Final Review

CMPUT 367: Intermediate Machine Learning

Goal of these Slides

- Go over each section of the notes and highlight key concepts
- Additionally highlight what I will and will not test
- It is in the notes for your knowledge, but hard to directly test
- Not reviewing for Practice Final $->$ That will be the next session
- Note: like you can see in the Practice Final, the final largely focuses on Chapter 8 onwards. But as usual it builds on your knowledge from earlier chapters

Chapter 1: Intro to ML

- Know the difference between a generative model and predictor (1.1)
- Will not be directly tested:
- Relationship to Statistics and Probability (1.2)
- The Blessing and Curse of Dimensionality (1.3)
- SVDs and Eigenvalue decompositions (1.4)
- You will not need to take gradients

Chapter 2: Intermediate Probability Concepts

- Understand the definition of a multi-dimensional probability (2.1)
- Understand the definition of a mixture of distributions (2.2)
- Know the purpose of the KL divergence (2.3)
- Will not be directly tested:
- Knowing the PMFs or PDFs of specific distributions
- Specific expectation and variance formulas
- Remembering the KL divergence formula

Chapter 3: Revisiting Linear Regression

- Understand that Linear Regression and I2-regularized linear regression have closed-form solutions (unlike most GLMs)
- Understand that this let's us characterize the bias and variance of these solutions
- Understand the LR solution is unbiased, if the true function is linear
- Understand LR+l2 is biased, but that asymptotically (as n grows) they reach the same solution
- Will not be directly tested:
- Any specific closed-form solutions; I will give them to you if you need them

Chapter 4: Intermediate Optimization Principles

- Understand multivariate gradient descent, including gradients (4.3) and the role of the Hessian in second-order GD (4.1)
- Understand Stochastic GD (SGD) and the reason to move from full batch GD to mini-batch SGD (4.4)
- Understand the role of vector stepsize algorithms like RMSProp and the use of momentum (4.5)
- Will not be directly tested:
- Properties of the Hessian and directional derivatives (3.2)
- Knowing the updates of specific vector stepsize algorithms

More Advanced Exercise Question

- How might the size of the dataset n interact with the number of epochs that we need to converge?

More Advanced Exercise Question

- How might the size of the dataset n interact with the number of epochs that we need to converge?
- Answer: With a very large dataset, we are doing more updates in each epoch and likely need fewer epochs to converge.

Chapter 5: GLMs

- Understand that Generalized Linear Models (GLMs) allow us to model
- $p(y \mid \mathbf{x})=$ any natural exponential family distribution with natural parameter $\theta=\mathbf{x}^{\top} \mathbf{w}$
- with associated transfer function g such that $g\left(\mathbf{x}^{\top} \mathbf{w}\right)$ approximates $\mathbb{E}[Y \mid \mathbf{x}]$
- Understand that multinomial logistic regression is for multi-class classification
- Will not be directly tested:
- Knowing specific GLM updates; if I need you to reason about one I will give it to you
- The details of exponential family distributions (5.2)

Exercise Question

- Imagine you have multinomial logistic regression implemented. How would you use this code to do binary classification?

Chapter 6: Constrained Optimization

- Understand that we need to use a different approach when we have a constrained optimization (3.5)
- Understand that proximal gradient descent is a reasonably general purpose approach for constrained or non-smooth optimization (3.5)
- Will not be directly tested:
- You do not need to know specific proximal operators
- You do not need to know about KKT conditions nor how to get the proximal operator for the simplex constraint (3.6)

Exercise for constrained optimization

- Let us revisit the optimization for mixture models
- $\min _{w_{1}, \ldots, w_{k} \geq 0, \sum_{k=1}^{m} w_{k}=1}-\sum_{k=1}^{m} d_{k} \ln w_{k} \quad\left(\right.$ where $\left.d_{k}=\sum_{i=1}^{n} p_{t}[i, k]>0\right)$
- To solve this, we can be lazy and first just check: does a stationary point give us a feasible solution?

