Midterm Review

CMPUT 367: Intermediate Machine Learning

Comments

- Midterm on Chapters 1 9 (up to and including neural networks)
- (b) can you apply that understanding
- Answers can be relatively short, say at most 5 sentences
- level of detail I would give the Midterm

• The goal of the exam is to test (a) did you understand the basic ideas and

• I have added a bit more detail to the Practice Midterm, to better match the

Chapters 1-5

- Covered in Quiz Review
- Should be comfortable with
 - Generalized Linear Models
 - Basic Optimization concepts, including first and second order gradient descent, SGD, vector stepsizes and momentum
 - Basic matrix operators, including having weights that are matrices, matrix multiplication and SVD
 - The role of I2 regularization (in any GLM) and the bias-variance trade-off in linear regression
 - Understand why (and when) we might use SGD and GD, as well as firstorder versus scond-order GD

A few comments from quiz errors

- SGD means mini-batch SGD (not batch = 1)
 - GD or Batch GD means using the whole dataset
 - Stochastic GD (SGD) means using a stochastic estimate of the gradient with a mini-batch of size b
- There are only four GLMs we discussed: linear regression (Gaussian), Poisson regression (Poisson), logistic regression (Bernoulli) and multinomial logistic regression (multiclass with a multinomial)
 - Know these four
- Understand how to use the models we learned

How do we use GLMs?

- In a GLM we learn E[Y | x], which fully characterizes our p(y | x)
 Bernoulli, Poisson and Multinomial all only have one key parameter, which
 - Bernoulli, Poisson and Multinom is E[Y]
 - Gaussian has mean and variance, but we assume the variance is fixed and that we not learning it; so its key param is also only E[Y]
- How do we use GLMs for prediction?
 - Mode of p(y|x) is a reasonable answer
 - Mean E[Y | x] is also a reasonable answer

Why mode or mean?

- We will suffer a cost for our prediction
 - recall: we want to minimize expected cost
- If we picked a squared cost, then the best choice was E[Y | x]
- If we picked a 0-1 cost, then the best choice was argmax $p(y \mid x)$ (mode)

- $\mathbf{w} \in \mathbb{R}^d$
- Example: c is squared errors and r is box constraints \bullet
- Smooth means differentiable everywhere

• Optimization of the form $\min_{x \in W} c(w) + r(w)$ for smooth c, nonsmooth r

Questions

- For the optimization $\min_{x \in W} c(w) + r(w)$, what is a c and what is r for linear $\mathbf{w} \in \mathbb{R}^d$ regression + 11 regularization?
- For the optimization $\min_{x \in W} c(w) + r(w)$, what is a c and what is r for $\mathbf{w} \in \mathbb{R}^d$ **logistic regression** + 11 regularization?
- For the optimization $\min_{x} c(\mathbf{w}) + r(\mathbf{w})$, what is a c and what is r for linear $\mathbf{w} \in \mathbb{R}^d$ regression + 12 regularization + 11 regularization?

- $\mathbf{w} \in \mathbb{R}^{d}$
- up with proximal gradient descent
- Proximal update: [Descend] $\tilde{\mathbf{w}}_{t+1} = \mathbf{w}_t - \eta_t \nabla c(\mathbf{w}_t)$ [Project] $\mathbf{W}_{t+1} = \operatorname{prox}_{n,r}(\tilde{\mathbf{W}}_{t+1})$

• where $\operatorname{prox}_{\eta_t r}(\tilde{\mathbf{w}}_{t+1}) = \arg\min_{\mathbf{w}\in\mathbb{R}^d} \frac{1}{2} \|\mathbf{w} - \tilde{\mathbf{w}}_{t+1}\|_2^2 + \eta_t r(\mathbf{w})$

• Optimization of the form $\min c(\mathbf{w}) + r(\mathbf{w})$ for smooth c, nonsmooth r

• Re-derived the gradient descent update, with this nonsmooth $r \rightarrow Ended$

