Final Review

CMPUT 367: Intermediate Machine Learning

Goal of these Slides

- Go over each section of the notes and highlight key concepts
- Additionally highlight what I will and will not test
 - It is in the notes for your knowledge, but hard to directly test
- Not reviewing for Practice Final -> That will be the next session
- Note: like you can see in the Practice Final, the final largely focuses on Chapter 8 onwards. But as usual it builds on your knowledge from earlier chapters

Chapter 1: Intro to ML

- Know the difference between a generative model and predictor (1.1)
- Will not be directly tested:
 - Relationship to Statistics and Probability (1.2)
 - The Blessing and Curse of Dimensionality (1.3)
 - SVDs and Eigenvalue decompositions (1.4)
 - You will not need to take gradients

Chapter 2: Intermediate Probability Concepts

- Understand the definition of a multi-dimensional probability (2.1)
- Understand the definition of a mixture of distributions (2.2)
- Know the purpose of the KL divergence (2.3)
- Will not be directly tested:
 - Knowing the PMFs or PDFs of specific distributions
 - Specific expectation and variance formulas
 - Remembering the KL divergence formula

Chapter 3: Revisiting Linear Regression

- Understand that Linear Regression and I2-regularized linear regression have closed-form solutions (unlike most GLMs)
- Understand that this let's us characterize the bias and variance of these solutions
- Understand the LR solution is unbiased, if the true function is linear
- Understand LR+I2 is biased, but that asymptotically (as n grows) they reach the same solution
- Will not be directly tested:
 - Any specific closed-form solutions; I will give them to you if you need them

Chapter 4: Intermediate Optimization Principles

- Understand multivariate gradient descent, including gradients (4.3) and the role of the Hessian in second-order GD (4.1)
- Understand Stochastic GD (SGD) and the reason to move from full batch GD to mini-batch SGD (4.4)
- Understand the role of vector stepsize algorithms like RMSProp and the use of momentum (4.5)

Will not be directly tested:

- Properties of the Hessian and directional derivatives (3.2)
- Knowing the updates of specific vector stepsize algorithms

More Advanced Exercise Question

 How might the size of the dataset n interact with the number of epochs that we need to converge?

More Advanced Exercise Question

- How might the size of the dataset n interact with the number of epochs that we need to converge?
- **Answer**: With a very large dataset, we are doing more updates in each epoch and likely need fewer epochs to converge.

Chapter 5: GLMs

- Understand that Generalized Linear Models (GLMs) allow us to model
 - $p(y \mid \mathbf{x})$ = any natural exponential family distribution with natural parameter $\theta = \mathbf{x}^\mathsf{T} \mathbf{w}$
 - with associated transfer function g such that $g(\mathbf{x}^{\top}\mathbf{w})$ approximates $\mathbb{E}[Y|\mathbf{x}]$
- Understand that multinomial logistic regression is for multi-class classification
- Will not be directly tested:
 - Knowing specific GLM updates; if I need you to reason about one I will give it to you
 - The details of exponential family distributions (5.2)

 Imagine you have multinomial logistic regression implemented. How would you use this code to do binary classification?

Chapter 6: Constrained Optimization

- Understand that we need to use a different approach when we have a constrained optimization (3.5)
- Understand that proximal gradient descent is a reasonably general purpose approach for constrained or non-smooth optimization (3.5)
- Will not be directly tested:
 - You do not need to know specific proximal operators
 - You do not need to know about KKT conditions nor how to get the proximal operator for the simplex constraint (3.6)

Exercise for constrained optimization

Let us revisit the optimization for mixture models

$$\min_{w_1, \dots, w_k \ge 0, \sum_{k=1}^m w_k = 1} - \sum_{k=1}^m d_k \ln w_k \quad \text{(where } d_k = \sum_{i=1}^n p_t[i, k] > 0\text{)}$$

• To solve this, we can be lazy and first just check: does a stationary point give us a feasible solution?

Exercise for constrained optimization (cont.)

$$\frac{\partial}{\partial w_j} \sum_{k=1}^m d_k \ln w_k = \sum_{k=1}^m d_k \frac{\partial}{\partial w_j} \ln w_k$$
$$= d_j \frac{1}{w_j} = 0$$

Stationary points are plus/minus infty, clearly not a feasible solution (does not satisfy our constraints)

Our lazy step failed.

