
Midterm Review

CMPUT 367: Intermediate Machine Learning 



Comments

• Midterm on Chapters 1 - 9 (up to and including neural networks) 

• The goal of the exam is to test (a) did you understand the basic ideas and 
(b) can you apply that understanding 

• Answers can be relatively short, say at most 5 sentences 

• I have added a bit more detail to the Practice Midterm, to better match the 
level of detail I would give the Midterm



Chapters 1-5
• Covered in Quiz Review 

• Should be comfortable with  
• Generalized Linear Models 
• Basic Optimization concepts, including first and second order gradient 

descent, SGD, vector stepsizes and momentum 
• Basic matrix operators, including having weights that are matrices, matrix 

multiplication and SVD 
• The role of l2 regularization (in any GLM) and the bias-variance trade-off in 

linear regression 
• Understand why (and when) we might use SGD and GD, as well as first-

order versus scond-order GD



A few comments from quiz errors

• SGD means mini-batch SGD (not batch = 1) 
• GD or Batch GD means using the whole dataset 
• Stochastic GD (SGD) means using a stochastic estimate of the gradient 

with a mini-batch of size b 
• There are only four GLMs we discussed: linear regression (Gaussian), 

Poisson regression (Poisson), logistic regression (Bernoulli) and multinomial 
logistic regression (multiclass with a multinomial) 

• Know these four 
• Understand how to use the models we learned



How do we use GLMs?

• In a GLM we learn E[Y | x], which fully characterizes our p(y | x) 
• Bernoulli, Poisson and Multinomial all only have one key parameter, which 

is E[Y] 
• Gaussian has mean and variance, but we assume the variance is fixed 

and that we not learning it; so its key param is also only E[Y] 

• How do we use GLMs for prediction? 
• Mode of p(y|x) is a reasonable answer 
• Mean E[Y | x] is also a reasonable answer



Why mode or mean?

• We will suffer a cost for our prediction  
• recall: we want to minimize expected cost 

• If we picked a squared cost, then the best choice was E[Y | x] 

• If we picked a 0-1 cost, then the best choice was argmax p(y | x) (mode) 



Chapter 6:  
Constrained Optimization

• Optimization of the form      for smooth c, nonsmooth r 

• Example: c is squared errors and r is box constraints 

• Smooth means differentiable everywhere

min
w∈ℝd

c(w) + r(w)



Questions

• For the optimization , what is a c and what is r for linear 

regression + l1 regularization? 

• For the optimization , what is a c and what is r for 

logistic regression + l1 regularization? 

• For the optimization , what is a c and what is r for linear 

regression + l2 regularization + l1 regularization?

min
w∈ℝd

c(w) + r(w)

min
w∈ℝd

c(w) + r(w)

min
w∈ℝd

c(w) + r(w)



Chapter 6:  
Constrained Optimization

• Optimization of the form      for smooth c, nonsmooth r 

• Re-derived the gradient descent update, with this nonsmooth r —> Ended 
up with proximal gradient descent 

• Proximal update:  
[Descend]  
[Project]  

• where 

min
w∈ℝd

c(w) + r(w)

w̃t+1 = wt − ηt ∇c(wt)
wt+1 = proxηtr

(w̃t+1)

proxηtr
(w̃t+1) = arg min

w∈ℝd

1
2

∥w − w̃t+1∥2
2 + ηtr(w)



Chapter 6:  
Constrained Optimization

• Optimization of the form      for smooth c, nonsmooth r 

• Proximal update:  

• Do not need to know 
• Specific proximal operators; just need to know where to use the given 

proximal operator 
• How to use vector stepsizes or momentum; we only did scalar stepsizes 
• I will not get you to derive solutions with Lagrangians

min
w∈ℝd

c(w) + r(w)

wt+1 = proxηtr
(wt − ηt ∇c(wt))



Chapter 6:  
Constrained Optimization

• Optimization of the form      for smooth c, nonsmooth r 

• Proximal update:  

• You should know 
• That we used proximal gradient descent for l1 regularization 
• That we do not always have closed-form solutions for the proximal 

operator, and sometimes have to solve a simple optimization to get the 
projection step (proximal operator), as in Section 6.3

min
w∈ℝd

c(w) + r(w)

wt+1 = proxηtr
(wt − ηt ∇c(wt))



Exercise: l1 regularization and 
independent features

• Imagine we have a feature vector  

• Imagine y is independent of  and dependent on  

• Imagine we have 1000 samples and d = 30 

• If we use l1-regularization, what might happen? 