Exercise for constrained optimization (cont.)

$$
\begin{aligned}
\frac{\partial}{\partial w_{j}} \sum_{k=1}^{m} d_{k} \ln w_{k} & =\sum_{k=1}^{m} d_{k} \frac{\partial}{\partial w_{j}} \ln w_{k} \\
& =d_{j} \frac{1}{w_{j}}=0
\end{aligned}
$$

Stationary points are plus/minus infty, clearly not a feasible solution (does not satisfy our constraints)
Our lazy step failed.

Exercise for constrained optimization (cont.)

$$
\begin{aligned}
\frac{\partial}{\partial w_{j}} \sum_{k=1}^{m} d_{k} \ln w_{k} & =\sum_{k=1}^{m} d_{k} \frac{\partial}{\partial w_{j}} \ln w_{k} \\
& =d_{j} \frac{1}{w_{j}}=0
\end{aligned}
$$

Stationary points are plus/minus infty, clearly not a feasible solution (does not satisfy our constraints)
Our lazy step failed. If the stationary point *had* been a feasible solution (satisfied $w_{1}, \ldots, w_{k} \geq 0, \sum_{k=1}^{m} w_{k}=1$), then we would be done and wouldn't need to use
any fancier optimization approaches

Exercise for constrained optimization (cont)

- Let us now incorporate one of the constraints. We can see our objective actually will not prefer negative weights, so let's first do the sum constraint
- We consider now an equivalent augmented objective (Lagrangian), and see if a stationary point of this objective gives us a solution
- $L(\mathbf{w}, a)=-\sum_{k=1}^{m} d_{k} \ln w_{k}+a\left(\sum_{k=1}^{m} w_{k}-1\right)$
- Solve for $\max \min ^{m} L(\mathbf{w}, a)$ we know a solution to this *must* satisfy this

$$
a \in \mathbb{R} \mathbf{w} \in \mathbb{R}^{m}
$$

constraint, as otherwise w suffers infinite loss

Exercise for constrained optimization (cont)

- $L(\mathbf{w}, a)=-\sum_{k=1}^{m} d_{k} \ln w_{k}+a\left(\sum_{k=1}^{m} w_{k}-1\right)$ Lets start by solving for w

$$
\frac{\partial}{\partial w_{j}} L(\mathbf{w}, a)=-\sum_{k=1}^{m} d_{k} \frac{\partial}{\partial w_{j}} \ln w_{k}+a w_{j}
$$

- $\quad=-d_{j} \frac{1}{w_{j}}+a=0 \Longrightarrow w_{j}=\frac{d_{j}}{a}$
. We know a solution must have a where $\sum_{k=1}^{m} w_{k}=\sum_{k=1}^{m} \frac{d_{k}}{a}=1 \Longrightarrow a=\sum_{k=1}^{m} d_{k}$

Exercise for constrained optimization (cont)

. $L(\mathbf{w}, a)=-\sum_{k=1}^{m} d_{k} \ln w_{k}+a\left(\sum_{k=1}^{m} w_{k}-1\right) \quad w_{j}=\frac{d_{j}}{a}$

- We know a solution must have a where

$$
\sum_{k=1}^{m} w_{k}=\sum_{k=1}^{m} \frac{d_{k}}{a}=1 \Longrightarrow a=\sum_{k=1}^{m} d_{k} \Longrightarrow w_{j}=\frac{d_{j}}{\sum_{k=1}^{m} d_{k}}
$$

- Feasible solution, since $d_{j}>0$ and so $w_{j}>0$
- (We didn't need to go explicit enforce this condition)

Chapter 7: Evaluating Generalization Performance

- Understand that cross validation allows us to evaluate a model trained on the entire dataset (without having to have a hold-out test set)
- Understand the k-fold CV algorithm
- Understand the repeated random subsampling (RSS) CV algorithm
- Will not be directly tested:
- The nuances about the bias-variance distinctions for different CV choices

Chapter 7: Evaluating Generalization Performance (cont)

