Quiz Review

CMPUT 367: Intermediate Machine Learning



Comments

* The goal of the exam is to test (a) did you understand the basic ideas and
(o) can you apply that understanding

 Answers can be relatively short, say at most 5 sentences

e | will mark these and will look for your thought process. As this is the
second time this course Is taught, | will err on the side of being generous; so
help me out by letting me see how you reasoned about the question



Ch 2: Probabllity Basics

* EXpectations and variance
* |ndependence and conditional independence
e Joint probabilities, marginal and conditional probabilities

- You will not yet be tested on
* Mixtures of distributions
KL divergences to compare distributions



Some questions (1)

e Assume X is a random vector of dimension d, with covariance X

» Question: Does this mean X is a multivariate Gaussian? Why or why not?



Some questions (2)

e Assume X is a random vector of dimension d, with covariance

» Question: Does this mean X is a multivariate Gaussian? Why or why not?

 Answer: No, covariance is defined for any of the distributions we talk

about. The variable X can even consist of both continuous and discrete
random variables




Some guestions (3)

e Assume X is a random vector of dimension d, with covariance

 Follow-up question: If X, is continuous and X, is discrete, then what is
the formula for Cov(X, X,) ?

» Recall: Cov(X{, X,) = E[(X, — E[X,])(X, — E[X,])]




Some questions (4)

Assume X is a random vector of dimension d, with covariance 2

Follow-up: If X, is continuous and X, is discrete, then what is the formula for
Cov(X;, X,) ?

Answer: Let u; and U, be the means for X; and X, respectively

COV(Xsz) — "[(X1 — _[Xl])(Xz — ‘[Xz])]

— J Z Py, X)) (X — )Xy — py)dx,
X

1 XX,

= J p(x) Z Py [ X)Xy = py)(xy = pp)dx,
A

1 x2€%2




Some guestions ()

e Assume X is a random vector of dimension d, with covariance

« Now assume X is a multivariate Gaussian

e Question: If tr

e first eigenval

e Ir

small (0.1), the
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Some guestions ()

Assume X is a random vector of dimension d, with covariance 2
Now assume X is a multivariate Gaussian

Question: If the first eigenvalue in 22 is very big (1000) and the second is very
small (0.1), then what does this tell us about the shape of the Gaussian®

Answer: The distribution Is wide In one orientation and narrow In another



EXample of eigenvalues

This X2 has singular values: 6, = 1.75, 6, = 0.25

These are also the eigenvalues for 2!

This is not true in general. Why is is true for 27




EXample of eigenvalues

This X2 has singular values: 6, = 1.75, 6, = 0.25

These are also the eigenvalues for 2.!

For a square, symmetric matrix, the eigenvalue
decomposition Is

> = UAU' for orthonormal U, diagonal A

We also know 2 is positive definite. What does this
tell us about A?




EXample of eigenvalues

This X2 has singular values: 6, = 1.75, 6, = 0.25

These are also the eigenvalues for 2.!

For a square, symmetric matrix, the eigenvalue
decomposition Is

> = UAU' for orthonormal U, diagonal A

2. is positive definite, so A is a diagonal matrix with
positive terms on the diagonal

Therefore, 2 = UAU ' is also a valid SVD




Ch 3: Revisiting Linear Regression

* Linear regression objective and closed-form matrix solution (OLS)
* put you don’t need to remember the formula

* Understanding why small singular values can indicate we get overfitting
* [he utllity of 12 regularization for avoiding issues with small singular values

* [he bias-variance trade-off, and relationship to the covariance matrix and
the singular values of the data matrix




Linear Regression Objectives

n
L | 2 1 T 2
LR objective EHXW -yll5 = > Z (X, W —y;)
i=1

. Ridge Regression objective %HXW — yH% + EHWH%

* Question: How do we get the LR objective from the RR objective?



Linear Regression Objectives

n

L | 7 1 T 2

_ LR objective EHXW —yll5 = > Z (X, W—1y)
i=1

. Ridge Regression objective %HXW — yH% + EHWH%

* Question: How do we get the LR objective from the RR objective?