• If we don’t use any regularization, what might happen?

x = [x1, x2, …, xd]⊤

x2 x6



Exercise: l1 regularization and 
independent features

• Imagine we have a feature vector  

• Imagine y is independent of  and dependent on  

• Imagine we have 1000 samples and d = 30 

• Now further imagine  is accidentally a repeated feature, . Now 
what might happen when we use l1-regularization? Is the weight on  likely 
to be zero? 

• What about l2-regularization?

x = [x1, x2, …, xd]⊤

x2 x6

x8 x8 = x6
x8



Chapter 7: Estimating GE  
and Cross Validation

• Goal is to estimate generalization error (GE) for a learned function f



Question about GE

• What is the generalization error for a linear regression model? 

• What is the generalization error for a logistic regression model? 

• What is the generalization error for a multinomial logistic regression model? 

• [Extra Q] What is the generalization error for a Poisson regression model?



Chapter 7: Estimating GE  
and Cross Validation

• Goal is to estimate generalization error (GE) for a learned function f 

• Having a training and testing split can be data inefficient 

• Cross-validation lets us use the training data for training and evaluation



Cross validation

Dataset
Cross Validation

k=4

Alg(D)

f

f1

…
fk

e1 ek…

average e1 to ek

error estimate for f

Step 1: Learn f on the entire dataset 
 
Step 2: Do CV to estimate the GE for f

 
Step 2 consists of 
1. Get k partitions of the dataset, to  
get k training and test splits 
 
2. For every i = 1 to k,  
train  and 
compute error  on 

 

3. Get average error  

fi = Alg(𝒟(i)
tr )

ei 𝒟(i)
test

1
k ∑

i

ei



k-fold vs RSS
• Partition means disjoint subsets that cover the data 

• k-fold is one way to get partitioning 
• Partition data into k folds/chunks 
• Each fold is set to a test dataset, the training is union of the remaining 

folds 

• Repeated random subsampling (RSS) is another way to get a partitioning 
• Randomly sample points for test dataset (without replacement), and set 

the rest to the training set 
• Have to specify percentage for test p and number repeats k 



Selecting k

• We decided interim k (e.g., k = 10) was generally good. Why? 

• We say k = 2 is likely problematic. Why?  

• Why might k = n be problematic?



Chapter 7: Estimating GE  
and Cross Validation

• Goal is to estimate generalization error (GE) for a learned function f 

• Having a training and testing split can be data inefficient 

• Cross-validation let’s us use the training data for training and evaluation 

• k-fold and RSS as two partitioning approaches 

• You do not need to know 
• All the sources of bias and variance in CV, just know that our estimator is 

biased and that the choice of k (and p) can impact bias and variance



Chapter 7: CV for  
hyperparameter selection

• Our estimate of (GE) is a good criteria to pick hyperparameters



CV for hyper selection
LearnerDataset

Internal CV

k=4

Alg(D, h)

f

for every hyper h in H

f1 e1

…
fkek…

average

err[h]

Best h*
(err[h*] lowest)

f



Chapter 7: CV for  
hyperparameter selection

• Our estimate of (GE) is a good criteria to pick hyperparameters 

• We still need to evaluate the model produce by Learner  

• Can use training / validation set to evaluate it 
• Step 0: Split data into training  and validation set  
• Step 1: Call Learner on dataset , to get function f 
• Step 2:  Evaluate f on 

𝒟tr 𝒟test
𝒟tr

𝒟test



Chapter 7: CV for  
hyperparameter selection

• Our estimate of (GE) is a good criteria to pick hyperparameters 

• We still need to evaluate the model produce by Learner  

• Can use training / validation set to evaluate it 
• Step 0: Split data into training  and validation set  
• Step 1: Call Learner on dataset , to get function f 
• Step 2:  Evaluate f on  

• What is the issue with this approach?

𝒟tr 𝒟test
𝒟tr

𝒟test



Chapter 7: CV for  
hyperparameter selection

• Our estimate of (GE) is a good criteria to pick hyperparameters 

• We still need to evaluate the model produce by Learner  

• Can use training / validation set to evaluate it 
• Step 0: Split data into training  and validation set  
• Step 1: Call Learner on dataset , to get function f 
• Step 2:  Evaluate f on  

• What is the issue with this approach? Data inefficient, let’s use CV!

𝒟tr 𝒟test
𝒟tr

𝒟test



Nest Cross-Validation
EvaluatorDataset

External CV
k=4

Learner(D)

f

f1

…
fk

e1 ek…

average

error estimate of f
If error acceptable, then f

else
cannot 
deploy 

function

Step 1: Learn f on the entire dataset 
 
Step 2: Do CV to estimate the GE for f

 
Step 2 consists of 
1. Get k partitions of the dataset, to  
get k training and test splits 
 
2. For every i = 1 to k,  
train  and 
compute error  on 

 

3. Get average error  

fi = Alg(𝒟(i)
tr )

ei 𝒟(i)
test

1
k ∑

i

ei



Chapter 8: Fixed Representations

• We discussed polynomials, RBF Networks and Prototype representations 

• Question: what is the difference between RBF Networks and Prototype 
representations that use an RBF kernel?