Exercise for constrained optimization (cont.)

$$\frac{\partial}{\partial w_j} \sum_{k=1}^m d_k \ln w_k = \sum_{k=1}^m d_k \frac{\partial}{\partial w_j} \ln w_k$$
$$= d_j \frac{1}{w_j} = 0$$

Stationary points are plus/minus infty, clearly not a feasible solution (does not satisfy our constraints)

Our lazy step failed. If the stationary point *had* been a feasible solution (satisfied

$$w_1, \ldots, w_k \ge 0, \sum_{k=1}^m w_k = 1$$
), then we would be done and wouldn't need to use

any fancier optimization approaches

Exercise for constrained optimization (cont)

- Let us now incorporate one of the constraints. We can see our objective actually will not prefer negative weights, so let's first do the sum constraint
- We consider now an equivalent augmented objective (Lagrangian), and see if a stationary point of this objective gives us a solution

•
$$L(\mathbf{w}, a) = -\sum_{k=1}^{m} d_k \ln w_k + a \left(\sum_{k=1}^{m} w_k - 1\right)$$

. Solve for $\max\min_{a\in\mathbb{R}} L(\mathbf{w},a)$ we know a solution to this *must* satisfy this constraint, as otherwise w suffers infinite loss

Exercise for constrained optimization (cont)

$$L(\mathbf{w},a) = -\sum_{k=1}^m d_k \ln w_k + a \left(\sum_{k=1}^m w_k - 1\right)$$
 Lets start by solving for w

$$\frac{\partial}{\partial w_j} L(\mathbf{w}, a) = -\sum_{k=1}^m d_k \frac{\partial}{\partial w_j} \ln w_k + aw_j$$

$$= -d_j \frac{1}{w_j} + a = 0 \implies w_j = \frac{d_j}{a}$$

• We know a solution must have a where $\sum_{k=1}^m w_k = \sum_{k=1}^m \frac{d_k}{a} = 1 \implies a = \sum_{k=1}^m d_k$

Exercise for constrained optimization (cont)

•
$$L(\mathbf{w}, a) = -\sum_{k=1}^{m} d_k \ln w_k + a \left(\sum_{k=1}^{m} w_k - 1\right)$$
 $w_j = \frac{d_j}{a}$

We know a solution must have a where

$$\sum_{k=1}^{m} w_k = \sum_{k=1}^{m} \frac{d_k}{a} = 1 \implies a = \sum_{k=1}^{m} d_k \implies w_j = \frac{d_j}{\sum_{k=1}^{m} d_k}$$

- Feasible solution, since $d_j > 0$ and so $w_j > 0$
- (We didn't need to go explicit enforce this condition)

Chapter 7: Evaluating Generalization Performance

- Understand that cross validation allows us to evaluate a model trained on the entire dataset (without having to have a hold-out test set)
- Understand the k-fold CV algorithm
- Understand the repeated random subsampling (RSS) CV algorithm
- Will not be directly tested:
 - The nuances about the bias-variance distinctions for different CV choices

Chapter 7: Evaluating Generalization Performance (cont)

- Know what it means to select hyperparameters
- Understand the utility of CV for hyperparameter selection
- Understand the difference between internal CV and external CV
 - internal CV is for hyperparameter selection and external is to evaluate the algorithm that might use internal CV
- Will not be directly tested:
 - Knowing how to pick the set of hyperparameters to be tested with CV

