
Quiz Review

CMPUT 367: Intermediate Machine Learning 



Comments

• The goal of the exam is to test (a) did you understand the basic ideas and 
(b) can you apply that understanding 

• Answers can be relatively short, say at most 5 sentences 

• I will mark these and will look for your thought process. As this is the 
second time this course is taught, I will err on the side of being generous; so 
help me out by letting me see how you reasoned about the question



Ch 2: Probability Basics

• Expectations and variance 

• Independence and conditional independence 

• Joint probabilities, marginal and conditional probabilities 

• You will not yet be tested on 
• Mixtures of distributions 
• KL divergences to compare distributions



Some questions (1)

• Assume  is a random vector of dimension d, with covariance  

• Question: Does this mean  is a multivariate Gaussian? Why or why not?
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Some questions (2)

• Assume  is a random vector of dimension d, with covariance  

• Question: Does this mean  is a multivariate Gaussian? Why or why not? 

• Answer: No, covariance is defined for any of the distributions we talk 
about. The variable  can even consist of both continuous and discrete 
random variables
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Some questions (3)

• Assume  is a random vector of dimension d, with covariance  

• Follow-up question: If  is continuous and  is discrete, then what is 
the formula for  ? 

• Recall: 

X Σ

X1 X2
Cov(X1, X2)

Cov(X1, X2) = 𝔼[(X1 − 𝔼[X1])(X2 − 𝔼[X2])]



Some questions (4)
• Assume  is a random vector of dimension d, with covariance  

• Follow-up: If  is continuous and  is discrete, then what is the formula for 
 ? 

• Answer: Let  and  be the means for  and  respectively 

•

 

X Σ

X1 X2
Cov(X1, X2)

μ1 μ2 X1 X2

Cov(X1, X2) = 𝔼[(X1 − 𝔼[X1])(X2 − 𝔼[X2])]

= ∫𝒳1
∑

x2∈𝒳2

p(x1, x2)(x1 − μ1)(x2 − μ2)dx1

= ∫𝒳1

p(x1) ∑
x2∈𝒳2

p(x2 |x1)(x1 − μ1)(x2 − μ2)dx1



Some questions (5)

• Assume  is a random vector of dimension d, with covariance  

• Now assume  is a multivariate Gaussian 

• Question: If the first eigenvalue in  is very big (1000) and the second is very 
small (0.1), then what does this tell us about the shape of the Gaussian?
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Some questions (5)

• Assume  is a random vector of dimension d, with covariance  

• Now assume  is a multivariate Gaussian 

• Question: If the first eigenvalue in  is very big (1000) and the second is very 
small (0.1), then what does this tell us about the shape of the Gaussian? 

• Answer: The distribution is wide in one orientation and narrow in another
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Example of eigenvalues

<latexit sha1_base64="XP/RghjTiDth7RULcks/118C9OU="></latexit>

⌃ =


1.0 0
0 1.0

� <latexit sha1_base64="VYYnITxhVqa2KmoHZj04CYwQLNM="></latexit>

⌃ =


1.0 0.75
0.75 1.0

� <latexit sha1_base64="VYYnITxhVqa2KmoHZj04CYwQLNM="></latexit>

⌃ =


1.0 0.75
0.75 1.0

�

This  has singular values: , Σ σ1 = 1.75 σ2 = 0.25

These are also the eigenvalues for !


This is not true in general. Why is is true for ? 
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Example of eigenvalues

<latexit sha1_base64="XP/RghjTiDth7RULcks/118C9OU="></latexit>

⌃ =


1.0 0
0 1.0

� <latexit sha1_base64="VYYnITxhVqa2KmoHZj04CYwQLNM="></latexit>

⌃ =


1.0 0.75
0.75 1.0

� <latexit sha1_base64="VYYnITxhVqa2KmoHZj04CYwQLNM="></latexit>

⌃ =


1.0 0.75
0.75 1.0

�

This  has singular values: , Σ σ1 = 1.75 σ2 = 0.25
These are also the eigenvalues for !


For a square, symmetric matrix, the eigenvalue 
decomposition is 
 

  for orthonormal , diagonal 

 
We also know  is positive definite. What does this 
tell us about ?

Σ

Σ = UΛU⊤ U Λ

Σ
Λ



Example of eigenvalues

<latexit sha1_base64="XP/RghjTiDth7RULcks/118C9OU="></latexit>

⌃ =


1.0 0
0 1.0

� <latexit sha1_base64="VYYnITxhVqa2KmoHZj04CYwQLNM="></latexit>

⌃ =


1.0 0.75
0.75 1.0

� <latexit sha1_base64="VYYnITxhVqa2KmoHZj04CYwQLNM="></latexit>

⌃ =


1.0 0.75
0.75 1.0

�

This  has singular values: , Σ σ1 = 1.75 σ2 = 0.25

These are also the eigenvalues for !