» Answer: Set 4 = O (regularization weight is zero, so no regularizer)



| inear Regression Solution

. The closed form solution satisfies Aw = bfor A = X'Xandb =Xy

 Question: Our goal is to minimize %HXW — yH%. Why can’t we just use

W = X‘ly? This would be great because then we would have Xw =y



| inear Regression Solution

The closed form solution satisfies AW = bfor A =X'Xandb =Xy

Question: Our goal is to minimize %HXW — yH%. Why can’t we just use

W = X‘ly? Then we would have Xw =y

Answer: X is typically not a square matrix and so cannot be inverted
(inverse only exists for square matrices)

d

Instead, the pseudo-inverse X' € R%" is the closest we get to an inverse
and w = X'y (here X'X = I € R f X full rank, but XX # I € R™"

Notice Xw = XXy # y, but in some sense closest approximation



| inear Regression Solution
and Overfitting

The closed form solution satisfies AW = b for A = X'X andb =Xy

f A is low-rank (X has a zero singular values), then there are infinitely many
solutions for w

 Namely this linear system is under-constrained

More likely, A is nearly low-rank; equivalently X is nearly low-rank
Typical reason: insufficient data

In d dimensions, the observed data looks like it lies in a lower-dimensional
space, because It takes many points to start covering the actual region
spanned by the data



| R and Overfitting

» We know that X can have small singular values if

* Input features are highly correlated (or linearly dependent)
 OR we have insufficient data

* Question: If the true y is only a function of the first two features of X, then
does that imply that X will be low rank?



| R and Overfitting

» We know that X can have small singular values if

e nput features are highly correlated (or linearly dependent)
 OR we have insufficient data

* Question: If the true y is only a function of the first three features of X, then
does that imply that X will be low rank?

 Answer: likely not. They are different random variables. The functional
relationship is about how the RVs X and y are related. It does not

necessarily iImply anything about the relationships between RVs within X




| R and Overfitting

» If the true y is only a function of the first three features of X, then does that
imply that X will be low rank?

 Answer: likely not. They are different random variables. The functional
relationship Is about how the RVs X and y are related. It does not
necessarily imply anything about the relationships between RVs within X

 EXxception: y might only be a function of the first three features because the
rest are all perfectly redundant. Then both y is only related to the first three

features AND X is low rank.

reason for the relationship, without further in’

Sut there IS no

reason to believe this Is the

0



The LR solution, with and without
regularization

rank(X) u-Ty
]

WMIE = TVJ for WMIE = (XTX)_IXTy
i=1 ]
rank(X) a-u-Ty
_ J J e dl vl
WMmAP = 2 02+/1Vj for wpap = (X' X+ A" X'y
j=1

f A reasonably big (say 10/7-3), then we avoid dividing by a very small
singular value

Question: \WWhy do we subscript these with MLE and MAP?



Blas and variance

d
W\l E IS unbiased and potentially high-variance, o°E Z 6.2

J=1
d 52
S Di - 2 J
WpAP IS biased and lower variance, 0”1t Z I S
o (o7 + )

* Question: when do we expect W ap to be better than wyy g7




Blas and variance

d
W\l E IS unbiased and potentially high-variance, o°E Z o !

J=1
d 52
S Di - 2 J
WpAP IS biased and lower variance, 0”1t Z I S
o (o7 + )

» EXxercise: show that the variance for wpap always lower than wy,




Ch 3: Revisiting Linear Regression

 You will not be tested on
* Predicting multiple outputs simultaneously
* Using weighted error functions

* The closed-form solutions for OLS or ridge regression (I2-regularized linear
regression)

* The formulas for bias and variance for OLS and ridge regression




Ch. 4: Optimization

Second-order multivariate gradient descent

Understanding why the Hessian in the second-order update accounts for
differences In curvature in different dimensions

Understanding the importance of an adaptive vector stepsize

The mini-batch stochastic gradient descent (SGD) update rule

Understanding why SGD is a more computationally efficient update than GD

Understanding the momentum update



Ch. 4: Optimization

- You will not be tested on

 Remembering the formulas for momentum, RMSProp and Adam.

