
Midterm Review

CMPUT 367: Intermediate Machine Learning 

Comments

• Midterm on Chapters 1 - 9 (up to and including neural networks)

• The goal of the exam is to test (a) did you understand the basic ideas and
(b) can you apply that understanding

• Answers can be relatively short, say at most 5 sentences

• I have added a bit more detail to the Practice Midterm, to better match the
level of detail I would give the Midterm

Chapters 1-5
• Covered in Quiz Review

• Should be comfortable with
• Generalized Linear Models
• Basic Optimization concepts, including first and second order gradient

descent, SGD, vector stepsizes and momentum
• Basic matrix operators, including having weights that are matrices, matrix

multiplication and SVD
• The role of l2 regularization (in any GLM) and the bias-variance trade-off in

linear regression
• Understand why (and when) we might use SGD and GD, as well as first-

order versus scond-order GD

A few comments from quiz errors

• SGD means mini-batch SGD (not batch = 1)
• GD or Batch GD means using the whole dataset
• Stochastic GD (SGD) means using a stochastic estimate of the gradient

with a mini-batch of size b
• There are only four GLMs we discussed: linear regression (Gaussian),

Poisson regression (Poisson), logistic regression (Bernoulli) and multinomial
logistic regression (multiclass with a multinomial)

• Know these four
• Understand how to use the models we learned

How do we use GLMs?

• In a GLM we learn E[Y | x], which fully characterizes our p(y | x)
• Bernoulli, Poisson and Multinomial all only have one key parameter, which

is E[Y]
• Gaussian has mean and variance, but we assume the variance is fixed

and that we not learning it; so its key param is also only E[Y]

• How do we use GLMs for prediction?
• Mode of p(y|x) is a reasonable answer
• Mean E[Y | x] is also a reasonable answer

Why mode or mean?

• We will suffer a cost for our prediction
• recall: we want to minimize expected cost

• If we picked a squared cost, then the best choice was E[Y | x]

• If we picked a 0-1 cost, then the best choice was argmax p(y | x) (mode)

Chapter 6:
Constrained Optimization

• Optimization of the form for smooth c, nonsmooth r

• Example: c is squared errors and r is box constraints

• Smooth means differentiable everywhere

min
w∈ℝd

c(w) + r(w)

Questions

• For the optimization , what is a c and what is r for linear

regression + l1 regularization?

• For the optimization , what is a c and what is r for

logistic regression + l1 regularization?

• For the optimization , what is a c and what is r for linear

regression + l2 regularization + l1 regularization?

min
w∈ℝd

c(w) + r(w)

min
w∈ℝd

c(w) + r(w)

min
w∈ℝd

c(w) + r(w)

Chapter 6:
Constrained Optimization

• Optimization of the form for smooth c, nonsmooth r

• Re-derived the gradient descent update, with this nonsmooth r —> Ended
up with proximal gradient descent

• Proximal update:
[Descend]
[Project]

• where

min
w∈ℝd

c(w) + r(w)

w̃t+1 = wt − ηt ∇c(wt)
wt+1 = proxηtr

(w̃t+1)

proxηtr
(w̃t+1) = arg min

w∈ℝd

1
2

∥w − w̃t+1∥2
2 + ηtr(w)

Chapter 6:
Constrained Optimization

• Optimization of the form for smooth c, nonsmooth r

• Proximal update:

• Do not need to know
• Specific proximal operators; just need to know where to use the given

proximal operator
• How to use vector stepsizes or momentum; we only did scalar stepsizes
• I will not get you to derive solutions with Lagrangians

min
w∈ℝd

c(w) + r(w)

wt+1 = proxηtr
(wt − ηt ∇c(wt))

Chapter 6:
Constrained Optimization

• Optimization of the form for smooth c, nonsmooth r

• Proximal update:

• You should know
• That we used proximal gradient descent for l1 regularization
• That we do not always have closed-form solutions for the proximal

operator, and sometimes have to solve a simple optimization to get the
projection step (proximal operator), as in Section 6.3

min
w∈ℝd

c(w) + r(w)

wt+1 = proxηtr
(wt − ηt ∇c(wt))

Exercise: l1 regularization and
independent features

• Imagine we have a feature vector

• Imagine y is independent of and dependent on

• Imagine we have 1000 samples and d = 30

• If we use l1-regularization, what might happen?