For a square, symmetric matrix, the eigenvalue 
decomposition is 
 

  for orthonormal , diagonal 

 

 is positive definite, so  is a diagonal matrix with 
positive terms on the diagonal 
Therefore,  is also a valid SVD

Σ

Σ = UΛU⊤ U Λ

Σ Λ

Σ = UΛU⊤



Ch 3: Revisiting Linear Regression

• Linear regression objective and closed-form matrix solution (OLS) 
• but you don’t need to remember the formula 

• Understanding why small singular values can indicate we get overfitting  

• The utility of l2 regularization for avoiding issues with small singular values 

• The bias-variance trade-off, and relationship to the covariance matrix and 
the singular values of the data matrix



Linear Regression Objectives

•
LR objective  

• Ridge Regression objective  

• Question: How do we get the LR objective from the RR objective?

1
2 ∥Xw − y∥2

2 = 1
2

n

∑
i=1

(x⊤
i w − yi)2

1
2 ∥Xw − y∥2

2 +
λ
2

∥w∥2
2



Linear Regression Objectives

•
LR objective  

• Ridge Regression objective  

• Question: How do we get the LR objective from the RR objective? 

• Answer: Set  (regularization weight is zero, so no regularizer)

1
2 ∥Xw − y∥2

2 = 1
2

n

∑
i=1

(x⊤
i w − yi)2

1
2 ∥Xw − y∥2

2 +
λ
2

∥w∥2
2

λ = 0



Linear Regression Solution 

• The closed form solution satisfies  for  and  

• Question: Our goal is to minimize . Why can’t we just use 
? This would be great because then we would have 

Aw = b A = X⊤X b = X⊤y
1
2 ∥Xw − y∥2

2
w = X−1y Xw = y



Linear Regression Solution 
• The closed form solution satisfies  for  and  

• Question: Our goal is to minimize . Why can’t we just use 
? Then we would have  

• Answer:  is typically not a square matrix and so cannot be inverted  
(inverse only exists for square matrices) 

• Instead, the pseudo-inverse  is the closest we get to an inverse 
and  (here  if  full rank, but ) 

• Notice , but in some sense closest approximation

Aw = b A = X⊤X b = X⊤y
1
2 ∥Xw − y∥2

2
w = X−1y Xw = y

X

X† ∈ ℝd×n

w = X†y X†X = I ∈ ℝd×d X XX† ≠ I ∈ ℝn×n

Xw = XX†y ≠ y



Linear Regression Solution  
and Overfitting

• The closed form solution satisfies  for  and  

• If  is low-rank (  has a zero singular values), then there are infinitely many 
solutions for  

• Namely this linear system is under-constrained 

• More likely,  is nearly low-rank; equivalently  is nearly low-rank 

• Typical reason: insufficient data 

• In d dimensions, the observed data looks like it lies in a lower-dimensional 
space, because it takes many points to start covering the actual region 
spanned by the data

Aw = b A = X⊤X b = X⊤y

A X
w

A X



LR and Overfitting

• We know that  can have small singular values if 
• input features are highly correlated (or linearly dependent) 
• OR we have insufficient data 

• Question: If the true  is only a function of the first two features of , then 
does that imply that  will be low rank?

X
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LR and Overfitting

• We know that  can have small singular values if 
• input features are highly correlated (or linearly dependent) 
• OR we have insufficient data 

• Question: If the true  is only a function of the first three features of , then 
does that imply that  will be low rank? 

• Answer: likely not. They are different random variables. The functional 
relationship is about how the RVs  and y are related. It does not 
necessarily imply anything about the relationships between RVs within 

X

y x
X
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LR and Overfitting
• If the true  is only a function of the first three features of , then does that 

imply that  will be low rank? 

• Answer: likely not. They are different random variables. The functional 
relationship is about how the RVs  and y are related. It does not 
necessarily imply anything about the relationships between RVs within  

• Exception: y might only be a function of the first three features because the 
rest are all perfectly redundant. Then both y is only related to the first three 
features AND  is low rank. But there is no reason to believe this is the 
reason for the relationship, without further info

y x
X

x
x

X



The LR solution, with and without 
regularization

•
   for  

•
   for  

• If  reasonably big (say 10^-3), then we avoid dividing by a very small 
singular value 

• Question: Why do we subscript these with MLE and MAP?

wMLE =
rank(X)

∑
j=1

u⊤
j y
σj

vj wMLE = (X⊤X)−1X⊤y

wMAP =
rank(X)

∑
j=1

σju⊤
j y

σ2
j + λ

vj wMAP = (X⊤X + λI)−1X⊤y

λ



Bias and variance

•
 is unbiased and potentially high-variance,  

•
 is biased and lower variance,  

• Question: when do we expect  to be better than ?