Chapter 8: Fixed Representations

• We discussed polynomials, RBF Networks and Prototype representations 

• Question: what is the difference between RBF Networks and Prototype 
representations that use an RBF kernel? 

• Answer: we can see this Prototype Rep + RBF kernel as an instance of an 
RBF network where the centers are prototypes



Chapter 8: Fixed Representations

• We discussed polynomials, RBF Networks and Prototype representations 

• We discussed how l1 regularization allows us to subselect prototypes 

• You do not need to know 
• Any representability results for these functions 
• You just need to know that they let us learn nonlinear functions



Exercise: why don’t we use proximal 
methods with l0 regularization?

• l0 regularization ( ) counts number of entries that are non-zero 

• We could set r to l0 for the following optimization

∥w∥0

min
w∈ℝd

c(w) + r(w)



Exercise: why don’t we use proximal 
methods with l0 regularization?

• l0 regularization ( ) counts number of entries that are non-zero 

• We could set r to l0 for the following optimization  

• But hard to solve for  

• Proximal GD doesn’t solve all of our problems, only those where the 
proximal operator is easy to compute

∥w∥0

min
w∈ℝd

c(w) + r(w)

proxηtℓ0
(w̃t+1) = arg min

w∈ℝd

1
2

∥w − w̃t+1∥2
2 + ηt∥w∥0



Chapter 9 
Learning Latent Factors

• Understand that PCA extracts a lower-dimensional representation  for  

• Understand that sparse coding extracts a higher-dimensional, sparse 
representation  

• Understand that for both we are trying to solve  

• For both we try to minimize  for all , but for sparse coding we 
additionally add a sparsity regularizer to , namely 

h x

h

x ≈ hD

∥x − hD∥2
2 x
h ∥h∥1



Exercise about PCA

•
We minimized   for PCA, with  for  

• What would happen if we let  ? 

• Why isn’t this a problem for sparse coding?

∑
i

∥xi − hiD∥2
2 hi ∈ ℝp p < d

p ≥ d



Chapter 9 
Learning Latent Factors

• Understand that PCA extracts a lower-dimensional representation  for  

• Understand that sparse coding extracts a higher-dimensional, sparse 
representation  

• You do not need to know 
• The exact formulas for the optimizations; I will give them to you. But you 

should know how to reason about minimizing them  
• You do not need to know the probabilistic PCA solution, nor the closed-

form PCA solution

h x

h



Exercise Question

• Imagine we have 5000 datapoints for a problem with d = 10 

• Imagine we first expand the dimension using a kernel representation, going 
from 10 features to 5000.  

• Subquestion: why are there 5000 features? 

• Then we apply PCA to extract 100 features. How do we interpret what 
those features are?



Chapter 9:  
Learning Neural Networks

• Understand types of transformation on the input given by a neural network 
• series of linear functions composed with simple activations 

• Understand that backpropagation is gradient descent 

• Understand that linear autoencoders also extract a low-dimensional 
representation like PCA 

• Will not be directly tested: 
• You will not need to derive the gradients for an NN 
• You will not be tested on supervised autoencoders



Exercise: NN choices
• An NN with three layers transforms the inputs as 

•  for weights  composed of 
 

• Can think of this NN as learning p(y | x) with key parameter   
for   

• We pick a GLM loss for the output that matches the targets  
• e.g., what if the output is a binary 0,1 variable? What is f1? 
• e.g., what if the output is ordinal 0, 1, 2, 3, 4, 5, .., 100? What is f1?

fw(x) = f1( f2( f3(xW(3))W(2))W(1)) w
W(3), W(2), W(1)

θ(x) = h(1)W(1)

h(1) = f2( f3(xW(3))W(2))



Exercise: NN vs PCA
• An NN with three layers transforms the inputs as 

•  for weights  composed of 
 

• Can think of this NN as learning p(y | x) with key parameter   
for   

• Can think of  as the new representation of . How do we extract the new 
representation for a new ? 

• How do we do this for PCA? 

fw(x) = f1( f2( f3(xW(3))W(2))W(1)) w
W(3), W(2), W(1)

θ(x) = h(1)W(1)

h(1) = f2( f3(xW(3))W(2))

h(1) x
xnew