- Optimization of the form $\min_{x} c(\mathbf{w}) + r(\mathbf{w})$ for smooth c, nonsmooth r $\mathbf{w} \in \mathbb{R}^d$
- Proximal update: $\mathbf{W}_{t+1} = \operatorname{prox}_{n,r}(\mathbf{W}_t \eta_t \nabla c(\mathbf{W}_t))$

Do not need to know •

- Specific proximal operators; just need to know where to use the given proximal operator
- How to use vector stepsizes or momentum; we only did scalar stepsizes I will not get you to derive solutions with Lagrangians

- Optimization of the form $\min c(\mathbf{w}) + r(\mathbf{w})$ for smooth c, nonsmooth r $\mathbf{w} \in \mathbb{R}^d$
- Proximal update: $\mathbf{w}_{t+1} = \operatorname{prox}_{\eta,r}(\mathbf{w}_t \eta_t \nabla c(\mathbf{w}_t))$

You should know ullet

- That we used proximal gradient descent for 11 regularization
- That we do not always have closed-form solutions for the proximal operator, and sometimes have to solve a simple optimization to get the projection step (proximal operator), as in Section 6.3

Exercise: I1 regularization and independent features

- Imagine we have a feature vector $\mathbf{x} = [x_1, x_2, \dots, x_d]^{\mathsf{T}}$
- Imagine y is independent of x_2 and dependent on x_6
- Imagine we have 1000 samples and d = 30
- If we use I1-regularization, what might happen?
- If we don't use any regularization, what might happen?

Exercise: I1 regularization and independent features

- Imagine we have a feature vector $\mathbf{x} = [x_1, x_2, \dots, x_d]^{\mathsf{T}}$
- Imagine y is independent of x_2 and dependent on x_6
- Imagine we have 1000 samples and d = 30
- Now further imagine x_8 is accidentally a repeated feature, $x_8 = x_6$. Now what might happen when we use 11-regularization? Is the weight on x_8 likely to be zero?
- What about I2-regularization?

Chapter 7: Estimating GE and Cross Validation

Goal is to estimate generalization error (GE) for a learned function f

Question about GE

- What is the generalization error for a linear regression model?
- What is the generalization error for a logistic regression model?
- What is the generalization error for a multinomial logistic regression model?
- [Extra Q] What is the generalization error for a Poisson regression model?

Chapter 7: Estimating GE and Cross Validation

- Goal is to estimate generalization error (GE) for a learned function f
- Having a training and testing split can be data inefficient
- Cross-validation lets us use the training data for training and evaluation

Cross validation

Step 1: Learn f on the entire dataset

Step 2: Do CV to estimate the GE for f

Step 2 consists of 1. Get k partitions of the dataset, to get k training and test splits

2. For every i = 1 to k, train $f_i = \text{Alg}(\mathcal{D}_{tr}^{(i)})$ and compute error e_i on $\mathcal{D}_{test}^{(i)}$

3. Get average error –

- Partition means disjoint subsets that cover the data
- k-fold is one way to get partitioning
 - Partition data into k folds/chunks
 - Each fold is set to a test dataset, the training is union of the remaining folds
- Repeated random subsampling (RSS) is another way to get a partitioning \bullet • Randomly sample points for test dataset (without replacement), and set
 - the rest to the training set
 - Have to specify percentage for test p and number repeats k

k-fold vs RSS

Selecting k

- We decided interim k (e.g., k = 10) was generally good. Why?
- We say k = 2 is likely problematic. Why?
- Why might k = n be problematic?