wMLE σ2𝔼
d

∑
j=1

σ−2
j

wMAP σ2𝔼
d

∑
j=1

σ2
j

(σ2
j + λ)2

wMAP wMLE



Bias and variance

•
 is unbiased and potentially high-variance,  

•
 is biased and lower variance,  

• Exercise: show that the variance for  always lower than 

wMLE σ2𝔼
d

∑
j=1

σ−1
j

wMAP σ2𝔼
d

∑
j=1

σ2
j

(σ2
j + λ)2

wMAP wMLE



Ch 3: Revisiting Linear Regression

• You will not be tested on 
• Predicting multiple outputs simultaneously 
• Using weighted error functions 
• The closed-form solutions for OLS or ridge regression (l2-regularized linear 

regression) 
• The formulas for bias and variance for OLS and ridge regression



Ch. 4: Optimization

• Second-order multivariate gradient descent 

• Understanding why the Hessian in the second-order update accounts for 
differences in curvature in different dimensions 

• Understanding the importance of an adaptive vector stepsize 

• The mini-batch stochastic gradient descent (SGD) update rule 

• Understanding why SGD is a more computationally efficient update than GD 

• Understanding the momentum update



Ch. 4: Optimization

• You will not be tested on 

• Remembering the formulas for momentum, RMSProp and Adam.  

• But you should at this point know the second-order and first-order 
gradient descent and mini-batch SGD updates (these are very generic) 

• You will not need to compute any Hessians



All the Updates

•
Assumes we have  

• Second-order GD:    

• First-order GD with vector stepsizes:  
• element-wise product with stepsize 

• Mini-batch SGD with vector stepsizes, using a mini-batch  of indices: 

c(w) =
1
n

n

∑
i=1

ci(w)

wt+1 ← wt − H−1
c(wt) ∇c(wt)

wt+1 ← wt − ηt ⋅ ∇c(wt)

ℬ
wt+1 ← wt − ηt ⋅ 1

b ∑
i∈ℬ

∇ci(wt)



Some optimization questions

•
We use . But when we did LR we used 

. Is this mismatch a problem? 

•
How do we write the Ridge Regression loss as ?

c(w) =
1
n

n

∑
i=1

ci(w)

c(w) =
n

∑
i=1

ci(w) = 1
2 ∥Xw − y∥2

2

c(w) =
1
n

n

∑
i=1

ci(w)



Some optimization questions

•
We use . But when we did LR we used 

. Is this mismatch a problem? 

• Answer: the constant 1/n in front does not change the solution. For OLS, it 
is really not necessary to include 1/n. When talking about GD and SGD, its 
useful to think of  as an expectation over losses per sample 

• Though even for OLS it can be useful to normalize

c(w) =
1
n

n

∑
i=1

ci(w)

c(w) =
n

∑
i=1

ci(w) = 1
2 ∥Xw − y∥2

2

c



Extra: What is the OLS solution  
for the normalized objective?

•
 gives gradients 

•  and so  

• Notice that the 1/n comes outside the inverse and becomes n 

•

c(w) = 1
n

n

∑
i=1

ci(w) = 1
2n ∥Xw − y∥2

2

1
n X⊤Xw = 1

n X⊤y w = ( 1
n X⊤X)

−1 1
n X⊤y

w = ( 1
n X⊤X)

−1 1
n X⊤y = n (X⊤X)−1 1

n X⊤y = (X⊤X)−1 X⊤y



Some optimization questions

•
We use . But when we did LR we used 

. Is this mismatch a problem? 

•
How do we write the Ridge Regression loss as ?

c(w) =
1
n

n

∑
i=1

ci(w)

c(w) =
n

∑
i=1

ci(w) = 1
2 ∥Xw − y∥2

2

c(w) =
1
n

n

∑
i=1

ci(w)



A normalized RR objective

• . What is the normalized c? 

•   

• Therefore must have  

• Makes very clear that regularizer has a diminishing role with increasing n
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A normalized RR objective

• . What is the normalized c? 

•   

• Therefore must have  

• Makes very clear that regularizer has a diminishing role with increasing n 

• Question: What is the mini-batch SGD update for RR?
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Mini-batch SGD for RR

• Therefore must have  

• Question: What is the mini-batch SGD update for RR? 

