Final Review

CMPUT 367: Intermediate Machine Learning



(Goal of these Slides

Go over each section of the notes and highlight key concepts

Additionally highlight what | will and will not test
e [tisin the notes for your knowledge, but hard to directly test

Not reviewing for Practice Final —> That will be the next session

Note: like you can see In the Practice Final, the final largely focuses on
Chapter 8 onwards. But as usual it builds on your knowledge from earlier
chapters




Chapter 1: Intro to ML

 Know the difference between a generative model and predictor (1.1)

- Will not be directly tested:
* Relationship to Statistics and Probability (1.2)
* The Blessing and Curse of Dimensionality (1.3)
 SVDs and Eigenvalue decompositions (1.4)
e You will not need to take gradients




Chapter 2: Intermediate Probabillity
Concepts

* Understand the definition of a multi-dimensional probabillity (2.1)
* Understand the definition of a mixture of distributions (2.2)
* Know the purpose of the KL divergence (2.3)

- Will not be directly tested:
 Knowing the PMFs or PDFs of specific distributions
e Specific expectation and variance formulas
« Remembering the KL divergence formula




Chapter 3: Revisiting Linear
Regression

Understand that Linear Regression and |12-regularized linear regression have
closed-form solutions (unlike most GLMSs)

Understand that this let’s us characterize the bias and variance of these
solutions

Understand the LR solution Is unbiased, it the true function Is linear

Understand LR+I2 is biased, but that asymptotically (as n grows) they reach
the same solution

- WIill not be directly tested:
* Any specific closed-form solutions; | will give them to you If you need them



Chapter 4: Intermediate
Optimization Principles

* Understand multivariate gradient descent, including gradients (4.3) and the
role of the Hessian in second-order GD (4.1)

 Understand Stochastic GD (SGD) and the reason to move from full batch
GD to mini-batch SGD (4.4)

* Understand the role of vector stepsize algorithms like RMSProp and the use
of momentum (4.5)

- Will not be directly tested:
* Properties of the Hessian and directional derivatives (3.2)

 Knowing the updates of specific vector stepsize algorithms




More Advanced Exercise Question

 How might the size of the dataset n interact with the numlber of epochs that
we need to converge?



More Advanced Exercise Question

 How might the size of the dataset n interact with the numlber of epochs that
we need to converge?

 Answer: \With a very large dataset, we are doing more updates in each
epoch and likely need fewer epochs to converge.




Chapter 5: GLMs

* Understand that Generalized Linear Models (G

Ms) allow us to model

» p(y|X) = any natural exponential family distribution with natural parameter

0=Xx'WwW

* with associated transter function g such that g(XTW) approximates

[ Y] x]

* Understand that multinomial logistic regression is for multi-class classification

- Will not be directly tested:

* Knowing specific GLM updates; if | need you to reason about one | will give

it to you

* The details of exponential family distributions (5.2)



Exercise Question

* |magine you have multinomial logistic regression implemented. How would

you use this code to do binary classification?



Chapter 6: Constrained Optimization

 Understand that we need to use a different approach when we have a
constrained optimization (3.5)

* Understand that proximal gradient descent is a reasonably general purpose
approach for constrained or non-smooth optimization (3.5)

- WIill not be directly tested:
* You do not need to know specific proximal operators

* You do not need to know about KKT conditions nor how to get the
proximal operator for the simplex constraint (3.6)




Exercise for constrained
optimization

e | et us revisit the optimization for mixture models

min — 2 d. Inw, (whered, = Z pli, k] > 0)

® >O
wl Wk Zk— l= 1

* Jo solve this, we can be lazy and first just check: does a stationary point
give us a feasible solution”



Exercise for constrained
optimization (cont.)

0
™ 2 d, Inw, = Z dkaw Inw,
k=1

Wi
Stationary points are plus/minus infty, clearly not a feasible solution (does not
satisfy our constraints)

Our lazy step failed.




Exercise for constrained
optimization (cont.)