Refresher on internal & external CV

Algorithm 5: Nested cross-validation on a dataset \mathcal{D}

```
1: Partition the dataset \mathcal{D} into k_{\text{external}} folds
  2: Initialize err-f = 0
 3: for i = 1 to k_{\text{external}} do
         Set \mathcal{D}_{\mathrm{te}}^{(i)} to the data in fold i
        Set \mathcal{D}_{\mathrm{tr}}^{(i)} = \mathcal{D} - \mathcal{D}_{\mathrm{te}}^{(i)}
         // Call the Learner on \mathcal{D}_{\mathrm{tr}}^{(i)}; as part of its algorithm, it uses CV to picks hypers
           Partition the dataset \mathcal{D}_{\mathrm{tr}}^{(i)} into k_{\mathrm{internal}} folds
           for h in the set of hyperparameters H do
               Initialize err[h] = 0
  9:
               for j = 1 to k_{\text{internal}} do
10:
                   Set \mathcal{D}'_{\text{te}}^{(j)} to the data in fold j for dataset \mathcal{D}_{\text{tr}}^{(i)}
11:
                  Set \mathcal{D}'_{\mathrm{tr}}^{(j)} = \mathcal{D}_{\mathrm{tr}}^{(i)} - \mathcal{D}'_{\mathrm{te}}^{(j)}
12:
                 Train f = Alg(\mathcal{D}'_{tr}^{(j)}, h)
                   \operatorname{err}[h] = \operatorname{err}[h] + \operatorname{error} \operatorname{for} f \operatorname{on} \mathcal{D}'_{\operatorname{te}}^{(j)}
14:
               \operatorname{err}[h] = \operatorname{err}[h]/k_{\operatorname{internal}}
           Pick h^* = \operatorname{argmin}_{h \in H} \operatorname{err}[h]
             // Learner done picking its hyperparameter, can now return the learned function
          Train f = Alg(\mathcal{D}_{tr}^{(i)}, h^*)
          err-f = err-f + error of f on \mathcal{D}_{te}^{(i)}
20: \operatorname{err-f} = \operatorname{err-f}/k_{\operatorname{external}}
21: return f and err-f
```

Chapter 8: Fixed Representations

- Understand that projecting to higher dimensions makes data separable (classification) or allows for a simpler function for regression
- Understand that RBF network define features using RBF kernels to a set of centers, with similarity controlled by the width of the RBF
- Understand that Prototype Representations use similarities to prototypes taken from the training dataset
- Understand that I1 does feature selection, and that is more useful when we blow up our feature space using fixed representations

Will not be directly tested:

- Knowing specific kernels
- The advanced remark about the representer theorem

Exercise

• What are the implications of using I1 regularization with polynomial features?

Exercise

- I didn't give you an example of how projecting to higher dimensions also facilitates regression with simple (linear functions)
- Can you think of a similar example to this one, but for regression?

Chapter 9: Learned Representations

- Understand that PCA extracts a lower-dimensional representation
- Understand the objective underlying PCA (minimize $\|\mathbf{x} \mathbf{h}\mathbf{D}\|_2^2$ for every x)
- Understand that sparse coding similarly minimizes $\|\mathbf{x} \mathbf{h}\mathbf{D}\|_2^2$, but additionally has an I1 regularizer on h to find a high-dimensional sparse representation

Will not be directly tested:

- PPCA
- Algorithms for PCA and sparse coding, such as matrix factorization
- Interpretations of latent factors (that was only for intuition about what might be learned in a representation)

Advanced Exercise Question

- Imagine we first expand the dimension using a kernel representation, going from 10 features to 5000.
 - Subquestion: why are there 5000 features?
- Then we apply PCA to extract 100 features. How do we interpret what those features are?
- Is it equivalent to PCA or I1-regularization to get to 100 features?

Chapter 9: Learned Representations

- Understand types of transformation on the input given by a neural network
- Understand that backpropagation is gradient descent
- Understand that linear autoencoders also extract a low-dimensional representation like PCA
 - Can see nonlinear autoencoders as a nonlinear extension of PCA

Will not be directly tested:

- You will not need to derive the gradients for an NN
- You will not be tested on supervised autoencoders

- We discussed that many transformations consist of (1) linear weighting followed by (2) nonlinear activation (differentiable almost everywhere)
- What are some other activations we could consider using in a network, beyond the three we discussed (ReLU, sigmoid, tanh)?

- Now imagine that we want to get a new representation with 5000 features using NNs.
- How would we do that? (there is more than one answer to this question)

- Write down the set of functions F1 obtained using a kernel representation with kernel k, and a random subset of 100 points from the training data as centers (assume \mathcal{X} is the space of all possible inputs \mathbf{x})
- Write down the set of functions F2 obtained using an NN with two hidden layers each of size 256, with ReLu activations, for regression

- Write down the set of functions F1 obtained using a kernel representation with kernel k, and a random subset of 100 points from the training data as centers (assume \mathscr{X} is the space of all possible inputs \mathbf{x})
- Write down the set of functions F2 obtained using an NN with two hidden layers each of size 256, with ReLu activations, for regression
- If I told you that F1 is a subset of F2, what does that mean? Which class has higher complexity (or capacity)?
- How do you know one is a subset of the other? Is F1 a subset of F2 here?