 But you should at this point know the second-order and first-order
gradient descent and mini-batch SGD updates (these are very generic)

* You will not need to compute any Hessians



All the Updates

n

Assumes we have c(w) = — Z ¢ (W)

n
=1

Second-order GD: W, | < W, — H;({Vt)Vc(wt)

First-order GD with vector stepsizes: W, | < W, — 1], - V(W)
* element-wise product with stepsize

Mini-batch SGD with vector stepsizes, using a mini-batch & of indices:

1
Wit < W= 5 Z Ve (w))
€S



Some optimization guestions

n

. Weuse c¢(W) = — Z ¢;(w). But when we did LR we used

n
=1

n
c(w) = Z c(W) = %HXW — yH%. s this mismatch a problem?
i=1
n

. How do we write the Ridge Regression loss as ¢(W) = — Z c(w)?

n
=1




Some optimization guestions

n

|
We use c(W) = — Z c;(w). But when we did LR we used
n
i=1

n
c(w) = Z c(W) = %HXW — yH%. s this mismatch a problem?
i=1

* Answer: the constant 1/n in front does not change the solution. For OLS, it
s really not necessary to include 1/n. When talking about GD and SGD, its

useful to think of ¢ as an expectation over losses per sample

* Though even for OLS it can be useful to normalize



Extra: What is the OLS solution
for the normalized objective?

n

~ (W) = 4 z c(W) = 2_1nHXW — yH% gives gradients

n
=1

—1
. 1XTXw = 1XTy andsow = (lXTX) LxTy

 Notice that the 1/n comes outside the inverse and becomes n

1
. w=(1X7X) IXTy = (XTX) 7 Xy = (XTX) ' Xy

n



Some optimization guestions

n

. Weuse c¢(W) = — Z ¢;(w). But when we did LR we used

n
=1

n
c(w) = Z c(W) = %HXW — yH%. s this mismatch a problem?
i=1
n

. How do we write the Ridge Regression loss as ¢(W) = — Z c(w)?

n
=1




A normalized RR objective

%HXW — YH% + EHW”%' What is the normalized c?

1 1 1 (1
c(w) = ;Z (W) = —[| Xw — yll5 + %HWH% = = (3”XW - yll5 + EHWH%)
i=1

Therefore must have ¢,(W) = %(X;FW — yl-)2 + EHW”%

Makes very clear that regularizer has a diminishing role with increasing n



A normalized RR objective

%HXW — YH% + EHWH%. What is the normalized c?

n

A

| 1 1 1

c(w) = 23 c(w) = - 1Xw = ylI3 + —[[wllf = £ (;uXw - yli3+ 5|\w\|§)
=1

herefore must have ¢ (W) = %(XZTW — yl-)2 + EHWH%

Makes very clear that regularizer has a diminishing role with increasing n

Question: What is the mini-batch SGD update for RR?



Mini-batch SGD for RR

A
. Therefore must have ¢(W) = %(Xi W — yl-)2 + EHW”%

e Question: What is the mini-batch SGD update for RR?

1
e Wikl W, Tl o Z Ve (w))
€S

. where V(W) = (X; W — y)X; + AW



1 he Hesslan ana curvature

* [he Hessian and second-derivative have a clear correspondence using the
directional derivative

e [he curvature (second-derivative) is about the shape of the bowl (wide flat
bowl, or steep bowl)

* The gradient is at a specific point in that bowl, and can lbe big or small



Visualizing the difference

| 2 fx)=2x”
{60 52 [ ) =2
1@((1\ _ ,,2, bn'j [95 jlnu(/ucht
jrwﬂf/\’{lﬂt
CMVVM+MVC s O-S (nore 1[[&{> Carvatwrve & R0
(v ov H—CLP).