Chapter 7: Estimating GE and Cross Validation

- Goal is to estimate generalization error (GE) for a learned function f
- Having a training and testing split can be data inefficient
- Cross-validation let's us use the training data for training and evaluation
- k-fold and RSS as two partitioning approaches
- You do not need to know
 - All the sources of bias and variance in CV, just know that our estimator is biased and that the choice of k (and p) can impact bias and variance

Chapter 7: CV for hyperparameter selection

• Our estimate of (GE) is a good criteria to pick hyperparameters

Chapter 7: CV for hyperparameter selection

- Our estimate of (GE) is a good criteria to pick hyperparameters
- We still need to evaluate the model produce by Learner
- Can use training / validation set to evaluate it
 - Step 0: Split data into training $\mathscr{D}_{\mathrm{tr}}$ and validation set $\mathscr{D}_{\mathrm{test}}$
 - Step 1: Call Learner on dataset \mathscr{D}_{tr} , to get function f
 - Step 2: Evaluate f on \mathscr{D}_{test}

Chapter 7: CV for hyperparameter selection

- Our estimate of (GE) is a good criteria to pick hyperparameters
- We still need to evaluate the model produce by Learner
- Can use training / validation set to evaluate it
 - Step 0: Split data into training \mathscr{D}_{tr} and validation set \mathscr{D}_{test}
 - Step 1: Call Learner on dataset \mathcal{D}_{tr} , to get function f
 - Step 2: Evaluate f on $\mathcal{D}_{\text{test}}$
- What is the issue with this approach?

Chapter 7: CV for hyperparameter selection

- Our estimate of (GE) is a good criteria to pick hyperparameters
- We still need to evaluate the model produce by Learner
- Can use training / validation set to evaluate it
 - Step 0: Split data into training $\mathscr{D}_{\mathrm{tr}}$ and validation set $\mathscr{D}_{\mathrm{test}}$
 - Step 1: Call Learner on dataset $\mathscr{D}_{\mathrm{tr}}$, to get function f
 - Step 2: Evaluate f on \mathcal{D}_{test}
- What is the issue with this approach? Data inefficient, let's use CV!

Nest Cross-Validation

Step 1: Learn f on the entire dataset

Step 2: Do CV to estimate the GE for f

Step 2 consists of 1. Get k partitions of the dataset, to get k training and test splits

2. For every i = 1 to k, train $f_i = \text{Alg}(\mathcal{D}_{tr}^{(i)})$ and compute error e_i on $\mathcal{D}_{test}^{(i)}$

cannot deploy function

Chapter 8: Fixed Representations

- We discussed polynomials, RBF Networks and Prototype representations
- Question: what is the difference between RBF Networks and Prototype representations that use an RBF kernel?

Chapter 8: Fixed Representations

- We discussed polynomials, RBF Networks and Prototype representations
- Question: what is the difference between RBF Networks and Prototype representations that use an RBF kernel?
- Answer: we can see this Prototype Rep + RBF kernel as an instance of an RBF network where the centers are prototypes

Chapter 8: Fixed Representations

- We discussed polynomials, RBF Networks and Prototype representations
- We discussed how I1 regularization allows us to subselect prototypes
- You do not need to know
 - Any representability results for these functions
 - You just need to know that they let us learn nonlinear functions

Exercise: why don't we use proximal methods with IO regularization?

- I0 regularization $(\|\mathbf{w}\|_{0})$ counts number of entries that are non-zero
- We could set r to 10 for the following optimization $\min c(\mathbf{w}) + r(\mathbf{w})$

 $\mathbf{w} \in \mathbb{R}^d$

Exercise: why don't we use proximal methods with IO regularization?

- IO regularization $(||\mathbf{w}||_0)$ counts number of entries that are non-zero
- We could set r to 10 for the following optimization $\min c(\mathbf{w}) + r(\mathbf{w})$ $\mathbf{w} \in \mathbb{R}^d$
- But hard to solve for $\operatorname{prox}_{\eta_t \ell_0}(\tilde{\mathbf{W}}_{t+1})$
- Proximal GD doesn't solve all of our problems, only those where the proximal operator is easy to compute

$$_{1}) = \arg\min_{\mathbf{w}\in\mathbb{R}^{d}}\frac{1}{2}\|\mathbf{w}-\tilde{\mathbf{w}}_{t+1}\|_{2}^{2} + \eta_{t}\|\mathbf{w}\|_{0}$$

