Quiz Review

CMPUT 367: Intermediate Machine Learning

Comments

- The goal of the exam is to test (a) did you understand the basic ideas and (b) can you apply that understanding
- Answers can be relatively short, say at most 5 sentences
- I will mark these and will look for your thought process. As this is the second time this course is taught, I will err on the side of being generous; so help me out by letting me see how you reasoned about the question

Ch 2: Probability Basics

- Expectations and variance
- Independence and conditional independence
- Joint probabilities, marginal and conditional probabilities
- You will not yet be tested on
- Mixtures of distributions
- KL divergences to compare distributions

Some questions (1)

- Assume \mathbf{X} is a random vector of dimension d, with covariance $\mathbf{\Sigma}$
- Question: Does this mean \mathbf{X} is a multivariate Gaussian? Why or why not?

Some questions (2)

- Assume \mathbf{X} is a random vector of dimension d, with covariance $\boldsymbol{\Sigma}$
- Question: Does this mean \mathbf{X} is a multivariate Gaussian? Why or why not?
- Answer: No, covariance is defined for any of the distributions we talk about. The variable \mathbf{X} can even consist of both continuous and discrete random variables

Some questions (3)

- Assume \mathbf{X} is a random vector of dimension d, with covariance $\boldsymbol{\Sigma}$
- Follow-up question: If X_{1} is continuous and X_{2} is discrete, then what is the formula for $\operatorname{Cov}\left(X_{1}, X_{2}\right)$?
- Recall: $\operatorname{Cov}\left(X_{1}, X_{2}\right)=\mathbb{E}\left[\left(X_{1}-\mathbb{E}\left[X_{1}\right]\right)\left(X_{2}-\mathbb{E}\left[X_{2}\right]\right)\right]$

Some questions (4)

- Assume \mathbf{X} is a random vector of dimension d, with covariance $\boldsymbol{\Sigma}$
- Follow-up: If X_{1} is continuous and X_{2} is discrete, then what is the formula for $\operatorname{Cov}\left(X_{1}, X_{2}\right) ?$
- Answer: Let μ_{1} and μ_{2} be the means for X_{1} and X_{2} respectively

$$
\begin{aligned}
\operatorname{Cov}\left(X_{1}, X_{2}\right) & =\mathbb{E}\left[\left(X_{1}-\mathbb{E}\left[X_{1}\right]\right)\left(X_{2}-\mathbb{E}\left[X_{2}\right]\right)\right] \\
& =\int_{X_{1}} \sum_{x_{2} \in X_{2}} p\left(x_{1}, x_{2}\right)\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right) d x_{1} \\
& =\int_{X_{1}} p\left(x_{1}\right) \sum_{x_{2} \in X_{2}} p\left(x_{2} \mid x_{1}\right)\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right) d x_{1}
\end{aligned}
$$

Some questions (5)

- Assume \mathbf{X} is a random vector of dimension d, with covariance $\mathbf{\Sigma}$
- Now assume \mathbf{X} is a multivariate Gaussian
- Question: If the first eigenvalue in $\boldsymbol{\Sigma}$ is very big (1000) and the second is very small (0.1), then what does this tell us about the shape of the Gaussian?

Some questions (5)

- Assume \mathbf{X} is a random vector of dimension d, with covariance $\boldsymbol{\Sigma}$
- Now assume \mathbf{X} is a multivariate Gaussian
- Question: If the first eigenvalue in $\boldsymbol{\Sigma}$ is very big (1000) and the second is very small (0.1), then what does this tell us about the shape of the Gaussian?
- Answer: The distribution is wide in one orientation and narrow in another

Example of eigenvalues

This $\boldsymbol{\Sigma}$ has singular values: $\sigma_{1}=1.75, \sigma_{2}=0.25$
These are also the eigenvalues for $\boldsymbol{\Sigma}$!
This is not true in general. Why is is true for $\boldsymbol{\Sigma}$?

