could find it.

Exercise 11: Derive the covariance formula for wyp(D). O

The above assumes realizability, namely that the true model is linear. In practice, we
not only have bias from ¢ regularization but also due to the fact that we likely do not
have the true model in our model class. You have seen this before, when we discussed
generalization and linear regression and polynomial regression. We will revisit this non-
realizable case, and generalization error, when we move to more complex models that learn
data representations.

Exercise 12: Recall that for polynomial regression we first transformed the inputs into
new polynomial features. Then, we simply treated this new transformed dataset as a linear
regression problem, though we know now that we are learning a nonlinear predictor in
the original space. Let us think of ® as the transformed space, namely consisting of the
polynomial features. This new matrix has a much larger d—many more columns—since we
expanded the number of features. Do you think this ® is more or less likely to suffer from
having small singular values, than the original one X before the transformation? ([l



Chapter 4
Intermediate Optimization Principles

You have learned the basics of gradient descent and stochastic gradient descent. In this
chapter, we will discuss the second-order gradient descent update for the multivariate case.
We start by re-deriving the second-order gradient descent update rule, now for the multi-
variate setting, and introduce the Hessian matrix. We will provide new stepsize selection
algorithms, expanding on the basic heuristics you have already seen.

4.1 Second-order Multivariate Gradient Descent

We can generalize the discussion on obtaining the gradient descent update from the univari-
ate case to the multivariate case using the multivariate Taylor series approximation. The
second-order Taylor approximation for a real-valued function of multiple variables can be
written as

c(w) = &(w) = c(wg) + Ve(wo) (W — wo) + % (W —wp) H,(w,) (W — Wo)

where .
[ Oc Oc Oc d
VC(WO) = (M(WO), %(WO% veey M(WO)> eR

is the gradient of function ¢ evaluated at wg and

2 2 2
505 (W) Bz (Wo) gty (Wo)
9%¢c (Wo) &(
0 2 WO)
HC(WO) _ 8w28w.1 ows c Rdxd
2 ' ' ‘ 2
%( 0) . g,wCQ (WO)

is the Hessian matrix of function ¢ evaluated at wy.

Example 5:
Let us consider a two-dimensional example, for the surface depicted in Figure 4.2. This
example corresponds to a squared linear regression objective with one sample (x,y), c¢(w) =

%(wl + 2ws — y)? for x = 0.1 and y = 2.0. The gradient at some point w is

oc- (w)
Ve(w) = [ 88 (w1 + zws — y)z

3152 (w)

:[ (w1 + 2wz — y) ]

41
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1
o(w) = 5 (w1 +0.1w, — 2)?

Figure 4.1: The loss landscape for w € R?, with one dimension being very flat and the

other very curved. This example corresponds to a squared linear regression objective with

one sample (z,y), ¢(w) = 3(w1 + 2wy — y)? for x = 0.1 and y = 2.0.

and the Hessian is

H =
o(w) (w1 + zwy —y) 2= (w1 + Twy — y)x

|22

For the given sample z = 0.1 and y = 2.0, we have that

vc(w):[ (w1+0.1w2—2.0))] Hc<w)=[ 1 01 ]

02 02
[ 907 (W) Furow, (W) ] _ l %(W +awy —y) g2 (wr + zwy — y)z ]
Owz

2 2
6w828€w1 (W) gTuZZ (W>

—_

0.1(w1 4+ 0.1wy — 2.0 0.1 0.01

The gradient is local, around a specific point wg. If we have wo = (0,0), then

(0+0.1 x 0 —2.0) -2
Ve(wo) = l o.1(0+0.1x>< 0—2.0) ] B l —0.2 ]

This gradient points in an ascent direction. For this example, the Hessian is the same for
every w, but this is not always the case. Usually, it changes depending on where we are on
the loss landscape. O

We provide some intuition for the Hessian in the next section, but here it can be intu-
itively considered analogous to the second derivative. Like the second derivative, it provides
information about the curvature of the function, and so provides useful information about
how much to step in the direction of the gradient for each w;.

As a reminder about matrix-vector multiplication, the product of a d x d matrix H and
d x 1 vector w is a d x 1 vector Hw. Then, taking w' Hw is the dot product between a 1 x d
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vector w' and d x 1 vector Hw, resulting in a scalar. For matrix-vector multiplication,

H;. H;.w <Hl:7 W>

H2: H2:W <H2:7 W>
Hw = . W = . = .

Hd: Hd:W <Hd:7 W>

When performing matrix-vector multiplication, you can just imagine the vector w turning
sideways and multiplying each row of H. For matrix-matrix multiplication, AB, you have to
ensure that the second dimension of A equals the first dimension of B. The matrix-matrix
multiplication decomposes into matrix-vector multiplication, for each column of B.

As before, to get the incremental update, we can take the gradient of this approximation
and obtain the (local) stationary point. Using the basic rules summarized in Section 1.4.2,
the gradient of é(w) is

Vé(w) = Ve(wy) + HC(WO) (W —wp).

Again, we want to find wy such that this gradient is zero. To solve for H(yw) (W — wq) =
—Ve(wy), one can compute the inverse Hg(lw()) and multiply both sides of the equation by
this inverse. This is again analogous to the inverse of a scalar: h~'h = 1. The corresponding
multivariate update is

Wit1 = W; — (Hc(wi))71 VC(WZ) (41)

In Equation 4.1, both gradient and Hessian are evaluated at point w;.

4.2 Trying to Visualize the Hessian

Like the second-derivative, the Hessian reflects the curvature of the function at the point
wo. Each entry reflects how the partial derivative for w; changes when w; is changed.
For additional intuition, consider the directional derivative. The directional derivative re-
flects how a (multivariate) function changes when stepping a small amount ¢ in some fixed
direction u

Once we restrict ourselves to how the function changes in this one direction, it is easier to
imagine and it allows us to use the familiar second derivative test for the univariate setting.

Assume that w is a stationary point, namely that Ve(w) = 0. We would like to
understand if we have a local minima, local maxima or saddlepoint. Let

w(t) = w4+ tu

g(t) = c(w(?)).

We can use the chain rule on g(¢) to compute the derivative w.r.t. ¢.

g (1) = Vetw() ) gewin) T
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1 1
c(w) = 5(w1 +0.1wy — 2)% + 5(w1 — 0.3wq + 1)?

Figure 4.2: The loss landscape for w € R?, with one dimension being quite flat and the
other quite curved. This example corresponds to a squared linear regression objective with
two samples (z1,y1) = (0.1,2) and (x2,y2) = (—0.3,—1), giving c(w) = (w1 + 0.1wy —
2)2 + (wy — 03wy + 1)2.

Therefore, we can use this generic gradient, and evaluate at ¢t = 0

g'(0) = Ve(w(0)) 'u = Ve(w) 'lu=0

where the last equality occurs because w is a stationary point and so Ve(w) = 0. The
second derivative is

a(w(t) " o(wi(t
g'(t) = Amiz)) 875 ) H(wit) ( 875 ) _ u' H(wu

g”(()) = uT Hc(w) u

For this stationary point w (corresponding to ¢ = 0) to be a local minimum, ¢”(0) has to
satisfy the second derivative test: g”(0) > 0. This test is only satisfied if H(y, is positive
definite, by definition of a positive definite matrix. Recall that a positive-definite matrix
H is one for which, given any u # 0, u'Hu > 0, or equivalently, has all eigenvalues
greater than zero. Since u was an arbitrary direction away from w, the Hessian must be
positive-definite to ensure that g”(0) > 0 for all u # 0.

The eigenvalues of the Hessian, therefore, reflect the curvature of the function locally.
If H(w) has a very small eigenvalue A;, then the corresponding eigenvector u;—satisfying
H w)u; = Aju;—is a direction away from w where the function is almost flat. This is
because ¢”(0) = u] Howyuj = Ajllu;[|3 = A; is very small.

Example 6: Let us consider a similar example to the one above, but this time with two
samples. In addition to (x1,y1) = (0.1,2), we also see (z2,y2) = (—0.3, —1). The objective

1S
1 1
c(w) = = (w1 + z1we — y1)? + §(w1 + 29wy — y2)?
—_— —

2
51 62



CHAPTER 4. INTERMEDIATE OPTIMIZATION PRINCIPLES 45

The gradient is

and the Hessian is
I 21 1 x| 2 —0.2
Hegw) = [ T 3 ] + [ Ty 3 ] N l -0.2 0.1 ]

The eigenvalue decomposition of the Hessian will let us see how it impacts the update. Using
a numerical library, we can find that Hyy) = UAUT for U = [uy, us] with eigenvectors

uy, up as the columns
[ [ o1
Y00 U2 10.95

and eigenvalues A\; ~ 6.5 and A2 = 0.08. The inverse of the Hessian is

o /Ay 0 + | 0625 1.25
HC<W>_Ul 0 1//\21U _[ 1.25 12.51

The Hessian shows that we have one direction with steep curvature (A; ~ 6.5) and the other
being very flat (A &~ 0.08). We can see this visually, but in higher dimensions the easier
way to see it is through these eigenvalues. ([

Exercise 13: If we had taken the eigenvalue decomposition from Example 5, then we
would have found that the eigenvalues are A\; = 101/100 and A2 = 0. An eigenvalue that is
zero indicates a perfectly flat function in one direction. Why did this happen? Also notice

that in this situation, we cannot take the inverse of the Hessian, since it is not invertible!
O

Example 7: The Hessian for linear regression is
Hew) = 2X ' X.

This matrix is the same regardless of which point w we query the Hessian for. Recall that the
matrix X' X € R4 reflects the (sample) covariance of inputs, because X' X = Yoy xixiT .
To determine if the stationary point for linear regression is a (local) minimum, we have the
check if the Hessian is positive definite. Consider that for any vector w # 0,

w' X' Xw = (Xw) Xw = |[Xw]5 >0

where equality with zero can only happen—for some w—if the columns of X are linearly
dependent. Since the Hessian is positive semi-definite for every w, this verifies the convexity
of ¢(w). Furthermore, if the columns of x are linearly independent, the Hessian is positive
definite, which implies that the global minimum is unique. O

Exercise 14: What is the computational complexity of computing X X? g
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4.3 First-order Multivariate Gradient Descent

The size of the Hessian makes the choice between first-order and second-order gradient
descent less obvious in the multivariate case than in the univariate case. In the univariate
(scalar) setting, as long as we have a formula for the second derivative, then it is likely
efficient to compute and provides a good choice for the stepsize. In the multivariate setting,
computing the Hessian itself is expensive (quadratic in the size of w) and it is further
even more expensive to compute the inverse of the Hessian. For example, if computing the
Hessian costs O(d?n) as it does for the linear regression objective, then the computational
complexity of the second-order gradient descent is O(d® + d?n) in each iteration, assuming
O(d?) time for finding matrix inverses. On the other hand, again for linear regression, the
computational complexity for first-order gradient descent is only O(dn) per iteration.

The first order update for the multivariate case is an even greater approximation, because
the whole Hessian is approximated with a scalar % (making the Hessian approximation a

diagonal matrix with % on the diagonal). The gradient of the first-order approximation is

Vé(w) = Ve(wo) + — (w — wp)

Ui

and the resulting first-order update is
Wit1 = W; — UZVC(WZ) (42)

We can do a little better by approximating the Hessian with a diagonal matrix with different

elements on the diagonal. In other words, we have a vector n; where diag(n;) ~ (Hc(wi)) :
The resulting update is one that uses a vector of stepsizes, resulting in a slightly better
approximation

Wit1 = W; — 1) VC(Wl) (43)

where - indicates elementwise multiplication.

The selection of this step-size is an important consideration. We have previously dis-
cussed a few basic strategies to select the step-size; in Section 4.5, we discuss a few more.
Note that in general we assume the stepsize changes with each iteration i. It is likely that

the Hessian is different at different points of the surface, since it reflects the local curva-
-1

ture. Just like a single scalar would be a poor approximation to (Hc(wi)) , it is a coarse
approximation to assume the Hessian does not change for different w;. Most stepsize selec-
tion approaches attempt to approximate the local curvature, to some extent, and it is most
common to use a vector stepsize that changes with time.

4.4 Revisiting Stochastic Gradient Descent

One common approach to handling big datasets is to use stochastic approrimation, where
samples are processed incrementally. To see how this would be done, let us remember our
goal: to find stationary points of the objective function, ¢(w). In some cases, we are able to
obtain a closed form solution for Ve(w) = 0. For many other objective functions, however,
solving for Ve(w) = 0 in a closed form way is not possible. Instead, we start at some initial
wo (typically random), and then step in the direction of the negative of the gradient until
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we reach a local minimum. This approach is called gradient descent and is summarized
in Algorithm 1, with the specific example of the linear regression objective in comments.
Notice that here the objective is normalized by the number of samples n, which does not
change the solution and is the preferred normalization. Otherwise, the gradient grows with
the number of samples and makes it more difficult to select the stepsize.

Algorithm 1: Batch Gradient Descent(c, X,y)

1: // A non-optimized, basic implementation of batch gradient descent

w < random vector in R¢

eIT — 00

tolerance < 10~*

max iterations ¢« 10°

while |c¢(w) — err| > tolerance and have not reached max iterations do
err < c¢(w) > for linear regression, c(w) = 5 S7 (x;w — ;)2 = 5 || Xw — y|3
g « Ve(w) > for linear regression, Ve(w) = X" (Xw — y)
// The step-size n could be chosen by line-search or other stepsize algorithms
71 < line search(w, ¢, g)
W W — g

: return w

=
M2

For a large number of samples n, however, computing the gradient across all samples can
be expensive or infeasible. An alternative is to approximate the gradient less accurately
with fewer samples. In stochastic approximation, we typically approximate the gradient
with a mini-batch—a small random subset of points. In the extreme case, we can use
only one point to approximate the gradient, as in Algorithm 2. Though this approach may
appear to be too much of an approximation, there is a long theoretical and empirical history
indicating its effectiveness (see for example [7, 8]). With ever increasing data-set size for
many scenarios, the generality of stochastic approximation makes it arguably the modern
approach to dealing with big data.

The training algorithm for stochastic gradient descent can now be revised to randomly
draw one data point at a time from D and then update the current weights using the
previous equation. Typically, in practice, this entails iterating one or more times over the
dataset in order (assuming it is random, with i.i.d. samples). Each iteration over the dataset
is called an epoch. The conditions for convergence typically include conditions on the step-
sizes, requiring them to decrease over time. As with batch gradient descent, these stochastic
gradient descent updates will converge, though with more oscillation around the true weight
vector, with the decreasing step-size progressively smoothing out these oscillations.

4.5 Optimization Improvements: Stepsize Selection and Mo-
mentum

Because selecting the step-size is such an important part of an effective descent algorithm,
there are many ways to do so. In addition to line search, one of the most popular methods is
to use quasi-second-order (or quasi-Newton) methods. As we saw, the inverse of the Hessian
provides a good way to select the stepsize, but is typically too expensive to compute let
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Algorithm 2: Stochastic Gradient Descent(c, X,y)

1: w < random vector in R?
2: for i = 1,... number of epochs do
3:  Shuffle data points from 1,...,n

4: forj=1,...,ndo

5: g «+ Vcj(w) > for linear regression, Ve;(w) = (XJTW — Yj)X;
6: // For convergence, the step-size 7 needs to decrease with time

7: // Here we give a basic scalar stepsize; more advanced are in the next section

8: N < it

9: W W — )8

10: return w

alone invert. Quasi-second-order methods approximate the Hessian, with as little storage
and computation as possible. One of the simplest such approximations is to approximate
only the diagonal of the Hessian, and then invert it, which only costs O(d) computation and
space. Such an approximation is typically quite poor for even the diagonal of the inverse
Hessian, and so is not commonly used. Instead, one of the most popular methods has been
LBFGS [15], which attempts to find a low rank approximation to the Hessian that is efficient
to compute with reasonable storage. But, this is not that easy to extend to SGD.

A diagonal approximation to the Hessian may not be effective, but the idea of using a
different stepsize per dimension is sensible. The idea is that you might need to take a bigger
step in one dimension and a smaller in another dimension. For example, if in one direction,
the optimization surface is flatter, you might need a bigger stepsize, and if another it is
steep, then you need a small stepsize. Most stepsize selection strategies select vectors of
stepsizes, where each element in the vector corresponds to a stepsize for the corresponding
dimension. For example, in AdaGrad, we now have a vector n; € R4 where

m=(1+g)"/? (4.4)

where g = g;_1 + g7 using elementwise addition and powers. In other words, for each
entry 7 ; in the vector n; and entry g ; in the vector g;, we update g; ; = g;—1,; + gt%j and
N = (1 +§t,j)_1/2. Then each entry in the weights is updated using w1, = Wi j — N, 9t,5-
This is the stepsize approach we use in Algorithm 3.

In addition to Adagrad, there are a variety of other stepsize selection strategies. A few
examples include Adadelta [29] and RMSProp, with a more comprehensive list given in a
recent empirical study comparing methods [22]. As yet it is not clear that any one method
has clear dominance over any others.

A common default is the Adam algorithm [13]. This algorithm combines RMSProp and
momentum. The idea behind momentum is to take bigger steps when the gradient direction
has been the same recently, and take smaller steps if the direction changes. For this reason,
it is also called the heavy ball method, since it prefers to keep rolling if it has been pushed
multiple times in the same direction, and dampens movement if the two directions are
different.

The update equations remain simple. SGD with a fixed stepsize and momentum has
update equations

Wil < Wy — g + B(wy —wy1)
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Algorithm 3: SGD for objective ¢(w) = i¢;(w) with AdaGrad

Fix iteration parameters: number of epochs = 10* and mini-batch size b = 32

—_

2: w + random vector in R?

3. g « zero vector in R?

4: for p=1,... number of epochs do

5:  Shuffle ordering of data points from 1,...,n

6: fork=0,...,|7] do

7 g+ 0

8: c+ 0

9: for i = kb,...,min((k+1)b—1,n) do

10: g < g+ Vei(w) > for linear regression, Ve;(w) = (x; w — ;)x;
11: c+—c+1

12: g+ g/c > element-wise division
13: for j=0,...,d—1do

o gl < gl + el

5 e /(e

16: wlj] < w[j] — nglj]
17: return w

We can rewrite this to maintain an explicit momentum vector nm; = wy — w;_1. To see
why, let us start by unrolling the recursion

B(wy — wi_1) = —Bngi—1 + B*(Wi_1 — Wy_2)
= —0ngt—1 — 5277gt—2 + 53(Wt—2 — Wi_3))
=..=-1N (,Bgt—l + Bth—Q 4+ ...+ Btg0>

Therefore, we can update recursively update the momentum vector to be the sum of these
gradient vectors, exponentially scaled by 8 < 1, to rewrite the SGD update with momentum

Wil = Wi — N4

myq < g + fmy.

Adam additionally uses RMSProp for stepsize selection, as well as modifications to
this update that seem to be better in practice. First, it explicitly uses an exponential
average for the momentum, by incorporating normalization by 1 — 8. In other words, it
uses (1 — f)m; instead of m;. Second, it uses a bias-correction to account for the fact
that, early in the optimization, the sum of gradients in the momentum term would be
skewed by the initialization of mg = 0. Finally, it uses a vector of stepsizes, given by the
RMSProp update, which normalizes by an exponential average of the squared values of
the gradients. It maintains another vector, v; for this exponential average with its own
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exponential weighting 5,. The resulting update equations are

my 1+ (1 — B)ge + fmy
vir < (1 — Bo)g? + Bovy

my ¢ myy/(1— 69 > bias correction

Vir1 < Vi1 /(1 — ) > bias correction
myq

Wil & Wi —

n\/\?t+1 + €

for a small € to avoid dividing by zero. Typical default values are 8 = 0.9, 5, = 0.999 and
€ = 1078, The stepsize likely needs to be tuned for the problem, but a common starting
point is quite small, around n = 0.001.



Chapter 5

Generalized Linear Models

For prediction, you have seen linear regression and logistic regression. These are both actu-
ally instances of a more general class of predictors called generalized linear models (GLMs).
Intuitively, GLMs extend ordinary least-squares regression beyond Gaussian probability dis-
tributions and beyond linear dependencies between the features and the target. Formally,
they allow for p(y|x) to be any natural exponential family model, of which the Gaussian
(linear regression) and Bernoulli (logistic regression) are special cases.

We shall first revisit the formalization for ordinary least-squares regression. There, we
assumed that a set of i.i.d. data points with their targets D = {(x;,¥;)};_, were drawn
according to some distribution p(x,y). We also assumed that an underlying relationship
between the features and the target was linear, i.e.

d
Y = ijXj +e,
j=0

where w was a set of unknown weights and € was a zero-mean normally distributed random
variable with variance o2. We will now slightly reformulate this model. In particular, it
will be useful to separate the underlying linear relationship between the features and the
target from the fact that Y was normally distributed. That is, we write that

1. p(ylx) = N(u(x),0?) (i.e., where the mean is a function of x and the variance is
constant across x)

2. EY|x] =w'x

This way of formulating linear regression allows us (7) to generalize the framework to non-
linear relationships between the features and the target as well as (i¢) to use distributions
other than the Gaussian.

We start first with an example for the Poisson distribution, and then introduce GLMs
more generally. Finally, we use this general class to derive multinomial logistic regression,
which generalizes logistic regression from binary classification to multi-class classification.
The goal of this chapter is both to introduce you to GLMs and multinomial logistic regres-
sion, as well as revisit MLE for prediction now for a broader set of models.

5.1 A First Example: The Poisson Distribution

We will start first with an example of a GLM, before moving on to the general class and
general definition. Assume that data points correspond to cities in the world—described
by some numerical features—and that the target variable is the number of sunny days

o1
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observed in a particular year. The target variable y may look like a Poisson distribution,
given features x. It would be more natural, therefore, to model
~ Mexp(—A)
!

where A > 0 is the parameter (mean) of the Poisson distribution: E[Y|x] = A. However,
because A € R, it would not be appropriate to model A with w'x € R. Rather, we would
like to transfer our linear prediction with some function g to adjusts the range of the linear
combination of features to the domain of the parameters of the probability distribution.

We can do so by introducing an exponential transfer for this Poisson distribution, and
more generically, later any invertible transfer function g. If we can instead estimate w
such that A = exp(w'x), then we can guarantee our estimates are in the correct range.
Alternatively, one can consider that we are learning a linear weighting of features to learn
a transformed parameter, log(\) = w'x. This simple modification is why these models
are called generalized linear models, because the key component is still a linear weighting.
We formalize the types of distributions and transfers that can be considered in the below
sections, but first finish off this example with Poisson regression to provide a concrete
example.

To establish the GLM model for Poisson regression, we assume (1) an exponential trans-
fer between the expectation of the target and linear combination of features, and (2) the
Poisson distribution for the target variable.

1. p(y|x) = Poisson(A(x)), where A\(x) = E[Y|x]

p(y|x) = Poisson(\)

2. E[Y|x] = exp (w'x) or log(E[Y|x]) = w'x
The resulting probability distribution, for y € N, is

exp(w ' xy) exp (— exp(wa))

y!
where \Y = exp(w ' x)¥ = exp(w " xy) because exp(a)® = exp(ab).

We can use maximum likelihood estimation to find the parameters of this regression
model. Our objective ¢(w) corresponds to the negative log-likelihood

e(w) = £ ei(w) = % 3~ Inp(yilxi, w)
i=1 =1

p(y|X,w) =

where ¢;(w) = — Inp(y;|xi, w) = —w' x;y; + exp(w ' x;) + Iny;!

To minimize ¢(w), we want to find a stationary point, namely find wq such that Ve(wg) =
0. This formula, however, does not have a closed-form solution. Therefore, unlike linear
regression, we will have to use gradient descent. We could choose to use first-order or
second-order gradient descent, and batch or stochastic gradient descent.
The key step in any of these is to first compute the gradient for one sample. We start
by deriving the partial derivative of the negative log-likelihood for one sample
Oci(w)
8’11}]'

= eXP(WTXz’)iL‘ig‘ — TijYi

= X (exp(wai) — yl>
= Tjj - (pz' - yz)
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where p; « exp(w'x;) is the prediction and p; — y; corresponds to a prediction error for
sample i. The batch gradient is

Ve(w) = %Z Vei(w) = %ZXZ (pi — i) (5.1)
i=1 i=1
=.X"(p-vy)

where p is a vector with elements p; = exp(w'x;), and p — y is an error vector. For
stochastic gradient descent, each step consists of using the gradient for one sample (i.e.,
Vei(wy)) and for batch gradient descent, each step consists of using the gradient for all
samples (i.e., Ve(wy)).

We can additionally consider the Hessian matrix, both to evaluate the properties of the
stationary points as well as to allow for second-order gradient descent—though it is likely
too expensive if d is large. The second partial derivative of the negative log likelihood
function for one sample is

Oci(w) T
= TijPiTik
0?c(w) "L 0%¢i(
with ——> = TiiDi X
Ow; 0wy, ;(%ujawk Z iyPiik:

For P an n x n diagonal matrix with p; on the diagonal, the Hessian matrix is therefore
Hw) = :X'PX. (5.2)

This matrix is positive definite if X is not low-rank, which would mean there is only one
stationary point and that it is the global minimum. In fact, we know that the objective for
Poisson regression is convex, even if X is not full rank, and so all stationary points are global
minima. If X is not full rank, then there is a space of many equivalent solutions (infinitely
many). This is because many w produce the same Xw, and so the same predictions. If
H,(w) is in-fact semi-definite, reflecting that we have a flat part in the curve of equal loss
for all of these solutions.

Exercise 15: What is the second-order update for Poisson regression? O

5.2 Exponential Family Distributions

In the previous section, we used a specific example to illustrate how to generalize beyond
Gaussian distributions. The approach more generally extends to any exponential family
distribution. We focus on the natural exponential family, which is sufficient for most gener-
alized linear models. The natural exponential family is a class of probability distributions
with the following form

p(ylf) = exp (Oy — a(0) + b(y))

where 6§ € R is the parameter to the distribution, a : R — R is a log-normalizer function
and b : R — R is a function of only y that will typically be ignored in our optimization
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because it is not a function of #. Many of the often encountered (families of) distributions
are members of the exponential family; e.g. exponential, Gaussian, Gamma, Poisson, or the
binomial distributions. Therefore, it is useful to generically study the exponential family to
obtain algorithms for each these distributions.

Example 8: The Poisson distribution can be expressed as

p(y|A) = exp (ylog A — X —logy!),

where A € RT and Y = Ny. Thus, 6 = log \, a() = exp(f), and b(y) = —logy!. O

Now let us get some further insight into the properties of the exponential family param-
eters and why this class is convenient for estimation. The function a(#) is typically called
the log-partitioning function or simply a log-normalizer. It is called this because

a(0) = log /y exp (6 + bly)) dy

and so plays the role of ensuring that we have a valid density: fy p(y)dy = 1. (For discrete
Y, this integral is a sum.) Importantly, for many common GLMs, the derivative of a
corresponds to the transfer function. For example, for Poisson regression, the transfer
function is g(0) = exp(#), and the derivative of a is exp(#). Therefore, the log-normalizer
for an exponential family informs what transfer g should be used. This result is not too
surprising, given the fact that we can show that

da(0)
a0

=E[Y] and

and g(0) is exactly modelling E [Y].

5.3 Formalizing Generalized Linear Models

We shall now formalize GLMs. The two key components of GLMs can be expressed as

1. p(y|x) is an Exponential Family distribution with log-normalizer a.
_ T - _ T _ 9a(0)
2. E[Y|x] = g(w'x) or g7 (E[y|x]) = w'x where g(0) = S~

The function g is called the transfer function." For Poisson regression, ¢ is the exponential
function, and as we shall see for logistic regression, g is the sigmoid function. The transfer
function adjusts the range of w ' x to the domain of Y; because of this relationship, transfer
functions are usually not selected independently of the distribution for Y. The generaliza-
tion to the exponential family from the Gaussian distribution allows us to model a much
wider range of target functions.

To relate these more clearly to exponential family distributions, we have to consider
conditional distributions. Each p(y|x) is an exponential family distribution, with parameter

!The inverse of g is called the link function, but, really, we don’t need to name everything. For simplicity
in terminology, we only ever refer to the transfer or the inverse of the transfer.
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6 = x'w. When learning w—by maximizing likelihood—we are learning the parameter ;

for each sample (x;,y;). The negative log-likelihood for one sample is

ci(w) = —Inexp(0;y; — a(0;) + b(yi))
—0;y; + a(0;) — b(y;)
—(w'xi)yi + a(w ' x;) — b(ys)

= Q(WTXZ) (WTXZ) yi — b(yi)
with gradients

8w]~ N 8w]~ _8w]~yZ
B 89 8w] 8fwj
_( 20; _yz) ow;

(50).
= (9(0:) — vi) @i

where the last step follows from the fact that above we mentioned that the transfer function
is chosen such that g(6) = a/(#), the derivative of a. Therefore, for every natural exponen-
tial family distribution, we have a clear likelihood objective and gradient to estimate the
parameters for the conditional distribution p(y|x).