- Know what it means to select hyperparameters
- Understand the utility of CV for hyperparameter selection
- Understand the difference between internal CV and external CV
- internal CV is for hyperparameter selection and external is to evaluate the algorithm that might use internal CV
- Will not be directly tested:
- Knowing how to pick the set of hyperparameters to be tested with CV

Refresher on internal \& external CV

```
Algorithm 5: Nested cross-validation on a dataset \(\mathcal{D}\)
    : Partition the dataset \(\mathcal{D}\) into \(k_{\text {external }}\) folds
    Initialize err-f \(=0\)
    for \(i=1\) to \(k_{\text {external }}\) do
        Set \(\mathcal{D}_{\text {te }}^{(i)}\) to the data in fold \(i\)
        Set \(\mathcal{D}_{\text {tr }}^{(i)}=\mathcal{D}-\mathcal{D}_{\text {te }}^{(i)}\)
        // Call the Learner on \(\mathcal{D}_{\mathrm{tr}}^{(i)}\); as part of its algorithm, it uses CV to picks hypers
        Partition the dataset \(\mathcal{D}_{\mathrm{tr}}^{(i)}\) into \(k_{\text {internal }}\) folds
        for \(h\) in the set of hyperparameters \(H\) do
            Initialize err \([h]=0\)
            for \(j=1\) to \(k_{\text {internal }}\) do
            Set \(\mathcal{D}_{\text {te }}^{\prime(j)}\) to the data in fold \(j\) for dataset \(\mathcal{D}_{\text {tr }}^{(i)}\)
            Set \(\mathcal{D}_{\text {tr }}^{\prime(j)}=\mathcal{D}_{\text {tr }}^{(i)}-\mathcal{D}_{\text {te }}^{\prime(j)}\)
            Train \(f=\operatorname{Alg}\left(\mathcal{D}^{\prime}{ }_{\text {tr }}^{(j)}, h\right)\)
            \(\operatorname{err}[h]=\operatorname{err}[h]+\) error for \(f\) on \(\mathcal{D}_{\text {te }}^{\prime(j)}\)
            \(\operatorname{err}[h]=\operatorname{err}[h] / k_{\text {internal }}\)
        Pick \(h^{*}=\operatorname{argmin}_{h \in H} \operatorname{err}[h]\)
        // Learner done picking its hyperparameter, can now return the learned function
        Train \(f=\operatorname{Alg}\left(\mathcal{D}_{\mathrm{tr}}^{(i)}, h^{*}\right)\)
        err-f \(=\) err-f+ error of \(f\) on \(\mathcal{D}_{\text {te }}^{(i)}\)
    err- \(\mathrm{f}=\mathrm{err}-\mathrm{f} / k_{\text {external }}\)
    return \(f\) and err-f
```


Chapter 8: Fixed Representations

- Understand that projecting to higher dimensions makes data separable (classification) or allows for a simpler function for regression
- Understand that RBF network define features using RBF kernels to a set of centers, with similarity controlled by the width of the RBF
- Understand that Prototype Representations use similarities to prototypes taken from the training dataset
- Understand that I1 does feature selection, and that is more useful when we blow up our feature space using fixed representations

- Will not be directly tested:

- Knowing specific kernels
- The advanced remark about the representer theorem

Exercise

- What are the implications of using I1 regularization with polynomial features?

Exercise

- I didn't give you an example of how projecting to higher dimensions also facilitates regression with simple (linear functions)
- Can you think of a similar example to this one, but for regression?
ad space

Chapter 9: Learned Representations

- Understand that PCA extracts a lower-dimensional representation
- Understand the objective underlying PCA (minimize $\|\mathbf{x}-\mathbf{h D}\|_{2}^{2}$ for every x)
- Understand that sparse coding similarly minimizes $\|\mathbf{x}-\mathbf{h D}\|_{2}^{2}$, but additionally has an 11 regularizer on h to find a high-dimensional sparse representation
- Will not be directly tested:
- PPCA
- Algorithms for PCA and sparse coding, such as matrix factorization
- Interpretations of latent factors (that was only for intuition about what might be learned in a representation)

Advanced Exercise Question

- Imagine we first expand the dimension using a kernel representation, going from 10 features to 5000 .
- Subquestion: why are there 5000 features?
- Then we apply PCA to extract 100 features. How do we interpret what those features are?
- Is it equivalent to PCA or 11 -regularization to get to 100 features?