Example of eigenvalues

$\boldsymbol{\Sigma}=\left[\begin{array}{cc}1.0 & 0.75 \\ 0.75 & 1.0\end{array}\right]$

This $\boldsymbol{\Sigma}$ has singular values: $\sigma_{1}=1.75, \sigma_{2}=0.25$
These are also the eigenvalues for $\boldsymbol{\Sigma}$!
For a square, symmetric matrix, the eigenvalue decomposition is
$\boldsymbol{\Sigma}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\top}$ for orthonormal \mathbf{U}, diagonal $\boldsymbol{\Lambda}$
We also know $\boldsymbol{\Sigma}$ is positive definite. What does this tell us about $\boldsymbol{\Lambda}$?

Example of eigenvalues

This $\boldsymbol{\Sigma}$ has singular values: $\sigma_{1}=1.75, \sigma_{2}=0.25$
These are also the eigenvalues for $\boldsymbol{\Sigma}$!
For a square, symmetric matrix, the eigenvalue decomposition is
$\boldsymbol{\Sigma}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\top}$ for orthonormal \mathbf{U}, diagonal $\boldsymbol{\Lambda}$
$\boldsymbol{\Sigma}=\left[\begin{array}{cc}1.0 & 0.75 \\ 0.75 & 1.0\end{array}\right]$
$\boldsymbol{\Sigma}$ is positive definite, so $\boldsymbol{\Lambda}$ is a diagonal matrix with positive terms on the diagonal
Therefore, $\boldsymbol{\Sigma}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\top}$ is also a valid SVD

Ch 3: Revisiting Linear Regression

- Linear regression objective and closed-form matrix solution (OLS)
- but you don't need to remember the formula
- Understanding why small singular values can indicate we get overfitting
- The utility of I 2 regularization for avoiding issues with small singular values
- The bias-variance trade-off, and relationship to the covariance matrix and the singular values of the data matrix

Linear Regression Objectives

. LR objective $\frac{1}{2}\|\mathbf{X w}-\mathbf{y}\|_{2}^{2}=\frac{1}{2} \sum_{i=1}^{n}\left(\mathbf{x}_{i}^{\top} \mathbf{w}-y_{i}\right)^{2}$

- Ridge Regression objective $\frac{1}{2}\|\mathbf{X w}-\mathbf{y}\|_{2}^{2}+\frac{\lambda}{2}\|\mathbf{w}\|_{2}^{2}$
- Question: How do we get the LR objective from the RR objective?

Linear Regression Objectives

- LR objective $\frac{1}{2}\|\mathbf{X w}-\mathbf{y}\|_{2}^{2}=\frac{1}{2} \sum_{i=1}^{n}\left(\mathbf{x}_{i}^{\top} \mathbf{w}-y_{i}\right)^{2}$
- Ridge Regression objective $\frac{1}{2}\|\mathbf{X w}-\mathbf{y}\|_{2}^{2}+\frac{\lambda}{2}\|\mathbf{w}\|_{2}^{2}$
- Question: How do we get the LR objective from the RR objective?
- Answer: Set $\lambda=0$ (regularization weight is zero, so no regularizer)

Linear Regression Solution

- The closed form solution satisfies $\mathbf{A w}=\mathbf{b}$ for $\mathbf{A}=\mathbf{X}^{\top} \mathbf{X}$ and $\mathbf{b}=\mathbf{X}^{\top} \mathbf{y}$
- Question: Our goal is to minimize $\frac{1}{2}\|\mathbf{X w}-\mathbf{y}\|_{2}^{2}$. Why can't we just use $\mathbf{w}=\mathbf{X}^{-1} \mathbf{y}$? This would be great because then we would have $\mathbf{X w}=\mathbf{y}$

Linear Regression Solution

- The closed form solution satisfies $\mathbf{A w}=\mathbf{b}$ for $\mathbf{A}=\mathbf{X}^{\top} \mathbf{X}$ and $\mathbf{b}=\mathbf{X}^{\top} \mathbf{y}$
- Question: Our goal is to minimize $\frac{1}{2}\|\mathbf{X w}-\mathbf{y}\|_{2}^{2}$. Why can't we just use $\mathbf{w}=\mathbf{X}^{-1} \mathbf{y}$? Then we would have $\mathbf{X w}=\mathbf{y}$
- Answer: \mathbf{X} is typically not a square matrix and so cannot be inverted (inverse only exists for square matrices)
- Instead, the pseudo-inverse $\mathbf{X}^{\dagger} \in \mathbb{R}^{d \times n}$ is the closest we get to an inverse and $\mathbf{w}=\mathbf{X}^{\dagger} \mathbf{y}$ (here $\mathbf{X}^{\dagger} \mathbf{X}=\mathbf{I} \in \mathbb{R}^{d \times d}$ if \mathbf{X} full rank, but $\mathbf{X} \mathbf{X}^{\dagger} \neq \mathbf{I} \in \mathbb{R}^{n \times n}$)
- Notice $\mathbf{X w}=\mathbf{X X}^{\dagger} \mathbf{y} \neq \mathbf{y}$, but in some sense closest approximation