0
o Z d, Inw, = Z dkdw Inw,
k=1

1

Wi

Stationary points are plus/minus infty, clearly not a feasible solution (does not

satisfy our constraints)
Our lazy step falled. If the stationary point *had* been a feasible solution (satisfied
m

Wiy oy W 2 0, Z w, = 1), then we would be done and wouldn’t need to use

k=1
any fancier optimization approaches



Exercise for constrained
optimization (cont)

Let us now Incorporate one of the constraints. WWe can see our objective
actually will not prefer negative weights, so let’s first do the sum constraint

We consider now an equivalent augmented objective (Lagrangian), and see
if a stationary point of this objective gives us a solution

L(w,a) = — delnwk+a Zwk— 1
k=1 k=1

Solve for max min L(w,a) we know a solution to this *must* satisfy this
aeR weR"”

constraint, as otherwise w sufters infinite loss



Exercise for constrained
optimization (cont)

m m
- L(w,a) = — z d,Inw, + a ( Z Wy — 1) Lets start by solving for w

- 0
L(w,a) = — Z d, ™ Inwy + aw;
| J

6w] —
I a;
=—dj—+a=0 = W, = —
W a

J

m m d m
. We know a solution must have a where Z W = Z =] = a= Z d,

k=1 =1 ¢ k=1



Exercise for constrained
optimization (cont)

L(W,d)=—2dklnwk+a(2wk—l> sz_J
k=1 k=1

We know a solution must have a where

d.

m - %_ - m - A
,;Wk_,;a =] — a—;dk — W; = Zmzldk

Feasible solution, since d] > () and so w; > 0

(We didn’t need to go explicit enforce this condition)



Chapter 7: Evaluating Generalization
Performance

e Understand that cross validation allows us to evaluate a model trained on
the entire dataset (without having to have a hold-out test set)

» Understand the k-fold CV algorithm

* Understand the repeated random subsampling (RSS) CV algorithm

- WIill not be directly tested:
 [The nuances about the bias-variance distinctions for different CV choices




Chapter 7: Evaluating Generalization
Performance (cont)

 Know what it means to select hyperparameters
 Understand the utility of CV for hyperparameter selection

e Understand the difference between internal CV and external CV

e Internal CV is for hyperparameter selection and external is to evaluate the
algorithm that might use internal CV

- Will not be directly tested:
 Knowing how to pick the set of hyperparameters to be tested with CV



Refresher on internal & external CV

Algorithm 5: Nested cross-validation on a dataset D
1: Partition the dataset D into kexternal folds
2: Initialize err-f = 0
3: for 1 = 1 to kexternal dO

4:  Set Dt(? to the data in fold ¢

5. Set DY) =D — DY

6: // Call the Learner on Dt(f.); as part of its algorithm, it uses CV to picks hypers
7.  Partition the dataset Dt(? into kinternal folds

8: for h in the set of hyperparameters H do

9: Initialize err|h] = 0

10: for j =1 to kipternal dO

11: Set D’ E‘é) to the data in fold j for dataset Dt(?
e N U

13: Train f = Alg(D’g), h)

14: err|h] = err|h|+ error for f on D’ E‘é)

15: err|h] = err|h|/kinternal

16:  Pick h* = argmin, g err|h]
17:  // Learner done picking its hyperparameter, can now return the learned function
18:  Train f = Alg(D(Z) h*)

tr
19:  err-f = err-f+ error of f on Dt(;)
20: err-f = err—f/ Kexternal

21: return f and err-f




Chapter 8: Fixed Representations

* Understand that projecting to higher dimensions makes data separable
(classification) or allows for a simpler function for regression

* Understand that RBF network define features using RBF kernels to a set of
centers, with similarity controlled by the width of the RBF

 Understand that Prototype Representations use similarities to prototypes
taken from the training dataset

e Understand that |1 does teature selection, and that is more useful when we
blow up our feature space using fixed representations

- Will not be directly tested:
* Knowing specific kernels
 [he advanced remark about the representer theorem



EXercise

* \What are the implications of using |1 regularization with polynomial features®



e | didn’t give you an example of how pro

facilitates regression with

EXercise

simple (linear
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to higher dimensions also

e (Can you think of a similar example to this one, but for regression’
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Chapter 9: Learned
Representations

 Understand that PCA extracts a lower-dimensional representation

« Understand the objective underlying PCA (minimize ||X — hDH% for every x)

 Understand that sparse coding similarly minimizes || X — hDH%, but
additionally has an |1 regularizer on h to find a high-dimensional sparse

represe

Ntation

- Will not be directly tested:
 PPCA
» Algorithms for PCA and sparse coding, such as matrix factorization

* [nterpretations of latent factors (that was only for intuition about what might
be learned In a representation)




Advanced Exercise Question

* Imagine we first expand the dimension using a kernel representation, going
from 10 features to 5000.

e Subqguestion: why are there 5000 features”?