Chapter 10: Mixture Models

- Understand that the EM algorithm consists of (a) the introduction of auxiliary variables z and (b) alternating between updating $p(z_i | x_i)$ and parameters θ
- Understand that the M-step updates $\boldsymbol{\theta}$ for fixed $p(z_i \mid x_i)$ and the E-step updates $p(z_i \mid x_i)$ for fixed $\boldsymbol{\theta}$
- Will not be directly tested:
 - The MLE solution for Multivariate Gaussians (4.1)
 - You do not need to memorize the EM algorithm, but you should be able to recognize key components of it

Exercise

How would you use k-fold CV to pick the number of centers for a GMM?

Exercise

- How would you use k-fold CV to pick the number of centers for a GMM?
- Answer: You would decide on the set of numbers to select from,
 e.g., H = {2, 4, 8, 16}
- After partitioning the data into k folds, for each hyper m in H and each fold f
 - Learn the GMM phat on all but fold f
 - Evaluate on fold f, by computing the negative log likelihood on the data sum_(x in fold f) -In phat(x)

Chapter 11: Generative Models & Data Representations

Understand that both PPCA and VAEs make the assumption that

$$p(\mathbf{x}) = \int p(\mathbf{x} | \mathbf{h}) p(\mathbf{h}) d\mathbf{h} \text{ with } p(\mathbf{h}) = \mathcal{N}(\mathbf{0}, \mathbf{I})$$

- Understand that PPCA assumes a linear relationship between \mathbf{x} and \mathbf{h} $p(\mathbf{x} | \mathbf{h}) = \mathcal{N}(\mathbf{h}\mathbf{D}, \sigma^2\mathbf{I})$
- And that VAE generalizes to a nonlinear relationship, using NN $f_{\mathbf{W}}$ to give $p(\mathbf{x} \mid \mathbf{h}) = \mathcal{N}(f_{\mathbf{W}}(\mathbf{h}), \sigma^2 \mathbf{I})$

Chapter 11: Generative Models (cont)

- Understand that we learn the encoder $q(\mathbf{h} \mid \mathbf{x})$ only as part of the optimization, to help us learn $p(\mathbf{x} \mid \mathbf{h})$; we do not need $q(\mathbf{h} \mid \mathbf{x})$ itself
- Understand how to sample from a VAE
 - Step 1: Sample $\mathbf{h} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ and then
 - Step 2: query the decoder part of the VAE network $f_{\mathbf{W}}(\mathbf{h})$

Will not be directly tested

- Knowing the VAE objective (the elbo loss)
- The connection to Expectation-Maximization (9.3)
- The reparameterization trick and the gradient update for the VAE

Exercise

- The last slide said: To sample from a VAE
 - Step 1: Sample $\mathbf{h} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ and then
 - Step 2: query the decoder part of the VAE network $f_{\mathbf{W}}(\mathbf{h})$
- But why don't we sample \mathbf{h} from $q(\mathbf{h} \mid \mathbf{x})$?

Chapter 12: Bias, Variance and Generalization Error

 Understand that the generalization error of a function f is the error in expectation across all possible datapoints (expected cost)

$$GE(f) = \mathbb{E}[(f(X) - Y)^2] = \underbrace{\mathbb{E}[(f(X) - f^*(X))^2]}_{\text{reducible error}} + \underbrace{\mathbb{E}[(f^*(X) - Y)^2]}_{\text{irreducible error}}$$
(12.1)

• GE is about a specific function f, rather than a function class that outputs $f_{\mathcal{D}}$ that varies with data