• If we don’t use any regularization, what might happen?

x = [x1, x2, …, xd]⊤

x2 x6

Exercise: l1 regularization and
independent features

• Imagine we have a feature vector

• Imagine y is independent of and dependent on

• Imagine we have 1000 samples and d = 30

• Now further imagine is accidentally a repeated feature, . Now
what might happen when we use l1-regularization? Is the weight on likely
to be zero?

• What about l2-regularization?

x = [x1, x2, …, xd]⊤

x2 x6

x8 x8 = x6
x8

Chapter 7: Estimating GE
and Cross Validation

• Goal is to estimate generalization error (GE) for a learned function f

Question about GE

• What is the generalization error for a linear regression model?

• What is the generalization error for a logistic regression model?

• What is the generalization error for a multinomial logistic regression model?

• [Extra Q] What is the generalization error for a Poisson regression model?

Chapter 7: Estimating GE
and Cross Validation

• Goal is to estimate generalization error (GE) for a learned function f

• Having a training and testing split can be data inefficient

• Cross-validation lets us use the training data for training and evaluation

Cross validation

Dataset
Cross Validation

k=4

Alg(D)

f

f1

…
fk

e1 ek…

average e1 to ek

error estimate for f

Step 1: Learn f on the entire dataset 
 
Step 2: Do CV to estimate the GE for f

 
Step 2 consists of 
1. Get k partitions of the dataset, to  
get k training and test splits 
 
2. For every i = 1 to k,  
train and 
compute error on

 

3. Get average error  

fi = Alg(𝒟(i)
tr)

ei 𝒟(i)
test

1
k ∑

i

ei

k-fold vs RSS
• Partition means disjoint subsets that cover the data

• k-fold is one way to get partitioning
• Partition data into k folds/chunks
• Each fold is set to a test dataset, the training is union of the remaining

folds

• Repeated random subsampling (RSS) is another way to get a partitioning
• Randomly sample points for test dataset (without replacement), and set

the rest to the training set
• Have to specify percentage for test p and number repeats k

Selecting k

• We decided interim k (e.g., k = 10) was generally good. Why?

• We say k = 2 is likely problematic. Why?

• Why might k = n be problematic?

Chapter 7: Estimating GE
and Cross Validation

• Goal is to estimate generalization error (GE) for a learned function f

• Having a training and testing split can be data inefficient

• Cross-validation let’s us use the training data for training and evaluation

• k-fold and RSS as two partitioning approaches

• You do not need to know
• All the sources of bias and variance in CV, just know that our estimator is

biased and that the choice of k (and p) can impact bias and variance

Chapter 7: CV for
hyperparameter selection

• Our estimate of (GE) is a good criteria to pick hyperparameters

CV for hyper selection
LearnerDataset

Internal CV

k=4

Alg(D, h)

f

for every hyper h in H

f1 e1

…
fkek…

average

err[h]

Best h*
(err[h*] lowest)

f

Chapter 7: CV for
hyperparameter selection

• Our estimate of (GE) is a good criteria to pick hyperparameters

• We still need to evaluate the model produce by Learner

• Can use training / validation set to evaluate it
• Step 0: Split data into training and validation set
• Step 1: Call Learner on dataset , to get function f
• Step 2: Evaluate f on

𝒟tr 𝒟test
𝒟tr

𝒟test

Chapter 7: CV for
hyperparameter selection

• Our estimate of (GE) is a good criteria to pick hyperparameters

• We still need to evaluate the model produce by Learner

• Can use training / validation set to evaluate it
• Step 0: Split data into training and validation set
• Step 1: Call Learner on dataset , to get function f
• Step 2: Evaluate f on

• What is the issue with this approach?

𝒟tr 𝒟test
𝒟tr

𝒟test

Chapter 7: CV for
hyperparameter selection

• Our estimate of (GE) is a good criteria to pick hyperparameters

• We still need to evaluate the model produce by Learner

• Can use training / validation set to evaluate it
• Step 0: Split data into training and validation set
• Step 1: Call Learner on dataset , to get function f
• Step 2: Evaluate f on

• What is the issue with this approach? Data inefficient, let’s use CV!