Linear Regression Solution and Overfitting

- The closed form solution satisfies $\mathbf{A w}=\mathbf{b}$ for $\mathbf{A}=\mathbf{X}^{\top} \mathbf{X}$ and $\mathbf{b}=\mathbf{X}^{\top} \mathbf{y}$
- If \mathbf{A} is low-rank (\mathbf{X} has a zero singular values), then there are infinitely many solutions for \mathbf{w}
- Namely this linear system is under-constrained
- More likely, \mathbf{A} is nearly low-rank; equivalently \mathbf{X} is nearly low-rank
- Typical reason: insufficient data
- In d dimensions, the observed data looks like it lies in a lower-dimensional space, because it takes many points to start covering the actual region spanned by the data

LR and Overfitting

- We know that \mathbf{X} can have small singular values if
- input features are highly correlated (or linearly dependent)
- OR we have insufficient data
- Question: If the true y is only a function of the first two features of \mathbf{x}, then does that imply that \mathbf{X} will be low rank?

LR and Overfitting

- We know that \mathbf{X} can have small singular values if
- input features are highly correlated (or linearly dependent)
- OR we have insufficient data
- Question: If the true y is only a function of the first three features of \mathbf{x}, then does that imply that \mathbf{X} will be low rank?
- Answer: likely not. They are different random variables. The functional relationship is about how the RVs \mathbf{x} and y are related. It does not necessarily imply anything about the relationships between RVs within \mathbf{x}

LR and Overfitting

- If the true y is only a function of the first three features of \mathbf{x}, then does that imply that \mathbf{X} will be low rank?
- Answer: likely not. They are different random variables. The functional relationship is about how the RVs \mathbf{x} and y are related. It does not necessarily imply anything about the relationships between RVs within \mathbf{x}
- Exception: y might only be a function of the first three features because the rest are all perfectly redundant. Then both y is only related to the first three features AND \mathbf{X} is low rank. But there is no reason to believe this is the reason for the relationship, without further info

The LR solution, with and without regularization

- $\mathbf{w}_{\mathrm{MAP}}=\sum_{j=1}^{\operatorname{rank}(X)} \frac{\sigma_{j} \mathbf{u}_{j}^{\top} \mathbf{y}}{\sigma_{j}^{2}+\lambda} \mathbf{v}_{\mathbf{j}}$ for $\mathbf{w}_{\mathrm{MAP}}=\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}$
- If λ reasonably big (say $10^{\wedge}-3$), then we avoid dividing by a very small singular value
- Question: Why do we subscript these with MLE and MAP?

Bias and variance

- $\mathbf{w}_{\text {MLE }}$ is unbiased and potentially high-variance, $\sigma^{2} \mathbb{E}\left[\sum_{j=1}^{d} \sigma_{j}^{-2}\right]$
- $\mathbf{w}_{\mathrm{MAP}}$ is biased and lower variance, $\sigma^{2} \mathbb{E}\left[\sum_{j=1}^{d} \frac{\sigma_{j}^{2}}{\left(\sigma_{j}^{2}+\lambda\right)^{2}}\right]$
- Question: when do we expect $\mathbf{w}_{\text {MAP }}$ to be better than $\mathbf{w}_{\text {MLE }}$?