Let us now consider what the gradient updates look like. Given the appropriate transfer
g for the desired exponential family distribution, the stochastic gradient descent update is

Yi

Wil = Wi — 1) (Q(X;Wt) - Z/z‘) X;
and the batch gradient descent update is

n
Wiil = Wi — %Z (g(xZ-TWt) — yz) Xi
i=1

:Wt—%XT@)—w

where p o [P1, ..., pn) for p; f g(xith). The second partial derivative of the negative log
likelihood function for one sample and across samples, respectively, is

0?ci(w) _ 0g(8;)

Bwj(?wk ij 89
Pe(w) 1 Z 0%ci(w

Ow;Owy, 8wk « Ow; 8wk
for D an n x n diagonal matrix with % (6 ) on the diagonal. This last line follows from the
fact that this diagonal matrix weights each product z;;x;, with the corresponding diagonal

Tik = wijg/(XiTW)fL"ik

= 1X/DX,,
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entry. The term X;DX;k gives a weighted dot product, where the vectors are size n and
the dot product provides a sum over samples: X:—;DX:;€ = > Dyxgjai,. The Hessian
matrix is therefore

2 2 2
%}%(Wo) auiacwz (WO) e 8walacwd (WO)
9% &%
dw20w1 (wo) W(WO) 1T
) . . . ,
Fa (wo) . Fu (Wo)

As in Poisson regression, this matrix is guaranteed to be positive semi-definite, and further
positive definite if X is not low-rank. The second-order gradient descent update is

w1 =w, — (X' DX)'X' (p-y)

Note that the chosen transfer does not necessarily have to correspond to the derivative
of a. Rather, this provides a mechanism for ensuring a nice loss function (see Appendix
A.1 for more on why). However, this does not mean that any other transfer will necessarily
result in an undesirable loss function. Without any reason to prefer a different transfer,
however, it is definitely sensible to stick with ¢ = a’.

5.4 Revisiting Logistic Regression

One of the most popular uses of GLMs is a combination of a Bernoulli distribution with a
sigmoid transfer function: logistic regression. We summarize the logistic regression model
as follows

1. p(y|x) = Bernoulli(a(x)) with a(x) = E[Y|x]
2. E[Y|x] = o(w'x) or logit(E[Y|x]) = w'x

where logit(z) = In %7 , ¥ € {0,1}, and a € (0, 1) is the parameter (mean) of the Bernoulli
distribution. Recall that the sigmoid function o : R — [0, 1] is defined as

1
gy &~
o(6) 1+4+e?

where here we apply the sigmoid to # = w'x. Using the generic formula above, the SGD
update is

Wil = W — 1) (U(X;Wt) - yz) X;

Exercise 16: Derive the second-order gradient descent update for logistic regression. [
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5.5 Multinomial Logistic Regression

Now let us consider discriminative multiclass classification, where X = R% and Y =
{1,2,...,m}. This setting arises naturally in machine learning, where there is often more
than two categories. For example, if we want to predict the blood type (A, B, AB and O)
of an individual, then we have four classes. Here we discuss multiclass classification where
we only want to label a datapoint with one class out of m. In other settings, one might
want to label a datapoint with multiple classes or labels; this is briefly discussed at the end
of this section.

We can nicely generalize to this setting using the idea of multinomials and the cor-
responding transfer function, as with the other generalized linear models. To use this
distribution, we will assume that the target class is an indicator vector. For example, if
m = 4, and the class for an input x; is 2, then y; = [0 1 0 0]. This is equivalent to writing
y; = 2, but using an indicator vector makes it more straightforward to use the multinomial
distribution. The multinomial distribution is a member of the exponential family, and so
we can leverage the same update rules for GLMs. We can write

1
p(yx) = ————p(y1 = 1[x)”" ..., p(ym = 1[x)"" (5.4)
Y1+ - Ym:
=p(yr = 1|x)¥ ..., p(ym = 1]x)¥™ > 0l=1'=1, eachyp =0o0r1
where the usual numerator n! = 1 because n = 3_7";y; = 1 since we can only have one

class value.

As with logistic regression, we can parametrize p(y; = 1|x) using o(x ' w;). However, we
must also ensure that >27" | p(y; = 1|x) = 1, which we do by normalizing each o(x"w;) by
this sum. The softmax transfer for multinomial logistic regression does just that. The pa-
rameters can be represented as a matrix W € R¥*™ where W = [w1, ..., W;,] is composed
of m weight vectors. The transfer for this setting is the softmax transfer

T

softmax(x ' W) = l exp(x'w) . exp(x " wiy) ]
Sy exp(xTwy) T exp(xTw;)
| exp(x"wy) exp(x " wpy,)
- [exp(xTW)l’ Y eXp(XTW)]_‘|

and the prediction is softmax(x) =y € [0, 1]™, which gives the probability in each entry of
being labeled as that class, where 71 = 1 signifying that the probabilities sum to 1.

With the parameters of the model parameterized by W and the softmax transfer, we
can determine the maximum likelihood formulation. By plugging in the parameterization
into Equation (5.4), taking the negative log of that likelihood and dropping constants, we
arrive at the following loss for samples (x1,¥1), ..., (Xn,¥n)

n
i T —x Wy /[
whin ; log (exp(xi W)l) x; Wy,
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where y; is a row vector (1 x m), so multiplying Wy, results in a vector. The gradient is

" - x;exp(x; W)
\Y ; (log (exp(xZTW)l) - X;rWy;-r) = Z W

=1
[ exp(xi WV ) ]
X4 7

— X5Yi

exp(x; W)1 -y

M= 10

X; [Pi — yil -
1

-.
Il

.. def exp(x] W) T . . s
where the prediction vector p; = m € R™ is a row vector of predicted probabilities
for each class for sample i. Notice that this means that x; [p; — y;] is actually an outer
product, between a d x 1 vector and 1 X m vector, resulting in a d x m matrix. As before,
we do not have a closed form solution for this gradient, and will use iterative methods to

solve for W. For example, the stochastic gradient descent update is
Wi+ Wy —mix; {softmax(xiTWt) — yz} )

We maintain our parameters as a matrix to make the update more interpretable. To better
match it to our regular SGD updates, though, we want to think of W, as a vector. We
can always do so simply by linearizing it: we imagine we stack all the columns of W. Then
if we want to use a vector step-size, for example, it corresponds to a vector of size dm.
Alternatively, we can also have 1 be of the same shape as W—mnamely a matrix of size
d x m—and we still use an element-wise product with the gradient which is also of size
d x m. Either interpretation is equivalent, and it is simply a matter of which is simpler
to implement in the language of your choice. Note that the weights for each class are
not learned independently, because they each impact the other classes due to being in the
normalization in the softmax.

The final prediction softmax(x' W) € [0, 1]™ gives the probabilities of being in a class.
As with logistic regression, to pick one class, the highest probability value is chosen. For
example, with m = 4, we might predict [0.1 0.2 0.6 0.1] and so decide to classify the point
into class 3. Formally, we predict class

exp(xTwy) .
argmax p(y|x) = argmax —; - = argmax X Wwg
ye{l,...,m} ke{l,...,m} Zj:l eXp(X Wj) ke{l,...,m}

Pivoting around one of the classes There is one other nuance for multinomial logistic
regression, which is often ignored in practice but important to know. The above updates
every vector wyi for k € {1,...,m}. However, this is not actually necessary. In fact, we
only need to learn wy, for k € {1,...,m — 1}, because the probability for the final class can
be inferred using the first m — 1: p(y, = 1|x) = 1 — ;”:*11 p(y; = 1|x). Learning wy,, is
unnecessary, and instead we can fix w,, = 0. The remaining variables will “pivot" around
this final class, and be able to represent the same probabilities as if we allowed w,, to be
learned.

In fact, we did just this in logistic regression, namely when we had only two classes.
Recall the binary setting for logistic regression, where we learned one weight vector w € R¢
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ex XTW
and we had o(x'w) = (1 +exp(—x'w))" 1 = #(xﬂ?v)'

nomial logistic regression, with pivoting. The weights for multinomial logistic regression
with two classes are W = [0, w] giving

We can contrast this with multi-

exp(x'w) exp(x ' w) exp(x ' w)

exp(xTW)1 - exp(x70) + exp(x'w) 1+ exp(xw)

Py = 1x) = — o(xw).

Similarly, for m > 2, by fixing one of the classes weights to zero, say w,, = 0, the other
exp(x " wm) 1

weights wy, ..., w,,_1 are learned to ensure that p(y = m|x) = o TWIT = 1+Z;:11 pom -

and that 377" p(y = j|x) = 1.
The optimization itself can be written slightly differently now.

n
min log (exp(x W)1) — x Wy |
WGWWWW:O; g (exp(x] W)1) — x/ Wy,

We now have a constraint on part of the variable. However, this was solely written this
way for convenience. We do not optimize W.,,, as it is fixed at zero; one can rewrite this
minimization and gradient to only apply to the W, (.,,_1). This corresponds to initializing
W.,, = 0, and then only using the first m — 1 columns of the gradient in the update to
W.(1:m—1). Alternatively, you can also update all of W and then set the last weights to
zero after every update:

Wi+ Wy —nix; [softmax(x;rwt) - yl}

WtJer 0

This optimization that is only over W, (., 1 is over fewer variables, and is likely to have
a unique solution. This is in contrast to the update without the pivot, which has too many
free variables and infinitely many equivalent solutions.

There are multiple benefits to pivoting. First, as just discussed, without the pivot, the
solution to our optimization is not unique. There is an infinite space of equivalent solutions.
When possible, forcing our solution to be unique is preferable. A related point is that to be
a valid GLM, the transfer function must be invertible. Here, the softmax is only guaranteed
to be invertible if we constrain (fix) the final variable, say to be 0. For example, imagine we
compute the softmax of [01,02,. .., 60,1, 0] to get output [y1,y2,...,ym]. Then we can infer
01,02, ...,00,_1 from [y1,y2,...,ym|. However, if we used [01,02,...,0m,_1,0m] to compute
Y = [Y1,92, ..., Ym], then there are infinitely many vectors [0y, 602, ...,0,_1, 0] that could
have produced the same y. Therefore, we cannot undo this operation—the application of
the softmax—to figure out what these variables were.

Second, when possible, it is better to learn fewer parameters. The ramifications of
learning this additional vector are not actually clear—no such studies are available. But,
erring on the side of simplicity and reducing the number of free variables is typically a good
choice. Finally, as mentioned above, if we do pivot, then we can ensure that a special case of
multinomial logistic regression for two classes reduces to same algorithm that we designed
for the two class case: logistic regression.

Contrast to Multi-label Classification: In multi-label classification, the goal is to
assign one or more labels to an item. Multinomial logistic regression is for multi-class
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classification, where each item is assigned to exactly one label. If you want to predict
multiple labels for a datapoint x, then a common strategy is to learn separate binary
predictors for each label. Each predictor is queried separately, and a datapoint will label
each class as 0 or 1, with potentially more than one class having a 1. Above, we examined
the case where the datapoint was exclusively in one of the provided classes, by setting n = 1
in the multinomial.



Chapter 6
A Brief Interlude on Constrained Optimization

In many cases, we will have constraints on our optimization. For example, when we con-
sidered parameter estimation for the Poisson distribution, we needed to ensure we found a
parameter A > 0. Our strategy involved simply finding the single stationary point, ensuring
it was a local minimum and satisfied the constraint. Since the single stationary point is a
local minimum, we know it is actually a global minimum and that the solution is not on
the boundary of the constraint set, namely at 0.

More generally, however, this strategy may fail to find a valid solution in the constraint
set. In this chapter, we discuss a general strategy to handle constraints using proximal
methods, and then go through a use-case: ¢; regularization for feature selection. This case
study is for the case when we have a closed-form proximal operator, but that is not always
the case. We then discuss what to do when we do not have a closed form.

6.1 Proximal Methods

We can generalize gradient descent using proximal methods that break up the optimization
into two steps: a gradient descent step followed by a projection step. For example, imagine

we wanted to do linear regression under the constraint that the weight w; € [—1,1]. Recall

that the gradient for linear regression at weights w; was g; o Z?:1(XiTWt — y¢)X;. Then

the two steps include

Wil = Wi — T8t

1 ifdgy < —1
Wit1j = Wig1,;  if Wep1j € [—1,1]
1 if ’UN)H_LJ' > 1

If the gradient descent step takes you outside the constraint set, the second step projects
back to that set. For the constraint w; € [—1, 1], the projection is simply: any elements less
than -1 are projected to -1, and any elements greater than 1 are projected to 1.

Proximal methods allow us to formalize this simple idea.! To write this generically,
assume we have an optimization problem of the form

min c(w) + r(w
min, c(w) + r(w)

where we assume c is differentiable everywhere and r can be any nonsmooth function. For
example, we can encode our constraints using r. The smooth function ¢ might be the

'For a much more thorough treatment of this topic, see [17].

61
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least-squares loss and, for constraint set F = [—1,1]%, we can set
0 ifweF
r(w) = .
oo otherwise

To obtain the minimum of ¢(w) 4 r(w), we must find w € F as otherwise the objective is
oo (which is clearly not minimal).

The proximal update is derived similarly to gradient descent, by using the Taylor series
expansion. Recall that we found the first-order gradient descent update using

) 1
W1 = argmin c¢(wy) + Vc(wt)—r(w —wy) + 2—HW — w3
weRd Nt

where the last term was the first-order approximation using a scalar stepsize, rather than
the Hessian. Finding this minimum results in the update

Wil = Wy — 1 Ve(wy)

Similarly, we can write the proximal update using the same expansion on ¢, in addition to
including r

. 1
w1 = argmin ¢(wy) + Vc(wt)T(w —wy) + 7\\w — th% +r(w)

weRd 2my
1

= argmin Ve(wy) ' (W — wy) + — ||w — wy |3 + r(w) > dropped constant
weRd? 2ny

= argmin nVe(w) ' (w —wy) + Hw — we||3 + mr(w) > multiply by 7
weR

= argmin 3 ||w — (w; — neVe(w) |3 4 ner(w) > dropped constant
weRd

where the last equality follows because the two equations are the same up to a constant:
the term n?g/ g; for g; o Ve(wy) (see Appendix A.2 if you would like to see the steps).

We can rewrite this final form in two steps to more easily see the descent and project
components. The proximal gradient updates take the form

Wil = Wi — N8t
Wiyl = argmin %HW - Wt+1||% + "7t7“(w)
weRd

where the second step can be seen as a (generalized) projection that satisfies nonsmooth
function r. This argmin is called the proximal operator, written as

~ def . ~

proxy,, (Wer1) = argmin g [w — Wiy |[3 + ner(w)
weRd

The final step is to understand when it is feasible to solve for this argmin. It is not easy

for just any r. Rather, a closed form solution for the proximal operator is known only for a

few functions r.2 You have already seen one such r, for the interval constraint set [—1, 1]d.

2Tt is worth pointing out that a broader set can be considered if we allow ourselves to iteratively solve
this minimization, using iterative algorithms like gradient descent. The splitting into two steps is useful
even in this scenario. For example, for simplex constraints that ensure ijl wj; = 1 and w; > 0, we need
to solve a simple optimization.
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Labeling the r for this constraint set as rpox, we get

PrOXp rpox (Wt11,1) -1 fvo<-—1

PrOXp, o (wt+1,2) where prOXﬂthox(v) v ifve [_1, 1]

1 ifo>1

proxntrbox (V~Vt+1) =
proxnirbox ('LZ)t.i.l 7d)

Others include non-negativity constraints, where prox,,, = (v) = max(v,0), or constraining

3/lw||3 < C for some constant C. In the next section, we talk about ¢; regularization and
the proximal operator for the #; norm.

6.2 A Case Study: /; Regularization for Feature Selection

Recall that ¢o regularization corresponded to putting a prior on the weights. We mainly
discussed using it with linear regression, but also discussed how it can be added to any GLM.
This is similarly true for the ¢ regularizer we discuss in this section. Again for simplicity,
we primarily discuss these concepts for linear regression and leave it as an exercise to show
how to use this regularization approach more generally for GLMs.

Let us revisit the linear regression objective, || Xw — y||3. If we choose a Laplace distri-
bution for the prior on the weights, we get an /1 penalized objective

c(w) = | Xw —yl3 + Alwl:

which is often called the Lasso. This objective can be obtained similarly to the ¢ regularized
objective, but instead using a Laplace distribution with parameter A\ for the prior. As with
the /5 regularizer for ridge regression, this regularizer penalizes large values in w. However,
it also produces more sparse solutions, where entries in w are zero. This preference can
be seen in Figure 6.1, where the Laplace distribution is more concentrated around zero. In
practice, however, this preference is even stronger than implied by the distribution, due to
how the spherical least-squares loss and the ¢; regularizer interact.

Forcing entries in w to zero has the effect of feature selection, because zeroing entries
in w is equivalent to removing the corresponding feature. Consider the dot product each
time a prediction is made,

d
XTW = ijwj = Z TjWj.
7=0

Jrw;#0

This is equivalent to simply dropping entries in x and w where w; = 0.

For the Lasso, we no longer have a closed-form solution. We do not have a closed form
solution, because we cannot solve for w in closed-form that provides a stationary point.
Instead, we use gradient descent to compute a solution to w.

The ¢4 regularizer, however, is non-differentiable at 0. We assume throughout these notes
that our objectives are continuous. However, this need not mean that they are smooth: in
some cases, these continuous objectives may have non-differentiable points. For example,
the ¢ regularizer is non-differentiable at 0, making || Xw — y||3 + A||w||; non-differentiable.
One strategy is to use sub-gradient descent; loosely, this amounts to selecting a reasonable
choice for the gradient at the non-differentiable point. Here, for example, we could take
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/

Figure 6.1: A comparison between Gaussian (blue) and Laplace (red) priors. The blue curve
is (2m) Y2 exp(—x2/2), which is the pdf for a N'(0,1). The red curve is (1/2)exp(—|z]),
which is the pdf for a Laplace with mean zero and b = 1. Both prefer values to be near zero,
but the Laplace prior more strongly prefers the values to equal zero.

the partial derivative of ¢; for w; to be zero at zero, -1 for w; < 0 and 1 for w; > 0.
Unfortunately, this descent is slow because there is a tendency to jump around zero. Unlike
{5, the gradient does not gradually decrease near zero, slowly decreasing w;, but rather
jumps between two large values —1 and 1. With such large gradient, it is difficult to
gradually decrease w; to zero, even if that is the optimal solution.

One alternative for such non-smooth objectives is to use proximal methods. The idea
is simple: use gradient descent for the smooth component of the optimization (the error
term || Xw — y||2), and then for values in w that are close to zero, set them to zero. This
thresholding idea, though simple, is a theoretically sound approach for optimizing with the
non-smooth ¢;. This thresholding operator is called the proximal operator, and can be
seen as a projection operator. Each time w is updated with the gradient, it moves it away
from a sparse solution; the proximal operator then projects w back onto the space of sparse
solutions. The proximal operator for ¢ is applied element-wise to w, and so is defined on
each w; as, with stepsize 1 and regularization parameter A,

wj —nA if w; > nA
prox,yg, (wj) = ¢ 0 if |w;| < nA
wj +nAif wj < —nA.

The proximal operator on the entire vector w is defined element-wise: prox,,, (W) =
[prox,\e, (w1), - .., Prox, s, (wq)]. Nicely, the theory states that the stepsize should be no
larger than the inverse of the Lipschitz constant for the smooth part of the objective, where
intuitively the Lipschitz constants reflects how quickly the function changes. In Algorithm
4, we provide a gradient descent algorithm for the incremental update with the ¢; regu-
larizer, introduced as an algorithm called ISTA [5]. More generally, proximal methods are
used for other non-smooth objectives, though in these notes we only consider Lasso.

Feature selection is particularly pertinent when we have many features. You have already
seen one setting where it is sensible: polynomial regression with a high-order polynomial.
In Chapter 8 we will discuss other such fixed feature expansions for which feature selection
can be useful.
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Algorithm 4: Batch gradient descent for ¢ regularized linear regression (X,y, \)

w0 € R?

errT < 00

tolerance < 10e™*

// Precomputing these matrices, to avoid recomputing them in the loop

XX+ 1XTX

Xy + %XTy

// This stepsize is specific to the least-squares loss for linear regression

0 1/(2|XX]r)

while |c¢(w) — err| > tolerance and have not reached max iterations do
err < ¢(w)
// Proximal operator projects back into the space of sparse solutions given by ¢,
W < DProx, s, (w — nXXw + nXy)

: return w

—_

—_ = =
w72

6.3 Beyond Closed-form Proximal Operators

To handle one useful constraint, namely the simplex constraint, we will have to move beyond
the restriction that r allows for a closed form proximal operator. The simplex constraints
are those on probabilities: F = {w € R? : 2?21 w;j = 1 and w; > 0}. To compute the
second step—the projection step—we need to solve a simple optimization. To do so, we are
going to convert this constrained optimization into an unconstrained optimization on w, by
introducing additional variables. The variables are called KKT multipliers; the reason for
this name will become clear after introducing the optimization.

Let a € R be the KKT multiplier for the equality constraint Z;-lzl wj = 1land b; >0
the KKT multiplier for the inequality constraint w; > 0, with vector b composed of b; for
j=1,...,d. Let [(w) < 3|lw — v||3 be the loss used in the proximal operator, where the
goal is to find the closest point to a given input v under the constraints given by r (which
here are simplex constraints). The augmented optimization problem with these additional
variables is

d d
i L b here L b) & 1 =S bws.
Vgélﬂgd agRg%Xzo (w,a,b) where L(w,a,b) =1(w)+a (; W ) ; W

For any w that satisfy the constraints, we have I(w) = max,egr p>0 L(W,a,b), and so
optimizing for w as well as these additional variables results in the same optimal w while
enforcing the constraints. To understand why, consider the possible optimal choices for a

and b. If w does not satisfy Z;-lzl w; —1 = 0, then a can be selected to make the loss

4, wj — 1= —0.2, a can be made

arbitrarily big. For example, if Z?:l w;j = 0.8 and so }_j
a very large negative number, say —10%, to add 0.2 - 10 to the loss. Consequently, this w
is unlikely to result in a minimal value. Instead, for any w that do satisfy Z;l:l w; —1=0,
a is multiplied by zero and so cannot cause the loss to become very big; therefore, w will
be chosen to satisfy this constraint.

This is similarly the case for b. For any w; < 0, the maximization will choose a very

large b;, producing a very high magnitude —b;w; and resulting in the addition of a very
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large positive number. Again, w; will be chosen to be > 0 to avoid this situation, and the
best b; can do is to have bjwy = 0.

Now let us use this to derive an algorithm to find w that satisfies the constraints, for
loss [(w) = 1 5w — v||3. As usual, we need to find w that is a stationary point

d
0 =VwL(w,a,b) where Vw L(w,a,b) = Vyl(w) + aVyw (Z w; — 1) —Vw Z bjw;

=(w—-v)+al—b
— w=v—al+b (6.1)

This formula for w depends on the values of a and b. We know that for a valid solution
w in the constraint set, the best that b can do is to satisfy bjw; = 0 with b; > 0. Further,
we know that if w satisfies the constraints, a multiples by zero and cannot impact the L.
For the below, we can assume a is essentially a free variable that lets us produce a valid
solution for w.

To satisfy bjw; = 0 with b; > 0, we have to have either (a) b; = 0 or (b) w; = 0 with
b; > 0. We can use this to reason about the entries of the solution in Equation (6.1). For
the case where w; # 0, we must have b; = 0; plugging this into Equation (6.1), we therefore
have that w; = v; —a. For the second case where w; = 0, b; can be any nonnegative
number. To infer what it is, we can use w; = v; —a + b; = 0 and so b; = a — v;. For this
to be viable, this means that a —v; > 0 and so v; —a < 0. We can equivalently write that
for this second case w; = max(v; — a,0) because this will evaluate to zero. Similarly, for
the first case, we must select an a such that v; —a > 0. Therefore, for both cases, we have
w; = max(vj — a,0), assuming that we chose a appropriately.

Now we simply have to find a such that we satisfy the constraint 17w = 1. We actually
cannot get a closed form solution for this. Instead, we have to solve an optimization to find
this @, namely solve for a such that 17 max(v — a1,0) — 1 = 0. This is a relatively simple
root finding problem, with available implementations in most packages. Note that we know
there exists a feasible solution for this problem. We can start a at the maximal entry in v
and slowly decrease it. This makes the sum smoothly increase until it equals 1.

Note that in other cases we can actually obtain a closed form solution for this a. We
will see how this is the case for mixture models in Chapter 10.



Chapter 7
Evaluating Generalization Performance

Before deploying a learned model f, we want to obtain an estimate of its generalization
performance: its expected error. Ideally, we would train f on all the available data, to
facilitate identifying as good a model as possible. However, performance on the training
set is highly biased: it is likely to be much lower than the true generalization error, since
the model was trained to minimize it. In many cases, with complex models like neural
networks, it is common to get zero error on the training set. We had previously discussed
using a hold-out test set, to obtain an unbiased estimate of the generalization error. This
remains a relatively common approach, but as we discuss in the next section, it might be
worth introducing some bias to obtain a more accurate estimate of the generalization error.

7.1 Estimating Generalization Error and Cross Validation

Assume you are given a dataset D and you learn a predictor fp : X — ) using your
favourite regression algorithm. You’d like to know what the true generalization error is for
your model, in terms of squared errors

GE(fp) = E[(fp(X) - Y)?|D]

where we explicitly write that the data is given to emphasize it is not random in this
definition. Naturally, if we had another batch of data with m samples—Ilet’s call it test
data Diest—then we could use a sample average to get an unbiased estimate of GE(fp)

GE(fp) ~ % > (nx) —w)?

(Xi sYi ) ED+test

The larger Diest is, the closer the approximation. In fact, using concentration inequalities,
we know this should get closer at a rate of m~/2 for m = | Diest|-

The dilemma is that you would like to use this test data to learn a better model. Even
in this age of huge datasets, we still typically want to learn on as much (quality) data
as possible. Our goal is to get a good estimate of performance, without having to put
aside too much test data or even none at all. In this section, we talk about how cross
validation provides one approach to get a biased but nonetheless reasonable estimate of the
performance of the model trained on the whole dataset. We will talk about two variants of
cross-validation, which only differ in how they generate subsamples: k-fold cross validation
and repeated random subsampling.

To be precise, we assume that we train fp on the whole dataset of n samples. We do
not split the dataset into train and test. We will then use the same dataset to estimate
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Cross Validation
Dataset | )

I
v

Alg(D)

average e1 to ex
|

!
i !

error estimate for f

Figure 7.1: A depiction of cross validation. The dataset is colored in blue, with each of the
1 to k partitions shown as a smaller cube to indicate they are a subset. The algorithm is
labeled in red, where it is called on different subsets of the data (k—1 of the partitions). We
assume here that the algorithm just needs to input the dataset, and has its own mechanism
to pick any hyperparameters. The errors for each of the learned f1, ..., fr are computed on
the held-out partition, resulting in errors ey, ..., eg. The average of these provides our CV
estimate of the error for the function f, which is learned on the entire dataset.

GE(fp), by actually measuring the errors for several different f learned on different subsets
of the D. But how can we do this amazing thing, you ask? Let me tell you.

The general idea is the same for k-fold cross-validation and repeated random subsam-
pling; the only difference is in how we obtain these subsets. For now, let us assume we
use repeated random subsampling; we will describe k-fold cross validation later. Either of

these two approaches produces k different subsets of the data, (Dérl ), D( )), . (Dgr), D(k)),

where Dg) UDt(Z) =D and Dt(f) ﬂDt(g) = @. In other words, each train-test split has disjoint
training and test data and together consists of all the data. Repeated random subsampling
generates a train-test split by randomly sampling (without replacement) a subset of the
data for training and then using the remaining samples for test.

The estimator is then obtained as follows. Let (fM),errM) ... (f® err®)) be the
©))

corresponding learned functions and test errors, where fU) is trained on Dy’ and err?)

is the error of fU) on Dt(g). This procedure mimics training fp and then testing it, in
deployment, on new unseen data. The primary difference is that each training set is a bit
smaller than the actual training set used by fp, since each Dt(ﬁ) uses only a subset of D.
The corresponding errors are reasonably reflective of the error we might expect to see for

fp, at least on average. The estimator we use is
k
~ def
GE(fp) = G = Z
This entire procedure is depicted in Figure 7.1.

The estimator has two sources of stochasticity: distribution over partitioning and ran-
domness from the data. First we sample a random dataset D from the true joint model p.
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Then we obtain a partitioning j, to get sample err). We can reason about the bias and
variance of this estimator, over these two sources of randomness.

This estimator is biased because err) is likely a pessimistically biased estimate of the
true error of fp. This bias arises because errl) is the error for a function learned using
the same algorithm on a smaller dataset. More data typically means we can learn a more
accurate function, and so we expect the error, in expectation, to be higher for each fU)
than fp.

The bias depends on (1) the size of the training sets in the partitioning and (2) the size
of the dataset. If most of the data is used in the training set, then f\) is similar to fp
and so there is little bias. In the most extreme case, all but one sample can be used for
Dt(g) and Dg) consists of only one point (called leave-one out). If most of the data is used
in the test set, then this bias is bigger. As for the size of the dataset, this bias disappears
as n becomes very big, because the functions should become very similar to each other
even if data is evenly partitioned between training and test. Notice that each err?) may be
correlated with another err)—they are not iid—because they share data. This does not
affect the bias because

E[G] = Elerr)].

k
=1

1
k “
J

We can also reason about the variance of this estimator.

k
Var [é] = % (Z Var [err(j)} + Z Covlerr®, err(j)]>
j=1

1]

The variance decreases if (1) k is larger and (2) Var [err(j)] is smaller, which occurs when

n is larger. Notice that (2), however, is also dependent on how many samples are used
for training and for test. The relationship is nuanced, as the variance of the errors might
be higher for a small test set, but the variance of the learned function might be higher
with a smaller training set. Further, if £ becomes larger, typically there is more correla-
tion between each (f@ err®) and (f),err9)), as we discuss more below. Overall, these
nuanced relationships make it so that there is not a clear answer to how to chose k and the
partitioning; however, there are some rules of thumb, which we discuss after Exercise 17.
It is important here to notice that reducing this variance alone is insufficient, because the
estimator is biased. For example, imagine our goal is to estimate E[G|D]. Namely, we want
to remove all stochasticity due to the resampling procedure. We can do so by significantly
increasing k, where this sample average will reasonably quickly approach E[G |D]. Even if
we reduce the variance due to resampling to zero, we obtain E[G|D] which is not equal to
GE(fp). In addition to being expensive, one recommendation is to avoid setting k too large
because the confidence intervals for an interim k are more likely to include GE(fp) [25].
As one other nuanced point, notice that G can also be used as an estimator for a
different quantity: the expected GE(fp) across datasets, i.e., E[(fp(X) — Y)?] instead of
E[(fp(X) — Y)?|D]. We usually care about how our model, learned on our dataset, will
perform in deployment, and so care about E[(fp(X) — Y)?|D]. However, in other cases, we
might be interested in understanding how the algorithm performs, regardless of the specific
dataset, if we are interested in understanding which algorithms are more effective for the
problem or related problems. There is some evidence that G is actually a better estimator
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of E[(fp(X) — Y)?], rather than of E[(fp(X) — Y)?|D] [4]. Nonetheless, this does not mean
that G is a poor estimator for GE(fp), and cross validation remains a common approach
for this goal.