Chapter 9: Learned Representations

- Understand types of transformation on the input given by a neural network
- Understand that backpropagation is gradient descent
- Understand that linear autoencoders also extract a low-dimensional representation like PCA
- Can see nonlinear autoencoders as a nonlinear extension of PCA
- Will not be directly tested:
- You will not need to derive the gradients for an NN
- You will not be tested on supervised autoencoders

Exercise Question

- We discussed that many transformations consist of (1) linear weighting followed by (2) nonlinear activation (differentiable almost everywhere)
- What are some other activations we could consider using in a network, beyond the three we discussed (ReLU, sigmoid, tanh)?

Exercise Question

- Now imagine that we want to get a new representation with 5000 features using NNs.
- How would we do that? (there is more than one answer to this question)

Exercise Question

- Write down the set of functions F1 obtained using a kernel representation with kernel k, and a random subset of 100 points from the training data as centers (assume \mathscr{X} is the space of all possible inputs \mathbf{x})
- Write down the set of functions F2 obtained using an NN with two hidden layers each of size 256, with ReLu activations, for regression

Exercise Question

- Write down the set of functions F1 obtained using a kernel representation with kernel k, and a random subset of 100 points from the training data as centers (assume \mathscr{X} is the space of all possible inputs \mathbf{x})
- Write down the set of functions F2 obtained using an NN with two hidden layers each of size 256, with ReLu activations, for regression
- If I told you that F1 is a subset of F2, what does that mean? Which class has higher complexity (or capacity)?
- How do you know one is a subset of the other? Is F1 a subset of F2 here?

Chapter 10: Mixture Models

- Understand that the EM algorithm consists of (a) the introduction of auxiliary variables z and (b) alternating between updating $p\left(z_{i} \mid x_{i}\right)$ and parameters $\boldsymbol{\theta}$
- Understand that the M-step updates $\boldsymbol{\theta}$ for fixed $p\left(z_{i} \mid x_{i}\right)$ and the E-step updates $p\left(z_{i} \mid x_{i}\right)$ for fixed $\boldsymbol{\theta}$

- Will not be directly tested:

- The MLE solution for Multivariate Gaussians (4.1)
- You do not need to memorize the EM algorithm, but you should be able to recognize key components of it

Exercise

- How would you use k-fold CV to pick the number of centers for a GMM?

Exercise

- How would you use k-fold CV to pick the number of centers for a GMM?
- Answer: You would decide on the set of numbers to select from, e.g., $H=\{2,4,8,16\}$
- After partitioning the data into k folds, for each hyper m in H and each fold f
- Learn the GMM phat on all but fold f
- Evaluate on fold f , by computing the negative log likelihood on the data sum_(x in fold f) -In phat(x)

Chapter 11: Generative Models \& Data Representations

- Understand that both PPCA and VAEs make the assumption that
- $p(\mathbf{x})=\int p(\mathbf{x} \mid \mathbf{h}) p(\mathbf{h}) d \mathbf{h}$ with $p(\mathbf{h})=\mathcal{N}(\mathbf{0}, \mathbf{I})$
- Understand that PPCA assumes a linear relationship between \mathbf{x} and \mathbf{h} $p(\mathbf{x} \mid \mathbf{h})=\mathscr{N}\left(\mathbf{h D}, \sigma^{2} \mathbf{I}\right)$
- And that VAE generalizes to a nonlinear relationship, using $\mathrm{NN} f_{\mathbf{W}}$ to give $p(\mathbf{x} \mid \mathbf{h})=\mathscr{N}\left(f_{\mathbf{W}}(\mathbf{h}), \sigma^{2} \mathbf{I}\right)$