 Then we apply PCA to extract 100 features. How do we interpret what
those features are”?

* |s it equivalent to PCA or I1-regularization to get to 100 features?



Chapter 9: Learned Representations

* Understand types of transformation on the input given by a neural network
* Understand that backpropagation is gradient descent

e Understand that linear autoencoders also extract a low-dimensional
representation like PCA

e (Can see nonlinear autoencoders as a nonlinear extension of PCA

- WIill not be directly tested:
* You will not need to derive the gradients for an NN
* You will not be tested on supervised autoencoders



Exercise Question

* \We discussed that many transformations consist of (1) linear weighting
followed by (2) nonlinear activation (differentiable almost everywhere)

 What are some other activations we could consider using in a network,
beyond the three we discussed (RelLU, sigmoid, tanh)?




Exercise Question

 Now imagine that we want to get a new representation with 5000 features

Using NINs.

 How would we do that”? (there is more than one answer to this question)



Exercise Question

* Write down the set of functions F1 obtained using a kernel representation
with kernel k, and a random subset of 100 points from the training data as

centers (assume Z is the space of all possible inputs X)

* Write down the set of functions F2 obtained using an NN with two hidden
layers each of size 256, with RelLu activations, for regression




Exercise Question

Write down the set of functions F1 obtained using a kernel representation
with kernel k, and a random subset of 100 points from the training data as

centers (assume X is the space of all possible inputs X)

Write down the set of functions F2 obtained using an NN with two hidden
layers each of size 256, with Rel.u activations, for regression

f | told you that F1 Is a subset of F2, what does that mean”? \Which class
has higher complexity (or capacity)?

How do you know one is a subset of the other? Is F1 a subset of F2 here?



Chapter 10: Mixture Models

* Understand that the EM algorithm consists of (a) the introduction of auxiliary
variables z and (b) alternating between updating p(z; | x;) and parameters €

» Understand that the M-step updates @ for fixed p(z; | x;) and the E-step
updates p(z; | x;) for fixed @

- WIill not be directly tested:
 The MLE solution for Multivariate Gaussians (4.1)

* You do not need to memorize the EM algorithm, but you should be able to
recognize key components of It



EXercise

 How would you use k-fold CV to pick the number of centers for a GMM?



EXercise

 How would you use k-fold CV to pick the number of centers for a GMM?

e Answer: You would decide on the set of numbers to select from,
e.q., H={2, 4, 8, 16}

e After partitioning the data into k folds, for each hyper m in H and each fold f
e [earn the GMM phat on all but fold f

e Evaluate on fold f, by computing the negative log likelihood on the data
sum_(x in fold f) -In phat(x)




Chapter 11: Generative Models &
Data Representations

* Understand that both PPCA and VAEs make the assumption that

. P(X) = JP(X | h)p(h)dh with p(h) = /(0, 1)

« Understand that PPCA assumes a linear relationship between X and h

p(x|h) = #/(hD, ¢°1)

» And that VAE generalizes to a nonlinear relationship, using NN fy to give

p(x|h) = N (fy(h),c°T)



Chapter 11: Generative Models (cont)

» Understand that we learn the encoder g(h | X) only as part of the
optimization, to help us learn p(x | h); we do not need g(h | X) itself

 Understand how to sample from a VAE
« Step 1: Sample h ~ (0, I) and then
» Step 2: query the decoder part of the VAE network fyy(h)

- WIill not be directly tested
 Knowing the VAE objective (the elbo loss)
* The connection to Expectation-Maximization (9.3)
* [he reparameterization trick and the gradient update for the VA




EXercise

 [he last slide said: To sample from a VA
e Step 1: Sample h ~ A(0, I) and then
» Step 2: query the decoder part of the VAE network fyy(h)

 But why don’t we sample h from g(h | x)?