Exercise 17: We previously discussed that once a hold-out test set has been used for
evaluation, we cannot use it again because it will not provide an unbiased estimate of
the expected error. For example, after getting performance of your models on that test
set, one could go back and adjust hyperparameters such as the regularization parameters.
However, once you have done this, the test-set has influenced the learned models and is
likely to produce an optimistic estimate of performance on new data. Is this also true for
cross validation? Namely, if you realized you should have tested a model with different
hyperparameters, and reran the cross validation procedure for the new model, would your
estimate using cross validation suffer from similar bias as in the hold-out test set case? [

Now let us revisit the strategies to generate these sub-datasets. In k-fold cross-validation
the data is partitioned into k£ disjoint sets, called folds. The training set is composed of
k — 1 of the folds, and test set is the remaining fold. We use all possible combinations—
namely each fold is used once as a test set—resulting in & train-test splits. This partitioning
approach has the advantage that the resulting k performance estimates are mostly inde-
pendent, with some dependency introduced due to dependencies between the training sets.
As mentioned above, there is also the bias from the fact that we do not run the model on
the entire training set, but rather get an estimate of the error for the algorithm trained on
n—(n/k). The disadvantage of this approach is that the number &k both dictates how many
train-test splits we consider as well as the size of the training and test sets.

Repeated random subsampling (RRS) does not suffer from that same issue, but has its
own disadvantages. In RRS, because we create splits using random sampling rather than
a disjoint partitioning, we can decouple k and the size of the training and test sets. For
example, we might want to have at least £ = 10 different train-test splits, but we might
want to use more than n — (n/k) for train; RRS allows this. You could take a dataset of
size 1000, set £ = 10 and pick the training set size to be 950 and 50 for test. In k-fold CV,
once you pick k = 10, the size of the training set is set to 900 and test is set to 100.

There are common rules of thumb to pick these sizes. A common choice for k-fold CV is
to use k = 10. For RRS, it is generally reasonable to pick k a bit higher, though a limiting
factor is always computation, since you need to train the model k times to get the error
estimate. For slow deployment settings—where the predictor in deployment is changed
infrequently or we need to be very careful about deploying any predictor—the cost of this
offline evaluation is not too limiting of a factor. For faster turnaround times—say repeated
testing and deployment—a large k may become prohibitive.

To better understand the properties of these two approaches, see the thorough and
accessible explanation in [11, Chapter 5.

7.2 Using Cross Validation to Select Hyperparameters

You have seen how to gauge the generalization performance of a model, using validation
sets. We can leverage the exact same idea to select hyperparameters. Why? Because our
criteria is exactly the same: we want to select hyperparameters that result in the best
generalization performance. The idea is simple: if there are m possible hyperparameter
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Dataset | ) Learner
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for every hyper hin H
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Figure 7.2: A depiction of internal cross validation. The dataset is colored in blue, with each
of the 1 to k partitions shown as a smaller cube to indicate they are a subset. The algorithm
is labeled in red, where it is called on different subsets of the data (k — 1 of the partitions)
for a given hyperparameter h. The errors for each of the learned f1, ..., fi are computed on
the held-out partition, resulting in errors ey, ...,ex. The average of these provides our C'V
estimate of the error for the function that would be learned using that hyperparameter h on
the entire dataset. Internal CV then picks the h* that has the lowest error. The output of
internal CV is that h*. Then the learner takes the h* and the entire dataset and output the
final learned function f.

settings, then evaluate m models each corresponding to a hyperparameter setting, and
select the hyperparameter setting that has the best evaluation performance.

This procedure is called internal cross-validation, because it is internal to the algorithm.
It is part of the algorithm, because it is the way that the algorithm sets its hyperparameters.
For example, we can consider ridge regression with internal CV to set the regularization
parameter as one complete algorithm, that returns a model when run on a given dataset.
This is visualized in Figure 7.2.

We can then take this model and evaluate it using the techniques described earlier in
this chapter. If we use cross-validation to evaluate this model, then we call this external
cross-validation to disambiguate. To separate the two roles, we can think of this settings as
having an evaluator and a learner. The learner’s job is to return a model when it is given a
dataset. The evaluator’s job is to obtain a model for deployment, and so needs to provide
an estimate of the performance of that model.

The full procedure is as follows, depicted also in Figure 7.3.

1. The evaluator is given a dataset D.
2. The evaluator obtains a model p by running the learner on the dataset D.

3. Before deploying that model @p, the evaluator obtains an estimate of the performance
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Figure 7.8: A depiction of external cross validation. The dataset is colored in blue, with
each of the 1 to k partitions shown as a smaller cube to indicate they are a subset. The
learner is labeled in orange, just as in Figure 7.2, where it is called on different subsets of
the data (k — 1 of the partitions) for a given hyperparameter h. This is a key difference
from internal CV. The errors for each of the learned f1,..., fi are computed on the held-out
partition, resulting in errors ei,...,er. The average of these provides our CV estimate of
the error for the function that is learned by our Learner on the entire dataset. (The learner
itself may use internal CV). Then the Fvaluator decides, based on the error estimate of f
given by external CV, whether it is happy to deploy f.

of @p using (external) cross-validation. For example, the evaluator might use k-fold
CV with k£ = 5, calling the learner fives times on each subset of data.

4. Each time the learner is called on a dataset D'—labeled differently than D to indicate
that this dataset is a subset from external CV—it needs to return a model 8p,. To do
S0, it needs to decide on its own hyperparameters, like the regularization parameter
A. It uses internal CV on D’. For example, it might use k-fold CV on D’ to evaluate
each possible hyperparameter.

In Algorithm 5, in pseudocode, we more explicitly write what is called nested cross-
validation, where the evaluator use k-fold cross-validation and the learner also uses k-fold
cross-validation. The evaluator is said to use external CV, because it is in the outer loop,
and the learner is said to use internal CV because it is in the inner loop. We have separated
out the Learner pseudocode in Algorithm 6 because it is used both inside the for loop and
again at the end of the algorithm to learn the final function.

This pseudocode helps us reason about the computational complexity. If we copied in
the Learner function into our for loop in Algorithm 5, then we would see three for loops:
external loop over folds, a loop over hyperparameters and then an internal loop over folds.
In total, this means we can the algorithm kexternalKinternal|H | times, where |H| is the number
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Algorithm 5: Nested cross-validation on a dataset D
1: Partition the dataset D into kexternal folds
: Initialize err-f =0
: for i = 1 to Kexternal dO
Set D,E? to the data in fold ¢
Set DY) = D — DYV
fi + Learner(Dg))
err-f = err-f+ error of f; on DE?
err-f = err-f/kexternal
D fi Learner(Dt(?)
return f and err-f

© X T gk

,_.
=4

Algorithm 6: Learner using cross-validation on a dataset D’
1: Partition the dataset D’ into kinternal folds
2: for h in the set of hyperparameters H do
3:  Initialize err[h] = 0
for j =1 to kinternal do
Set D’ Ei) to the data in fold j for dataset DE?
Set D' = D' — D))
Train f = Alg(D'g), h)
err[h| = err[h]+ error for f on D’ Ei)
err[h| = err[h]/kinternal
10: Pick h* = argmin, ¢ err[h]
11: // Learner done picking its hyperparameter, can now return the learned function
12: Train f = Alg(D, h*)
13: return f

©

of hyperparameters. This can be very expensive. For example, if we use 10 folds for external
CV, with 8 hyperparameter choices and 10 internal folds, we call the algorithm 800 times!

The criteria for making choices may differ between internal and external CV. For ex-
ternal CV, the evaluator wants to have a high confidence estimate of performance, and
will likely use confidence intervals obtained from the CV. The evaluator might prefer to
use Monte Carlo CV, because the repeated resampling allows for more estimates of per-
formance without training on too small of datasets. For internal CV, on the other hand,
the agent does not need high confidence estimates. Rather, it simply needs to obtain a
reasonable hyperparameter. If computation is an issue—we may not want our algorithm
to be too slow—then we might pick a smaller k. The learner may want to ensure that it
systematically covers the set of points—using a systematic partition—and might be worried
that random resampling with a small k& might not do so; it might therefore opt for k-fold
CV for internal CV.

Exercise 18: Imagine you use k = 2 CV for internal CV, when selecting A for ridge
regression. What issue might there be with selecting such a small k? O
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Exercise 19: Notice that at the end of nested CV we call the Learner on all of the data,
D. This step also produces the best hyperparameters h* on D, though the Learner does
not return this h*, it only returns the corresponding function. But it seems like we can
avoid nested CV altogether by simply using this A*. In other words, we use CV on D to
find hyperparameters h*. Then we fix these hyperparameters, and do CV on Alg(-, h*).
This procedure only costs kinternal| | + Kexternal, rather than KexternalKinternallH|. In our
above example, this reduces the number of times we call the algorithm to 10 x 8 + 10 = 90,
as opposed to 800. Though this is in fact a relatively common approach, because of this
significant computational savings, it is likely more biased that nested CV. Explain why. [J

Remark: Note that CV is not the only way to select hyperparameters; it is simply a
commonly used, relatively generic approach. For certain hyperparameters, there are spe-
cialized strategies or rules of thumb. In other cases, the goal of algorithm development is
to provide approaches that adapt the hyperparameter, where the newly introduced hyper-
parameters for the algorithm are less sensitive and easier to set. One such example is the
stepsize selection rules you have seen.



Part 11

Data Representations
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At first, it might seem that the applicability of linear regression and classification to real-
life problems is greatly limited. After all, it is not clear whether it is realistic (most of the
time) to assume that the target variable is a linear combination of features. Fortunately,
the applicability of linear regression—and generalized linear models— is broader than it
seems at first glance. The main idea is to apply a non-linear transformation to the data
matrix x prior to the fitting step, which then enables a non-linear fit. Obtaining such a
useful data representation is a central problem in machine learning.

We have already seen one instance of such a transformation, that allowed for nonlinear
functions: polynomials, in polynomial linear regression. More generally, there are many
other fixed representations for regression. Two common ones are radial basis function
(RBF) networks and prototype representations. Even more common, however, is to learn
the data representation, rather than simply specifying a fixed one. We first discuss fixed
data representations and what they provide. Then we discuss learning data representations,
primarily with factor analysis and neural networks.



Chapter 8
Fixed Representations

In this chapter we discuss two fixed representations, and why we might want to use them.
First, however, we start by discussing why projecting into a higher dimension can allow
us to learn more complex functions for regression and more easily separate classes for
classification.

8.1 The Utility of Projecting to Higher Dimensions

Let us motivate the utility of projecting to higher dimensions using classification. In partic-
ular, we will see that it will allow us to get linear separability. Recall that linear separability
means that we can perfectly separate the two classes using a linear hyperplane. An example
of this is given in Figure 8.1.
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Figure 8.1: An example of a linearly separable dataset, with positive points labeled at +
and negative as circles. The learned linear classifier (using logistic regression) can perfectly
class the points in this dataset. The decision boundary is given by the equation of the line
x'w +wo = 0. These are all the points x = (x1,22) that are orthogonal to w = (w1, ws).
Here picture a unit vector w pointing orthogonally to this line, towards the positive points,
with wo giving the offset of this line away from zero. Any point x below the line is no longer
orthogonal, and in fact has an angle to w that is less than 90 degrees (starting to point
more in the direction of w). This tells us this x is labelled as positive. The opposite is
true for x above the line, which have more than a 90 degree angle to w; some are even
pointing in the opposite direction to w (i.e., x = —w would be classified as negative). This
relationship is easy to see with the following cosine formula: x"w = ||x||||w| cos @ for the
angle 0 between the two vectors. The term cos@ is positive for § € [0,90) degrees and
negative for 6 € (90, 180].

Usually, however, we will not be able to linearly separate the data. Instead, we might
have something like the nonlinear relationship in Figure 8.2. But, we can see that it should
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Figure 8.2: An example of a dataset that is not linearly separable. The function that sepa-
rates these points is f(x) = o3 + 23 — 1. For example, f([0,0]) = —1 < 0, which is correct
as the red points in the inner ring are negative). And f([2,—1]) =4+1—1=4> 0, which
lies within the positive blue points in the outer ring.

be easy to classify these points. In fact, we can make this dataset linearly separable by
changing the features. We started with a two-dimensional input =1, zo. We want a function
f(x) where when f(x) < 0 we classify the point as negative and when f(x) > 0, we classify
the point as positive. The function that works for this example is f(x) = 22 + z3 — 1.

We could have easily learned a linear function that produced this f if we had first created
a new set of three-dimensional features ¢(x) = [27,23,1]T and learned a linear function
in this new space. In other words, in a space one-dimension higher, this dataset is again
linearly separable. By projecting to a higher-dimension, we can linearly separate the data.

More generally, moving up one dimension is not enough. But intuitively once you give
yourself enough dimensions you get a lot more flexibility to place a line that properly
separates points. There is even a formal statement for this, called Cover’s Theorem, that
says that a dataset that is not linearly separable is highly likely to be separable by projecting
to a higher-dimensional space with a nonlinear transformation. One such example is given
in Figure 8.3 showing how binning can be one such way to obtain this separation.

A key question is how to pick this projection to higher dimensions: how to pick this data
representation. That is the focus of both fixed representations, discussed in this chapter,
as well as learned representations discussed in the next chapter. We typically have at
least two criteria for the choice. One is about sufficient complexity: did we expand the
function space enough to get close to representing the true function (reduce bias). And
another is compactness (a minimal representation), to make learning more sample efficient
and computationally efficient. We may also care about properties of the features themselves
and how they interact without learning algorithm. For example, orthogonal features might
make learning more effective when using stochastic gradient descent, whereas this might
not matter as much for second-order gradient descent.

8.2 Radial Basis Function Networks

Radial basis functions (RBF) provide nonlinearity, just like polynomial transformations.
We first explain what they are and then explain the types of functions they allow us to
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Figure 8.8: This 2d space is project up into a 7d space, by binning. The blue x’s and red x’s
are not separable in the 2d space, and actually even in 7d they are not yet separable either
(though there may be a smarter transformation to 7d that would give separability). But in
the 7d space the accuracy of the classifier is now much better. Every point in a bin has to
be classified the same, so the top middle bin will be classified as blue even though we have
one red x in that bin. But every other bin has perfect accuracy. Trivially, we could have
added another bin—or even one bin for every point—and got separability.

represent.
As usual, assume we are given data set D = {(x;,y;)}~,. We start by picking p points
in X' to serve as the centers. We denote those centers as ¢y, ca,...,c, € X. These can be

selected in a variety of ways, with some of the most common including
1. to uniformly cover X
2. selected as a subset from D or
3. computed using some clustering technique on the data, such as k-means clustering.

The resulting basis functions—giving a fixed representation—consist of p new features
1(x), P2(x), . .., pp(x) with ¢;(x) € R where

def
6;(%) Zexp (= gha[x — c;13)

where o gives the width of the Gaussians. The resulting features are between 0 and 1. A
feature ¢;(x) is close to one if x is similar to ¢, and close to zero if its dissimilar. The
size of o determines how many features are non-negligibly large. If ¢ is very small, then
most features are near zero; if o is very large, then an input x has a non-negligible value
for many centers. This collection of features is often called an RBF network, because we
can view it as a network where the first layer transforms the input and then weights are
learned on these new features, as in Figure 8.4.

As with polynomial features, for this new fixed set of features, we can simply apply
any generalized linear model to obtain a nonlinear predictor. The feature transformation
provides nonlinearity, and we can exploit the simplicity of the linear methods to find the
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Figure 8.4: Radial basis function network.

weights on the given dataset.

o(x1) o1(x1) -+ Pp(x1)

¢0(%n) $p(¥Xn)

is now used as a new data matrix. For a given input x, the prediction of the target y will
be calculated as

Fx) =wo+ Y wid; (x) =D wjg; (x) = (x) w
=0

j=1

where ¢ (x) = 1 and w is found using linear regression. More generally, for any GLM with
associated transfer g, we use g(¢(x)'w) for the prediction.

Now we can ask why we would use this transformation. First, it provides complexity or
capacity. It can be proved that with a sufficiently large number of radial basis functions we
can accurately approximate any function [18]. In other words, it allows us to increase the
hypothesis space that we consider for learning, such that we can include the true function
underlying the data. In this way, we can learn a broader set of functions, while still exploiting
the simplicity of our linear algorithms.

The additional nuance for using RBFs is appropriately selecting hyperparameters, like
the variance o and the centers. We had this problem too with polynomial features, where
we needed to decide on the degree of the polynomial. A typical solution is to select o using
cross-validation, which we discussed in Section 7.2, though there are a variety of rules of
thumb based on the number of centers and distances between each center. For example,
one choice is: for each center, find the closest center and select the width o to be twice that
distance.

The update for linear regression using these new features is

Wiil =Wy — 1 <¢¢TWt - yl) ®i
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where ¢; £ o(xi) = [¢1(x4), P2(x4), . .., ¢p(x;)]. More generally, for any GLM with transfer
g, the update is

Wil = Wy — 1) (9(¢iTWt) - yz) Pi.

These models are no longer linear in the original inputs, but rather only in the new features.
The implicit assumption now is that we learn a model such that

L. E[Y[x] = g(w"¢(x))

2. p(y|x) is an Exponential Family distribution, with parameter 6(x) = w ' ¢(x).

Exercise 20: The ¢; regularized problem can also be used with these new features. In fact,
/1 regularization allows us to overgenerate our features and then allow the optimization to
select the most useful features for us. For RBFs, it in fact provides a mechanism to subselect
from a potential set of centers. Think about how you might select the set of centers, given
that you know you will use ¢; regularization to reduce the actual number of centers that
are used. O

8.3 Prototype Representations

RBF networks and prototype representations are highly related. The main distinction is
that prototype representations use any similarity measure' k to produce the feature Pj(x) =
k(x,c;). Radial basis functions are one example of such a similarity k. In addition, for
prototype representations the points c; are typically subselected from the training dataset;
these c; are prototypical instances, thus the name prototype representations. For RBF
networks, the selection of the centers is left as an open step, where they can be selected
from the training set but can also be selected in other ways.

More formally, we pick p points c1,c2,...,c, from our dataset, without replacement. If
n is sufficiently small, it is common to simply use p = n; otherwise, these prototypes are
chosen to be a diverse set. The similarity function k£ : X x X — R defines the resulting
features, with

9;(%) = k(x, ¢5).

One example of such a similarity function is the RBF kernel, which is used in RBF networks
def 1 2
k(x, ¢5) = exp (—55sllx — ¢3)

More generally, there are a variety of different kernels including linear kernels k(x1,x2) =
(x1,%2) and polynomial kernels k(x1,x2) = ({x1,%2) + @) for polynomial degree b. The
defining characteristic of a kernel is that it can be written as a dot-product in a transformed
space: k(x1,x2) = (¥(x1),%(x2)) where 1(x1) is a (typically) nonlinear function that
transforms x7 to the new space. This property is useful for characterizing the properties of

"We call this k because it is typical to use what is called a kernel function for this similarity. However,
here we do not use the dot product property of kernels, that are particularly key for the kernel trick. We
discuss this alternative use of kernels in Chapter 15.
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functions that are defined using kernel features, as discussed more below. Intuitively, this
. . def . . .

property is useful for us since each feature ¢;(x) = k(x, c;) can be seen as a similarity feature

to prototype c;, because a dot product is an (unnormalized) cosine similarity. Though it

is common to use kernel functions for similarities, any other similarity functions that do

not have this dot product property can also be used. We can even hand-design similarities

based on our knowledge of the observations.

Advanced Remark 1: The key result that motivates the use of prototype representations
is the representer theorem. This theorem says the following. Assume our hypothesis space
consists of functions f : X — R from a reproducing kernel Hilbert space (RKHS) Hj with
associated kernel k. This means that the functions in this space have the form:

F(x) = wik(x, )
j=1

for any c1,...,¢, € X, any d > 1 and weights wq,...,w, € R. In other words, there
are linear functions of these similarity features. Such functions may seem like a restricted
space, but it actually encompasses many function classes. For example, we know it can
represent certain classes of neural networks with ReLU activations, that we will discuss
later. The representer theorem states that the function f* € Hj that minimizes error for a
given dataset {(xi,v;)}" ;, plus some regularization, is

fr(x) =) wik(x,x;)
j=1

for some weights w7y, ..., w,. In other words, it is a function that linearly weights features
created by selecting the entire training dataset as the prototypes. This is true for any error,
including all the errors we used for generalized linear models such as the squared error for
linear regression and cross entropy for logistic regression. O

In practice, we will likely not want to use the entire dataset, as n is likely very large.
Instead, motivated by this result, we still use a function based on similarities to observed
data, but only for a subset. Naturally, this subset should consist of prototypical instances.
Even with only a smaller set of prototypes, we still obtain a function from H; and we
can still obtain a function that is reasonably close to f*. Of course, the quality of the
approximation depends on how we select prototypes. This question has been thoroughly
explored under the area of active set selection, but is beyond the scope of these notes. For a
thorough set of references on the topic, see [21]. In the next section, we discuss one simple
approach to subselect prototypes.

Example 9: One of the big advantages of prototype representations is that we can natu-
rally handle a wider variety of input types. That is, we no longer require x € R?. Instead,
as long as we can compute a similarity between the input vectors x; and x2, then we can
compute the prototype representation. Further, the resulting features given by the proto-
type representation are real-valued, making it easy to use our favorite method like linear
regression or logistic regression.

For example, imagine the inputs consist of x1 = full-time or part-time; zo = job type,
out of possibilities { teacher, geologist, dancer }; and x3 = age. Then we could use a
matching similarity for the first two inputs—a similarity of 1 if it perfectly matches and 0
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otherwise—and an RBF for age, since 32 is more similar to 31 than to 10. The resulting
similarity between two instances xi,xs would be

k(x1,x2) =1 (211 = x21) 1 (212 = x22) RBF (213, 223)
=1 (z11 = 221) 1 (T12 = 222) (—ﬁ(ﬂ?m - $23)2> € [0,1]

To obtain the prototype representation, we would select p samples from the training
set, either intelligently or randomly, for the prototypes ci,...,c, € D. For any input x
reflecting whether a person is full-time or part-time, with one of those three jobs, with their
age, the prototype representation would consist of ¢(x) € RP the p similarities to these
prototypes.

If we want to predict whether they are likely to get a disease, for example, then we
would use logistic regression with this new representation, on a training set where we have
recorded previous individuals and whether they contracted the disease. The learned weights
outputted from logistic regression would be of size w € RP*! because as usual we would
add an intercept term. O

8.4 Feature Selection and Subselecting Prototypes

Once we have an expanded feature space, it is more sensible to use the ¢; feature selection
approach discussed in Section 6.2. For prototype representations, it has an additional
interpretation: feature selection corresponds to prototype selection.

Consider the following procedure. We create a prototype representation by using the
entire training dataset as the prototypes, getting ® € R"*P with p = n. We then solve the
¢1 regularized optimization

c(w) = [ @w — yl[3 + Allwl|s.

The ¢ regularizer encourages elements in w to be zero. If w; = 0, for example, then features
¢;(x) is removed. Equivalently, it is like removing the j prototype. This optimization,
therefore, should keep only the most important prototypes to accurately predict the targets
on the training set.

The number of prototypes that are removed depends heavily on A. If A = 0, then the
optimization has no incentive to remove any prototypes—no incentive to make any entries
of w zero. It is always easier to fit the training data with more features. If A\ is very big,
it encourages using a very small number of prototypes; at the extreme, A can be increased
until the optimal choice is to set w = 0. In between this extreme and 0, it is hard to predict
how many prototypes will be selected.

Exercise 21: This objective is convex, and so we know we can obtain the global solution
using our proximal method from Section 6.2. Imagine our optimization kept 10 prototypes.
Does this mean we selected the best possible set of 10 prototypes for our training dataset?
To answer this, consider the objective we really want to optimize: ||®w — y||3 + A|w]lo
where the ¢y regularizer simply counts non-zero entries: {o(w) = 21521 1 (w; #0). If we
want to rewrite this to only select 10 prototypes, this would correspond to

i dw — v||2.
werd I yl2
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Do you think our #; regularized solution will find the same prototypes? O

We can select A either based on the desired number of prototypes or based on general-
ization performance. For example, if we know that we want to keep only 100 prototypes out
of the n = 10k possible prototypes, then we might test a few values for A until obtaining
approximately 100 prototypes. Often, though, we are subselecting prototypes to improve
generalization performance. In that case, we can leverage the internal cross-validation
approach described in Section 7.2 to select a A the reduces overfitting and improves gener-
alization error.

Using ¢; regularization for prototype selection can be seen as a simple form of repre-
sentation learning. We allow prediction accuracy to inform which prototypes produces the
most useful features. This approach incorporates a small amount of representation learning
into otherwise fixed representations. In the next chapter, we talk about more flexible ways
to learn representations.



Chapter 9
Learned Representations

In this chapter we discuss two common strategies to learn representations. We conclude
the chapter showing that these two approaches have a common underlying theme, and are
equivalent in one specific case. But, in general, they are otherwise quite distinct in that the
algorithms and resulting representations are different.

9.1 Latent Factors and Factor Analysis

Imagine you are running a hospital and have information about your patients. You would
like to get better at predicting whether you should use Strategy 1 or Strategy 2 to help ensure
they follow the recommended treatment for a disease. You decide you will try to categorize
patients according to the Big-Five personality test. This test identifies the level to which
you are Open, Conscientious, Extraverted, Agreeable and Neurotic. You cannot directly
measure these traits; rather, they are latent and have to be inferred based on the observed
information you do have, such as past treatment behavior, self-identified preferences and
health metrics.

This is the goal behind the broad class of methods that attempt to identify latent factors.
Assume that we have input vectors organized as row vector x € R'*%. In the simplest form,
the idea is to find factors h € R'*P so that a linear weighting approximately produces the
observed inputs

p
x ~ hD = Z thk,:
k

where D € RP*? is called the dictionary, though it is sometimes called the factor loading or
coefficients. This weighting D is called the dictionary, because each row Dy, . € R? can be
seen as a representative instance of an input that maximally has factor hp. For example,
if h =[0,0,1,0,0,...,0] with only hg = 1, then the resulting approximation of an input is
exactly

g

p
hD =) hDy, = Ds...
k

Instead, if h =[0,0.5,0.5,0,0,...,0], then the approximation is 50% like dictionary item 2
and 50% like dictionary item 3.

Once you are given a dictionary, it is relatively straightforward to find the latent factors.
For example, if our goal is to minimize the squared error when approximating the input,
we can infer latent factors using

h = argmin ||x — hD||2.
heR1xP

85
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After this next example, we will discuss how to find this dictionary.

Example 10: Consider again the example with the Big Five personality test. We assume
we have p = 5 latent factors, one factor per personality component. Imagine we have 30
attributes per patient, so our inputs have dimension d = 30. Further imagine someone has
already kindly found the dictionary for you. Now a new patient comes in, and fortunately
you have the information about them that you need, namely you have the vector x of 30
attributes. Before you make any decisions about their care, you’d like to have a good idea
where they stand on the Big Five.

To do so, you need to find h that is the optimal solution for ||x — hD||%. In fact, there
is a closed-form solution for this

Vinlx —hD|? = (x —hD)D" =0
— xD" —hDD' =0
— hDD' =xD'
— h=xD'(DD")™".

This solution can have both positive and negative values in h. For example, if h =
[—0.6,0.7,0,0.3, —0.1], then the patient is not very Open, is quite Conscientious, is nei-
ther Extraverted nor introverted, is somewhat agreeable and not really Neurotic.

All of this assumes that we can actually find a D such that the factors corresponds
to these five personality traits. In general, it is technically impossible to be sure that we
have found an h and D that correspond perfectly to these five traits. This information is
latent after all, and we can only do our best to infer it. If we had some ground-truth data,
say from a psychologist measuring these properties for some number of patients, then we
might have some hope to find such a dictionary D for the larger set of people. But, despite
difficulties in definitively identifying these latent factors, the purpose of this example was
to provide intuition about the types of latent factors we hope to identify. O

Now the question is how we find this dictionary, so that we can identify these latent
factors. Generally, we introduce probabilistic assumptions on these latent variables and their
connection to the inputs, namely we specify p(h) and p(x|h, D) with unknown parameters
D with p(x|/D) = [ p(x/h, D)p(h)dh. We can then use the standard strategy of maximum
likelihood. For the simplest linear case however, where the goal is just to find x; ~ h;D for
input data x;, it is common to use simple matrix factorization approaches. For now, let us
start with some of these simple approaches, to build some intuition, namely using principal
components analysis. Then we will discuss the more general probabilistic formulation.

9.1.1 DMatrix Factorization Approaches

Notice that for more than one input vector x, the goal is to find a dictionary that works
well for all inputs. Namely, we want to find D such that x; ~ h;D for i € {1,...,n}. We
can equivalently write this as X ~ HD where H € R™*P has the ith row corresponding
to h; and X has x; in the 7th row. In other words, the data matrix X is factorized into a
dictionary D and a basis or new representation H (see Figure 9.1).