Chapter 9 Learning Latent Factors

- Understand that PCA extracts a lower-dimensional representation ${f h}$ for ${f x}$
- Understand that sparse coding extracts a higher-dimensional, sparse representation \boldsymbol{h}
- Understand that for both we are trying to solve $x \approx hD$
- For both we try to minimize $\|\mathbf{x} \mathbf{h}\mathbf{D}\|_2^2$ for all \mathbf{x} , but for sparse coding we additionally add a sparsity regularizer to \mathbf{h} , namely $\|\mathbf{h}\|_1$

We minimized $\sum \|\mathbf{x}_i - \mathbf{h}_i \mathbf{D}\|_2^2$ for PCA, with $\mathbf{h}_i \in \mathbb{R}^p$ for p < d

- What would happen if we let $p \ge d$?
- Why isn't this a problem for sparse coding?

Exercise about PCA

Chapter 9 Learning Latent Factors

- Understand that PCA extracts a lower-dimensional representation \mathbf{h} for \mathbf{x} \bullet
- Understand that sparse coding extracts a higher-dimensional, sparse representation **h**
- You do not need to know •
 - The exact formulas for the optimizations; I will give them to you. But you should know how to reason about minimizing them You do not need to know the probabilistic PCA solution, nor the closed-
 - form PCA solution

Exercise Question

- Imagine we have 5000 datapoints for a problem with d = 10
- Imagine we first expand the dimension using a kernel representation, going from 10 features to 5000.
 - Subquestion: why are there 5000 features?
- Then we apply PCA to extract 100 features. How do we interpret what those features are?

Chapter 9: Learning Neural Networks

- Understand types of transformation on the input given by a neural network • series of linear functions composed with simple activations
- Understand that backpropagation is gradient descent
- Understand that linear autoencoders also extract a low-dimensional \bullet representation like PCA
- Will not be directly tested:

 - You will not need to derive the gradients for an NN • You will not be tested on supervised autoencoders

- An NN with three layers transforms the inputs as • $f_{\mathbf{w}}(\mathbf{x}) = f_1(f_2(f_3(\mathbf{x}W^{(3)})W^{(2)})W^{(1)})$ for weights **w** composed of $W^{(3)}$, $W^{(2)}$, $W^{(1)}$
- for $\mathbf{h}^{(1)} = f_2(f_3(\mathbf{x}\mathbf{W}^{(3)})\mathbf{W}^{(2)})$
- We pick a GLM loss for the output that matches the targets
 - e.g., what if the output is a binary 0,1 variable? What is f1?

Exercise: NN choices

• Can think of this NN as learning $p(y \mid x)$ with key parameter $\theta(x) = h^{(1)}W^{(1)}$

• e.g., what if the output is ordinal 0, 1, 2, 3, 4, 5, ..., 100? What is f1?

- An NN with three layers transforms the inputs as
 - $f_{\mathbf{w}}(\mathbf{x}) = f_1(f_2(f_3(\mathbf{x}\mathbf{W}^{(3)})\mathbf{W}^{(2)})\mathbf{W}^{(1)})$ for weights **w** composed of $W^{(3)}$, $W^{(2)}$, $W^{(1)}$
- for $\mathbf{h}^{(1)} = f_2(f_3(\mathbf{x}\mathbf{W}^{(3)})\mathbf{W}^{(2)})$
- representation for a new \mathbf{X}_{new} ?
- How do we do this for PCA?

Exercise: NN vs PCA

• Can think of this NN as learning p(y | x) with key parameter $\theta(\mathbf{x}) = \mathbf{h}^{(1)} \mathbf{W}^{(1)}$

• Can think of $\mathbf{h}^{(1)}$ as the new representation of \mathbf{x} . How do we extract the new