Chapter 12: Bias, Variance and Generalization Error

- Understand that we can reason about function $f_{\mathcal{D}}$ as a random variable, where randomness comes from the underlying dataset
- Understand that we can reason about the generalization error of functions from a function class, by considering the bias and variance of this $f_{\mathcal{D}}$
- Understand that reducible error of $f_{\mathcal{D}}$ decomposes into bias and variance
- For a specific x, we have $\mathbb{E}\left[(f_{\mathcal{D}}(\mathbf{x}) f^*(\mathbf{x}))^2\right] = (\mathbb{E}\left[f_{\mathcal{D}}(\mathbf{x})\right] f^*(\mathbf{x})^2 + \operatorname{Var}\left[f_{\mathcal{D}}(\mathbf{x})\right].$

$$\mathbb{E}[(f_{\mathcal{D}}(\boldsymbol{X}) - f^*(\boldsymbol{X}))^2] = \mathbb{E}_{\boldsymbol{X}} \left[(\mathbb{E}_{\mathcal{D}}[f_{\mathcal{D}}(\boldsymbol{X})] - f^*(\boldsymbol{X}))^2 + \operatorname{Var}_{\mathcal{D}}[f_{\mathcal{D}}(\boldsymbol{X})] \right]$$
(12.2)

Exercise Question

- We wrote F1 the set of function using a kernel representation and F2 using an NN. We thought about the case where F1 is a subset of F2
- Do you think F1 or F2 has higher bias?
- Do you think F1 or F2 has higher variance?
- Why is this reasoning useful? Can't we just measure generalization error of our actual learned function using a test set or cross validation?

Chapter 12: Bias, Variance and Generalization Error

- Understand the definition of covariate shift
 - $p_{\text{train}}(\mathbf{x}, y) = p(y \mid \mathbf{x}) p_{\text{train}}(\mathbf{x}) \neq p(y \mid \mathbf{x}) p_{\text{test}}(\mathbf{x}) = p_{\text{test}}(\mathbf{x}, y)$

A more realistic example of covariate shift

Figure 1.2: An example observational dataset (synthetic). Points in • represent a patient who actually got surgery (t = 1) and indicate their respective factual outcome. Points in • represent patients who in reality got medication but indicate their counterfactual outcome had they got surgery $(\neg t = 1)$.

Exercise: What is ptrain and ptest?

Figure 1.2: An example observational dataset (synthetic). Points in • represent a patient who actually got surgery (t=1) and indicate their respective factual outcome. Points in • represent patients who in reality got medication but indicate their counterfactual outcome had they got surgery $(\neg t=1)$.

Chapter 12: Bias, Variance and Generalization Error

- Understand the definition of covariate shift
 - $p_{\text{train}}(\mathbf{x}, y) = p(y | \mathbf{x}) p_{\text{train}}(\mathbf{x}) \neq p(y | \mathbf{x}) p_{\text{test}}(\mathbf{x}) = p_{\text{test}}(\mathbf{x}, y)$
- Understand that our definition for GE stays the same
 - still about deployment data, but before $p_{\text{train}}(\mathbf{x},y) = p_{\text{test}}(\mathbf{x},y)$ so we simply called them both p

$$GE(f) = \mathbb{E}_{p_{\text{test}}}[(f(X) - Y)^2] = \int_{\mathcal{X}} p_{\text{test}}(\mathbf{x}) \mathbb{E}[(f(\mathbf{x}) - Y)^2 | X = \mathbf{x}] d\mathbf{x}$$
 (12.3)

Exercise

 When we talk about bias-variance, in expectation across inputs, how does this change under covariate shift?

$$\mathbb{E}[(f_{\mathcal{D}}(\boldsymbol{X}) - f^*(\boldsymbol{X}))^2] = \mathbb{E}_{\boldsymbol{X}} \left[(\mathbb{E}_{\mathcal{D}}[f_{\mathcal{D}}(\boldsymbol{X})] - f^*(\boldsymbol{X}))^2 + \operatorname{Var}_{\mathcal{D}}[f_{\mathcal{D}}(\boldsymbol{X})] \right]$$
(12.2)

Exercise

• When we talk about bias-variance, in expectation across inputs, how does this change under covariate shift?

$$\mathbb{E}[(f_{\mathcal{D}}(\boldsymbol{X}) - f^*(\boldsymbol{X}))^2] = \mathbb{E}_{\boldsymbol{X}} \left[(\mathbb{E}_{\mathcal{D}}[f_{\mathcal{D}}(\boldsymbol{X})] - f^*(\boldsymbol{X}))^2 + \operatorname{Var}_{\mathcal{D}}[f_{\mathcal{D}}(\boldsymbol{X})] \right]$$
(12.2)

- Expectation over datasets assumes $\mathscr{D} \sim p_{\mathrm{train}}$
- Expectation over X assumes $\mathbf{x} \sim p_{\text{test}}$
- (Before both were sampled from the same distribution p)
- Why is this the new definition?