In fact, many unsupervised learning algorithms (e.g., dimensionality reduction, sparse
coding) and semi-supervised learning algorithms (e.g., supervised dictionary learning) can
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Figure 9.1: Matriz factorization of data matriz X € R™*?. This factorization is a low-rank
factorization, reducing the dimension from d to p, as would be given by PCA.

actually be formulated as matrix factorizations.! Unsupervised learning is about extracting
underlying patterns, which is precisely what we are doing when we extract latent factors.
The primary difference is that unsupervised learning can sometimes have a different goal,
which is to visualize the data; for this goal, dimensionality reduction is key. This goal is still
about data re-representation, but does not have a focus on predictive models or generative
models. For visualization, for example, it might be worth considering only one or two factors
to make it feasible to view the data; for prediction, we are unlikely to so severely restrict
the model capacity.

Principal components analysis (PCA) is a standard dimensionality reduction tech-
nique, where the input data x € R™? is projected into a lower dimensional h € R!*?
spanned by the space of principal components. These principal components are the direc-
tions of maximal variance in the data. To obtain these p principal components D € RP*?,
the common solution technique is to obtain the singular value decomposition of the data
matrix X = USV' € R"*? giving

T d
D=V, ¢ R
H=1U,%, c R

where 3, € RP*P consists of the top largest p singular values (in descending order) and
U, € R™? and V,, € RP*? are the corresponding singular vectors, i.e., U, = U.1, and
V, = V.1,. The new representation for X (using PCA) is this H. Note that PCA does
not subselect features, but rather creates new features: the generated h is not a subset of
the original x.

This dimensionality reduction technique can also be formulated as a matrix factorization.
The corresponding optimization has been shown to be

min |X — HD||%
DcRprxd HER" %P

This follows from the Eckart-Young-Mirsky theorem that states that the rank p matrix X
that best approximates X, in terms of minimal Frobenius norm, is X = UPEPV; .

It may be hard to immediately see why h generated by PCA could be useful as a
representation. The projection to lower dimensions has the property that it removes noise
and maintains only the most meaningful directions. This projection, therefore, helps speed

'For a thorough overview of these connections, see [27)].
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d p d
n X ~~ n H X D D
(sparse)

Figure 9.2: Matriz factorization of data matriz X € R™? for sparse coding. The matriz H
is constrained to be sparse, using {1 regqularization. If it was not constrained to be sparse,
then this factorization would result in a trivial solution. In other words, we could set H =
[X 0] and D =1 and perfectly recover X.

s <os- [ o - n rose

Figure 9.3: The dictionary found with sparse coding, for recreating small patches in an
image. Image from Andrew Ng and his lab, in 2015.

learning by reducing the number of features and promoting generalization, by preventing
overfitting to the noise. This is beneficial if there are a large number of inputs, either
because of high-dimensional data or because the data was first augmented with RBFs or
polynomials.

Sparse coding takes a different approach, where the input data is expanded into a sparse
representation. Sparse coding is biologically motivated [16], based on sparse activations for
memory in the mammalian brain. In this case, p >> d and the idea is that only a small set
of dictionary items are used per input. We have a very large dictionary of representative
attributes from which to select: D € RP*? is large and dense, with many rows. A small
number of these are linearly combined to produce the input: for an input x the h € RP is
sparse with only a few non-zero entries, to create x &~ hD. This factorization is visualized
in Figure 9.2.

An example of when this is useful is given in Figure 9.3, for vision. Each dictionary item
corresponds to a basic edge type. Linearly combining each of these produces more complex
image patches.

The actual optimization strategies are not relevant here, as primarily we are interested in
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the intuition behind these latent factor approaches. For a bit more about the optimization,
see Appendix A.3.1.

9.1.2 Probabilistic Approaches

Now we return to specifying p(h) and p(x|h, D) with unknown parameters D with p(x|D) =
[ p(x/h,D)p(h)dh. We start with simple Gaussian distributions, which allow us to easily
evaluate this integral and make the connection to PCA clear. Then we will consider the
more general setting.

Assume that p(x|h, D) = N (u = hD, 0°I) for some ¢ > 0 and that p(h) = N'(u = 0,1).
Under these Gaussian assumptions, we can compute the integral in a closed form (again,
we omit the steps to show this)

p(x|D) = /p(x|h, D)p(h)dh = N (= 0,D'D + 1)

This assumption assumes x is centered—mean zero—though the formalism can easily be
extended to allow a non-zero mean (see [2, Section 21.1]). Further, we can see that it
assumes x primarily lies in a lower-dimensional space. The term DTD € R4*? ig low-rank,
because p < d. The covariance DD + oI, therefore, has x lying in this low-dimensional
space with only small noise from o2 making it minorly deviate from this plane.

The maximum likelihood estimator for D and o can be obtained using the SVD of X
with singular values o;.

1 d
2 2
g = — g
MLE = T E j
Jj=p+1

Dye = (2 — Ul%/ILEDl/zV;

Notice the similarity to the PCA solution. The primary difference is that the singular
values are shifted downwards by oypg. The other difference is superficial, namely where
the singular values: in the solution to D and H rather than only in H. By convention, D
for PCA is set to just the singular vectors, resulting in solution D = V; and H = U,%,,.

However, a perfectly equivalent solution is D = Z‘;/ 2V; and UpZ‘;/ % because the product
HD is exactly the same in both cases.

The other difference is in how we might extract a representation h for input x. If we opt
to find the h that makes the input the most likely, then we actually get the same solution
as for matrix factorization

argmin — In p(x|h, D) = argmin ||x — hD||3
heRP heRP

If, on the other hand, we would like to get the most likely h for a given input, we optimize
argmin — In p(h|x, D) = argmin — In p(x|/h, D) — In p(h)
heRP heRp
; 2 2 2
= argmin [|x — hD|[3 + oy g/ [h[|3
heRpP
where the last line follows from the unit variance assumption on h and the fact that the
variance of x given h is O'I%ALEI. This objective is somewhat more sensible, since it matches
our assumptions when training h.
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Figure 9.4: Generalized linear model, such
as logistic regression. Figure 9.5: Standard two-layer neural network.

When we move beyond Gaussian assumptions with diagonal variance, we rarely obtain
these nice closed-form solutions. Even for non-diagonal variances with Gaussian assump-
tions, an iterative algorithm is required, called Factor Analysis. The same concepts about
identifying latent factors, and how to think about h and D, continue to apply, even though
the algorithms can become a bit more complex. We will discuss this further, in Chapter 11.

9.2 Learning Representations with Neural Networks

Neural networks allows us to obtain nonlinear transformations of the data. As before, the
goal is to learn a function of inputs, f, to produce a prediction of the target: f(x). The
addition of hidden layers, with non-linear activation functions, enables learning of nonlinear
functions f. In this section, we first explain how this nonlinear function is constructed,
then how we pick the loss function and finally the algorithm to find the parameters for this
function.

9.2.1 Functions Produced by a Neural Network

Let us start with an intuitive example of the types of function obtained with neural networks.
Figure 9.4 shows the graphical model for the generalized linear models we discussed in the
previous chapters, where the weights and corresponding transfer can be thought of as being
on the arrows (as they are not random variables). Figure 9.5 shows a neural network with
one hidden-layer; this is called a two-layer neural network, as there are two layers of weights.
In the figure, the neural network inputs a 4-dimensional feature vector x = [x1, =2, T3, x4]
(i.e., d = 4) and outputs a 2-dimensional prediction y = [y1, yo| (i.e., m = 2). The
hidden layer consists of a mapping from x to a new representation that is 5-dimensional
(i.e., p1 = 5 as per the notation below). For the neural network, let each node in this
hidden representation be indexed by k € {1,...,5}. Each hy consists of a transformation

of a linear weighting of x, such as a sigmoid activation: hy = o (Z;-lzl xjwkj) = o (xwy)
where w, € R is the weights on the first layer used to produce the kth node in the hidden
representation.
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Example 11: Let us continue this example, but make it even simpler by considering
d =1 (i.e., one input observation), m = 1 (i.e., one output), p; = 2 (i.e., 2-dimensional
hidden layer) and a sigmoid activation to get the first hidden layer. Assume we are given
one instance (x,y). Then input observation z is transformed into

h = [hy, ho],  with h; = J(:Uwf)) and hy = O‘(ZL'wéQ)) for w§2),w§2) eR.

To avoid transpose notation, we used x € R4 to give one row of the data matrix X € R"*?,
and row vector h € R'P1. We use the superscript notation to distinguish between the
weights in the first and last layer. It may seem counter-intuitive why we label w® for the
input layer, and w(b for the output layer, but you will see below it makes notation simpler
to start indexing from the output layer.

Once we have h, we can pretend that h is the new input representation and go ahead
and learn a (generalized) linear model on this last layer. Let’s consider two cases: y € R
and y € {0,1}. If y € R, we use linear regression for this last layer and so learn weights
w) € R? such that hw®) approximates the true output y. If y € {0,1}, we use logistic
regression for this last layer and so learn weights w(!) € R? such that o(hw{!)) approximates
the true output y. O

Now we consider the more general case with any d,p;,m. Let’s assume we are doing
regression for simplicity. For linear regression we estimated W € R¥™ to get function
f(x) = xW ~ y. When we add a hidden layer, we have two parameter matrices W(?) ¢
REP1 and W) € RP1X™ where p; is the dimension of the hidden layer

oxw) |’
h=o(xW?) = 2) op € RV
o(xW))

where the sigmoid function is applied to each entry in xW2). This hidden layer is the
new set of features and again you will do the regular linear regression optimization to learn
weights on h:

E[Y |x] # hW) = o(xWE)ywb),

Intuitively, O'(XW(Q)) is our new representation of the inputs: it is a nonlinear transforma-
tion. We then learn a linear function on this new representation, meaning that we learn a
nonlinear function in terms of the original inputs x.

We can apply this linear+activation transformation for multiple layers, resulting in a
nested (deep) transformation. Denote each differentiable activation function fi,..., fm,
ordered with f; as the output activation, and p1,...,pg_1 as the hidden dimensions with
H — 1 hidden layers. Then the output from the neural network is

h (f2 ( o fH— (fH (XW(H)) W(H_l)) . ) W(l))

where W) ¢ RPrxm W) ¢ Rp2xpr - WH) ¢ Rdxpr-1,
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9.2.2 Activations and Loss Functions

The next question is how we select the loss functions for the prediction and activations for
our network. There is at least a relatively straightforward answer to how we specify the loss
and output activation fi: the same choice as we made for (generalized) linear models. If we
are doing logistic regression, then we use the cross-entropy loss with f; = o. If we are doing
multinomial logistic regression, then we use the corresponding loss with f; = softmax. If we
are doing regression, then we use the squared-error with f; = identity. We first decide the
distribution for p(y|x), and the resulting maximum likelihood problem gives us the choice
of fi and loss based on the GLM formulation.

The primary difference to GLMs is that now the parameters for the GLM are a nonlinear
function of x. Previously in GLMs we had that E[Y|x] ~ ¢g(xW). Now, once we first
use a transformation with neural networks, we have that E[Y|x] ~ g(hW®)) where h =

fo ( o frea (fH (xW(H)> W(Hfl)) .. ) and the output activation f; is the transfer g. For

example, previously in linear regression we assumed that p(y|x) = N (xW,o?). Now we
assume that the mean can be a nonlinear function of x, specifically hW (),

The transfer at the end of the network is determined by the loss, but the activations
within the network are not as clear-cut. This choice simply produces different nonlinear
functions. Typical options include the rectified linear unit (ReLU), tanh and sigmoid.
However, really any differentiable function is acceptable, to make it simpler to do gradient
descent. We will focus on the these typical basic choices, where ReLU is currently a common
default.

ReLU is a simple thresholding function: for a given scalar 6, it returns max(0,6). If
we use ReLU for a network with two hidden layers (fo = f3 = ReLU) and a prediction for
regression (f; = identity), then we would have

1) = £ (£ (£ (xWO) WD) WD) = max (0, max (0,xW ) W) Wb,

The innermost term is a vector 03 £ xW®) € RP2, The ReLU is applied elementwise to

each entry in ), to produce the hidden layer

h® < £,(6)) = max(0,0%),

def

Similarly, we have 82 £ h@W® ¢ RPt and h) £ £,(0?)) = max(0,0?). Finally the
output is 8¢ ) EhOwW) e g,

= max (0, max (0 xW(?’)) w2 )) w®

(0
max (0 max ( ) W(2)> w
( 2w ®2) ) wo

_max( ) Wi

— hOw

We visualize each of these terms in Figure 9.6.
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Figure 9.6: The terms in one layer of a neural network.

9.2.3 The Backpropagation Algorithm

The backpropagation algorithm is simply gradient descent on the loss for the neural network,
with a careful ordering of computation to avoid repeating computation. In particular, one
first propagates forward and computes variable h = fg(xW(Q)) € R™P and then y =
fi(foxWEYWD) = £ (hWM), We then compute the error between our prediction ¥
and the true label. We take the gradient of this error (loss) w.r.t. to our parameters.
For efficient computation, the best ordering is to compute the gradient w.r.t. to the last
parameter W) first, and then W2, This is the reason for the term backpropagation,
since the error is propagated backward from the last layer first.

Let us first go through an example with the cross-entropy loss and sigmoid activation
within the network, for a two-layer network. We compute this gradient assuming we only
have one sample (x,y), since that automatically gives us the gradient for a mini-batch (or
even the full batch). That is, we simply sum these gradients for each individual sample over
the mini-batch. Our goal is to compute the partial derivative for each weight w.r.t. the loss
(WD W) = ¢(y,4) = —ylng — (1 — y)In(1 — §) where § is produced using the neural
network with weights W), W),

First, we take the partial derivative w.r.t. the parameters W) € RP1. Notice that the
output of the network is § = ¢(81)) = o(h(OW),

dc(WWIH W) 96(p, y)
D - aw®
_9l(g,y) 060

000wl

(1)
= (c(hWwWm)) — y)%

= (o(W VW) — )V

. 1 pwm o> hWWwh
where the last line follows from the fact that 89(&) = oh )YY)( ) W O mm—— h(V.
oW, oW, oW, J

This derivation comes from noticing that the last layer of the network can be thought of
as a GLM with inputs h(!). Therefore, we can simply re-use the derivation we used for
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the logistic regression update, with input h(Y). In particular, we re-use the fact that for
- aé(gﬂg) — _
9 =o(0), we have —52% = (0(0) — y).

9(9,y)

(1)
8Wj

it yourself from scratch without using the GLM update. O

Exercise 22: Verify the above update by deriving the partial derivative by doing

Next, we compute the partial derivative with respect to W2 € R?*P1. We will use the
chain rule to reuse part of the above update, namely

and consider how the objective changes when we change the entry Wg) at the ith row and
jth column of W2,

dc(WD W) 9¢(g,y)
oW  ow®
1] 1]
_0U(g,y) 06W
0000 Hw®
5]

o W

_ <)
=0 ow®
1]

Now let us look specifically at the last term, and recall that h,(gl) = fg(H,(f)) with 01(3) =
xWE) = S0 x W,

ony) _on6) _onhep) o6y 967 [0 ifk+#j
@ @ T @ @ Vhere — s T\ ik

The two cases arise from the fact that WEJQ) only influences the jth hidden node: it connects
the ith input to the jth hidden node. Since it does not influence the kth hidden node when
k # j, the partial derivative for 0,(3) for k #£ j is zero.

Putting this back together, we get that

Ie(WH, W) ) iW,(f) o
oW = owy
— (5(1)\)\7(,1)f?(‘91(€ )) .

e
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@) as

We can define the new error (delta) that is propagating back to W, :

60 = 6OWI (1~ 0 (67))a (6]

and get partial derivative
de(WH W)

)
oW

Intuitively, 62 includes the error on the output (namely 5(1)), down-weighted by the

strength of the connection ng) for the jth hidden node to the output. We can think
of this as the error travelling back from the output—or propagating backwards—along the
2)

connections. Additionally, the error is modulated by how much changing W;5” could have

changed the activation, namely by the derivative of 0(0](-2) ).

We can generalize these update rules to more hidden layers and to multiple outputs. If
we have two hidden layers, and a vector of outputs m > 1, then we have weights wl ¢
RP1m W(2) ¢ RP2¥P1 W) € R¥¥P2 and activations f3, fo. Let f5 and f} be the derivatives
of these activations; for the sigmoid, it was ¢/(6) = o(6)(1 — o(0)). We first do a forward
pass for an input x, to get variables

03 — xwW®
h® = f3(01%)
6 = haw?
hW = £,(01)
6" = hiw)
y = f1(6W)

Then, to compute the gradient descent (aka backpropagation) updates, we use

s =y-y

5 = (Ws) 3(6%) forall j € {1,....p1)

1 1 1).(1 . .
W,Ej) <—W§j) —7753(- )hg ) forall i € {1,...;;m}Je{l,...,m}

Wg) — Wg) — 775](-2)h§2) forallie {1,...,p2},7€{1,....p1}

Wg’) — WE;’) — 77(5](-3)X7; forallie {1,...,d},j€{1,...,p2}

There are a few useful points to highlight. First, notice that by starting at the output
layer of the network, we can reuse computation. The variable 6 can use 6V and §®)
can use ), and so on if the network was deeper. Backpropagation is therefore gradient
descent with a careful ordering of the gradient computation, to avoid inadvertently (and
wastefully) recomputing terms. Second, we computed 6](-2) before updating WS) This was
to ensure that we used the weights that produces the output in our update. If we updated

WS) first, then the gradient calculation for 62 would be incorrect.
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You can see the pattern even just with a three layer neural network. In practice, we
typically use packages that actually do automatic differentiation for us, instead of having to
implement these particular formulas. But, it is important to understand the update rules
underlying our algorithms.

9.3 Autoencoders and the Connection to PCA

At first glance, the latent factor approaches like PCA and neural networks seem quite un-
related. But there is in fact a connection. Both are trying to identify important factors—
features—and we can specify a neural network that actually has the same solution as PCA.
Namely, an autoencoder with a linear activation and a bottleneck layer—lower dimensional
hidden layer— is actually equivalent to PCA. We show this in this section, and then dis-
cuss the importance of this connection for understanding how neural networks learn data
representations.

An autoencoder is a neural network where the targets are set to the inputs: for a given
x, y = x. For example, we might learn the NN using the loss || f(xW®&)W®) — x|3. The
NN architecture is chosen so that information is discarded from x, and the resulting output
¥ returns only the most significant signal in x. One reason this is useful is to remove any
noise that is in x, so as not to fit to that noise. Another reason is that sometimes these
targets are added as an additional auxiliary loss—in addition to a primary prediction—to
encourage the network to learn features that both make accurate predictions and retain as
much information in x as possible. This inductive bias reflects the hypothesis that such a
representation should be better for generalization.

Now let us consider a linear autoencoder with one hidden layer. Such an NN has weights
WO W and both transfers are the identity, resulting in the loss per-sample

I WAOWW - x;|2

The input dimension is d, the hidden dimension is p and the output dimension is d, giving
W@ ¢ R¥*P and W) ¢ RP*4, Notice that if p > d, then we can simply set WOWO =1,
and we trivially get zero error. We have to restrict the hidden layer to be a bottleneck, with
p < d, to force the transformation to be lossy.? The resulting network learns to maintain
only the most significant content in the inputs. To see why, notice that the optimization,
for all the data, is

min IXWEwW® — X2
W(2) cRdxp W (1) cRpxd

Assume we have the SVD X = UXV' with singular values o1,...,04 > 0 and further
assume that o, > 0 (namely at least the first p singular values are non-zero). Then we
can select W) =V, and W) = V; where V,, = [v1,Va,...,V,] € R¥P These weight

2This objective is also called Reduced Rank Regression, when the targets more generally are any m
targets where p < d and p < m. The matrix W = WEOWD ¢ RIX™ g rank p, namely is a reduced rank
matrix, with the goal to learn such a reduced rank W to minimize ||[XW — Y]|3.



CHAPTER 9. LEARNED REPRESENTATIONS 97

matrices produce prediction X where

X =XxwOwWl =usv'v,v] > VTV, = [I,;0] € RO
= U[Z,;0]V) > 3[L,; 0] = [£,; 0] € R>*P
=U,%,V,

This is the best rank p approximation to X, since we took the top p singular values and
vectors, just as we did in PCA. Therefore, since these weights matrices give us the closest
approximation we can get to X if we are restricted to at most rank p, we know that they
are a solution to this optimization. This solution is the same as that returned by PCA: the
top p right singular vectors of X or equivalently the top p eigenvectors of X X.

We can map this more directly to the matrix factorization view of PCA, where we
discussed the dictionary D and representation h. There we had D = V;,r and H=1U,%,
composed of representations h; as the rows. For this autoencoder, the new representation is
the hidden layer, namely h = xW ). For all datapoints, this is H = XW® = U[x,;0] =
U,X, for the representation given by the autoencoder, which is the same as PCA.

As in PCA, this solution is not unique without further constraints. We can shift weight
between W) and W@ for the autoencoder, just as we can shift weight between D and
H. For PCA, if we opt for unit length dictionary elements—and so the features in H
indicate the magnitude each component is used—we get the unique solution above. For
autoencoders, if we enforce the constraint that the norm of W and W® are equal, then
we get the solution above (up to a rotation matrix that does not change magnitudes).

Remark: Once we move beyond this linear setting and PCA, autoencoders and matrix
factorization approaches are different. For example, sparse coding as a way to obtain a new
representation H cannot obviously be written as a standard autoencoder with the typical
activations where we use a linear weighting followed by a nonlinearity like sigmoid or ReLLU.
The reason for this is that these activations are quite restricted, and so cannot represent
the sparse coding operation. In fact, if we consider more general operations in each layer,
we can actually (somewhat trivially) recover sparse coding. Assuming we are still learning
parameters W@ to produce the first hidden layer, we can define a new transformation to
get layer one as g(x) = argmin,cgy [|[x — hW®)||3 + ||h||;. Note here that this W) is
different than above (it is not multiplying x), but it is still the parameters we learn for this
new activation g.

The question becomes (a) are such layers useful and (b) how do we optimize for W
through this optimization over h? For the first question, one way they are useful is for the
same reason that sparse coding is useful: they give more directly control on the properties
of the representation. Further, this transformation is a nonlinear transformation that po-
tentially adds more flexibility than the standard NN approach of linear operations followed
by activations. For the second question, there are in fact some nice ideas out there precisely
on how to do this, but this is much beyond the scope of this course.

2)
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Generative Models
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Up until now, we have been focused on predictive models, ones that learn p(y|x) for a
relatively simple conditional distribution (exponential family). In this section, we discuss
generative models, that attempt to learn more complex distributions.

We have already seen very simple generative models, when first talking about MLE.
Recall that our goal was to model distribution p(x) with parameters 6, assuming we were
given a dataset D = {x;};_,. In MLE, the goal is to find the parameters that make the
data the most likely

n
MLE : 0,1 = argmax p(D|0) = argminz - Inp(x;|0) (9.1)
0 o =1

where we previously saw that this could be rewritten as the minimization of the negative
log likelihood. For the distributions we considered, like Gaussians and Poissons, the log
simplified the objective substantially and the resulting gradients were easy to compute. So,
we did not dwell too much on learning algorithms for these models.

Once we move to more complex distributions, however, learning is more complicated.
Further, we have an additional criterion: the distributions need to be efficient to sample
from. For our simple distributions, like Gaussians, it is straightforward to get samples of x,
so again we did not dwell on it. For generative models, our primary goal will be to sample
X ~ pg. Generative models are designed around these two criteria: facilitating sampling
and facilitating learning the model.

In this part, we start with one of the simplest generative models that already adds quite
a bit of complexity. Then we talk about how to incorporate one of the central tools in these
notes: data representations.



Chapter 10
Mixture Models and Expectation-Maximization

In this section we discuss how to learn mixture models. Let’s assume that each mixture
component has parameters 0, giving

p(X|0) = Zwkp(x|0k) where 0= (wlaw27'"awmaela"'70m)'
k=1

For example, each component might be a Gaussian distribution with parameters 6, =
(p, Xg). The mixture distribution corresponds to a convex combination of these Gaussians
with different means and covariances. We already saw in Section 2.3 how this class of
distributions can significantly increase modeling power.

Now let us see why learning is complicated for these mixture models. First, let’s try to
simplify the log likelihood for a single point.

-lnp(x;|0) = -1n Z wip(x|0)
k=1

Immediately we can notice that the log is not going to help as much as before. Previously
the log cancelled the exponential terms in the simpler distributions, like the single Gaussian,
making the resulting objective simple. For example, for a Gaussian, our objective became
a sum of squared errors. This may not seem like an issue: after all, we can still take the
gradient of this objective and do gradient descent. In fact, such an algorithm has been used.
But, the issue seems to be that this approach results in slow convergence.

Instead, we will take a different route and introduce auxiliary variables that corre-
spond to the mixing component. We jointly optimize over these auxiliary variables and the
original variables @, to obtain simpler iterative updates that nonetheless still converges to
a stationary point of the above objective. This algorithm—rederived in many forms—is
called expectation-maximization. This chapter introduces you to some of these concepts, in
their simplest form, before extending them in the next chapter to generative models that
use data representations, like neural networks.

10.1 A Warm-up Exercise: MLE for Multivariate Gaussians

Let us first do a short exercise, computing the MLE solution for multivariate Gaussians.
We will use this to understand the update for mixture models where the components are
Gaussians.

Assume you would like to find parameters p, ¥ for a multivariate Gaussian N (u,X)
where 3 is positive definite and symmetric. (We write 3 > 0 to indicate that this matrix

100
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is positive definite.) Recall that the pdf, introduced in Equation 2.1, is
) = (2) P exp (<5 )= (- m)).
The negative log likelihood for a given x for a Gaussian is
~Inp(x) = -In(27)"¥? —In 2|2 —Inexp (—;(x — )2 (x— u))
= ~n(2m) Y + 40 [S] + 5 (x— )2 x - )

Now we can compute the gradient with respect to both of our parameters p, 32, for the full
objective and find a stationary point. The objective for 8 = (u,X) is

c(0) = Zci(a) where ¢;(0) £ -Inp(x;) = - In(27) "% + sIn 2|+ %(X )= (x - p)
i=1

Notice that we can still consider our set of parameters to be a vector 8 € Rd+d2, where the
d elements correspond to p and 0411 = X171, Qg0 = Xo1, ..., Oog = Xg1, O2q11 = Y12, .. -,
0,42 = X4qq- When we compute the stationary point, we are computing partial derivatives
for each 8; and setting them to zero; therefore, we are computing partial derivatives for
each element of p and 3 and finding the point where those partial derivatives are zero.
We can use gradient descent, but in this case we can actually obtain a closed form solution
by solving for p, 3 such that both V,c(0) = 0 and Vxc(@) = 0. To get these partial
derivatives, we will compute them for each ¢;.

1
Vu-lnp(x) = Vu—ln(27r)_d/2 + Vusn|3|+ Vui(x —p)' 2 (x—p)
=0+0+3'(n—x)

where the last follows from the fact that V,i(x — p) '3 '(x — p) = 7' (p — x). You
can check this as an exercise, either using the rules for derivatives with vectors, discussed
in Section 1.4.2, or by computing the partial derivatives for each p;. We can therefore see
that, for any full rank (invertible) ¥, we have

n

V> Inp(x) =" (p—x;) =0

i =1

~
—_

= (p—x;)=0 > multiply both sides by ¥ = nu = in
— i=1

o
I

n
1
= p = ﬁzxi
=1

We know that this stationary point is a global minimum because the objective is convex:
it is a weighted quadratic objective, with positive definite weighting £ ~". Alternatively, we
can check that it is a local minimum using the second derivative test, namely check if the
Hessian is positive definite. If it is, then because we have a single stationary point, we know
that we have a global minimum.
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Exercise 23: Show that the Hessian for p* is positive definite. Let é(p) = c(p, X)) for
any positive definite 3 and note that the Hessian is Hg(,) = ', Hint: recall that we
can write ¥ = UAU' using it’s eigenvalue decomposition and X" = UAT'U". Since &
is positive definite, we know that the eigenvalues on the diagonal in A are positive. O

Similarly, we can compute the gradient w.r.t. 3
1
Vs-Inp(x) = Vg-In(27) "2 + Vsiln|Z|+ V§]§<X —p)' 2 (x—p) (10.1)

As before the first term disappears. However, the second two terms both include 3. The
gradient of the log of the determinant of this matrix is 37" (see [19, Equation 48]). The
same resource gives us an easy rule to compute the gradient of the second term, without
having to do so ourselves using partial derivatives. Namely, we know that for a symmetric
matrix X (see [19, Equation 52])

anTX*a = -X'aa' X!

where we use the fact that X = X for a symmetric matrix. Therefore, we can plug these
into Equation (10.1) to get that

1
Vs-lnp(x) = 37" — 5271@( —p)(x—p) 8

Now we can use this to find

“ _ 1N _
Vs-Y Inp(x;) = gn¥ " — 522 Nxi—p)(xi—p) B =0
i=1 =1
n
= nX ' =% [Z(Xi —p)(xi— )"
=1

271

— nl = [Z(XZ — p)(x; — M)T > > left multiply both sides by X

i=1

n
— nY = Z:(xZ —p)(x;— )" > right multiply both sides by X
i=1
n
— =23 —p(xi—p)’

s
Il
—

This answer is again intuitive: it is the sample covariance. This stationary point satisfies
the conditions on X, namely that it is symmetric and positive definite, if n > d. This is
because an outer product aiaiT is always symmetric, and the sum of symmetric matrices is
symmetric. Further, the sum of outer products Y i ; aia;r has at most rank n. Therefore,
if n < d, the rank will be less than d and X will not be full rank; in this case, we should
modify our objective to use a regularizer (prior) on ¥ to ensure that it is full rank. Because
we usually assume n > d, we will usually get a full rank 3 and we can conclude that we
have a global minimum. This result is well-known for multivariate Gaussians, but as an

exercise, you can also check the properties of the Hessian.