𝒟tr 𝒟test
𝒟tr

𝒟test

Nest Cross-Validation
EvaluatorDataset

External CV
k=4

Learner(D)

f

f1

…
fk

e1 ek…

average

error estimate of f
If error acceptable, then f

else
cannot
deploy

function

Step 1: Learn f on the entire dataset 
 
Step 2: Do CV to estimate the GE for f

 
Step 2 consists of 
1. Get k partitions of the dataset, to  
get k training and test splits 
 
2. For every i = 1 to k,  
train and 
compute error on

 

3. Get average error  

fi = Alg(𝒟(i)
tr)

ei 𝒟(i)
test

1
k ∑

i

ei

Chapter 8: Fixed Representations

• We discussed polynomials, RBF Networks and Prototype representations

• Question: what is the difference between RBF Networks and Prototype
representations that use an RBF kernel?

Chapter 8: Fixed Representations

• We discussed polynomials, RBF Networks and Prototype representations

• Question: what is the difference between RBF Networks and Prototype
representations that use an RBF kernel?

• Answer: we can see this Prototype Rep + RBF kernel as an instance of an
RBF network where the centers are prototypes

Chapter 8: Fixed Representations

• We discussed polynomials, RBF Networks and Prototype representations

• We discussed how l1 regularization allows us to subselect prototypes

• You do not need to know
• Any representability results for these functions
• You just need to know that they let us learn nonlinear functions

Exercise: why don’t we use proximal
methods with l0 regularization?

• l0 regularization () counts number of entries that are non-zero

• We could set r to l0 for the following optimization

∥w∥0

min
w∈ℝd

c(w) + r(w)

Exercise: why don’t we use proximal
methods with l0 regularization?

• l0 regularization () counts number of entries that are non-zero

• We could set r to l0 for the following optimization

• But hard to solve for

• Proximal GD doesn’t solve all of our problems, only those where the
proximal operator is easy to compute

∥w∥0

min
w∈ℝd

c(w) + r(w)

proxηtℓ0
(w̃t+1) = arg min

w∈ℝd

1
2

∥w − w̃t+1∥2
2 + ηt∥w∥0

Chapter 9
Learning Latent Factors

• Understand that PCA extracts a lower-dimensional representation for

• Understand that sparse coding extracts a higher-dimensional, sparse
representation

• Understand that for both we are trying to solve

• For both we try to minimize for all , but for sparse coding we
additionally add a sparsity regularizer to , namely

h x

h

x ≈ hD

∥x − hD∥2
2 x
h ∥h∥1

Exercise about PCA

•
We minimized for PCA, with for

• What would happen if we let ?

• Why isn’t this a problem for sparse coding?

∑
i

∥xi − hiD∥2
2 hi ∈ ℝp p < d

p ≥ d

Chapter 9
Learning Latent Factors

• Understand that PCA extracts a lower-dimensional representation for

• Understand that sparse coding extracts a higher-dimensional, sparse
representation

• You do not need to know
• The exact formulas for the optimizations; I will give them to you. But you

should know how to reason about minimizing them
• You do not need to know the probabilistic PCA solution, nor the closed-

form PCA solution

h x

h

Exercise Question

• Imagine we have 5000 datapoints for a problem with d = 10

• Imagine we first expand the dimension using a kernel representation, going
from 10 features to 5000.

• Subquestion: why are there 5000 features?

• Then we apply PCA to extract 100 features. How do we interpret what
those features are?

Chapter 9:
Learning Neural Networks

• Understand types of transformation on the input given by a neural network
• series of linear functions composed with simple activations

• Understand that backpropagation is gradient descent

• Understand that linear autoencoders also extract a low-dimensional
representation like PCA

• Will not be directly tested:
• You will not need to derive the gradients for an NN
• You will not be tested on supervised autoencoders

Exercise: NN choices
• An NN with three layers transforms the inputs as

• for weights composed of

• Can think of this NN as learning p(y | x) with key parameter
for

• We pick a GLM loss for the output that matches the targets
• e.g., what if the output is a binary 0,1 variable? What is f1?
• e.g., what if the output is ordinal 0, 1, 2, 3, 4, 5, .., 100? What is f1?

fw(x) = f1(f2(f3(xW(3))W(2))W(1)) w
W(3), W(2), W(1)

θ(x) = h(1)W(1)

h(1) = f2(f3(xW(3))W(2))

Exercise: NN vs PCA
• An NN with three layers transforms the inputs as

• for weights composed of

• Can think of this NN as learning p(y | x) with key parameter
for

• Can think of as the new representation of . How do we extract the new
representation for a new ?

• How do we do this for PCA?

fw(x) = f1(f2(f3(xW(3))W(2))W(1)) w
W(3), W(2), W(1)

θ(x) = h(1)W(1)

h(1) = f2(f3(xW(3))W(2))

h(1) x
xnew