Chapter 12: Bias, Variance and

(Generalization Error

* Understand that the generalization error of a function f is the error Iin

expectation across all possible da

apoints (expected cost)

GE(f) = E[(f(X) = Y)*] = E[(f(X) — f*(X))*] + E[(f*(X) — V)]
— T U

reducible error irreducible error

(12.1)

 GE Is about a specific function f, rather than a function class that outputs

Jo that varies with data



Chapter 12: Bias, Variance and
Generalization Error

Understand that we can reason about function fg, as a random variable,
where randomness comes from the underlying dataset

Understand that we can reason about the generalization error of functions
from a function class, by considering the bias and variance of this fg,

Understand that reducible error of fg, decomposes into bias and variance

For a specific x, we have E :(fp(x) — f*(x))Q: = (E[fp(x)] — f*(x))* + Var [fp(x)].

2[(fp(X) — f1(X))°] =Ex :( Up[fp(X)] — f4(X))" + VarD[fD(X)]: (12.2)




Exercise Question

We wrote F1 the set of function using a kernel representation and F2 using
an NN. We thought about the case where F1 Is a subset of F2

Do you think F1 or F2 has higher bias®

Do you think F1 or F2 has higher variance”

Why is this reasoning useful”? Can’t we just measure generalization error of
our actual learned function using a test set or cross validation®



Chapter 12: Bias, Variance and
Generalization Error

e Understand the definition of covariate shift

* Dirain(X, ) = p(y | X)prain(X) # p(y [ X)piest(X) = prest(X, y)



A more realistic example of
covariate shift

. )e ® t=1 (e.q., surgery)
O | o + t=0 (e.g., medication)
g —t=1 [if got surgery]
— ° .. ) ® —t=0 [if got medication]
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Figure 1.2: An example observational dataset (synthetic). Points in e repre-
sent a patient who actually got surgery (¢t = 1) and indicate their respective
factual outcome. Points in . represent patients who in reality got medication
but indicate their counterfactual outcome had they got surgery (-t = 1).




Exercise: What is ptrain and ptest?

y (e.qg., survival time)

t=1 (e.qg., surgery)

o + t=0 (e.g., medication)
—t=1 [if got surgery]
* © —t=0 [if got medication]
® o '*.i.
. 1
@
@] .. * °® +# ++¢ #+++ +++ 1‘-
+ 4® T T
+ .|.. + + & dity $ + +
* + ++ .'._|'+::-|' ': o+ t‘“‘ ?
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X (e.qg., age)

Figure 1.2: An example observational dataset (synthetic). Points in e repre-
sent a patient who actually got surgery (¢t = 1) and indicate their respective

factual outcome. Points in

represent patients who in reality got medication

but indicate their counterfactual outcome had they got surgery (-t = 1).



Chapter 12: Bias, Variance and

e Understand the definition of covariate shift

(Generalization Error

* Pirain(X,y) = p(Y | X)Pirain(X) # PV | X)Piest(X) = Prest(X, )

 Understand that our definition for GE stays the same

» still about deployment data, but before pirqin(X, ¥) = Piest(X, y) so we

simply called them both p

GE(f) =

2 [(F(X) — V)] = /

X

Ptest (X)

3[(f(x) — Y)2IX = x]dx

(12.3)



 When we talk about bias-variance, in expectation across inputs, how does

EXercise

this change under covariate shift”

2[(fp(X) — f1(X))7]

.
L X

(

ip[fp(X)] = £7(X))* + Varp[fp(X)]

(12.2)



EXercise

 When we talk about bias-variance, in expectation across inputs, how does
this change under covariate shift”

3[(fp(X) = £4(X))%] = Ex |(Ep[fp(X)] — £*(X))* + Varp[fp(X)] (12.2)

» Expectation over datasets assumes & ~ Pirain
» EXpectation over X assumes X ~ Diast

» (Before both were sampled from the same distribution p)

* \Why is this the new definition®



Chapter 12: Bias, Variance and
Generalization Error (cont)

 Most of the rest of Chapter 12 will not be directly tested

- WIill not be directly tested
e 12.2 on High probability bounds

e | only expect you to know what covariate shift is; | will not test on
understanding how to fix covariate shift