Second-order stepsize is always 2 here, for both gradients

Second-order stepsize is always 0.5 here, for both gradients



The Hessian has two uses

 [he Hesslan also helps
potentially a saddlepoint??

e Buttr

magn

tudes give additional in

orma:

IS question only uses the sign of the el

lon (abo

genvalues of the

Ut curvature)

e Signs tell us type of bowl (convex or concave)
 Magnitudes tells us the shape of the bowil

US know: are we In a local-min, local-max or

essian. The

* \We care more about Hessian approximations to approximate curvature



Viomentum

Replaces update with an exponential average of gradients
W1 < W,—R, g becomesw, ; < W,—n, -m,_, foreither
m_, =g + pm,ornormalized m,, ; = (1 — f)g, + fm,

SMmooths descent direction



Normalizing the momentum

Equivalent touse m,, | = g, + fm, or
normalized m,, ; = (1 — f)g, + fm,

o get the normalized one, equivalent to use m,,; = g, + fm, and then
normalize (1 — /)m,_ {; the normalization absorbed into the stepsize 7

!
. 2 .
NOTICG mt_l_l — gf +ﬂmt — gt +ﬂgt_1 +ﬁ ml‘—l — ... = Zﬁlgl‘—i
=0

m, =(1-pg+pm=~0-pg+pl-pg_ +pm_=..=1-p) pg_
=0



Momentum vs RMSProp

« RMSProp slows down descent if several big gradients in a row

e Momentum seems to accelerate if so. \What’s the deal?



Momentum vs RMSProp

RMSProp slows down descent if several big gradients in a row
Momentum seems to accelerate if so. What’s the deal”
Answer: we should think of momentum actually more as dampening.

't takes an average of gradient, so it doesn't really accumulate large values
(as long as we normalize, or make the stepsize out in front a bit smaller)

But it nicely avoids oscillating when gradients change signs

RMSProp does not as effectively prevent oscillation, since it just uses
magnitude not sign



Ch. 5: Generalized Linear Models

 Understand the purpose of the generalization from linear regression to GLMs
 Understand that the exponential family distribution underlies GLMs

 Know that linear regression, Poisson regression, logistic regression and
multinomial logistic regression are examples of GLMs

 Know the distributions and transfers that correspond to each of these four
GLMs

* e.g., Poisson regression has a Poisson distribution p(y | X) with transfer exp




Generalized Linear Models (GLMs)

* Generalizes linear regression and p(y | x) a Gaussian: allows p(y [x) to be any
natural exponential family distribution with natural parameter 8(x)

+ In GLMSs, we learn the natural parameter @(x) = x'w

« Then E[Y|x] = 2(6(x)) for transfer function g

e e.g., Gaussian with fixed (unknown) variance has g = identity

e e.9., Bernoullihas g = o (i.e., 6(0(x)) = E[Y]|x])

e e.9., Poisson p(y | X) has g¢ = exp

¢ €.g., Multinomial (categorial) p(y | x) for multi-class has g = softmax



=xponential Family Distribution

Generalize from p(y | X) = A (X' W, 62) to a wider set of distributions

p(y|x) = exp(8(x)y — a((x)) + b(y)) for O(x) = x'W

More generally, y can also be multivariate giving. Let y be a row vector.
p(y | x) = exp((0(x),y) — a(d(x)) + b(y)) for O(x) = xW

and where the log-partition function a inputs vectors instead of scalars

For these distributions, using g = Va and 0(x) = XW with log-likelihood
results in a convex optimization



=xponential Family Distribution

Generalize from p(y | X) = A (X' W, 62) to a wider set of distributions
More generally, y can also be multivariate giving. Let y be a row vector.
p(y |x) = exp({0(x),y) — a(0(x)) + b(y)) for O(x) = xW

and where the log-partition function a inputs vectors instead of scalars

For these distributions, using g = Va and 0(x) = XW with log-likelihood
results in a convex optimization

Question: why is it useful that this is a convex optimization?



Switch to whiteboard
and practice quiz

* [he practice quiz cover the remaining review