Chapter 11: Generative Models (cont)

- Understand that we learn the encoder $q(\mathbf{h} \mid \mathbf{x})$ only as part of the optimization, to help us learn $p(\mathbf{x} \mid \mathbf{h})$; we do not need $q(\mathbf{h} \mid \mathbf{x})$ itself
- Understand how to sample from a VAE
- Step 1: Sample $\mathbf{h} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ and then
- Step 2: query the decoder part of the VAE network $f_{\mathbf{W}}(\mathbf{h})$
- Will not be directly tested
- Knowing the VAE objective (the elbo loss)
- The connection to Expectation-Maximization (9.3)
- The reparameterization trick and the gradient update for the VAE

Exercise

- The last slide said: To sample from a VAE
- Step 1: Sample $\mathbf{h} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ and then
- Step 2: query the decoder part of the VAE network $f_{\mathbf{W}}(\mathbf{h})$
- But why don't we sample \mathbf{h} from $q(\mathbf{h} \mid \mathbf{x})$?

Chapter 12: Bias, Variance and Generalization Error

- Understand that the generalization error of a function f is the error in expectation across all possible datapoints (expected cost)

$$
\begin{equation*}
\mathrm{GE}(f)=\mathbb{E}\left[(f(X)-Y)^{2}\right]=\underbrace{\mathbb{E}\left[\left(f(X)-f^{*}(X)\right)^{2}\right]}_{\text {reducible error }}+\underbrace{\mathbb{E}\left[\left(f^{*}(X)-Y\right)^{2}\right]}_{\text {irreducible error }} \tag{12.1}
\end{equation*}
$$

- GE is about a specific function f , rather than a function class that outputs $f_{\mathscr{D}}$ that varies with data

Chapter 12: Bias, Variance and Generalization Error

- Understand that we can reason about function $f_{\mathscr{D}}$ as a random variable, where randomness comes from the underlying dataset
- Understand that we can reason about the generalization error of functions from a function class, by considering the bias and variance of this $f_{\mathscr{D}}$
- Understand that reducible error of $f_{\mathscr{D}}$ decomposes into bias and variance
- For a specific x, we have $\mathbb{E}\left[\left(f_{\mathcal{D}}(\mathbf{x})-f^{*}(\mathbf{x})\right)^{2}\right]=\left(\mathbb{E}\left[f_{\mathcal{D}}(\mathbf{x})\right]-f^{*}(\mathbf{x})\right)^{2}+\operatorname{Var}\left[f_{\mathcal{D}}(\mathbf{x})\right]$.

$$
\begin{equation*}
\mathbb{E}\left[\left(f_{\mathcal{D}}(\boldsymbol{X})-f^{*}(\boldsymbol{X})\right)^{2}\right]=\mathbb{E}_{\boldsymbol{X}}\left[\left(\mathbb{E}_{\mathcal{D}}\left[f_{\mathcal{D}}(\boldsymbol{X})\right]-f^{*}(\boldsymbol{X})\right)^{2}+\operatorname{Var}_{\mathcal{D}}\left[f_{\mathcal{D}}(\boldsymbol{X})\right]\right] \tag{12.2}
\end{equation*}
$$

Exercise Question

- We wrote F1 the set of function using a kernel representation and F2 using an NN. We thought about the case where F1 is a subset of F2
- Do you think F1 or F2 has higher bias?
- Do you think F1 or F2 has higher variance?
- Why is this reasoning useful? Can't we just measure generalization error of our actual learned function using a test set or cross validation?

Chapter 12: Bias, Variance and Generalization Error

- Understand the definition of covariate shift
- $p_{\text {train }}(\mathbf{x}, y)=p(y \mid \mathbf{x}) p_{\text {train }}(\mathbf{x}) \neq p(y \mid \mathbf{x}) p_{\text {test }}(\mathbf{x})=p_{\text {test }}(\mathbf{x}, y)$

A more realistic example of covariate shift

Figure 1.2: An example observational dataset (synthetic). Points in • represent a patient who actually got surgery $(t=1)$ and indicate their respective factual outcome. Points in • represent patients who in reality got medication but indicate their counterfactual outcome had they got surgery $(\neg t=1)$.