Exercise 24: Typically, once n > d, we expect 3 to be full rank. However it is possible
that n > d and we get a ¥ that is not full rank. When might this happen and why? Hint:
start by considering a case where you have two repeated samples x3 = x5 and n =d. [
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Exercise 25: The above is the MLE solution. We could instead consider a MAP solution,
where we incorporate a prior on our variables. What prior information might we want to
incorporate on X7 O

10.2 Setting Up for the EM Algorithm

The key part of the EM algorithm is to explicitly reason about the latent variable z that
corresponds to which mixture component generated the datapoint. To understand this,
consider how data is generated from a mixture model p(x) = >/ wrp(x|60%).

1. Sample a component z € {1,...,m} proportionally to weights w1,...,wp,.

2. Sample x from the z-th component p(x|6.).

In other words, we can think of wy as p(Z = k) and p(x|0;) as p(x|Z = k). When we
sample x, we can think of this as jointly sampling (x,z) from p(x,z) = p(x|2)p(z) =
p(x|Z = 2)p(Z = z), and then only observing x. In fact, to be very explicit about this, we
will now index with z instead of k and write:

p(x) = 3 w.p(x]6.).
z=1

This is equivalent to using k, since it is just a variable name, but it forces us to think of
this index as a latent variable z.

If we knew the mixture component z for x, then estimation would be simpler. Intuitively,
we can see why this is the case. We can partition the dataset into Di,Da, ..., D,, where
D, consists of the x; that have label z. Then we just need to estimate the multivariate
Gaussian parameters 8, = (u,, 3,) for each dataset D, separately, to get the m Gaussians
in the mixture. We saw how to use MLE to get these in the last section. It is a bit more
work to get the coefficients w,, especially because this is a constrained optimization, but
the update ends up being simple (as we will see).

The EM algorithm is build on this insight. It iteratively predicts which component
is likely for each x using its current parameters () (current belief about how the world
works), and then uses this prediction to improve the parameter estimates
et+1) — (wgtﬂ), wéﬁ_l), . ,wT(ﬁH), OY—H), - ,0,(72“)). The EM algorithm performs the fol-
lowing steps:

1. B-step: Compute p(z|D,0®) where z £ (21, ..., 2,)
2. M-step: Compute 8+

Let us now reason about the objective we are optimizing using this procedure. We know
we want to minimize the negative log-likelihood, which we can rewrite

Inp(D|6) = In(p(D, 2|0) /p(z|D, 0)) = Inp(D, z|0) — Inp(z|D, )
We can define

pe(zi) = pi(ilx;, 00) and  pi(z) < [ pe(21)
=1
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and take the expectation over both sides, according to the distribution p;, giving

Zpt )Inp(D|@) = Inp(D|@) and Zpt )Inp(D,z|0) — Zpt )Inp(z|D, 0)

= lnp(D|F) = Zpt )Inp(D,z|0) — Zpt )Inp(z|D, 0)

In the maximization step of EM, we only focus on optimizing the first term, and omit

>, pt(z) Inp(z|D, H). This is better justified in Section 11.3. For now, we will move forward

and derive the EM algorithm accepting that this choice still helps us minimize — Iln p(D|0).
Therefore, to get the new parameters t1) | we find

O+ — argmln Zpt )Inp(D, z|6). (10.2)

10.3 The Expectation-Maximization Algorithm

Given this set-up, we can now derive the E-step and the M-step. We will do this specifically
for Gaussian mixture components to start. We start with the M-step, then the E-step and
finally put it all together.

10.3.1 M-step

Let us rewrite the objective in Equation 10.2.

Zpt )Inp(D,z|0) = > pi(z) > Inp(xi, z6) >p(D,z|0) = I p(x;, 2i|0)
z =1

Il
M=

Zpt ) In p(x;, 2;(0) > swap sums

N
Il
i

Il
[M]=
MS N

i=1 z;=1 Z\;
= Z Z pi(2i) Inp(x;, 2;10) > Zpt(z\i) =1 factors out
i=1 z;=1 Z\;
=Y pilz) Infw.,p(xi]6.,)] > p(xi, zi|6) = p(xilzi, 0)p(zi]0).

@
Il

NN
gz
Il

L

Notice that
ln[wzip(xi‘ezi)] =In Wy + lnp(Xi‘ezi)

> pe(zi)pe(zy) Inp(xi, 210) > py(z Hpt (2i) = pi(zi)pe(2;)
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and so we can optimize for w and {Hk};n 1 separately because they do not interact. The
weights w are in the first sum and the Gaussian parameters {Ok} _, are in the second sum.

n m
Zpt )YInp(D,z|0) = Z Z (zi) Inw,, + Z Z pe(zi) Inp(x;]02,)

i=12z;=1

= argmin - Zpt )Inp(D, z|0) = argmin - Z Z p(zi) Inw,,
WE.F 6.7'— i=1 zi =1

argmln Zpt )Inp(D,z|0) = argmln Z Z pe(zi) In p(x;]62,)

Oy, i=1 z;=1

Notice that p;(z;) is simply stored as a multi-dimensional array p[i, k] where at time step
t we have the probabilities for z for each sample ¢. To derive the updates for these opti-
mizations, we will go back to indexing by k, now that we understand the objective and that
each k is a latent component.

Finding Gaussian parameters 6; Let us start with optimizing for the Gaussian pa-
rameters. Because

SN pelis K] Inp(x|0y) = Z (Zpt k] Inp leé’k))
i=1 k=1 k=1

again we can see that each 0y can be optimized independently

0,(;“) = argmin - Zpt i, k] In p(x;|0).

Oy, i=1

This optimization is just a weighted log likelihood. For a Gaussian, where 0, = (ug, Xi),
we can show that this corresponds to finding

V=Y pilis k) Inp(xi|60k) = S > puli k) (w —xi) =0 = Y pfi, k](p —x;) = 0
=1 =1 =1

n
s _ 1 ;
I’l’ - Z:‘Lzl pt[’i,k] let[z7 k]X’L
1=
The normalization takes into account how much probability is associated with component

k across the samples. We can further simplify this by using a normalized weighting

ﬁt[%k] = th[%k]

=1 Peld:K]

to get pr = Y.i—; Dt[i, k|x;. Similarly, for the variance, we find that

S = 3l (ks — ) i — )
=1
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Finding component probabilities w Now let us turn to finding w. This optimization
is a bit more complex, because we have to ensure that we satisfy the simplex constraints.
In other words, we need to find

n m
w(ttl) = argmin — Z Z pefi, k] Inwy,
WE[U,l]m,Zzlzl wr=1 i=1 k=1

Overloading terminology, if we let p[k] = > i~ p:[i, k], and notice Y i~ >t peli, k] Inwy, =
Yoreg Inwg Yoi g peli, k] = DofL Inwgpe[k], then we can equivalently write

wttl) = argmin - Z pelk] Inwy,
wel0,1]m,% " w=1 —
We can use our new-found knowledge about constrained optimization and KKT multipliers,
for this problem. To start we shall first form the Lagrangian function as

m m
L(w,a,b) Zpt lnwk+a<2wk—1>—2bkwk
k=1 k=1
where a € R and b > 0 are KKT multipliers. Our goal now is to solve the new objective
that no longer has constraints on w:

min max L(w,a,b)
weR™ acR,b>0

We can find a closed form solution, by reasoning about the feasible solutions. We know that
any optimal solution w must satisfy w € F (the simplex); otherwise, the loss L(w,a,b)
can be made arbitrarily big by (the adversaries) a and b. So, any optimal solution will
have w € F. Moreover, for such w, we know that a € R has no impact on the loss, since
it multiples zero; therefore, it is a free variable and can be anything and still result in an
optimal solution—mnamely result in the same value for L(w,a,b). Finally, we know that
b > 0 will be chosen such that biw; = 0 for all k, since that is the choice that makes the
sum involving b maximal. And, of course, we need to be at a stationary point for w. In
other words, to satisfy the KKT conditions and know we have an optimal solution, we need

0 k
O:—L(w,a,b):—lﬂ—i—a—bk Vke)y
Wi Wi
wib =0
with b > 0 and w € F. The stationarity conditions gives us wy = [ ] . As in Section 6.3,

we know that by = 0 unless wy = 0. If p[k] > 0, we know wy > O, g1v1ng wy = ptTW. If

pe[k] = 0, then wy = 0 and similarly we can write wy = ptT[k]. Therefore, to ensure we are
at an optimal solution—and satisfy the KKT conditions—we know we need to set a such

that > jv; wr = 1. We can do so by setting a = n, giving

wy = —— == plk]l=-n=1

because by definition > j* ; ps[k] = n. Therefore,

1 L
w,(fﬂ) fpt [k] where p[k] o Zpt i, k] (10.3)
i=1
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10.3.2 E-step

Once we have the new parameters—once we have done the maximization step—we need to
update the component probabilities—namely do the expectation step. This involves getting
t+1 t+1
wi Vp(xil 0 )

Z;ﬂﬂ w§-t+1)p(xi|0j(-t+1)) .

pri1(Zi = k) Z p(Z; = klx;, 007) = (10.4)

These again can be stored as an n X m matrix pi11[i, k] and the normalized pyi1[i, k]
computed from those. Note that in practice, we do not create new variables p;;1, but
rather overwrite the existing n x m matrix; we simply index by time for clarity here.

10.3.3 Putting It All Together

In summary, for the mixture of m Gaussian distributions, we summarize the EM algorithm
by combining Equations (10.3-10.4) as follows:

1. Initialize u,(go), Eg)) and w,(go) forall ke )y
2. Sett=0

3. Repeat until convergence

wp(xil6y)

(a) peli, k] = E;":lw§t)p(xz-|0;t)) foralli € {1,2,...,n}, k€ {1,2,...,m}
3 =, [0 — pt[ivk]

(b) Compute normalized p;i, k] = S A
(c) Forall k € {1,2,...,m}:

il = D k]

it = S Al ks

it S = Sl ke — gy ) e - g T)T
(d) t=t+1

4. Return wtk,,ug), 2,(;) for all k € {1,2,...,m}

A common convergence criteria is to check if > | p[k] In wy, barely changed between iter-
ations.

To be concrete, we provided the updates for Gaussian distributions, but the above can
be generically done for other distribution. Similar update rules can be obtained for different
probability distributions, where the derivatives for the mixture parameters will be slightly
different but the solution for the coefficients w is actually the same. In general, for each
step ¢, the EM algorithm performs the following steps:

1. E-step: Compute p(z]D,H(t))

2. M-step: Compute @+
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Exercise 26: Derive the updates again now assuming the mixture components are expo-
nentials and d = 1. O

Exercise 27: A typical heuristic is to initialize the coefficients to be uniform, the covariance
matrices to be diagonal with a large number on the diagonal and to initialize the means to
random points in the dataset. What might happen if we initialized the covariance matrices
to be very small instead? O



Chapter 11

Generative Models and Data Representations

In this chapter we discuss how the data representation approaches allow us to learn more
complex generative models, not just more complex predictive models. We have already
seen how to learn generative models by making simple parametric assumptions on x, such
as assuming x is Gaussian or that it is a mixture model. Even with the generalization to
mixture models, however, these models can be quite limited, either requiring a large number
of mixtures, requiring a smarter distance than Euclidean distance or requiring careful tuning
of the number of mixture components.

We first discuss one simple way to improve the capacity of these models: mapping to a
new space with a data representation, and then using simpler parametric models. We then
discuss how to directly learn complex distributions, with neural networks, using the idea of
reparameterization.

11.1 Connections to Models We Have Already Discussed

We have two goals with generative models: learning a good approximation p(x) to a poten-
tially complex distribution p(x) and having an efficient approach to sample from p. When
selecting our approximation strategy, we have to keep both in mind. We have actually
already seen several models where generating samples is straightforward, including mixture
models and probabilistic PCA.

First consider mixture models. They are the sum of m components p1, p2, ..., Pm. As
long as it is easy to sample x ~ pg, then it is easy to sample from the mixture model p.
The sampling procedure involves first sampling k& proportionally to probabilities p[k] = wy.
The algorithm to do so simply needs a sample from a uniform distribution over [0, 1]:

1. Sample u uniformly from [0, 1] (u € [0, 1])
2. Set s=0,k=1
3. While s <u

(a) s < s+ wg
(b) if s > u, return k
(c) k+k+1
The idea for this algorithm is simple. We discretize the interval [0, 1] into m buckets, with

the first bucket of size w;, the second of size ws and so on. Then we uniformly randomly
pick a number in the range [0, 1], and return the bucket that u falls into. In expectation,

109
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we will see k = 1 picked w; percentage of the time, and k = 2 picked wo percentage of the
time, and k = 3 picked w3 percentage of the time, and so on.

Once we have a component k selected, then we simply sample x ~ pg. This second
step is also simple, as long as each pj is easy to sample from. This is the case for many of
the simple distributions we considered. Namely, the procedure involves again first sampling
u ~ [0, 1] uniformly, and then transforming this using the inverse CDF. Namely, if F' is the
CDF for a random variable X (e.g., X is a Gaussian), then Y = F'(X) is a uniform random
variable on [0, 1]. Consequently, we have that X = F~1(Y). This means we can sample
from Y, and apply the transformation F~!, so it is as if we sample directly from X.

Exercise 28: Show that the above procedure to sample a component always returns a
valid k € {1,...,m}. Additionally, show how to modify it so that you save yourself one
loop iteration. O

Now let us revisit probabilistic PCA. Recall that we assumed a latent h € RP where
p(x|D) = [ p(x/h,D)p(h)dh. In particular, we assumed that p(x|/h, D) = N'(u = hD, ¢*I)
for some o > 0 and that p(h) = NM(pu = 0,I). We discussed probabilistic PCA as a way
to identify these latent factors, but it is also a way to obtain a generative model, namely
p(x|D). Like mixture models, this model is easy to sample from, because it is broken up into
sampling the latent component—here a continuous vector rather than a discrete index—
and then sampling from the simpler distribution given this latent component—a Gaussian
p(x|h, D). The procedure is

1. For k=1,2,...,p, sample hy ~ N(0,1)
2. Let h = [hl,hg,... ,hp]
3. Sample x ~ N(hD, o°I)

This generative model, however, is quite limited in terms of the distributions it can rep-
resent over x. This is particularly due to the simplistic assumption on p(x|h, D). However,
this is precisely the term we know how to generalize, using data representations like neural
networks! In particular, instead of assuming the mean is linear in h, we can assume it is
a more complex function f(h). Effectively, p(x|/h,D) is a regression problem where h are
the inputs, D are the parameters of the learned function and x are the outputs. This is the
strategy taken by variational autoencoders, that we discuss next.

11.2 Variational Autoencoders

In this section, we see one of the simplest generative models that uses the power of neural
networks, namely as a simple extension of probabilistic PCA. These models, called Varia-
tional Autoencoders (VAEs), obtain stochasticity with simple normal random variables and
use complex mappings (neural networks) to transform those simple random variables into
complex distributions. For example, consider an f that is a higher-order polynomial. Then
x = f(h) map each normal h to a completely different vector and the resulting random
variable is no longer Gaussian and can be a highly complex distribution.

For VAEs, we assume p(x|W) = [ p(x|h, W)p(h)dh with p(h) = N(p = 0,I) and
p(x|/h, W) = N (= fw(h),0?I) for some o > 0, where fyw is a multi-layer neural network
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input h and outputting a d-dimensional vector, the same size as x. The primary difficulty
is in learning W, but first let us consider how we use the VAE. The procedure is

1. For k=1,2,...,p, sample hy ~ N(0,1)
2. Let h = [hl,hg,...,hp]

3. p= fw(h)
4. Sample x ~ N (p, 02I)

It is almost exactly the same as the mode from probabilistic PCA, but the mean is a
multi-layer neural network rather than a linear function of h.

Our goal is to find W that maximizes the likelihood of an observed dataset D = {x;}I" ;.
As with mixture models, we will run into the same issue that the latent variable will make
estimation more complex. For mixture models, the log was stuck around the outside of a
sum; here, the log will be stuck around the outside of the integral over h. As in EM, directly
reasoning about the probabilities over these hidden variables conditioned on the inputs x,
will help us significantly simplify this optimization.

Similar to probabilistic PCA (PPCA), our density is

P(x[W) = / p(x[h, W)p(h)dh = By, [p(x|h, W)]

where the integral takes the expectation over h, where we explicitly subscript the expecta-
tion to be clear from which distribution we are sampling h. The density is similar to PPCA,
but now it does not evaluate to a Gaussian, since p(x|h, W) is more complex. Our goal is
to maximize the likelihood of the data (minimize the negative log-likelihood)

n
argmin — Z In p(x;|W)
W

=1

We can attempt to estimate p(x;|W) by sampling many hy,..., h,, ~ p(h), and using
LS pxifb W) &~ Epe [plx|b, W)] = (x| W).

The issue with this approach is that many h play little to no role in the expectation.
Namely, p(x;|h, W) is likely very near zero for most h. Notice that the mean for p(x|/h, W)
is fw(h). This mean will be close to some x, but most x will be far from fw(h) and so the
density at those points will be very small. We would have to sample many many h to get
an accurate estimate of this expectation, because only a small number of those sampled h
will be in the region where p(x;|h, W) is reasonably large.

Instead, we can try to direct the sampling, so that we sample exactly these h that are
pertinent to x;. To do so, we need a distribution ¢(h|x), so that we can sample h with high
likelihood for a given x. We do not have such a distribution, but we can attempt to learn
it. Note that this distribution ¢(h|x) is typically called the variational distribution, giving
us part of the name VAE. We will soon see why the term autoencoder is also in VAEs.

A natural choice to learn ¢(h|x) is to attempt to have it match the true distribution
p(h|x, W), defined as
p(x[h, W)p(h)

P W) =T W)
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Figure 11.1: The left figure shows how to use the function f learned by the decoder in the
Variational Auto-encoder. The right figure shows how to learn q(h|x) (the encoder) that
helps focus sampling to optimize the decoder. Note that a VAE is not like a regular AFE,
and this analogy can be confusing. Instead we have these two components that are jointly
optimized using the ELBO objective.

We will turn once again to the KL divergence, to provide an objective for this goal:
Dx1,(q(-|x) || p(:|x, W)). We would like to simultaneously minimize this KL, while also
minimizing the negative log-likelihood,

n
argmin - > Inp(xi W) + Dxr(q([xi) || p(-Ixi, W)
i=1
Let ¢;(W) = —Inp(x;|W) + Dxr.(q(:|x;) || p(-|xi, W)) and let us consider just one of these
terms ¢; in the objective. Notice first that

Dxr(q(:[x) [| p(-[x, W))= Ep~y(|x)[Ing(h|x) — Inp(h[x, W)]
x|/h, W)p(h
= Epg(x) [Ing(h]x) —In W
= Enq(x) [Ing(hlx) — Inp(x[h, W) — Inp(h) + In p(x|W)]
= Enrg( ) [In g(h[x) — Inp(h)] — B [In p(x/h, W)] + In p(x|W)

where Epq(.|x) [In p(x|W)] = In p(x|W) because In p(x|W) is a constant wrt h (and E[c] = ¢
for a constant c). Additionally, we have that Ey.q(.|x)[In ¢(h|x) —Inp(h)] = Dk(q(-|x) || p)
where p is the simple Gaussian over h. Putting this all together, we have that

~Inp(x|W) + Dkr(q(-[x) || p(-|x, W)) = Dxr.(q(:[x) || p) = En~g(x) Inp(x[h, W)] (11.1)

Lo and behold! We now also have a log-likelihood term for x that is conditioned on h,
with the log inside the expectation: Ep.q(.x)[In p(x|/h, W)]. We did not start out by trying
to get this—we were simply trying to find a reasonable sampling distribution for h—but we
got this beautiful outcome anyway. Sometimes the universe is kind. This objective is called
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the evidence lower bound (ELBO), primarily because it is a lower bound on the evidence
—In p(x|W). As usual, the name is not that useful, nor does it give us more insight, but it
is useful to know the terminology when talking to others.

Remark: Learning ¢(h|x) has an additional benefit: simplifying computing the likeli-
hood of new points, when we test our generative model. Once we learn W, we want to be
able to compute the likelihood of new data X under our model p(X|W). As we discussed
above, however, computing this term involves solving an integral. Approximating this in-
tegral by sampling h ~ p requires many many h, since most p(x|h, W) is near zero for
most h. Instead, we can sample h from ¢(h|x), to more efficiently estimate p(X|W) when
measuring generalization performance.

Now let us move on to optimizing our ELBO objective in Equation (11.1). To do so, we
need to parameterize g(h|x). A typical choice is to use g(h|x, 0) = N(f,0(x), fs0(x)) where
fu6(x) is a neural network with parameters 6 that outputs a mean estimate p € R? and
fo,0(x) is a neural network with parameters 6 that outputs a diagonal covariance estimate
> € R4 namely it outputs a%, 0%, el 03. These two terms share parameters @, because
usually they share most of the neural network, as in Figure 11.1. They each have their
own separate (private) parameters on the last layer of the neural network. The parameters
0 include all of these parameters, shared and private. Given this last layer—let’s call it
¢(x)—the mean is a linear function of ¢(x) and the variances O'JZ(X) use a linear function
on ¢(x) followed by a transform that ensures the output is positive, such as an exponential.
Alternatively, to maintain numerical stability, it is also common for the NN to output the
log of UJZ(X), and use a linear function of ¢(x) to produce this In O'J2-(X).

Now we need a mechanism to compute gradients through this new network. The dif-
ficulty is that ¢(h|x) produces a distribution from which we can sample h; differentiating
through such stochastic nodes is not obvious.! Fortunately, for our setting, we can take
advantage of what is called the reparameterization trick. The idea is that we can re-express
this stochasticity independent of our parameters, and so compute gradients only on deter-
ministic quantities.

To see why consider what it means to sample h ~ ¢(:|x) = N (u(x), X(x)) for diagonal
3 (x). We are independently sampling h; ~ N (p;(x), O'J2- (x)). This is equivalent to sampling
€j ~ N(0,1) and writing hj = p;(x) + 0;(x)e;. Therefore, if we let € ~ N (0,I), then we
can rewrite

Enrg(-lx) [ p(x|h, W)] = Ecpro,1) [Inp(x|h1 = p1 (%) +o1(X)er, - - -, hp=pp(x) +0a(x)ep, W)

Now when we compute the gradient for this sample, it can come inside this expectation.
For each stochastic gradient descent update, we can sample a point x;, then sample an
€ ~ N(0,I) and easily compute the gradient of Inp(x;|h1 = p1(x;) + o1(x;)€r, ..., hy =
pp(Xi) +0p(Xi)ep, W) with respect to both W and @ (which parameterizes 11j(x;) and o7 (x;)
for all j). We can then use these gradients to update W and 6 simultaneously.

For a more in-depth discussion on VAEs, I highly encourage reading the relatively short
tutorial by Carl Doersch [10].

LOptimizing stochastic neural networks, and the related ideas in stochastic computation graphs, is a very
interesting topic, but much beyond what we can cover here.
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11.3 Connection to Expectation-Maximization

The above approach resembles expectation-maximization (EM). In fact, the ELBO underlies
EM as well. The primary distinction is in how we specify ¢(-|x) and the ability to compute
the true expected value. In EM, we set the distribution ¢ over the latent variable to be
p(h|x, 6®)) in the E-step. In the maximization step, we can optimize the true expectation
En~g(-lx)[In p(x, h|W)] by summing over all the discrete latent h (which we called z).

In VAEs, we only perform each step approximately. On each update, we modify our
parameterized ¢(:|x) to be closer to

p(hlx, W) = 2L

x|h, W®)p(h)
p(x|W®)

and then we only sample h to estimate the expectation term Ey,q(.x)[Inp(x/h, W)]. The
primary difference is that we do not fully compute the expectation, for the reasons described
above: it is expensive. We do not have a closed-form solution, so we resort to sampling.
Further, it is intractable to sample h from p(h|x, W(t)), so we approximate it with something
that we can easily sample.

To see why the ELBO underlies EM, we can consider again the above equality, in
Equation (11.1), but make it slightly more general. Above we simplified just a little bit
because p(h|W) = p(h) for VAEs. In general, this may not be true, and in fact for mixture
models it is not since the distribution over our latent variables depends on w1, ..., w.,. Let’s
use the notation @ to be all the parameters for our model, and allow h to be discrete or
continuous. Going through similar steps to above,

Dxr(q(-[x) [| p(:[%,0))= Enng(fx) [0 ¢(h[x) — Inp(hlx, 6)]
(x|h, 8)p(h|6)
p(x(0)
= Ep~q(|x) Inq(h[x) — Inp(x|h, 8) — Inp(h[6) + In p(x|0)]
= Enq(x[Ing(h]x) — In p(h[0)] — Epy(.x) Inp(x[h, 8)] + In p(x[6)

p
= Epg(x) [Ing(h]x) —In

The only difference to this same derivation above is that we now have p(h|@) rather than
p(h). Like before, we can conclude that

-Inp(x|0) + Dxr(q(-[x) [| p(:x,0)) = Dkr(q(-x) || p(-16)) = En~g(.x[Inp(x/h, 6)] (11.2)

which is the more general ELBO equation.

In EM, we alternate between optimizing ¢(:|x) (E-step) and optimizing 6 (M-step). This
can be seen as coordinate descent on the above objective.? On the E-step, we set ¢(-|x) =
p(+|x,0), which minimizes the KL: the KL becomes zero. On the M-Step, we minimize
-Inp(x|0) + Dxr(q(-|x) || p(:|x,0)) with a fixed ¢(:|x). To do so, we can equivalently
minimize Dkr,(q(:[x) || p(+|0)) — Eng(x) [In p(x/h, W)]. In VAEs, the first term is constant

2Coordinate descent is an alternative to gradient descent. We can split up our parameters into blocks, say

w1 and wo where w = [w1, wz|. Then we can alternate between computing w<1t) = argming, c(wi, Wétil))

¢ . t . . . .
and wg) = argmin,,, c(wg ),Wz)7 until convergence. This is useful in some problems where we can obtain

closed-form solutions for parts of the variables. We have exactly this property for EM.
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wrt 6, because p(h|#) = p(h), and so we minimized —Ey,q(.|x)[In p(x/h, W)]. For mixture
models, however, we cannot drop the first term because it includes 0. Instead, we get that

Dxr.(q(1%) [| p(+10)) = Enmg(jx[In p(x/h, W)]
= Epeg(x)[ng(hlx) — Inp(h|0)] — Epy|x)[Inp(x|h, 8)]
= Enrg(-x) [0 q(h|x)] = Epg(x) [Inp(x|h, 8) + In p(h[0)]
= En~g(x) M q(h|x)] — Epeg(x) [Inp(x, h[6)]

The first term Ey,q(.x) [In ¢(h[x)] is constant wrt 8, and so we only consider the second term
in our minimization. And this is precisely what we did for mixture models: we minimized
—Epq(.|x)[Inp(x,h|0)] on the M-step.

Therefore, EM can be seen as alternating coordinate descent on the ELBO objective,
with an unrestricted ¢(-|x) that can perfectly approximate p(-|x, @) for all x and 6.

11.4 Evaluating Generative Models

We can estimate generalization error for generative models, just like for predictors. The only
difference is in the definition of generalization error. Once we define our measure, and the
sample estimator, then we can use all the same strategies (test sets and cross-validation).

One natural choice is the KL divergence between the learned generative model p(z|0)
and the true generative model pyrye():

_ ptrue(x)
Dic (el lpC10) = [ preta) o 22

We discussed this divergence® in Section 2.4 and showed that
Dx1,(perue(2)|[p(x|0)) = —E[lnp(X|0)] + a term that depends only on peyye.

Therefore, we can obtain estimates of the generalization error, up to a shift by a constant,
simply by estimating the expected log likelihood of data generated by pirue(x), under model
p(x]@). At this point, we are experts in estimating expectations, simply by using a sample
average. Namely, for a given test set Dyt of size m, we have the estimate

Perf(0) £ L 3" Inp(]0)

2E€Dtest

We say parameters 0 are better if they result in models that make the test data more likely,
i.e. with higher Perf(0).

Remark: Generative models are different than generative classifiers. We do not consider
generative classifiers (e.g., naive Bayes) in these notes, since they are not commonly used,
but explain the difference in Appendix A.6.2. We also discuss the difference between the
generative model described above and mixture density networks, in Appendix A.6.1. Mix-
ture density networks can also learn conditional distributions, but do so quite differently.

3The KL is not a valid metric (distance) because it is asymmetric and does not satisfy the triangle
inequality. It is instead called a divergence.
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Chapter 12
Generalization Theory Basics

In this chapter, we provide theory to better evaluate the properties of learning algorithms.
We begin first with an overview of generalization error, and how this relates to our goal
when learning models in practice. We discuss the notion of generalization when we move
beyond the simpler i.i.d. setting, discussing the additional difficulties in generalization. The
focus is on understanding the issues, and is light on solutions. Then we discuss how the
bias-variance trade-off applies in this more general setting.

12.1 Bias, Variance and Generalization Error

Machine learning is all about generalization. We learn a model on a sample (subset) of
possible outcomes, with the goal for it to be accurate across all possible outcomes. Accuracy
here is defined based on the chosen cost function cost : Y x ) — [0,00). We want to find a
function f so that the generalization error GE (expected cost) is minimal

GE(f) = Elcost(f(X),Y)]

For example, for regression with a squared error, cost(f,y) = (§ — y)? and GE(f) =
E[(f(X) — Y)?]. We may obtain such an f by minimizing the squared errors on a training
set % " (f(x;) — y;)? or by minimizing a regularized objective like one with an f3 or /;
regularizer.