« We will not talk about nonstationary in p(y|x) (12.3.3)
e Comments about the impacts of covariate shift on bias-variance (12.4)



Chapter 13: Convergence Rates

* You learned that norm of the gradient reduces at a rate of 1/t for gradient
descent

* You learned that (expected) norm of the gradient reduces at a rate of 1/t for
stochastic gradient descent too! Even though it uses a much noisier gradient

e But you converge to a region around the stationary point, proportional to the
magnitude of this noise

* You also gained some insight into how to pick the mini-batch size

| will not test you on any of this chapter



Note about stopping conditions

We reasoned that these algorithms converge or stop within a finite numlber of
terations ( of order O(1/epsilon) for gradient magnitude epsilon).

But for SGD we do not necessarily measure the gradient norm and decide to
stop

* At least this would be too expensive to do every Iteration
For GD, it is common to check the norm of the gradient as a stopping criterion

Our analysis just showed us that we get to within such a region in O(1/epsilon)
steps, for SGD




Chapter 14: Missing Data

* Understand how to do imputation using PCA (matrix factorization)

 Understand what is means to do multiple imputation and why we want to
do It

* Understand the Missing at Random assumption

- WIill not be directly tested
* (Connections to the transductive and semi-supervised settings

» You do not need to understand how to compute p(X , | X ;)
* 14.2.2 apbout difficulties with NNs



Exercise: PCA (matrix completion)

n d
In PCA we solve for min Z Z (xl-j — hl-D:j)2
’ h,.h,,....h eR? DeRP*4 -1 i1

n

In PCA with missing data, min Z Z (X — hl-D:j)2
. h,h,,...h R’ DeRP*¢ 4=
l=1 ]EaQ[l

« Why didn’t we just set X ;= 0 (set unavailable values to zero) and call
PCA"”? We will set get back the h’'s and D. How is this different?



MVissing at Random

Define RV [ ,, thatis O or 1. Itis 1 if indices . are missing and O if they are
Not missing

 \Why is this a random variable?

MAR = Conditional independence between [ ,, and X ,, given X,

PEX 1 y|1Xy) =pX 4| X )PU 41 Xy)

Conditional independence implies p(X , | X4, I ;) = p(X ;| X )



EXercise

Imagine you do PCA on the data to get D

And you do PPCA to get D and ¢ where p(x) = (0, DD' + 671)

We talked about how we can use the PPCA solution, to get p(X , | X /)
from p(X), and so sample from p(X , [ X ;)

Why can’t we do multiple imputation with the PCA solution”?



Exercise Question

. Obtaining p(y|x,) = J pPX 41X ,)p(y|xy, X ,)dX 4 is hard in genera

o But, under some conditions, it is actually easy. Consider a case where we
have two binary features X = [x;, X, ], namely x;,x, € {0,1} and
p(y|x; = 0., = 0) = N (uyp, 0°), p(y | x; = 0.5, = 1) = N (g, 67)
p(ylx, = 1,0, =0) = #(p, 6°), p(y X =Lx,=1)= c/V(ﬂn»Uz)

» To get p(y | x;) we just need to learn p(x, | x,) since

p(y|x)) = Z p(x, [ x)p(y|x,x2). How do we get p(x, | x;)?
x,€1{0,1}



Chapter 15: Bayesian (linear)
regression

Understand that we might want to know distribution over plausible values of
W, given the evidence (data)

This allows us to also obtain a distribution over our predictions, and so
construct credible intervals | f(X) — €, f(X) + €]

Understand why the posterior and credible interval shrink with growing n



Shrinking posterior




Credible Interval for Predictions

Fo- o IR




Added blurb to notes

To reason about this a bit more formally, let us define

1 T
C,=—(X'X+A) where X' X = ZXiX,LT.

n i—1

Notice that C,, — E[XX '] as n — oo (as we get more and more data). Further, because
we have A\ > 0, we know that C,, is invertible for each n. Therefore, assuming that E[XX ']
is invertible, we know that x' C_'x — ¢, as n — oo for ¢, = x' E[XX '] 'x. We can write
¥, =n C_ ' giving

x' ¥,x=x' (n'C')x=n" (XTC;X) — 0.