Exercise: What is ptrain and ptest?

Figure 1.2: An example observational dataset (synthetic). Points in • represent a patient who actually got surgery $(t=1)$ and indicate their respective factual outcome. Points in • represent patients who in reality got medication but indicate their counterfactual outcome had they got surgery $(\neg t=1)$.

Chapter 12: Bias, Variance and Generalization Error

- Understand the definition of covariate shift
- $p_{\text {train }}(\mathbf{x}, y)=p(y \mid \mathbf{x}) p_{\text {train }}(\mathbf{x}) \neq p(y \mid \mathbf{x}) p_{\text {test }}(\mathbf{x})=p_{\text {test }}(\mathbf{x}, y)$
- Understand that our definition for GE stays the same
- still about deployment data, but before $p_{\text {train }}(\mathbf{x}, \boldsymbol{y})=p_{\text {test }}(\mathbf{x}, y)$ so we simply called them both p

$$
\begin{equation*}
\operatorname{GE}(f)=\mathbb{E}_{p_{\text {test }}}\left[(f(X)-Y)^{2}\right]=\int_{\mathcal{X}} p_{\text {test }}(\mathbf{x}) \mathbb{E}\left[(f(\mathbf{x})-Y)^{2} \mid X=\mathbf{x}\right] d \mathbf{x} \tag{12.3}
\end{equation*}
$$

Exercise

- When we talk about bias-variance, in expectation across inputs, how does this change under covariate shift?

$$
\begin{equation*}
\mathbb{E}\left[\left(f_{\mathcal{D}}(\boldsymbol{X})-f^{*}(\boldsymbol{X})\right)^{2}\right]=\mathbb{E}_{\boldsymbol{X}}\left[\left(\mathbb{E}_{\mathcal{D}}\left[f_{\mathcal{D}}(\boldsymbol{X})\right]-f^{*}(\boldsymbol{X})\right)^{2}+\operatorname{Var}_{\mathcal{D}}\left[f_{\mathcal{D}}(\boldsymbol{X})\right]\right] \tag{12.2}
\end{equation*}
$$

Exercise

- When we talk about bias-variance, in expectation across inputs, how does this change under covariate shift?

$$
\begin{equation*}
\mathbb{E}\left[\left(f_{\mathcal{D}}(\boldsymbol{X})-f^{*}(\boldsymbol{X})\right)^{2}\right]=\mathbb{E}_{\boldsymbol{X}}\left[\left(\mathbb{E}_{\mathcal{D}}\left[f_{\mathcal{D}}(\boldsymbol{X})\right]-f^{*}(\boldsymbol{X})\right)^{2}+\operatorname{Var}_{\mathcal{D}}\left[f_{\mathcal{D}}(\boldsymbol{X})\right]\right] \tag{12.2}
\end{equation*}
$$

- Expectation over datasets assumes $\mathscr{D} \sim p_{\text {train }}$
- Expectation over X assumes $\mathbf{x} \sim p_{\text {test }}$
- (Before both were sampled from the same distribution p)
- Why is this the new definition?

Chapter 12: Bias, Variance and Generalization Error (cont)

- Most of the rest of Chapter 12 will not be directly tested
- Will not be directly tested
- 12.2 on High probability bounds
- I only expect you to know what covariate shift is; I will not test on understanding how to fix covariate shift
- We will not talk about nonstationary in $p(y \mid x)$ (12.3.3)
- Comments about the impacts of covariate shift on bias-variance (12.4)