As another example, for classification, we may want to minimize the 0 — 1 cost, namely

GE(f) = E[L(f(X) # Y)].

We may do so by learning p(y|x) with logistic regression and specifying f(x) = 1if p(y|x) >
0.5 and f(x) = 0 otherwise. Or, in other words, if p(y|x) = o(¢(x)"w) for some features
¢ and weightings w, then f(x) = sign(¢(x)'w). For this cost, we use a surrogate—the
cross-entropy loss—rather than directly optimizing the 0-1 cost. We motivated this when
considering ideal predictors: the best predictor for the 0-1 cost is to use the most likely class
under the true model pyue(y|x). A reasonable choice is to approximate this ideal predictor,

by approximating prue(y|X)-

Exercise 29: Consider instead trying to directly optimize the 0 — 1 cost on a training set:
% » I(f(x3) # yi). What is the issue? What does this loss look like and what are the
derivatives? 0

Let us revisit bias and variance, and the connection to generalization error. When we
talked about the bias and variance for linear regression, we assumed that the true model

was linear, and so the only bias introduced was from the regularization. In reality, when

117



CHAPTER 12. GENERALIZATION THEORY BASICS 118

using linear regression with regularization, we are introducing bias both from selecting a
simpler function class and from the regularization. If the true function is not linear, then
we cannot compare the learned weights for a linear function directly to the true function.

If a powerful basis is used to first transform the data, then we can learn nonlinear
functions even though the solution uses linear regression. In this case, it is feasible that
this function class is sufficiently powerful and includes the true function, and that the bias
is mostly due to regularization. But, in general, it will be difficult to guarantee that we
have specified a function class that includes the true function, and it will be difficult to
directly compare our parameters to true parameters (which may not even be of the same
dimension).

We can more generally talk about bias and variance by considering instead the reducible
error. In fact, the bias-variance trade-off is all about reducing the reducible error. Recall
that the generalization error for the squared error decomposes into the reducible and irre-
ducible errors:

GE(f) = E[(f(X) = Y)?] = E[(f(X) — f*(X))’] + E[(f*(X) = V)?] (12.1)

reducible error irreducible error

where f*(z) = E[Y|X = z|.This f* could be a highly nonlinear function, and may not be
in our function class. For example, if we are learning a neural network with three hidden
layers, each of size 1024, with ReLU activations, then f* may not be in this set of functions.

We can write this reducible error in terms of the bias and variance of our learned function.
We write fp to emphasize that it is a random variable that depends on the dataset. We
can first consider the bias for a given input x,

E |(fp(x) = £*(x))?] = (E[fp(x)] - f*(x))* + Var[fp(x)].

Notice that in the second line, the expectation is now inside the squared distance; this
term corresponds to the squared bias. The bias here reflects the output of the estimated
function fp(x), in expectation across all datasets D. The variance term reflects how much
the prediction for x can vary, if we learn on different iid datasets. This decomposition of
the mean-squared error into a squared bias and variance is not obvious, but does follow
similar steps to above. It is left as an exercise. We can then write this more generally, in
expectation over X as well

E[(fp(X) — f*(X))?] = Ex [(Eplfp(X)] - f*(X))* + Varplfp(X)]]  (122)

where we subscript each expectation with the variable we are taking the expectation over,
to be clear about the two sources of stochasticity.

A complex function class is likely to have low bias, but may have high variance because
it can overfit to each dataset. This means across different datasets, we are likely to see very
different functions and so the variance in the predictions f(x) will also vary significantly.
For example, if we have 100 data points for d = 3 dimensional inputs, and use a neural
network with one million parameters, then likely we will have high variance. The bias is also
likely low, since the true function for a three-dimensional input can likely be represented
by such a complex neural network—though of course it is possible that it cannot and we
still have some bias.
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On the flip side, if the function class if very simple, the bias may be high and variance
will be lower. Even though we saw that linear functions—or cubic functions which are still
very simple—can overfit, this was only in the extreme case with very small samples sizes.
With a reasonable number of samples, these functions will likely be relatively consistent.
As we start expanding the complexity by using new features, like higher-order polynomials
or kernels, then we start to get into much more complex function classes and may have high
variance.

But these are just rules of thumb. We can reason about a few specific cases where we
expect good performance. Let F be the class of function, fiye be the true function, n the
number of samples, i.i.d. sampling and a reasonable optimization procedure to find f € F.
Then we expect to have low variance and low bias in the following cases.

1. F is small (simple) and fi;e is simple such that there is an f € F that is similar to firye.
2. F is big (complex) and n is very big.

The choice of F is exactly an inductive bias. Our goal is to constrain the function space so
that we can best reduce the reducible error, namely identify the best approximation to the
true function under data limitations.

12.2 Beyond Bias and Variance, to High Probability Bounds

The bias-variance analysis above considers the estimator in expectation across datasets.
However, we may want stronger results. For example, we may want to know with high-
probability that our learned function has certain properties. In other words, we want
to know that the lower percentile over all these functions is still guaranteed to behave
reasonably, not just the mean. Most generalization bounds are focused on exactly this. The
general structure is rather simple. In this section we outline this general structure, and
provide more specific details for your interest in Appendix A.7.
Our goal is still to select a function from F to minimize generalization error,

1}1&1}16‘:E(f) where  GE(f) = E|cost(f(X),Y)] = /Xxyp(x,y)cost(f(x),y)dxdy.

We minimize a sample error as a proxy to the true expected error,
— 1
GE(f) = - Z cost(f(x;), i)
i=1

We can decompose the true error using

GE(f) = GE(f) + GE(f) — GE(f)

GE(f) + max (GE(h) - GE(h)) .

IN

The term @(h) is dependent on the data, and so is a random variable. It is hard to reason
about the worst-case difference for a specific dataset. Instead, we use concentration inequal-
ities to get an upper bound with high probability. Under certain assumptions—needed to
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be able to use the desired concentration inequality—we get a bound of the following form:
for some constant ¢, with probability 1 — 6,

-Iné
—

GE(f) < GE(f) + Ep |max (GE(h) — GE(n))| + ¢

The second term R = maxue7(GE(R) — GE(h)) is now upper-bounded by its expectation
plus an interval to account for how far the sample R deviates from its expectation E[R].

This R reflects the complexity of the function class. The R is bigger if the function class
is more complex, because there is some h that can overfit the dataset and so make GE(h)
very small but have high true error GE(h). The expectation reflects this complexity across
training datasets, and so can be thought of as the expected complexity.

Different bounds arise depending on the assumptions. These types of bounds are
distribution-dependent, in that these assumptions typically restrict the types of data distri-
butions that we have to make it appropriate to use the chosen concentration inequality. It
is not important here to know how we measure complexity, nor specific details about these
assumptions. Rather, the purpose of the above was to get an idea of how we reason about
high probability generalization bounds. For specific examples of complexity measures and
assumptions, see Appendix A.7.

12.3 Moving Beyond the iid Setting

We have so far assumed that we obtain an i.i.d. sample from the underlying distribution.
Our learning algorithms are reflective of this assumption, as is much of the theory in this
chapter. In practice, however, we know that there will be some violation of this assumption.
We can step back and ask what we really mean by generalization in this practical setting,
rather than what is convenient to analyze. Two properties that characterize data in the
real-world are that distributions change (slowly) over time (nonstationarity) and our data
collection is biased towards a particular subset of the data (distribution shift). These two
issues are related, but slightly different.

12.3.1 Generalization Issues under Covariate Shift

First, let us think about distribution shift. Let us start with the more benign version,
where the distribution over inputs x is slightly different between training and test, but the
coverage is very similar. For example, imagine you gather images of a room from April to
October, in Edmonton. A lot of the data will have quite a bit of light from the long days,
but you will still get to see many images in both dark and light conditions. Then you test
the predictions on images from January to March. The images will generally be darker,
and so the model trained on many images where the room has more light might not be
as effective. Because many of the images in the training data were taken under conditions
with more light, the predictor implicitly put more weight on getting such images correct,
potentially to the detriment of the accuracy for the images under lower light conditions.
This setting is typically called covariate shift, and it is reasonably feasible to address
with reweighting schemes. The term covariate shift implies only that there is a shift in
the distribution over x, but p(y|x) stays the same. This is exactly what occurs in our
image example. Predicting if an image contains a person or not, conditioned on the image,
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remains the same regardless of it is April or January. In other words, p(y = Has Person|x =
Room Snapshot) does not change. But, the distribution over the room snapshots that we
see does change, namely over p(x = Room Snapshot). To see why this can be corrected
with reweighting, let the test distribution over images be piest and pirain for the training
data. The GE for this setting is

GE(f) = Ep,.. [(f(X) = Y)?] = /Xptest(X)E[(f(X) —Y)?|X = x]dx (12.3)
In other words, the generalization error is the error across all pairs under distribution
P(Y|X)Prest (x). When we minimize the squared error on training data obtained using pirain,
we are instead trying to minimize the error across all pairs under distribution p(y|X)ptrain(X)-

LMM¢MWﬂw—YﬂX=ﬂw

We simply need to reweight the importance of a sample (x, %) using! piest(X)/Pirain(X). We
saw how to incorporate weightings into regression, in Section 3.1.1.

Exercise 30: Consider the weighted squared error loss
1 & 9
elw) = - b (ki) — 31)*,

=1

where we use b; = Prest(Xi)/Ptrain(X;). Show that in expectation, across (X,Y’) sampled
according to p(X,y) = p(y|X)ptrain(X), that this loss equals the true generalization error in
Equation (12.3). O

12.3.2 Issues of Data Coverage and Using Inductive Biases

More difficult is the setting when the distribution of the training data does not cover what
is observed in deployment. For this setting, we have x where piest(x) > 0 but pirain(x) = 0.
For example, let us imagine a setting where images were only collected during the day, when
taking Room Snapshots. But, now, we would like to recognize if there is a person in the
room under very low-light, in the evening. The training data does not contain any images
in the evening, and so we might wonder if such a generalization task is even possible.

The answer to this question depends heavily on what we build into our model. What
we build is in typically called an inductive bias. A prior is an inductive bias, as is the
optimization algorithm we use to find our parameters, as is the architecture we use for our
neural network. It is anything that defines the learning algorithm, before we feed data
into it. In the above example, we could design an architecture that focuses on edges in an
image, and attempts to remove information in the pixels that is due to different lighting
conditions. Under such an architecture, it is feasible that we could learn a model on data
that only has images in the daytime, and deploy on test data that includes images in the
evening. Our inductive bias makes it so that training datapoints are now representative of

You may notice an additional complication here that we may not have access to either of these distribu-
tions, Prest NOT Prrain. A large part of the literature on covariate shift is about estimating these reweightings,
without having these distributions explicitly. The goal here was to introduce you to the problem setting,
and so we do not cover these approaches here.
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testing datapoints. It allows us to say that two images are similar—even if their lighting
conditions are different—which means we can generalize our predictions between these two
images.

The way our model generalizes, therefore, depends on both the inductive biases and the
available data. If we want our model to generalize well, then we have to consider both. If
we know we will have lots and lots of data, covering many different scenarios, then we as
designers do not need to build as much in. Much more can be learned from data, and a
good hypothesis identified from a large class of hypotheses. If we know we will have limited
data, then we know that likely we need to build in more. The data does not allow us to
sufficiently narrow the class of hypotheses. Ideally, we build in just enough to allow the
learner to generalize faster, with a minimal amount of data (be sample efficient). But, we
do not want to build in too many biases, since they may be incorrect and so limit the ability
to learn a very good model as we get more and more data.

In summary, for all three of these settings—i.i.d. data, covariate shift with coverage
and covariate shift without coverage—we have a similar approach. We learn on training
data, with the goal to perform well on new unseen data. The difficulty of generalizing to
this unseen data is simply harder when moving from i.i.d. data, to covariate shift and to
settings where we only see a restricted subset of possible inputs (lack of coverage). In all
three settings, the unseen data is not the same as the training data, and inductive biases
allow us to overcome this gap. The bigger the mismatch between training and test, the more
we have to consider what assumptions to build in to facilitate generalization. But, in all
three cases, it is key to consider the inductive biases, since they are crucial to generalization.

Remark: The other terms typically used for understanding generalization are interpo-
lation and extrapolation. Intuitively, interpolation means that we make predictions between
datapoints, and extrapolation is outside our datapoints. Such definitions require a notion
of what is considered to be between our datapoints and what is considered to be outside our
datapoints. Instead, it is more direct to reason about inductive biases and how they relate
to the available data. If we really want to map to these terms, we can say that our learning
algorithms are interpolating across the provided data and our inductive biases allow us to
extrapolate beyond the data.

12.3.3 Nonstationarity and Generalization

The relationship between x and y may itself be nonstationary. This means that p(y|x)
may change between training and test—pirain (¥|X) # Drest (y|x). Consider the stock market.
We may have data from the last 20 years. However, the world and economy is constantly
changing, and this data is not perfectly predictive of what will occur in the next year. For
one, we always have an increasing trend in the total value of stocks. But, more importantly,
sudden technological or societal changes can have unexpected consequences that are simply
not in the data, because they have never been observed.

Many of our datasets have some level of nonstationarity, because they are actually
measured across time. The level of nonstationarity can be very low. For example, we can
consider predictions for the required pump speed in a home heating system, conditioned
on readings in the current system (e.g., desired temperature, temperature outside, etc.).
This system is relatively self-contained, with consistent predictions conditioned on all of
the readings in the system. However, slowly over time a pipe might start to get dirty,
making it necessary for the pump speed to slowly increase to account for this change. This
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change occurs very slowly over a long window of time, but nonetheless is not visible to the
model and so the data appears nonstationary. If we consider y to be the pump speed and
x the readings in the system, then this means that p(y|x) is slowly changing over time.

We can overcome some of this nonstationarity by attempting to model the trend in
that nonstationarity. For example, in addition to x, we can input the average pump speed
over a recent history. If it has recently increased, the prediction for the pump speed for
this current x could also be increased in the prediction. Augmenting with history can help
overcome the partial observability in the system, that makes it appear nonstationary.?

However, we will not be able to overcome all nonstationarity in this way, for the same
reasons as above: a lack of data coverage. For example, when training the system to predict
pump speeds, we may never have observed the system under any degradation, such as having
accumulated dirt in the pipes. We cannot learn from the training data that a short history
of pump speeds allows us to account for this change. Instead, it is key to allow the model
to continue to update with new data. This approach is called tracking.

This last setting leads us to one other important distinction in generalization: static and
dynamic generalization. (This distinction is sometimes called zero-shot and few-shot gener-
alization). In the static setting, we want our function—say our learned neural network—to
directly generalize to the test deployment setting. In the dynamic setting, we want our
learned data representation to facilitate further learning. In other words, we want it to
allow the function to update with as few samples as possible.

Example 12: [The role of representations in sample efficiency] Let us consider a simple
example where the features can help us learn more efficiently. This example emphasizes
the utility in having a compact set of features that are used for many inputs, to promote
generalization. Assume our data is actually generated by a linear function Y = zw + €, for
a scalar input x and € ~ N(0,1). But, we didn’t know the true function would be so simple.
We created features that we hoped would let us fit more complex nonlinear functions: a fine-
grained binning. The features are ¢;(x) = 1 is x is in bin j, and zero otherwise. Assuming
x € [—1,1], and we use 200 bins, then we have that ¢;(z) =1 if x € [-1,—-0.99), ¢2(x) =1
if z € [0.99,—0.98), and so on. This feature vector ¢(x) € R?? is an indicator vector for
which bin z is in.

These features allow us to learn a different E[Y|z] for each bin, which is a highly
nonlinear—and even discontinuous—function. However, these features make learning very
slow. If we had used the original z as features, then we would have learned very quickly.
Likely, we would find w with very few samples; even after 10 samples, we’d likely have a
reasonable estimate. For these binning features, however, we need at least one sample per
bin to even obtain an estimate of E[Y |z] for = in that range. That means we need at least
200 samples, but likely more. O

Understanding how data representations impact the update, and generally how we can
learn representations that tackle some of these generalization goals, is still in its infancy.
The goal here is just for you to understand and appreciate the different generalization goals.

2There is a rich literature on using histories and summarizing histories with recurrent neural networks,
for modeling temporal data and time series.
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12.4 Bias and Variance Beyond the iid Setting

Notice that the above discussion does not say anything about how the dataset D is chosen,
nor how f is learned on that dataset. We can ask how covariate shift and limited coverage
affects our bias and variance. What we see here now is that heavily relying on the data is
even more dangerous than in the standard i.i.d. setting. For i.i.d. data, we worried about
overfitting to the training set, but could be a bit less concerned with lots of data. Once
we have covariate shift and reduced coverage, we know that using the data to identify a
function that is close to firue requires more inductive biases. In other words, we know we
need to constrain F more.

Of course, we may not constrain it with the same types of inductive biases that we
did for i.i.d. data, namely those that preferred simple functions. Here, ¢5 regularization is
unlikely to be enough to help us generalize to largely unseen data. For example, imagine
you are given a dataset of images, where the color red has no impact on prediction accuracy.
Your classifier, though, does not know that this property is irrelevant and may use it to
better fit the data. If there were multiple instances of the same picture, with and without
the color red, it might be able to learn that that property is not relevant. But that is too
much to hope for, without that full data coverage. If we could encode into our function
that red is irrelevant, then we have constrained our function space, and are more likely to
identify a classifier close to the true one, since we do not rely on this spurious feature.

But we must never forget that this inductive bias may be incorrect. For example,
maybe red really is an important feature, and we’ve removed this useful information. In
this case, we might introduce significant bias. There is no easy answer for how to learn
good functions under these difficult, but realistic, training regimes. All we can hope to do is
slowly build up more understanding of general purpose inductive biases, as well as leverage
any domain-specific knowledge for our specific application.



Chapter 13
Convergence Rates for Gradient Descent

We know the optimization procedure is important, but have not yet theoretically analyzed
these optimization choices. Fortunately for us, some of the optimization theory in machine
learning is quite simple. In this chapter, we will go through the convergence proof for
gradient descent. Then we will contrast the convergence rates for our different algorithms,
and particularly get a more concrete understanding of how the mini-batch size might impact
convergence rates. We conclude by discussing how the choice of optimizer is not only
about computation—how fast we can get to our solution—but also can have an impact on
generalization.'

13.1 A Convergence Proof for Gradient Descent

The convergence proof for gradient descent requires only a few assumptions. We will not
need the function to be convex; instead, we will only characterize convergence to a stationary
point (which might be a local minimum). Instead, we only need two conditions. First, the
function should be bounded from below, and so have a non-infinite minimum value c¢(w*).
Second, we will need the function to smooth. In particular, we will assume that the gradient
of ¢ is Lipschitz continuous, which simply means that there exists an L > 0 such that for
all w, v,

Ve(w) = Ve(v)| < Ljjw — || (13.1)

where we can use any norm || - ||, but we assume here that it is the £ norm. This condition
just means that the gradient cannot change arbitrarily fast. It is true for most of our
models, including any of our GLMs whether we use linear features or neural networks. The
results apply even for ReLU activations, which have some non-differentiable points, because
we only need this condition to be true almost everywhere.

It is straightforward to show that Equation (13.1) is equivalent to saying

o(W) < e(v) + (Ve(v), w — v) + gHw—VHQ (13.2)

The intuition for why this is true is that the right-hand side (rhs) gives us a quadratic
approximation around v that is guaranteed to be above our objective function ¢, even for w
far away from v. Instead of the standard Taylor series expansion, which uses the Hessian in
the second-order term, here we use the more conservative Lipschitz constant, which ensures
that second-term is quite large. In fact, practically, it is likely quite a bit too large, and we

!This chapter was written using the very nice lecture notes from Mark Schmidt here: https://www.cs.
ubc.ca/~schmidtm/Courses/540-W19. Unrelated, Mark—possibly the best optimization person ever—also
uses Julia for his Machine Learning course.
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could have selected a smaller constant than L and still obtained an upper bound for most
w in a nearby region. But, let’s keep this easy on ourselves and use this nice result about
Lipschitz functions c.

This property almost immediately gives us the result. Just like when we derived gradient
descent, we can minimize this second-order approximation, which tells us to use the stepsize
1. = 1/L. Then for iterations w13 = wy — %Vc(wt), we can substitute w = wy;1 and
v = wy in Equation (13.2) to get

c(Wi1) < e(We) + (Ve(wi), Weet — W) + 5[ wipr — we?
= c(wy) + (Ve(we), =g Ve(we)) + 52 Vew) P >wipr —w, = —lVC(Wt)
= c(wi) — L[ Vewa) > + F [ Vew:) |1 > (|2 Ve(wo)[* = 2= Ve(we)||?
= c(wy) — 5| Ve(w)|1?

Therefore, on each step we have guaranteed improvement. This improvement slows down
as the gradient gets smaller. We can say we have converged when ||Ve(wy)||? < e for some
tolerance € > 0. The guaranteed progress implies we must reach this condition, otherwise
the objective value would decrease infinitely, which is not possible because the lowest it can
go to is ¢(w™*). In the next section, we characterize the rate at which is reaches this point.
13.2 Convergence Rate of Gradient Descent

Notice that

c(wi) < e(wio1) = o [Ve(wer) |2 = [ Ve(wio1)|” < 2L(c(wi-1) — c(wy))

and that we have the telescoping sum

Mﬁ

(e(Wh-1) — c(Wg))

b
Il

1

= c(wg) — c(w1) + c(w1) —c(wa) + c(wa) —c(ws) + ... — c(Wi—1) + c(W—1) —c(wy)
-0 =0 =0

— c(wo) — c(w)

Combining these two equations, we get that
Z |Ve(wi_1)|* < 2LZ c(wi_1) — c(wg)) = 2L(c(wo) — e(wy)) < 2L(c(wp) — c(w™))

where the last step follows from the fact that c¢(wy) > c¢(w*). Now further for any
ke {1,...,t}, we know that minjeqi g [Ve(w;_1)||* < [Ve(wy_1)||?, by definition of
a minimum (the minimum in a set must be smaller than any one of the items in the set).
Therefore

t min HVC(WJ DII? < ZHVC wi1)|?
JE{L,..t =
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and so

min [ Vetw, )| < 2 elwo) = c(w)

Therefore, after ¢ iterations we are guaranteed to have seen a gradient less than 1/¢, times a
constant that depends on the Lipschitz constant L and how far we started from the optimum
c¢(w*). In particular, to guarantee the norm is less than e, we need

%c(wo)—c(w*)) <e = t> %@(wo) —c(w?))

Therefore, within ¢ = O(1/e) iterations, we know we will reach our termination condition
|[Ve(w;)||? < € and have converged.

13.3 Convergence Rate of Stochastic Gradient Descent

We can use a similar analysis for mini-batch SGD, by leveraging the fact that we can see
SGD as a noisy version of batch GD. For mini-batch B; on time step ¢, we can define

|Bt‘ 1€B:

. 1
6= ( Z Vci(wt)> — Ve(wy) (13.3)
as the stochastic noise introduced from using a mini-batch rather than all the data and
rewrite the SGD update as
Wil = Wi — 1 (Ve(we) + €)

Again leveraging that c is Lipschitz, with Lipschitz constant L, and using w11 — wy =
—n: (Ve(we) + €), we get that

c(wi1) < e(wi) + (Ve(we), Wipr — wi) + Slwipr — wil?
= c(wy) + (Ve(wi), —ne (Ve(we) + €)) + 5lne (Ve(we) + e) ||
= c(wy) — il |[Ve(w) |* = ne(Ve(w), &) + LTn’?HVC(Wt) + el

We want to understand how much progress we make on each step, but now each step is
stochastic. Instead, we reason about the expected value of the objective after our update.
The bound involves the variance due to this noise from using a mini-batch, which we can
assume is upper bounded by a constant o7 > 0,

E [[[Ve(w:) + e]]?] < of.

Now we can take the expectation over this noise, €, that results in w1 from the given wy,
and get

Ele(wii1)] < c(we) — el Ve(we) |2 — nE[(Ve(we), e)] + LB [|[Ve(we) + 6]

= c(wy) = me| Ve(w) |2 = n(Ve(wi), Eled)) + 45 E [ Ve(wi) + eo]?]
=0

2
<o}

Lnio?

< c(wy) — || Ve(wy)|]? + 2
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We can go through similar steps to above, now also including expectations and allowing
def

the step51ze 77t to change with each iteration. The final result, with ngym = Z 77k and

def
Tvar = Zk Onkakﬁ is

min B [[Ve(w;1)[?] < ——(c(wo) — e(w?)) + 51 (13.4)

JE{L,...,t} Tlsum Tlsum

This result differs from gradient descent in that we have this additional second term in the
upper bound.

We can reason about the values for this second term, depending on different stepsize
choices and mini-batch sizes. First, let’s assume we have a fixed mini-batch size, and so
variability due to the mini-batch is fixed across iterations. In other words, we can assume
that oy corresponds to a fixed o for all . Notice that if the mini-batch size is the whole
dataset, then o = 0 and so

t—1 t—1
— 2.2 _ 2 2 _
nvar_znko-k_o- an_o
k=0 k=0

Voila! We get back the same upper bound as gradient descent, because the second term
disappears. (This is a good sanity check that the general result applies to our known special
case). For mini-batch SGD, though, we expect o2 > 0.

Now let us consider three options for the stepsize: a constant stepsize 7, a slowly de-
creasing stepsize 1; = 1/+/t and a quickly decreasing stepsize 1; = 1/t. For the constant
stepsize we get that

t—1

t— t—1 t—1
nt:nénsum:an:Zn:tn and nvar:UQan:022n2:t02n2
k:O = =

Plugging this into the above upper bound in Equation (13.4), we get that

2

min, | BIIVe(w) ] € —(elwo) = e(w?)) + L5 (13.5)
The first term still converges to zero at the same rate, O(1/t), as gradient descent; this is
true even though each update costs much less than a full-batch GD update. How neat! But,
there is a cost: the second term prevents us from getting this bound all the way to zero.
We reduce error fast in early steps, because we reduce this first term at a rate of O(1/t).
Once we start getting near the solution, then we get stuck at the error given by the second
term. The constant stepsize helped us get to this region fast, but then we are not robust
to the noise in the mini-batch stochastic gradient.

Naturally, we could use a slowly decreasing stepsize, to help be robust to this noise.

t—1 t
n=n/Vi+1 = nsum—an—nZﬁznZ%ﬂ%nx/i
k=0 k=1
t—l t
Nvar 202277,% 2027722%%02?72 logt
k=0 k=1
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where the approximations v/t and logt come from well-known formulas for these summa-
tions. Plugging this into the above upper bound in Equation (13.4), we get that

1
. |12 - * L _2 logt
je{O,r{}.l.I.l,t—l}E[ch(W])H |1 < nﬁ(C(WO) c(w¥)) + 50 777gz (13.6)

Now both terms go to zero at a rate of O(1/+/t).2 This is quite a bit slower than gradient
descent and SGD with a constant stepsize. For example, after ¢ = 100 updates, v/t = 10
and after ¢ = 1000 updates we have that v/z ~ 30. We can see that 1/t gets smaller much
faster than 1/v/t. However, now we do have the advantage that the second term goes to
Z€ero.

Finally, it is informative to consider what happens if we decrease the stepsize too quickly.

t—1 t
m=n/t+1) = Num= Y m =0 +~nlogt
k=0 k=1
t—1 t
Tvar = 07 Zni — o2 Z ]%2 ~ o2
k=0 k=1
giving
1
. 2 * 2 1
je{o’r{}}gt_l}E[HVC(Wj)H ] < 7710gt(C(Wo) — (W) + Loty (13.7)

A rate of 1/logt is a very poor rate. The optimizer stops making real progress too early,
and is stuck very very slowly decreasing error. Eventually, it will get there, as logt — co.
The above analysis gives us some insight into how to set our stepsize. It suggests that
we should start with more aggressive stepsizes, and then potentially start decaying later in
learning. It might be problematic to decay all the way to zero, as we might prevent further
learning too quickly. An idea between all of the above is to decay the stepsize to some
minimal value—rather than all the way to zero—and consider alternative rules to decide
when to start decaying. Many optimization packages out there have options for different
stepsize decay schedules, that take into account this understanding of how SGD behaves.

13.4 Differences in Terms of Generalization Performance

The previous section suggests that we can use SGD to converge as quickly as batch GD, if
we are willing to be stuck with some error around the stationary point we reach. In practice,
it is often effective to use optimizers like Adam or RMSProp that do not decay stepsizes
to zero. And yet we find the solutions from these approaches are good, often better than
methods like Adagrad that decay stepsizes to zero. So why isn’t this error affecting us?

One reason is that, for nonconvex objectives, the optimizer does not just affect how
quickly we get to a solution but also the quality of that solution. For convex objectives,
we have one global minimum—or one flat region with multiple global minima—and the
primary question for our optimizer is the convergence rate. For nonconvex objectives, we
could have many different stationary points.

2Tt is more correct to say the rate is O(logt/v/t), but logt grows so slowly that the primary factor is the
denominator with /%.
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Recent evidence suggests that SGD acts like an implicit regularizer [24]. Empirically, it
was found that SGD with larger learning rates improved generalization performance, even
at the cost of increasing training error slightly. This phenomenon was explained by showing
that SGD is actually optimizing a slightly different objective that includes a regularizer on
the norm of the mini-batch gradients. The strength of this regularizer is controlled by the
stepsize, and so a larger stepsize resulted in more implicit regularization. Relatedly, this
implies SGD prefers local minima in flatter rather than steep bowls. The preference for
flatter bowls makes sense: the noise in SGD makes it hard to stay in a very steep bowl.
Instead, it is likely to jump out of that bowl even with small perturbations to the weights.
A flat bowl is harder to jump out of, with just noise. This implicit regularization, therefore,
could even improve performance for convex problems, but likely has a bigger impact for
nonconvex objectives where we have these different local minima.