Chapter 12: Bias, Variance and Generalization Error (cont)

- Most of the rest of Chapter 12 will not be directly tested
- Will not be directly tested
 - 12.2 on High probability bounds
 - I only expect you to know what covariate shift is; I will not test on understanding how to fix covariate shift
 - We will not talk about nonstationary in p(y|x) (12.3.3)
 - Comments about the impacts of covariate shift on bias-variance (12.4)

Chapter 13: Convergence Rates

- You learned that norm of the gradient reduces at a rate of 1/t for gradient descent
- You learned that (expected) norm of the gradient reduces at a rate of 1/t for stochastic gradient descent too! Even though it uses a much noisier gradient
 - But you converge to a region around the stationary point, proportional to the magnitude of this noise
- You also gained some insight into how to pick the mini-batch size
- · I will not test you on any of this chapter

Note about stopping conditions

- We reasoned that these algorithms converge or stop within a finite number of iterations (of order O(1/epsilon) for gradient magnitude epsilon).
- But for SGD we do not necessarily measure the gradient norm and decide to stop
 - At least this would be too expensive to do every iteration
- For GD, it is common to check the norm of the gradient as a stopping criterion
- Our analysis just showed us that we get to within such a region in O(1/epsilon) steps, for SGD

Chapter 14: Missing Data

- Understand how to do imputation using PCA (matrix factorization)
- Understand what is means to do multiple imputation and why we want to do it
- Understand the Missing at Random assumption
- Will not be directly tested
 - Connections to the transductive and semi-supervised settings
 - You do not need to understand how to compute $p(\mathbf{x}_{\mathscr{M}} \mid \mathbf{x}_{\mathscr{A}})$
 - 14.2.2 about difficulties with NNs

Exercise: PCA (matrix completion)

In PCA we solve for
$$\min_{\mathbf{h}_1,\mathbf{h}_2,\dots,\mathbf{h}_n\in\mathbb{R}^p,\mathbf{D}\in\mathbb{R}^{p\times d}}\sum_{i=1}^n\sum_{j=1}^d(x_{ij}-\mathbf{h}_i\mathbf{D}_{:j})^2$$

In PCA with missing data,
$$\min_{\mathbf{h}_1,\mathbf{h}_2,...,\mathbf{h}_n \in \mathbb{R}^p, \mathbf{D} \in \mathbb{R}^{p \times d}} \sum_{i=1}^n \sum_{j \in \mathcal{A}_i} (x_{ij} - \mathbf{h}_i \mathbf{D}_{:j})^2$$

• Why didn't we just set $\mathbf{x}_{\mathcal{M}_i} = \mathbf{0}$ (set unavailable values to zero) and call PCA? We will set get back the h's and D. How is this different?

Missing at Random

- Define RV $I_{\mathcal{M}}$ that is 0 or 1. It is 1 if indices ${\mathcal{M}}$ are missing and 0 if they are not missing
 - Why is this a random variable?
- MAR = Conditional independence between $I_{\mathscr{M}}$ and $\mathbf{x}_{\mathscr{M}}$, given $\mathbf{x}_{\mathscr{A}}$
- $p(\mathbf{x}_{\mathcal{M}}, I_{\mathcal{M}} | \mathbf{x}_{\mathcal{A}}) = p(\mathbf{x}_{\mathcal{M}} | \mathbf{x}_{\mathcal{A}}) p(I_{\mathcal{M}} | \mathbf{x}_{\mathcal{A}})$
- Conditional independence implies $p(\mathbf{x}_{\mathscr{M}} | \mathbf{x}_{\mathscr{A}}, I_{\mathscr{M}}) = p(\mathbf{x}_{\mathscr{M}} | \mathbf{x}_{\mathscr{A}})$