Chapter 13: Convergence Rates

- You learned that norm of the gradient reduces at a rate of $1 / \mathrm{t}$ for gradient descent
- You learned that (expected) norm of the gradient reduces at a rate of $1 / \mathrm{t}$ for stochastic gradient descent too! Even though it uses a much noisier gradient
- But you converge to a region around the stationary point, proportional to the magnitude of this noise
- You also gained some insight into how to pick the mini-batch size
- I will not test you on any of this chapter

Note about stopping conditions

- We reasoned that these algorithms converge or stop within a finite number of iterations (of order O(1/epsilon) for gradient magnitude epsilon).
- But for SGD we do not necessarily measure the gradient norm and decide to stop
- At least this would be too expensive to do every iteration
- For GD, it is common to check the norm of the gradient as a stopping criterion
- Our analysis just showed us that we get to within such a region in $\mathrm{O}(1 / \mathrm{epsilon})$ steps, for SGD

Chapter 14: Missing Data

- Understand how to do imputation using PCA (matrix factorization)
- Understand what is means to do multiple imputation and why we want to do it
- Understand the Missing at Random assumption
- Will not be directly tested
- Connections to the transductive and semi-supervised settings
- You do not need to understand how to compute $p\left(\mathbf{x}_{\mathscr{M}} \mid \mathbf{x}_{\mathscr{A}}\right)$
- 14.2.2 about difficulties with NNs

Exercise: PCA (matrix completion)

. In PCA we solve for $\min _{\mathbf{h}_{1}, \mathbf{h}_{2}, \ldots, \mathbf{h}_{n} \in \mathbb{R}^{p}, \mathbf{D} \in \mathbb{R}^{p \times d}} \sum_{i=1}^{n} \sum_{j=1}^{d}\left(x_{i j}-\mathbf{h}_{i} \mathbf{D}_{: j}\right)^{2}$

- In PCA with missing data, $\min _{\mathbf{h}_{1}, \mathbf{h}_{2}, \ldots, \mathbf{h}_{n} \in \mathbb{R}^{p}, \mathbf{D} \in \mathbb{R}^{p \times d}} \sum_{i=1}^{n} \sum_{j \in \mathscr{A}_{i}}\left(x_{i j}-\mathbf{h}_{i} \mathbf{D}_{: j}\right)^{2}$
- Why didn't we just set $\mathbf{x}_{\mathscr{M}_{i}}=\mathbf{0}$ (set unavailable values to zero) and call PCA? We will set get back the h's and D. How is this different?

Missing at Random

- Define RV $I_{\mathscr{M}}$ that is 0 or 1 . It is 1 if indices \mathscr{M} are missing and 0 if they are not missing
- Why is this a random variable?
- MAR $=$ Conditional independence between $I_{\mathscr{M}}$ and $\mathbf{x}_{\mathscr{M}}$, given $\mathbf{x}_{\mathscr{A}}$
- $p\left(\mathbf{x}_{\mathscr{M}}, I_{\mathscr{M}} \mid \mathbf{x}_{\mathscr{A}}\right)=p\left(\mathbf{x}_{\mathscr{M}} \mid \mathbf{x}_{\mathscr{A}}\right) p\left(I_{\mathscr{M}} \mid \mathbf{x}_{\mathscr{A}}\right)$
- Conditional independence implies $p\left(\mathbf{x}_{\mathscr{M}} \mid \mathbf{x}_{\mathscr{A}}, I_{\mathscr{M}}\right)=p\left(\mathbf{x}_{\mathscr{M}} \mid \mathbf{x}_{\mathscr{A}}\right)$

Exercise

- Imagine you do PCA on the data to get \mathbf{D}
- And you do PPCA to get $\tilde{\mathbf{D}}$ and σ^{2} where $p(\mathbf{x})=\mathscr{N}\left(\mathbf{0}, \tilde{\mathbf{D}} \tilde{\mathbf{D}}^{\top}+\sigma^{2} \mathbf{I}\right)$
- We talked about how we can use the PPCA solution, to get $p\left(\mathbf{x}_{\mathscr{M}} \mid \mathbf{x}_{\mathscr{A}}\right)$ from $p(\mathbf{x})$, and so sample from $p\left(\mathbf{x}_{\mathscr{M}} \mid \mathbf{x}_{\mathscr{A}}\right)$
- Why can't we do multiple imputation with the PCA solution?