More generally, SGD with large neural networks is particularly beneficial. These out-
comes are another instance of the blessing of dimensionality. We find with very large neural
networks with SGD that we can bring the training error down to zero and continue to im-
prove testing error! In other words, with large NNs, after some number of epochs we can get
the training error to exactly zero and this does not result in overfitting. Instead, continuing
to update with SGD further improves generalization error. Until recently, it was assumed
that more parameters (more weights) would result in higher estimation error (overfitting),
requiring more samples. Once again, behavior in higher-dimensions defies our expecta-
tions. Instead, learning in a higher-dimensional space both seems to make the optimization
simpler—more dimensions to find error reduction—making a local search with SGD reason-
ably effective. And further, the optimizer ends up preferring simpler solutions amongst the
space of solutions anyway. There is much more work here to understand these unexpected
phenomena, but SGD with non-decaying stepsizes on large neural networks currently seems
like a promising approach to obtain fast convergence and good generalization.

13.5 Selecting the Size of the Mini-batch

The previous sections gives us some insight into selecting the mini-batch size. We see
that it is typically not that useful to select the mini-batch size to be the full dataset,
because SGD can converge as fast as GD, at least initially. Further, the noise introduced by
using a mini-batch actually seems to improve generalization performance, through implicit
regularization. However, picking a mini-batch of size b = 1 is rarely (if ever) as effective as
picking b > 1. So what is the right choice, between b =1 and b = n?

Let’s assume that we have a fixed stepsize 1. Recall that our upper bound, giving us
our convergence rate, was %(C(Wo) —c(w*))+ LUTQU This upper bound is smaller for bigger
n and smaller o2. The o2 is smaller for bigger b. In fact, the implicit regularization results
show that the weight on the implicit regularizer is approximately proportional to n/b, for
reasonably small b (number of samples n much bigger than b, written n > b). This result
also suggests that if we increase our stepsize, then it is reasonable to increase the batch-size
to maintain the same level of implicit regularization, again up to a point where the ratio of
the batch-size to number of samples is small. For example, if we have n = 1 million, then
we likely would not pick b to be any larger than 2048. This perspective suggests that we
should pick the largest, reasonably small mini-batch size (e.g., 2048).

There is yet one more option to consider, which is computation. If we can perfectly
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parallelize computation of the mini-batch, then it is a no-brainer to pick a larger mini-
batch size. However, what if the number of gradients we can compute in parallel, m, is less
that this mini-batch size? (Say our compute can only do 32). Now should we opt to use a
mini-batch of size b = m and do more updates, or pick b > m and do fewer updates?

We can try to reason about this using our bound again. Let’s imagine, that if we could,
we would pick an ideal batch size of b* (say b* = 2048, the largest reasonably small mini-
batch size) with correspond ideal learning rate n*. But, we can only compute m < b*
gradients in parallel. Let’s contrast to using b = m. If we use the heuristic above, the ratio
between the stepsize and mini-batch size should stay the same, so we need to pick n such
that n/m = n*/b*, giving n = 7n*. This stepsize is smaller, because our mini-batch is
smaller. For each iteration using b* mini-batches, we have to take b*/m computation steps.
Therefore, if we did t* iterations using b* mini-batches, we would have been able to do more
iterations ¢t = %t* only using mini-batches of size m. Plugging this into our bound, we get

1 * L 2 1 * LO’ZL:Y]*
—(e(wo) —e(w)) + =57 = e (e(wo) — (W) + =5
1 N Lo My
= (ewo) — efw) + L7

The first term is actually the same for both! And the second term is approximately the same
for both too. To understand why, recall that the variance of the mini-batch is proportional
to b, meaning o2 oc 1/b. Therefore, the variance o2 for b* is proportional to 1/b* and so the
ratio o?n/(oin*) = (1/m)#n*/((1/b*)n*) = 1. The conclusion from this is that it does not
matter which we pick: we can pick our mini-batch to be size b = m and do more updates
or choose to do fewer updates and estimate up to a mini-batch of size b*. (But we still keep
the mini-batches reasonably small, since b* << n.) Under this outcome, it might actually
make sense to pick b = m, to ensure that we do not have to pick too big of a stepsize to get
the nice regularization properties of SGD.

This reasoning, of course, is using our upper bound rather than a true convergence
rate, so it is not perfect. Interestingly, though, there is a comprehensive empirical study
that corroborates that this linear relationship holds, at least for smaller mini-batch sizes
[23]. This suggests that a reasonably safe option is to set b = m, since there is definitely
a convergence rate improvement that is linear in increasing batch-size, when going from
b = 1 to smaller mini-batch sizes. At some point, there is diminishing returns where it was
wasteful to increase the mini-batch size further. Once we fix b, we do still have to tune our
stepsize, but at least now we only have one hyperparameter to tune.
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Chapter 14

Dealing with Missing Data

Missing data is ubiquitous in the real world. We say data is missing if for a sample we
are missing certain features. For example, one patient may not report their age, whereas
another does. If we have a total of d possible input attributes—attributes like age and blood
type—then the corresponding inputs x; may only have a subset of those possible attributes
available, due to such data collection issues. Another setting where this might occur is that
older data was collected asking patients for less information, and newer patient records have
additional attributes.

In this chapter, we see how to leverage some of the ideas we have seen on representations,
particularly latent variable methods, to handle missing data. We focus on the case where
the data is missing from the conditioned variable—inputs—rather than the targets. For an
input x;, we assume m; € {0,1,...,d — 1} attributes are missing, where each data point
i may have a different number m; of attributes missing. We allow for m; = 0, since no
attributes may be missing, and do not allow m; = d, since then the input vector has no
information. We let M; be the set of indices for the missing attributes, for the i-th input,
and A; the set of available indices, namely with A; = {1,2,...,d}\M,.

For some methods, handling missing data is straightforward. Any methods that directly
reason about the distribution over x allow us to use marginalization methods to fill in
missing data. Other approaches, like neural networks, are not so obvious: how do we input
a partial vector to the neural network? For these approaches, we will instead attempt
to complete the data, by inferring the most likely inputs, before sending the data to our
prediction algorithm.

14.1 Missing Data and Imputation

Imputation means that we impute or fill in the missing values, given the observed variables.
We have already seen an instance of imputation: supervised learning. We can think of
the targets as the commonly unobserved variables that we need to infer, given the other
variables (features). This is a very specific missing data setting, in the sense that we have
assumed that these variables are not missing during training, and only that single variable
is missing in deployment.

Slightly more general is the semi-supervised learning setting, where in training we only
have label (targets) for a subset of the training set. We may want to impute the missing
labels. A related idea is transductive learning, where we take both the training and test
datasets, and impute the missing labels for the test dataset, as shown in Figure 14.1.

More generally, we can imagine that our input data is peppered with missing values,
rather than being concentrated on only one feature. Our goal, nonetheless, remains to fill
in those missing values. This problem setting is called matrixz completion, and one standard

133
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Figure 14.1: Missing Data settings. Semi-supervised learning and transductive learning
just consider missing targets, and infer those targets during learning. Matrix completion is
about imputing any missing features, not just ones grouped in the last columns (the columns
corresponding to what we usually call targets).

approach has been to use matrix factorization (methods like PCA). The idea is that if we
can identify the latent factors h for an input x, even if that input x has missing values, then
we can complete x by using the predicted X from the latent factors: X = hD. We replace
just the missing parts of x with the corresponding entries in X. Namely, x(M;) = x(M;).

Now the question is how it is that we obtain just latent factors under missing data. The
matrix factorization optimization for PCA makes this relatively straightforward. Recall
that for complete data, for each input x;, we minimize

d
HXi — thHg = Z(CL’Z] — .’i'ij)2 > for )A(Z‘ = hiD.
j=1
Across all datapoints we find
n
min x; — h;D||2 = min X — HD|? 14.1
hy,....h, €RP, DERPXd ; I%; = h:Dl2 HERnxP, DERPXd ” I (14.1)

If parts of x; are missing, we can simply try to find the best h; based on the available
information

Z (zij — #4)° > for %; = h;D.
JEA;

This optimization may seem underconstrained. But, in fact, because p < d and because D
is shared across all datapoints, we can still identify the plane produced by D and project x
to the closest point on that plane (even with missing features).

The key here is that every element in h; is used to produce each Z;;. We have that
Z;1 = hyD. 1, a linear combination of the first column of D. So if we have x;5 and w4,
we have already constrained h; to properly weight these columns to match these inputs.
Further, the dictionary items in D are inferred across the dataset, and we assume that at
least some datapoints have each feature available, helping us determine D.;.
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Example 13: A canonical example of matrix completion is for movie rankings. Each
user i € {1,2,...,n} has an associated list of movie rankings x; € R? for the total set of d
movies. Of course, no user has ranked every movie, and so naturally x; has (many) missing
entries. We can nonetheless solve for the latent h; and dictionary D, using

min e Z Z (zij — h;D.;)? (14.2)

hy,...hn €RP. DERPXCITY S5

where the inner sum is over the available set A; for each user 3.

When we solve for h; and D in Equation (14.1), we can think about what each of
these encodes. The hidden dimension of size p can be seen as latent factors that explain
why users like movies. For example, let us imagine that hidden dimension j corresponds
to Movies that are Happy. Dj. € R? can be seen as a canonical list of moving ratings
based solely on how Happy they are: high rankings for Happy movies and low rankings
for Unhappy movies. The element h;; for user ¢ corresponds to how much they like Happy
movies. If they like Happy movies, then h;; should be positive and the vector of rankings
hirDy.. helps explain why user ¢ has higher ratings for happy movies in x;. Other dimensions
could correspond to factors like Long Movies or Cult Movies.!

For a given user with rankings x;, with the available movie rankings A;, these available
rankings help us identify h;: the properties of the user, like if they like Happy movies and/or
Cult movies. Given these latent factors, we can then fill in the remaining movie rankings for
the missing set M; using: x;; = h;D.; for j € M;. Essentially, we are leveraging knowledge
about how other users have ranked movies, and relationships between movies that we can
infer solely based on how often they are ranked similarly (or oppositely). O

This example is an instance where inferring the features was useful to make recommen-
dations to a user. The goal was completing the matrix, without a separate classification
or regression goal. This contrasts methods that complete the input data (input matrix),
so that they can then apply standard regression and classification algorithms. Nonetheless,
the strategies are similar.

One disadvantage of imputation for missing data, if we are just doing prediction, is
that we may be solving a harder problem than necessary. It is hard to know what the
missing values should have been, and for prediction we really only needed p(y|x), not x
itself. This two stage approach separates out filling in the values, and ensuring that those
values improve prediction accuracy.

1. Two Stage Approach. Stage 1: Impute the missing values. Stage 2: Use the
complete data for prediction.

2. Direct Approach: Learn a classifier (or regressor) that naturally handles missing
data. This is only possible in a limited number of settings; we discuss one in the next
section.

LOf course, all of this is made up. It is hard to say exactly what the latent dimensions actually correspond
to. But, matrix completion really has been used for this problem, and it worked surprisingly welll Netflix
put out a competition years ago, and a winning entry used matrix completion to fill in rankings.
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14.2 Direct Methods for Missing Data

In this section we discuss how we might directly predict p(y|x), without first imputing
missing values in x. We present a general strategy, show how that naturally leads to
imputation (again). We also discuss another limitation of this standard approach: that it
assumes independence in terms of missingness. We conclude with a discussion about the
actual function we would like to learn under missingness, and why it is not straightforward
to do with current methods.

14.2.1 Multiple Imputation and the MAR Assumption

Consider an idealized scenario. If we could, we would have the distribution for each subset
of available variables, to then allow us to compute p(y|x) for only the available terms in
x. In other words, what we would like to do is find p(y|x4) where x4 are the available
components of x, and x are the remaining missing ones. We can write this probability,
in terms of the conditional probabilities p(y|x), where the (unknown) complete vector x is
composed of x4 and x 4.

p(ylxa) = /p(anM|XA)dXM > marginalization

= /P(y|XMaXA)p(XM\XA)dXM > chain rule

We could approximate this integral, which is an expected value over x4, using a sam-
ple average. If we could sample multiple xpq1,...,Xp0p from p(xaq|x4), then we could
approximate p(y|x4) ~ %Zle p(ylxa,%xam,). Or, if we are doing regression rather than
classification, we could use E[Y [x4] ~ } S0 E[Y x4, Xq,:] where each term E[Y |x 4, X4.1]
is an output from the regression model on inputs x4,x ;. This approach also gives us a
range of possible predictions, based on the variance across these b samples, providing some
insight into how different the prediction could have been if we had seen different values for
x . This approach is called multiple imputation.

The issue, however, is that this once again requires an imputation strategy, which we
were hoping to avoid. The natural route where we try to directly reason about p(y|x4)
lead us back to imputation, and so we’ll have to think of a different approach (in the next
section).

Here though let us finish reasoning about how we do multiple imputation in practice
and the implicit assumptions behind it. We can do multiple imputation by learning a model
that lets us sample xq for given x 4. We can actually use the generative models described
above. For example, imagine we learned p(x) using probabilistic PCA. This means that we
have Gaussian distribution over x, p(x) = N(u = 0,DD" + ¢2I), where we learned D and
o. For such a Gaussian, we can infer the conditional distribution p(xq|x.4), which also
remains Gaussian. In other words, for

R
XM

pxmlxa) is N (o + BpmuaZ g4 (x4 — pa), Ty — BraZ 4B anm) -

Yaa Xam
Yma Emm

rA
KM

)

we know that
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This formula is not simple or that easy to interpret, but it is easy to compute and sample
from. We simply compute the above mean and covariance, and sample from a Gaussian to
get a sample of x(. We can do this repeatedly, to get a multiple imputation estimate for
our prediction.

We can do this for other generative models too, but sampling becomes a bit more
complicated and expensive. There are many algorithms out there for it, though, so it is a
feasible route! The sampling literature is vast and we will not cover those approaches here.

An important part of this approach is the assumption that the data is Missing At Ran-
dom (MAR). This assumption states that conditioned on the observable information—
other features that are not missing—the distribution over the missing feature is not skewed.
In the terms above, this means we are assuming that p(xa|x4) = p(xm|xa, M is missing).
Essentially, we are saying that knowing certain features are missing is not relevant, and this
conditional distribution remains the same regardless whether those features are missing or
not.

Example 14: Assume there is a true joint distribution p(x), where x is information
about a patient (disease severity, gender, age, etc.). For x9 = male,x3 = 30, we have a
distribution over z; = disease severity € [0,1]: p(z1|r2 = male,z3 = 30. This is the
true distribution in the population; let’s say it is centered at a severity of 0.1 for 30 year
old males.

But now let’s imagine that men are less likely to report any information about the
disease, so this feature x; is more often missing for these patients. This means in the
dataset, whether or not x; is missing will be correlated with seeing xo = male. But, we may
still be able to say it is MAR, conditioned on the fact that the patient is listed as a male:
once we know that the patient is male, the fact that the feature is missing does not tell us
anything the severity of the disease. If we assume 1 is missing, and x,; are the remaining
features that are observed, then MAR means

p(a1]x\1, 21 is missing) = p(z1]x,,)
O

This MAR assumption is likely to be violated, at least somewhat. In this example, it is
not easy to know if someone with low or high severity is more or less likely to report disease
information. Someone with low severity may be lazy and not bother. Someone with high
severity may be unhappy about the situation and choose to not report. If there is balance
across severities in terms of willingness to report—and the primary differences in whether
the info is reported are due to the observed factors like gender and age—then MAR is a
reasonable assumption, even if not perfectly true. In other cases, it is clear that MAR is
not reasonable; and so we say that the data is Missing Not At Random (MNAR).

14.2.2 Difficulties Obtaining Direct Predictions with Neural Networks

Now let us try again to develop a direct approach to prediction, that avoids imputation. Let
us consider a simple approach to handling missing data with a neural network: set missing
values to zero. To make this at all sensible, let us assume that we have shifted the data away
from zero using a modified max-min scaling. In min-max scaling, each feature is normalized
between [0, 1]. For each feature j we compute the minimum and maximum values Zmin,j and
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Tmax,; across the dataset—here only for the available values—and set xgj = %2
We modify this slightly, since there will be some available xgj = 0 after the scaling’—nanfely
those that were equal to the minimum value. Instead, we shift the whole range upwards by
a small value of 0.1, giving zj; = % + 0.1. Now when we set a value to zero to
indicate it is missing, it is distinct from actual feature information.

Now we can simply train the NN with this new dataset, where a feature value of 0 means
the feature is missing. In some sense, this is complete information, since the network is given
the available information to make the prediction and told which features are missing. This
means it is learning p(y|x4, others missing). And in fact, in practice, this approach can
work well. We can even augment our dataset by artificially constructing more datapoints
with missing values. We can take a datapoint x;, omit additional variables and adding this
new datapoint as extra datapoint in the dataset. This way the network can learn to predict
under a broader variety of missing patterns.

The issue is in the difficulty of this learning problem. The first layer of a neural network
linearly weights the inputs. The input value 0 is much closer to small feature values,
naturally resulting in some generalization between such inputs. But, in fact, they are very
different: one is missing and the other is an actual observed value. The network may have
to learn a difficult mapping, to overcome this natural generalization in the input space.

Instead, we may want to consider specialized activations or different strategies for more
clearly delineating that an input is missing. For example, if we knew that only feature 2
is ever missing, we could duplicate the inputs and weights on the first layer where the first
set of inputs and weights are used if feature 2 is available, and the second half used if it
is not available. Effectively, we are learning a different first layer for the two cases. Such
an approach avoids the potentially incorrect generalization in our above simple approach,
but does not scale well with more missing features. How to design architectures that are
effective for this is not obvious, and handling missing data when using neural networks is
still a largely open question. The goal of this section was to highlight why this is difficult,
rather than to give definitive answers. Understanding the problem will hopefully help you
understand upcoming solutions.

2We do not apply this to the bias unit. In fact, that would be problematic. See if you can see why. Might
there also be issues for features that are not the bias unit? See if you can resolve the problem.



Chapter 15

More Advanced Bayesian Approaches

The goal of Bayesian methods is to maintain the posterior distribution, p(w|D). These
weights w can be the parameters for a prediction function, like the weights in linear
regression, or the weights for a generative model. In MAP, we use the point estimate
argmax,, p(w|D). Bayesian methods, therefore, estimate more information: they allow us
to reason about our certainty in our weights. If the distribution is wide—has high variance—
then we have low certainty. With more data, the posterior concentrates and in the limit we
again obtain a point estimate.

In this chapter we first review Bayesian linear regression, one of the simplest Bayesian
approaches. This involves maintaining the posterior assuming the prior p(w) is Gaussian
and p(y|x) is Gaussian with mean xw and unknown variance o,. The posterior is maintained
over both (w,0,), and corresponds to a normal-inverse Gamma distribution. The beauty of
Bayesian linear regression is that it has a nice closed form due to having a conjugate prior.
It is, however, restricted to these assumptions and linear regression.

Just like when we moved beyond linear regression to the nonlinear setting with data
representations, we can extend to more general Bayesian methods using data representa-
tions like kernels and neural networks. We examine one of the most widely used Bayesian
approaches, that rely on kernels: Gaussian Processes.

15.1 Bayesian Linear Regression

Bayesian estimation involves maintaining the entire posterior distribution, p(w|D). Once
we have looked at MAP, the extension to Bayesian estimation is not a big leap. For MAP,
we already had to specify a prior to obtain argmax.,cr p(w|D). For Bayesian estimation,
we need to maintain the entire posterior p(w|D), not just the mode. We simplify the
explanation by only considering the univariate case: w € R.

Assume that p(y|z) = N(p = 2w, 0,?) for some fixed o, € R. This is the assumption we
made for linear regression, and then for MAP with a Gaussian prior on the weights. Again,
let’s assume a Gaussian prior on the weights p(w) = N(0,0,2/\) for some (regularization)
parameter A > 0. Then we get

_ p(D|w)p(w)

_ p(w) HTf:lp(yZ’x“ w)p(zi) > Hp(azl) cancels in numerator/denominator
J p(w) T2 p(yilwi, w)p(a:)dw i=1

_ p(w) [T; p(yilzi, w)
[ p(w) [Tiy p(yilzs, w)dw

> p(zi, yilw) = p(yilz:, w)p(xi|w) = p(yi|zi, w)p(z;)

139
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Computing the posterior is complicated by the integral in the denominator. In some cases,
though, this integral can be solved analytically, and the posterior has a simple known form.
This was the case with conjugate priors. For a given p(y|z,w), a conjugate prior p(w) is
one where the posterior p(w|D) is of the same form as the prior (example, both Gaussian).

For Bayesian linear regression, where p(y|z) = N (u = zw, 0y2), the conjugate prior is in
fact the prior used for ¢y regularization: p(w) = N(0,0,%/)). Given this prior, with prior
mean pg = 0 and prior variance 08 = 0y2 /A, it can be derived that

2
o
w|D) = N (fin, 2 here 2o __ ¥
p(w|D) (s 0p) w On n $Z2 + A
O Yhimyit Mo Shamiy 0k &
Hn = n 2.\ 37 200\ 5,2 leyz
i=1T; T i=1T; T oyt i

The MAP solution corresponds to the mode of this distribution: pu,. Additionally, we
can obtain a credible interval for which weights are plausible given the data, based on the
variance og,. If the variance is big, then even after seeing the data there are many plausible
values for w. As n gets larger, notice that o2 shrinks.

We can similarly obtain the posterior if we have multivariate inputs. Let us assume that
we take pg = 0, which is a typical choice. Then we have that

p(w|D) = N(n, X) where A= inxiT + AI (15.1)
i=1
2, =0, A"
Hn = A inyi
i=1

For linear regression, though, we typically do not know the variance O'yz. Fortunately,
even when extending more generally to this setting, we have a conjugate prior. First consider
the univariate case. We need now a prior on weights w € R and also the variance ayQ.
The conjugate prior is called the Normal-Inverse-Gamma (NIG) distribution, which has
four parameters: fi,, An, an,by. For prior parameters pg € R and Ag,ag,bp > 0 (e.g.,

o = 0,20 =0.1,a9 = 3,bp = 10), we get posterior
n

p(w, 0y2]D) = NIG(tn, Ansy an, by) where A\, = Zx? + Xo
i=1

2oiz1 Ziyi + Aopo iy Ziyi + Aopo
Z?:l $z2 + A0 )\n
an = ag + %n

by =bo + 4 <Z yi + Aopp — Awi)

=1

Hn =

Notice that p(w,o,?) = p(w|oy?)p(c,?). A key property of an NIG distribution p(w, 7,?)
with parameters g, A, a, b is that p(w|o,?) is Gaussian N (u, 042/\) and p(o,?) is an inverse
gamma distribution with parameters a,b. For the NIG, the mode of the distribution is

E[(w,0,%)] = (n, %) The solution for w is the same as for MAP above. And now we

bn,
an—1"

also have an estimate for the most likely value for the variance of the noise
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We can use this distribution to reason about a plausible set of values for the weights,
called the credible interval. The variance of the weights, under the NIG, corresponds to
(anﬁﬁ for a, > 1. If this term is large, then the set of plausible weights are large. We
can be more precise by computing p(w € [a, b]|D) = 0.95 to get a 95% credible interval for
w. We can compute the marginal for w, of the NIG: it is a Student’s t-distribution, with
mean i, scale parameter b:;ﬂ and degrees of freedom 2a,. Consequently, we can get a
95% credible interval using [u, — €, 1y, + €] for e = t0.025,2anbg—xn.

All the above updates can be extended to the multivariate case. We need now a prior
on the vector of weights w € R% and the variance ayz, where the variance is still a scalar
since it is the variance for scalar y given x. The conjugate prior is still the Normal-Inverse-
Gamma (NIG) distribution, but now for the multivariate case, with four parameters: p,, €
R? A,, € R4 g, b,. For prior parameters pgy € R Ao = 0 and ag,by > 0 (e.g., o =
0, Ao =1,a9 = 3,bp = 10), we get posterior p(w, 02| D) = NIG (g, Ay, an,by) where

A=) xx] + Ao =X"X+ Ag
i=1

Wy = A;l <Z X;Yi + AQ[JO) = A;l (XTy + AOHO) (15.2)
=1

1
Gpn = ap + 5N

n

=1

We can again use this distribution to reason about the credible region over w. The covari-
ance of the weights, under the NIG, corresponds to a:’ilAfll for a,, > 1. We can compute
p(w € [a,b]|D) = 0.95 to get a 95% credible region for w. To do so, we need the marginal
for w, of the NIG: it is a Student’s t-distribution, with mean p,, scale parameter Z—ZA,;I
and degrees of freedom 2a,,. Obtaining the credible region is a bit more complicated in this
multivariate space, and we will not explicitly need it. Instead, we will want to reason about
uncertainty in our predictions, as we discuss in the next section.

15.2 Using the Bayesian Posterior over Weights

Our goal is to obtain credible intervals around predictions, not just around the weights.
Namely, given p(w|D), we would like to reason about p(f(x)|D) where f(x) = x'w for
any x. Notice this is not about the stochasticity in y: it is not about computing p(y|x).
Rather, it is about our uncertainty in the our prediction f(x) ~ E[Y |x]|. Before moving on
to obtaining this credible interval, let us reason a bit more about what uncertainty is being
characterized.

In Bayesian linear regression we are trying to identify the best linear function in our set
of linear functions F. We know that linear regression provides the global minimum of the
linear regression objective. Therefore, as we get more and more samples (n gets bigger), the
function obtained by linear regression gets closer to the best linear function in F, in terms
of minimizing the squared errors across the entire space. For any given point x for which
we make a prediction f(x), and then an actual outcome y is revealed, we can reason about
three sources of error. Let fhest € F be the best linear function and f* the true E[Y |z],
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which may not be in F. Then

f(X)—y: f(X)_fbest(X) +fbest(x)_f*(x)+ f*(X)—y

due to insufficient data bias irreducible error

Our credible interval is only reasoning about the uncertainty due to the first term:
f(x) — foest(x). We can map this to the variance component of reducible error of the
generalization error. Recall that the GE decomposed into reducible error and irreducible
error, and reducible error further decomposed into bias and variance. The irreducible error
is due to the variance in Y given x: due to ayQ. When we make a prediction f(x), even if
it is the true function f*(x), we will always have some uncertainty in the accuracy of the
prediction because the outcome is stochastic. This uncertainty is sometimes called aleatoric
uncertainty. The uncertainty estimates given by Bayesian linear regression are instead
about the reducible error, and more specifically about the variance component. As we get
more and more data, the variance term gets smaller, because the set of plausible functions
for the larger dataset becomes smaller. Across different large datasets, we will see relatively
consistent functions. This uncertainty estimate is often called epistemic uncertainty.

Now let us return to reasoning about our uncertainty in f(x), due to insufficient data.
We use the result that a linear weighting of Gaussian variables is again Gaussian. Let v be
a d-dimensional multivariate Gaussian vector v with mean p € R% and covariance 3 € R,
Let b € R? be any vector of coefficients. Then we know that the univariate random variable
z resulting from the linear weighting of v, z = b'v, is also a Gaussian random variable,
with mean = b ' p and variance 2 = b’ Xb.

We can exploit this result by noting that, if the variance o,,? is known for p(y|x), then
p(w|D) is a multivariate Gaussian distribution. The random variable f(x) = x'w is a
linear weighting of the multivariate Gaussian RV w. If p(w|D) is a N(py,,X,) then we
know that

p(f(X)[D) = N(f(X) |tz =% pn, 02 = x' Bpx)

The 95% credible interval for our prediction f(x) is [py — 1.9604, u, + 1.960,].

In reality, we do not have o, Consequently, the distribution p(w|D) is actually a
Student-t distribution. An affine transformation of a multivariate Student-t does not have
the same nice properties as the Gaussian. Instead, when we want to use the Bayesian linear
regression model, it is typical to assume o, is the mode given by our NIG: ay2 = %.
Given a specific o,, the distribution over w is Gaussian. This is a property of the NIG:
if p(w,0y) = p(w|oy)p(oy) is an NIG with parameters p, A, a,n then p(w|oy) is Gaussian
N(p,0,2A7h).

The complete procedure is as follows.

1. Pick the hyperparameters A > 0 for the prior over weights, and ag and by for the
prior over 0y2. They have less restrictive priors, you pick smaller values for A (e.g.,

A =0.01) and can set ag = by = 1.

2. Estimate the NIG p(w, 0,,%|D), using formulas in Equation (15.2).

3. Get Gaussian posterior p(wl|o,?, D) by selecting o,? = a:’il and computing 3,, =

oy ?A7 for A =30 xix] + Al and p, = A7 Y0 Xy to get N (pn, ).

4. For any input x, you can obtain p(f(x)|D) as a Gaussian with N'(x ", x| T, x).
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We can constantly update the NIG posterior with new data, improving our estimates of
w and of ayz. For example, imagine we get m new samples, for a dataset of size n+m. We
have already obtained p,, Ay, an,b,. We can update these with this new data by treating
Wn, An, an, by as the prior parameters, to get

n+m
T
Apym = Y xix] + A,
i=n-+1
n-+m
-1
Hnt+m = An+m Z Xy + An“n
i=n+1

1
Ap4m = Qp + 5m
n+m

bpym = bn + % Z 3/12 + IJ’TTLA'HI“LTL - IJ’TTL+mATL+mIJ‘n+m
i=n+1

This is perfectly equivalent to having started with all of the n + m samples and computing
the posterior from g, Ag, ag, bp. Bayesian linear regression, therefore, elegantly facilitates
incorporating new data. Notice that this is one of the reasons we maintain A, instead of
3., because we cannot easily update the inverted matrix with new data.