Exercise

- ullet Imagine you do PCA on the data to get ${f D}$
- And you do PPCA to get $\tilde{\mathbf{D}}$ and σ^2 where $p(\mathbf{x}) = \mathcal{N}(\mathbf{0}, \tilde{\mathbf{D}}\tilde{\mathbf{D}}^\mathsf{T} + \sigma^2\mathbf{I})$
- We talked about how we can use the PPCA solution, to get $p(\mathbf{x}_{\mathcal{M}} | \mathbf{x}_{\mathcal{A}})$ from $p(\mathbf{x})$, and so sample from $p(\mathbf{x}_{\mathcal{M}} | \mathbf{x}_{\mathcal{A}})$
- Why can't we do multiple imputation with the PCA solution?

Exercise Question

- . Obtaining $p(y | \mathbf{x}_{\mathcal{A}}) = \int p(\mathbf{x}_{\mathcal{M}} | \mathbf{x}_{\mathcal{A}}) p(y | \mathbf{x}_{\mathcal{A}}, \mathbf{x}_{\mathcal{M}}) d\mathbf{x}_{\mathcal{M}}$ is hard in general
- But, under some conditions, it is actually easy. Consider a case where we have two binary features $\mathbf{x} = [x_1, x_2]$, namely $x_1, x_2 \in \{0, 1\}$ and $p(y | x_1 = 0, x_2 = 0) = \mathcal{N}(\mu_{00}, \sigma^2)$, $p(y | x_1 = 0, x_2 = 1) = \mathcal{N}(\mu_{01}, \sigma^2)$ $p(y | x_1 = 1, x_2 = 0) = \mathcal{N}(\mu_{10}, \sigma^2)$, $p(y | x_1 = 1, x_2 = 1) = \mathcal{N}(\mu_{11}, \sigma^2)$
- To get $p(y \mid x_1)$ we just need to learn $p(x_2 \mid x_1)$ since $p(y \mid x_1) = \sum_{x_2 \in \{0,1\}} p(x_2 \mid x_1) p(y \mid x_1, x_2). \text{ How do we get } p(x_2 \mid x_1)?$

Chapter 15: Bayesian (linear) regression

- Understand that we might want to know distribution over plausible values of
 w, given the evidence (data)
- This allows us to also obtain a distribution over our predictions, and so construct credible intervals $[f_{\mathbf{w}}(\mathbf{x}) \epsilon, f_{\mathbf{w}}(\mathbf{x}) + \epsilon]$
- Understand why the posterior and credible interval shrink with growing n

Shrinking posterior

Credible Interval for Predictions

Added blurb to notes

To reason about this a bit more formally, let us define

$$\mathbf{C}_n \doteq \frac{1}{n} (\mathbf{X}^{\top} \mathbf{X} + \lambda \mathbf{I})$$
 where $\mathbf{X}^{\top} \mathbf{X} = \sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i^{\top}$.

Notice that $\mathbf{C}_n \to \mathbb{E}[\mathbf{X}\mathbf{X}^{\top}]$ as $n \to \infty$ (as we get more and more data). Further, because we have $\lambda > 0$, we know that \mathbf{C}_n is invertible for each n. Therefore, assuming that $\mathbb{E}[\mathbf{X}\mathbf{X}^{\top}]$ is invertible, we know that $\mathbf{x}^{\top}\mathbf{C}_n^{-1}\mathbf{x} \to c_x$ as $n \to \infty$ for $c_x = \mathbf{x}^{\top}\mathbb{E}[\mathbf{X}\mathbf{X}^{\top}]^{-1}\mathbf{x}$. We can write $\mathbf{\Sigma}_n = n^{-1}\mathbf{C}_n^{-1}$, giving

$$\mathbf{x}^{\top} \mathbf{\Sigma}_{n} \mathbf{x} = \mathbf{x}^{\top} \left(n^{-1} \mathbf{C}_{n}^{-1} \right) \mathbf{x} = n^{-1} \left(\mathbf{x}^{\top} \mathbf{C}_{n}^{-1} \mathbf{x} \right) \to 0.$$