Exercise Question

- Obtaining $p\left(y \mid \mathbf{x}_{\mathscr{A}}\right)=\int p\left(\mathbf{x}_{\mathscr{M}} \mid \mathbf{x}_{\mathscr{A}}\right) p\left(y \mid \mathbf{x}_{\mathscr{A}}, \mathbf{x}_{\mathscr{M}}\right) d \mathbf{x}_{\mathscr{M}}$ is hard in general
- But, under some conditions, it is actually easy. Consider a case where we have two binary features $\mathbf{x}=\left[x_{1}, x_{2}\right]$, namely $x_{1}, x_{2} \in\{0,1\}$ and

$$
\begin{aligned}
& p\left(y \mid x_{1}=0, x_{2}=0\right)=\mathcal{N}\left(\mu_{00}, \sigma^{2}\right), p\left(y \mid x_{1}=0, x_{2}=1\right)=\mathscr{N}\left(\mu_{01}, \sigma^{2}\right) \\
& p\left(y \mid x_{1}=1, x_{2}=0\right)=\mathcal{N}\left(\mu_{10}, \sigma^{2}\right), p\left(y \mid x_{1}=1, x_{2}=1\right)=\mathscr{N}\left(\mu_{11}, \sigma^{2}\right)
\end{aligned}
$$

- To get $p\left(y \mid x_{1}\right)$ we just need to learn $p\left(x_{2} \mid x_{1}\right)$ since

$$
p\left(y \mid x_{1}\right)=\sum_{x_{2} \in\{0,1\}} p\left(x_{2} \mid x_{1}\right) p\left(y \mid x_{1}, x 2\right) \text {. How do we get } p\left(x_{2} \mid x_{1}\right) ?
$$

Chapter 15: Bayesian (linear) regression

- Understand that we might want to know distribution over plausible values of \mathbf{w}, given the evidence (data)
- This allows us to also obtain a distribution over our predictions, and so construct credible intervals $\left[f_{\mathbf{w}}(\mathbf{x})-\epsilon, f_{\mathbf{w}}(\mathbf{x})+\epsilon\right]$
- Understand why the posterior and credible interval shrink with growing n

Shrinking posterior

Credible Interval for Predictions

Added blurb to notes

To reason about this a bit more formally, let us define

$$
\mathbf{C}_{n} \doteq \frac{1}{n}\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}\right) \quad \text { where } \mathbf{X}^{\top} \mathbf{X}=\sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{\top}
$$

Notice that $\mathbf{C}_{n} \rightarrow \mathbb{E}\left[\mathbf{X X}^{\top}\right]$ as $n \rightarrow \infty$ (as we get more and more data). Further, because we have $\lambda>0$, we know that \mathbf{C}_{n} is invertible for each n. Therefore, assuming that $\mathbb{E}\left[\mathbf{X} \mathbf{X}^{\top}\right]$ is invertible, we know that $\mathbf{x}^{\top} \mathbf{C}_{n}^{-1} \mathbf{x} \rightarrow c_{x}$ as $n \rightarrow \infty$ for $c_{x}=\mathbf{x}^{\top} \mathbb{E}\left[\mathbf{X} \mathbf{X}^{\top}\right]^{-1} \mathbf{x}$. We can write $\boldsymbol{\Sigma}_{n}=n^{-1} \mathbf{C}_{n}^{-1}$, giving

$$
\mathbf{x}^{\top} \boldsymbol{\Sigma}_{n} \mathbf{x}=\mathbf{x}^{\top}\left(n^{-1} \mathbf{C}_{n}^{-1}\right) \mathbf{x}=n^{-1}\left(\mathbf{x}^{\top} \mathbf{C}_{n}^{-1} \mathbf{x}\right) \rightarrow 0 .
$$