As we get more and more data, the variance of the NIG shrinks, as does the variance
of p(f(x)|D). Notice that the X, shrinks because A, = ", x;x; + Al grows with n.
Consequently, x ' 3, x also shrinks as we get more samples n. This indicates a reduction in
uncertainty in our predictions as we get more data, in terms of identifying the best function
in our linear function class. If f* is in our linear function class, then eventually the mean
converges to f*(x) and the interval shrinks to zero around this f*(x).

To reason about this a bit more formally, let us define

1 n
C,=—(X"X+AI) where X'X =) x;x/.
n i=1

Notice that C, - C £ E[XX "] as n — oo (as we get more and more data), where X is

the d-dimensional random variable for vector x € R%. Further, because we have A > 0, we
know that C,, is invertible for each n. Therefore, assuming that C is invertible, we know
that x'C,,'x — ¢, as n — oo for ¢, = x' C 'x. We can write ¥, = n"'C,", giving

x'Z,x=x" (n'C, )x=n" (XTC;IX) — 0.
Exercise 31: The above statement might need one more modifier: if f* is in our linear
function class, then eventually the mean converges to f*(x) as long as the prior does not

put zero weight on the true weights w*. Why is this the case? And is it possible in Bayesian
linear regression to pick a prior where p(w) = 0 for some w? O

15.3 Extending to the Nonlinear Setting

Now we would like to get uncertainty estimates for nonlinear models. In other words, we
assume that Y = f*(x)+e where the true underlying function f* can be a nonlinear function
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Figure 15.1: The distribution over plausible functions, given by Gaussian process regression.
The blue indicates the variability in the predictions given over this set of plausible functions,
with each colored line corresponding to one possible function. There is in fact a continuum
of possible functions, given by any lines within the blue region. This image is taken from
the nice tutorial by Jie Wang [20].

and we still assume we have zero-mean Gaussian noise € ~ N(0,0?) for some (unknown)
02 > 0. As before, the simplest way to extend to the nonlinear setting is to first map x
to a new set of features ¢(x) and then do Bayesian linear regression on ¢(x). No further
changes are required. We can simply compute 3, = ay2A*1 using A = Y1 ¢Z-q,')iT + Al
and p, = A" | ¢iy; where we define ¢; = ¢(x;). Then we have that p(f(x)|D) is
N (G) T fon, $(3) T Srb(x)).

Exercise 32: Explicitly write the credible interval for the prediction f(x), assuming we
use these new features. 0

15.4 [Advanced| Gaussian Processes

Another direction is to use the kernel trick to extend to the nonlinear setting. We first
explain the kernel trick and then how to use it to get Gaussian Processes by kernelizing
Bayesian linear regression.

15.4.1 The Kernel Trick

In these notes we focus on the utility of kernels for representing functions. Our primary
goal is to allow for larger hypothesis spaces, and to understand representability. Kernels,
however, have also been popular in machine learning because of the property that they are
inner products. This property has allowed for reformulations of certain optimization with
a large number of features, with what is called the kernel trick.

Assume that you have features 1(x) and would like to do linear regression. We formulate
the problem as

n

Yo (wixi) —y:)? = [ Tw - |3

i=1

where W is composed of the vectors 1(x;), one on each row. Consider an alternative set
of weights o € R™ where we assume w = ¥ 'a. Note that we can show that this does
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not constrain the solution, because our solution is projected to the space spanned by W;
therefore we know that w is in the span of ¥, and so can be written as a linear combination
of its rows. It is equivalent to directly optimize for a, and our predictions will simply be

P(x) w=19(x) ¥ a
- Zai<¢(x),¢(xi)>
=1

We can write this inner product as k(x,x;) = (¥(x),¥(x;)). For certain ¢, this inner
product has a simple closed-form solution, namely for the case where we have the kernel
function. For example, if the 1 are polynomial features, this dot-product evaluates to the
polynomial kernel. There are also underlying exponential features for the RBF kernel.!
Therefore, if we can efficiently compute this dot product—as we can for kernels and their
associated features spaces ©¥—then it can actually be more efficient to instead solve the
equivalent optimization

1ew — |5 = [ ¥¥ " - |} = |[Ka - yli3

where K is the matrix composed of k(x;,x;) at the entry (7,7): Ki; = k(x4,%;).

15.4.2 Kernelizing Bayesian Linear Regression

We expand up to a large number of features ¢(x), and then reformulate so that we only
ever have ¢(x) ¢(x’). More precisely, we include the the prior parameter Ag into this
dot product to get a weighted dot product ¢(x)" Agp(x’). This weighted dot product
corresponds to the kernel function k(x,x’). This is precisely what is done in Gaussian
Process Regression. We can visualize a GP in Figure 15.1, where there is a shaded region
of plausible function predictions, based on the dataset given by the red crosses.

The choice of A defines the width of the activation region for the kernel. For example, in
the standard radial basis function kernel, we typically use Ag = AI and have exp(—%Hx -
x'[|3). We can think of A" as the variance or the width. Smaller A result in a wider
activation, so that x’ further from x still have non-negligible values k(x, x’). Bigger A result
in a small width, and so only very nearby x’ have non-negligible activation. The choice of A
for GPs ends up corresponding to the choice of width in the kernel, and is a hyperparameter
that needs to be tuned.

Now let us see how GPs maintain p(f(x)|D). We can start by examining the formula
and then discuss where it comes from. Let the dataset be composed of matrix X € R™*¢
and targets y € R™. For any x, which need not be in the training set, let k(X,x) =
[k(x1,x%), k(x2,X),...,k(x,x)]" be the vector of kernel (similarity) values between x and
each training datapoint x;. Let K = k(X, X) € R™" be the kernel matrix for our training
dataset, where K;; = k(x;,x;). Then we have that

p(f(x)|D) =N (k:(X, x)T(K +o21) 'y, k(x,x) — k(X,x) (K + 021)*1k<x,x)) (15.3)

n fact, the 1 for the RBF kernel is actually infinite-dimensional. This is one of the motivations for
the kernel trick: the setting where the number of features is very large or even infinite. Such a large set of
features should be beneficial for modeling, but is expensive to use. The kernel trick allows us to implicitly
use such features, without paying the computational cost. Of course, we swap the cost of computing these
features with the cost of computing the kernel matrix for the whole dataset, which itself can be expensive.
As usual, nothing is free.
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This formula assumes we have o2. Again, this is a hyperparameter that needs to be tuned
for the GP.

We can reason about why this formula makes sense by first considering the mean com-
ponent. Notice that w = (K + ¢2I) "'y corresponds to the solution from kernel regression,
where o2 is the regularization parameter for /5 regularization. The term ¢(x) = k(X,x)
is the new kernel features. Therefore, k(X,x) " (K + ¢%I) 'y = ¢(x) " w, which is precisely
the prediction given when we used the kernel trick in regression.

Obtaining the covariance term is a bit more complex. Conceptually, it is simple: we
simply need to do some algebra rearranging terms so that we always have ¢(x) as a dot
product with another ¢(x’). We do not go through these steps here; for these steps see
Equation 2.12 in [20].
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Appendix A
Extra Information

You will not be tested on anything in the appendix. It is simply here for your interest.

A.1 More on GLMs

In the main text we motivated using g = a’ results in nice loss functions. We explain
in this section. The common setting of ¢ = o' for GLMs has a connection to widely
used objectives called Bregman divergences. These divergences are written as D,(§||y),
indicating the difference between ¢ and y, where the divergence is parametrized by a. The
minimization of this Bregman divergence corresponds to the minimization of the negative
log-likelihood of the corresponding natural exponential family:

argmin Dy (z||g” " (0)) = argmin — In p(z|0).
0 0

See [27, Section 2.2] and [1] for more details about this relationship.

Bregman divergences have nice properties, including being convex in the first argument.
By selecting g = @/, we inherit these properties. Other choices are possible, but the resulting
loss functions are likely nonconvex and will not be as well understood.

A.2 More on Constrained Optimization

Here we write the explicit steps we omitted in the main text. We can write the proximal
update using the same expansion on ¢, in addition to including r

. 1
W1 = argmin c(wy) + Vc(wt)T(w —wy) + ?Hw - wt||g +r(w)

weRd 2 t
1
= argmin Ve(wy) T (W — wi) + — ||w — wy |3 + r(w) > dropped constant
weRd 277t
= argmciln nth(wt)T(w —wy) + %HW — Wt”% + ner(w) > multiply by
weR

= argmin 3| w — (wy — 1, Ve(w)) |3 + ner(w)
weRd
where the last equality follows using the following facts. Let a = w—w; and b = 1;Ve(wy) .
Then we can write %||lw — (w; — n,Ve(wy))[|3 = 3[|(w — we) + 0. Ve(wy))[|3 = 3lla + b3
Now we can also see that 1|la+b||3 = Ja’a+a'b+ ;b"b. Here b does not depend on
w, and so the minimization can drop %b—rb.

149
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A.3 More on Latent Factors

A.3.1 More on Sparse Coding

One strategy to obtain sparse representations is to use a sparse regularizer on the learned
representation h. This corresponds to the optimization

p p
min X —HD|% + ) H.,|{ + ) D, |2
DERM,HGRWH % ;II ill1 Z;II i:ll2

As discussed in Section 3.2.2, the ¢; regularizer promotes zeroed entries, and so prefers H
with as many zeros as possible. A regularizer is also added to D, to ensure that D does not
become too large; otherwise, all the weight in DH would be shifted to D.

Exercise 33: Explain why all the weight in DH would be shifted to D, if we did not use
a regularizer on D as well as H. Consider what this means for identifiability, namely for
uniqueness of the solution, without any regularizers. O

A.4 More on Backpropagation

First, we take the partial derivative w.r.t. the parameters W),

(W W) 9L(f1(f(xWPD)WD) y)

1 - 1
ow') ow')
OL($, 0y A
() a
i) oW,

where only ¥ is affected by Wﬁ) in the loss, and so the gradient for the others is zero.

Continuing,

OErr(WD) W) /0L($1,yx)\ 0/1(65") 06" . )
— < ) b Tk >0 — hw{))

1) $ 1) (1)
oW ose ) oal) owl]

(aL(f’k,Yk)> 3f1(91(gl))h}
= j
O3k o0\

At this point these equations are abstract; but they are simple to compute for the losses
and transfers we have examined. For example, for L(yx,yx) = %(yk —y&)?, and f the
identity, we get

0f1(6")
06"

OL(Y1, yi)

! —1
oy

= (Y& — Y&) and

giving

PEr(WL, W) (8L<yk,yk>> ah1(6}")

= - h; = (yx — yx)h;.
1 1 J J
ow') Oy 06"



APPENDIX A. EXTRA INFORMATION 151

The gradient update is as usual with W) = W) — o(y — y)h" for some step-size .
Next, we compute the partial gradient with respect to W@, Now, however, the entire
output variable y € R'™™ is affected by the choice of WZ(]Q) for all © € {1,...,p2}, j €

{1,...,p1}, where for this exam. Therefore, we need to take the partial derivative w.r.t. all
of y.
OB (WD, W®) a5 L(A(HLEWD)WY), yy)
ow'? ow'?
1) )

_ i OL(Yk.yk) OV
= O%k GWEJQ-)

_ 3 0L ye) of.(65") o8y”
= Oy 06, ow

DYk—fl(hW) fl( Y)

Continuing,
06"  onw() oayr nw!)
oW ow ang)
Op, LW Wi
a oW

i 0 212 xW )
= aw(”
w ot 2(xW ))
Jk (2)
oW

because % =0 for [ # j. Now continuing the chain rule

3

0f(xWD)  0£07) 06

@ _ @
ow® 9 aw@.) >0 =xW
ij

Putting this back together, we get
OEr(W W) _ St OL(r. i) 0616, 06,
oW = ae,ﬁ” aWU

i OL(Yk, yk) 3f1(9121))w 8f2(03(2 )

= o oY W 06"

X;.

Notice that some of the gradient is the same as for W) i.e.

PO OL(§ks Yk) 3f1(9;(§1))
L o9 (1)
Ve 06
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Computing these components only needs to be done once for W), and this information
propagated back to get the gradient for W(2). The difference is in the gradient 88\%7(223)’
because h relies on W), For W) h = fg(x,;W(Z)) is a constant, and so does not affect

the gradient for W), The final gradient is

Em(WI, W) (& o)) 0500,7)
-y > j
i

If another layer is added before W@ then the information propagated backward is
(2
5 _ (W(.l)é(l)) 0f2(6;7)
j I 89§»2)

and x; is replaced with h§2). The gradient for Wl(?) is

®3)
(W(g)é(g)) 9f3(6;™)
J: 80](‘3)

X

Example 15: Let p(y = 1|x) be a Bernoulli distribution, with f; and f» both sigmoid
functions. The loss is the cross-entropy. We can derive the two-layer update rule with these
settings, by plugging-in above.

L(9,y) = —ylog(g) — (1 —y)log(1 —7) > cross-entropy
OL(gy) __y 1-y
9y gy 1-3
1
W) = (W) = @
1+ exp(—xW ")
1

W) = o(aW)) =

1+ exp(—hW:(,i))
9o (0) = o(0)(1 — o(6))
We can compute the backpropagation update by first propagating forward and computing
h = o(xW®) and y = o(hwl)
and then propagating the gradient back

50 _ OL(Yk, yr) 0f1(64")
Eo— v 1)
Ve 06

Ye l1—yr\. . . .
= (—A+ T >Yk(1_}’k) = —ye(1 =3%) + (1 — y&)¥x
Vi — ¥k

=YK — Yk
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OL(Yr,yx) (1)
Tow oM
OW
(W(l)é(l ) hy(1—hy)
8L(Yka)’k:) _ 5Oy
8W(2) 7

The update simply consists of stepping in the direction of these gradients, as is usual for
gradient descent. We start with some initial W) and W(2) (say filled with random values),
and then apply the gradient descent rules with these gradients. ([l

A.5 More on Mixture Models and EM

A.5.1 Identifiability

When estimating the parameters of a mixture, it is possible that for some parametric families
one obtains multiple solutions. In other words, for all x € X,

m/

p(x)0) = Zwkp x|0;) = Z p(x|6}) = p(x[0’)

k=1 j=1

even though 0 # 0'. The parameters are identifiable if

> wip(x|6r) = Y wip(x|6},),
k=1 k=1

implies that m = m’ and that there exists a re-ordering of the parameters such that wy, = wy,
and 6, = 0. We explicitly state that there is a re-ordering because the order of the mixing
components is irrelevant, so they may need to be re-ordered to finding the matching pairs.

It is well-known that a mixture of Gaussian distributions is identifiable. In fact, more
generally, mixtures of exponential family distributions—which we discuss in the next Chapter—
are identifiable. Some distributions, however, may not satisfy this property.

A.5.2 Connection to Mirror Descent

The EM algorithm actually has an interesting connection to gradient descent [14]. More
specifically, it has a connection to an algorithm called mirror descent. The idea behind
mirror descent is simple: when deriving the gradient descent update, we use a different
distance d to the previous parameters:

1
Wiy 1 = argmin ¢(wy) + Ve(wy) | (w — wy) + —d(w, wy)
weRd 277t

where for gradient descent we used d(w, w;) = ||w — w¢||3.

The choice of squared distance is reasonable in many cases, but not that reasonable
when the parameters are those for a probability distribution, as they are in mixture models.
We do not in fact care too much if the parameters are close in Euclidean space—namely
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according to squared error—but rather care more if their mixture distributions are similar.
We have seen one useful way to measure differences between distributions, in Section 2.4:
KL-divergences! We can use

d(w, wi) = KL(p(x; w1)||p(x; w))

It has been shown that each iteration of EM actually corresponds to computing w1
with this d, with a stepsize of 1, for a reasonably large set of mixture distributions [14].
This connection is useful because it motivates the EM algorithm further, as well as suggests
ways to extend the algorithm using algorithmic choices in mirror descent.

A.6 More on Generative Models and Data Representations

A.6.1 Contrasting with Mixture Density Networks

The above discussion was about finding more complex p(x). We can also use neural networks
to learn relatively simple parametric distributions, like mixture models, conditioned on
inputs. Namely, we can learn more complex p(y|x), such as p(y|x) = c1(x)N (u1(x), 03 (x))+
c2(X)N (u2(x), 03(x)) with neural networks outputting the parameters of the mixture model.
For example, instead of outputting an estimate of E[Y|x], the network can output six values:
c1(x), u1(x),0%(x), c2(x), p2(x), 03(x). They can share the same learned features ¢(x) and
have outputs

c1(x) = o(¢(x) 'we)
cx)=1-0 (x)Twc)
p(x) = ¢(x) "w,

p2(x) = ¢(x) ',

o1 (x) = exp(o(x ) o.1)
03 (x) = exp(¢p(x) W 2).

This approach allows us to first transform x so that the resulting conditional mixture
model is an accurate approximation to the distribution over y for a given x. The intuition is
the same as when we learn (nonlinear) features on which we can then learn linear functions.
By mapping to a new (potentially higher-dimensional) space, it is now feasible to learn a
simple model.

This approach, however, does not learn a complex distribution over y itself. If we want
to do so, we can use other conditional generative models. For example, there is an extension
to variational autoencoders that allow for conditioning on another variable.

A.6.2 Contrasting with Generative Classifiers

The term generative models has also been used to describe an alternative approach to clas-
sification. The standard approach we have considered is to learn a discriminative classifier:
one where we learn p(y|x). This model lets us discriminate between possible targets for a
given input x. A generative classifier is still trying to obtain argmax,cy p(y|x), but instead
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estimates p(x|y) and p(y). It uses the fact that

p(xly)py) — argmax p(y|x) = argmax p(x|y)p(y)
p(x) yey yey

p(ylx) =

You can see why this is called a generative classifier, since we learn the joint distribution
p(x|y)p(y) = p(x,y) that enables us to generate (sample) pairs (x,y). Further, because x
is often more complex—such as an image—we use approaches that we use for generative
models, such as mixture models or variational autoencoders.

However, this approach seems to violate the principle of simplicity. It is typically easier
to learn p(y|x). Why learn a full generative model on x when all you really need is p(y|x)?
Primarily the answers are that (a) we can encode different inductive biases (priors) into
our generative models and (b) we can learn relatively simple generative models and still
obtain reasonable classification accuracy. For example, if you are trying to classify faces
into marrow or wide, then as an expert you might be able to encode prior knowledge into
p(x|y = narrow) and p(x|y = wide). It can actually be harder to encode prior knowledge
into p(y|x).

For the second point, a canonical example of a generative classifier is naive Bayes. This
algorithm is called naive because it imposes a simplistic (and likely untrue) assumption:
that all the features are independent given the class information. Mathematically,

d
p(x|y) = p(z1, 22, ..., zaly) = [] plz;ly)
j=1

The utility of this (strong) assumption is that it is much simpler to learn these univariate
distributions over each features, than it is to learn one larger joint distribution. If we have
m classes, then we simply learn m univariate distributions over each x;, for a total of md
univariate distributions. For example, we can learn Gaussians p(z;ly = k) = N (u;i, ajz.k)
or we can even learn mixture models p(z;|y = k) for each (j,k). In either case, we have
relatively simple algorithms to do so. For Gaussians, we have a closed form solution: the
maximum likelihood estimates pj; and 032'1@ are simply the mean and variance for feature j
for each data point labeled class k. For mixture models, we can similarly create individual
datasets and use our EM algorithm. We take all the points labeled as class k£ and include
only feature j: Dji = {x;; : y; = k for (z;,v;) € D}.

A.7 More on Generalization Theory

In this section, we talk about the basic ideas behind generalization bounds. This is a
brief introduction, that is primarily to pique your interest and only scratches the surface.
Statistical learning theory is a constantly evolving field, with many new discoveries. Many
advances are also focused on more information theoretical results, under more specialized
cases or assuming properties of the data. Here, we focus on the simplest case, where
we assume little about the structure of the data, and consider primarily the role of the
complexity of the function class.

We begin with some basic finite-sample results, that relate the complexity of the model
class to the number of samples required to obtain a reasonable estimate of expected er-
ror (generalization error). We will discuss one result using concentration inequalities and
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Rademacher complexity to characterize model-class complexity; for further information, you
could consider this tutorial on the topic [9].

A.7.1 A Generalization Bound for Linear Regression

Our goal throughout this book has been to obtain a function, based on a set of examples,
that predicts accurately: produces low expected error across the space of possible examples.
We cannot, however, measure the expected error. Statistically, we know that with a suffi-
cient sample, we can approximate an expectation. Here, we quantify this more carefully for
learned functions.

Our goal more precisely is to select a function from a function class F to minimize a
loss function ¢ : R x R — [0, 00) in expectation over all pairs (x,y)

min E[¢(f(X),Y)].

For example, in linear regression, F = {f : R? = R | f(x) = x'w, for any w € R%}. This
space of functions F represents all possible linear functions of inputs x € R%, to produce a
scalar output. Our goal in linear regression was to minimize a proxy to the true expected
error, i.e., the sample error: 2 Y7 | £(f(x;), ;). Now a natural question to ask is: does this
sample error provide an accurate estimate of the true expected error? And what does it
tell us about the true generalization performance, i.e., true expected error?

Let’s start with a simple example, using linear regression. Assume a bounded function
class F, where F = {f : R? — R | f(x) = x'w, for any w € R? such that ||w|2 < By}
for some finite scalar B,, > 0. Assume the input features come from a bounded space,
such that for all x, ||x||2 < B, for some finite scalar B, > 0, and further that the outputs
y € [-By,B,] for some B, > 0. Assume we use loss £(9,y) = 3(§ — y)?. This loss
is Lipschitz continuous for our bounded region, which means that the function does not
change too quickly. Namely, for 91,92 € [—By, By], and any y €, there is a constant K such

that

(91, y) — U(G2,y)| < K|§1 — Gl

This constant K reflects how fast the function can change, since it is the ratio between
the change in the function for two points to the distance between those two points (rise
over run). The squared error is not Lipschitz for all of R, since it grows quickly once ¢ gets
bigger. But, for our bounded region it is Lipschitz, with Lipschitz constant K = By + B, B,,.
We can compute K because it is the maximum magnitude of the gradient of the function,
wrt to its inputs g. Using the fact that |§| < B, B, we have
de(g,y X N
YO _ 1~ g < g+ Iyl < By + BoB..
dy
Further, because y € [—B,, By, we know the loss is bounded as
0g,y) = 5(5 — y)* < 3(B; + BiBY).

For approximate error

Bre(f) = = S0 (<), i)

n
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and true error
Brn(f) = B0, V) = [ plxg)t(7x), y)axcy
XxY
using Equation A.2 below, we get that with probability 1 — §, for § € (0, 1],

2KB;By |

Jn 2

With increasing samples n, the second two terms disappear and the sample error ap-
proaches the true expected error. This bound show the rate at which this discrepancy dis-
appears. For a higher confidence—small 6 making In(1/§) larger—more samples are need
for the third term to be small. This third term is obtained using concentration inequalities,
which enable us to state the rate at which a sample mean gets close to its expected value.
For possibly large values of features or learned weights, the second term can be big and
can again require more samples. The second term reflects the properties of our function
class: a simpler class, with small bounded weights, can have a more accurate estimate of
the loss on a smaller number of samples. More generally, this complexity measure is called
the Rademacher complexity.! For the linear functions above, with bounded ¢5 norms for x,
w, the Rademacher complexity is bounded as R, (F) < B;B,/y/n (see [12, Equation 3]).

In the next few sections, we provide a generalization result for more general functions,
as well as required background to determine that result.

(B; + B2B2) In(1/9). (A.1)

Err(f) < Err(f) 4+ om

A.7.2 Complexity of a function class

Rademacher complexity of a function class characterizes the overfitting ability of functions,
on a particular sample. Function classes that are more complex have functions that are
more likely to be able to fit random noise, and so have higher Rademacher complexity. The
empirical Rademacher complexity, for a sample {z1,...,z,} —where typically we consider
z; = (X4,1;) — is defined as?

where the expectation is over i.i.d.random variables o1, . . . , oy, chosen uniformly from {—1,1}.
This choice reflects how well the function class can correlate with this random noise. Con-
sider for example if f(x) predicts 1 or -1, as in binary classification. If there exists a function
in the class of functions that can perfectly match the sign of the randomly sampled o;, then
that function produces the highest value > ; 0; f(x;). The empirical Rademacher complex-
ity for a function class is high, if for any randomly sampled o;, there exists such a function
within the function class (can be a different function for each oy,...,0,). The Rademacher

If you have heard of VC dimension, we will discuss the connection between Rademacher and VC dimen-
sion below. They both play a role in identifying the complexity of a function class.

2Here we are being a bit loose and using maximum instead of supremum, to avoid burdening the reader
with new terminology. We usually deal with function classes F where using the supremum is equivalent
to using the maximum. The supremum is used when a set does not contain a maximal point (e.g., [0,1)),
where the supremum provides the closest upper bound (e.g., 1 for [0, 1)).
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complexity is the expected empirical Rademacher complexity, over all possible samples of
n instances.

For function classes with high Rademacher complexity, error on the training set is un-
likely to be reflective of the generalization error, until there is a sufficient number of samples.
This is reflected in the generalization bound in Section A.7.3.

Connection to VC dimension: The complexity of a function class can also be char-
acterized by the VC dimension. The idea of VC dimension is to characterize the number
of points that can be separated (or shattered) by a function class. Simple functions have
low VC dimension, because they are not complex enough to separate many points. More
complex functions, that enable complex boundaries, have higher VC dimension. For ex-
ample, for functions of the form f((x1,x2)) = sign(xjw; + xows + wp), the VC dimension
is 3; more generally, for x € R?, the VC dimension is d + 1. VC dimension is a similar
idea to Rademacher complexity, but it is restricted to binary classifiers. For this reason, we
directly discuss the Rademacher complexity, which for binary classifiers can be bounded in
terms of the VC dimension. By Sauer’s Lemma, we can typically bound the Rademacher

2VC-dimensionlnn
- .

complexity of a hypothesis class by \/

A.7.3 A Generalization Bound for General Function Classes

The generalization bound for a class of models can be obtained by combining the con-
centration inequalities to bound deviation from the mean for fewer samples, and using the
Rademacher complexity to bound the difference between the sample error and true expected
error across all functions in the function class. We additionally need to restrict the set of
losses. We assume that the losses are Lipschitz with constant K, meaning that they do
not change too quickly in a region, with ¢ indicating the rate of change. Further, we also
assume that the loss is bounded by b, i.e., attains values in [—b, b]. As above, if {z1,...,2,}
is i.i.d., then with probability 1 — ¢, for every f € F,

In(1/6)

E[((£(X),Y)] < .

SO0 (i), i) + 2K B(F) 4 b (A.2)
=1

SRS

For a more precise theorem statement and a proof, see [3, Theorem 7] and [12, Theorem 1].

A.8 More on Missing Data

A.8.1 Naive Bayes and Missing Data

Another benefit of generative classifiers like naive Bayes is that they allow us to deal with
missing data using marginalization. Recall that in naive Bayes we classify using p(x|y)p(y)
instead of p(y|x), because

argmax p(y|x) = argmax p(x|y)p(y)
yey yey

Now assume we have a point x;, and assume attribute 2 is missing. But, p(x|y) requires
all of x to be specified. Instead, we would like to use only our available information. If we
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could, then we would have the learned model p(z;1, 3, Zi4, - . ., Tiq|y). Then to classify the
input, we would instead use argmax,cy p(¥i1, Z:3, Tid, - - - , Tia|y)P(y)-

Implicitly, we have learned all of these marginals, by learning the full joint distribution.
We can always extract out the distribution over a subset of variables, by marginalizing over
the other (missing) variables. For this example, we have that

p(x1, T3, T4, . .., TqlY) =/ p($1,$27$371’4,--wﬂfd\y)P(y)de/ p(x|y)p(y)dzy
Xo

Xy

For naive Bayes, this marginal is easy to obtain, because each feature is independent given
the class. In fact, we get

p(x1, 23,24, ..., xqly) = p(x1ly)p(x3ly) . .. p(zaly)
which is the same as

/Xp(xl,xz,wg,m,---,xd!y)dxzz/Xp(wlly)p(x2ly)p(x3|y).--p(:vd\y)d:cz
2 2

= p(ar|9)p(x2ly)p(@sly) - . p(zaly) / p(waly)deca

X
= p(x1|y)p(aly)p(esly) .. p(zaly)  »> Where/ p(z2ly)dry = 1.
Ao
More generally, for any input x; with available features A;, we get that

argmax p(x;|y)p(y) = argmaxp(y) [ p(xijly)
yey yey ]G.Az
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Exercise Solutions

B.1 Chapter 3 Exercises

Solution to Exercise 7

i=1 i=1
To compute this gradient, we can use the standard approach from before, with partial
derivatives. However, for these relatively simple objectives, it is actually simpler to use the
basic rules for computing gradient with matrices and vector, shown in Table 1.1. First,
notice that

Xw—y) (Xw—y)=(w' X" —y")(Xw—y) because (AB)" =BTAT
=w'X'Xw—-2y'Xw+y'y Dbecausey' Xw=w'X"y

Using the derivative rules for vectors and matrices, where Vw ' Aw = 2Aw and Vb ' Aw =
ATb,! we get

V|Xw—y|3 =2X"Xw - 2X "y

B.2 Representation Exercises

Solution to Exercise 22

Oc(WW, W) 009, y)

ow()  awll
_ (35(19724)) 99
05 ) ow'\)

> o) — BOWO

oL(7,y)\ 0o (0M)) 96M)
( 0 ) 000 Hw)
j

90 _hOW® 50 hw)
ow® — ow® T awD
J J J

>

9, y)\ do(6M)
:< y) 260 h;

INotice if A is a scalar and w a scalar, this result is intuitive: the derivative of w - a - w is the derivative
of aw?, which is 2aw.
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Now we simply need to compute

00(gy) _ 0—ylng—(1-y)ln(1 -9
9y 9y
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