•
  

• where 

ci(w) = 1
2 (x⊤

i w − yi)2 +
λ
2

∥w∥2
2

wt+1 ← wt − ηt ⋅ 1
b ∑

i∈ℬ

∇ci(wt)

∇ci(w) = (x⊤
i w − yi)xi + λw



The Hessian and curvature

• The Hessian and second-derivative have a clear correspondence using the 
directional derivative 

• The curvature (second-derivative) is about the shape of the bowl (wide flat 
bowl, or steep bowl) 

• The gradient is at a specific point in that bowl, and can be big or small



Visualizing the difference
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Second-order stepsize is always 2 here, for both gradients
Second-order stepsize is always 0.5 here, for both gradients



The Hessian has two uses

• The Hessian also helps us know: are we in a local-min, local-max or 
potentially a saddlepoint? 

• But this question only uses the sign of the eigenvalues of the  Hessian. The 
magnitudes give additional information (about curvature) 

• Signs tell us type of bowl (convex or concave) 
• Magnitudes tells us the shape of the bowl 

• We care more about Hessian approximations to approximate curvature



Momentum

• Replaces update with an exponential average of gradients  

•  becomes  for either 

•  or normalized   

• Smooths descent direction

wt+1 ← wt − ηt ⋅ gt wt+1 ← wt − ηt ⋅ mt+1

mt+1 = gt + βmt mt+1 = (1 − β)gt + βmt



Normalizing the momentum
• Equivalent to use  or  

normalized  

• To get the normalized one, equivalent to use   and then 
normalize ; the normalization absorbed into the stepsize  

•
Notice  

•

mt+1 = gt + βmt
mt+1 = (1 − β)gt + βmt

mt+1 = gt + βmt
(1 − β)mt+1 η

mt+1 = gt + βmt = gt + βgt−1 + β2mt−1 = … =
t

∑
i=0

βigt−i

mt+1 = (1 − β)gt + βmt = (1 − β)gt + β(1 − β)gt−1 + β2mt−1 = … = (1 − β)
t

∑
i=0

βigt−i



Momentum vs RMSProp

• RMSProp slows down descent if several big gradients in a row 

• Momentum seems to accelerate if so. What’s the deal?



Momentum vs RMSProp
• RMSProp slows down descent if several big gradients in a row 

• Momentum seems to accelerate if so. What’s the deal? 

• Answer: we should think of momentum actually more as dampening.  

• It takes an average of gradient, so it doesn’t really accumulate large values 
(as long as we normalize, or make the stepsize out in front a bit smaller) 

• But it nicely avoids oscillating when gradients change signs 

• RMSProp does not as effectively prevent oscillation, since it just uses 
magnitude not sign



Ch. 5: Generalized Linear Models

• Understand the purpose of the generalization from linear regression to GLMs 

• Understand that the exponential family distribution underlies GLMs 

• Know that linear regression, Poisson regression, logistic regression and 
multinomial logistic regression are examples of GLMs 

• Know the distributions and transfers that correspond to each of these four 
GLMs 

• e.g., Poisson regression has a Poisson distribution p(y | x) with transfer exp



Generalized Linear Models (GLMs)
• Generalizes linear regression and p(y | x) a Gaussian: allows p(y |x) to be any 

natural exponential family distribution with natural parameter  

• In GLMs, we learn the natural parameter  

• Then  for transfer function  
• e.g., Gaussian with fixed (unknown) variance has  = identity 
• e.g., Bernoulli has  (i.e.,  ) 
• e.g., Poisson p(y | x) has  
• e.g., Multinomial (categorial) p(y | x) for multi-class has   = softmax

θ(x)

θ(x) = x⊤w

𝔼[Y |x] = g(θ(x)) g
g

g = σ σ(θ(x)) = 𝔼[Y |x]
g = exp

g



Exponential Family Distribution
• Generalize from  to a wider set of distributions 

•   for  

• More generally,  can also be multivariate giving. Let  be a row vector. 

•   for  

• and where the log-partition function  inputs vectors instead of scalars 

• For these distributions, using  and  with log-likelihood 
results in a convex optimization

p(y |x) = 𝒩(x⊤w, σ2)

p(y |x) = exp(θ(x)y − a(θ(x)) + b(y)) θ(x) = x⊤w

y y

p(y |x) = exp(⟨θ(x), y⟩ − a(θ(x)) + b(y)) θ(x) = xW

a

g = ∇a θ(x) = xW



Exponential Family Distribution
• Generalize from  to a wider set of distributions 

• More generally,  can also be multivariate giving. Let  be a row vector. 

•   for  

• and where the log-partition function  inputs vectors instead of scalars 

• For these distributions, using  and  with log-likelihood 
results in a convex optimization 

• Question: why is it useful that this is a convex optimization?

p(y |x) = 𝒩(x⊤w, σ2)

y y

p(y |x) = exp(⟨θ(x), y⟩ − a(θ(x)) + b(y)) θ(x) = xW

a

g = ∇a θ(x) = xW



Switch to whiteboard  
and practice quiz

• The practice quiz cover the remaining review