Bias and variance

- $\mathbf{w}_{\text {MLE }}$ is unbiased and potentially high-variance, $\sigma^{2} \mathbb{E}\left[\sum_{j=1}^{d} \sigma_{j}^{-1}\right]$
- $\mathbf{w}_{\text {MAP }}$ is biased and lower variance, $\sigma^{2} \mathbb{E}\left[\sum_{j=1}^{d} \frac{\sigma_{j}^{2}}{\left(\sigma_{j}^{2}+\lambda\right)^{2}}\right]$
- Exercise: show that the variance for $\mathbf{w}_{\text {MAP }}$ always lower than $\mathbf{w}_{\mathrm{MLE}}$

Ch 3: Revisiting Linear Regression

- You will not be tested on
- Predicting multiple outputs simultaneously
- Using weighted error functions
- The closed-form solutions for OLS or ridge regression (12-regularized linear regression)
- The formulas for bias and variance for OLS and ridge regression

Ch. 4: Optimization

- Second-order multivariate gradient descent
- Understanding why the Hessian in the second-order update accounts for differences in curvature in different dimensions
- Understanding the importance of an adaptive vector stepsize
- The mini-batch stochastic gradient descent (SGD) update rule
- Understanding why SGD is a more computationally efficient update than GD
- Understanding the momentum update

Ch. 4: Optimization

- You will not be tested on
- Remembering the formulas for momentum, RMSProp and Adam.
- But you should at this point know the second-order and first-order gradient descent and mini-batch SGD updates (these are very generic)
- You will not need to compute any Hessians

All the Updates

- Assumes we have $c(\mathbf{w})=\frac{1}{n} \sum_{i=1}^{n} c_{i}(\mathbf{w})$
- Second-order GD: $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t}-\mathbf{H}_{c\left(w_{t}\right)}^{-1} \nabla c\left(\mathbf{w}_{t}\right)$
- First-order GD with vector stepsizes: $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t}-\boldsymbol{\eta}_{t} \cdot \nabla c\left(\mathbf{w}_{t}\right)$
- element-wise product with stepsize
- Mini-batch SGD with vector stepsizes, using a mini-batch \mathscr{B} of indices:

$$
\mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t}-\boldsymbol{\eta}_{t} \cdot \frac{1}{b} \sum_{i \in \mathscr{B}} \nabla c_{i}\left(\mathbf{w}_{t}\right)
$$

Some optimization questions

- We use $c(\mathbf{w})=\frac{1}{n} \sum_{i=1}^{n} c_{i}(\mathbf{w})$. But when we did LR we used

$$
c(\mathbf{w})=\sum_{i=1}^{n} c_{i}(\mathbf{w})=\frac{1}{2}\|\mathbf{X} \mathbf{w}-\mathbf{y}\|_{2}^{2} \text {. Is this mismatch a problem? }
$$

. How do we write the Ridge Regression loss as $c(\mathbf{w})=\frac{1}{n} \sum_{i=1}^{n} c_{i}(\mathbf{w})$?

Some optimization questions

- We use $c(\mathbf{w})=\frac{1}{n} \sum_{i=1}^{n} c_{i}(\mathbf{w})$. But when we did LR we used

$$
c(\mathbf{w})=\sum_{i=1}^{n} c_{i}(\mathbf{w})=\frac{1}{2}\|\mathbf{X} \mathbf{w}-\mathbf{y}\|_{2}^{2} \text {. Is this mismatch a problem? }
$$

- Answer: the constant $1 / \mathrm{n}$ in front does not change the solution. For OLS, it is really not necessary to include $1 / n$. When talking about GD and SGD, its useful to think of c as an expectation over losses per sample
- Though even for OLS it can be useful to normalize

Extra: What is the OLS solution for the normalized objective?

. $c(\mathbf{w})=\frac{1}{n} \sum_{i=1}^{n} c_{i}(\mathbf{w})=\frac{1}{2 n}\|\mathbf{X w}-\mathbf{y}\|_{2}^{2}$ gives gradients

- $\frac{1}{n} \mathbf{X}^{\top} \mathbf{X w}=\frac{1}{n} \mathbf{X}^{\top} \mathbf{y}$ and so $\mathbf{w}=\left(\frac{1}{n} \mathbf{X}^{\top} \mathbf{X}\right)^{-1} \frac{1}{n} \mathbf{X}^{\top} \mathbf{y}$
- Notice that the $1 / n$ comes outside the inverse and becomes n
- $\mathbf{w}=\left(\frac{1}{n} \mathbf{X}^{\top} \mathbf{X}\right)^{-1} \frac{1}{n} \mathbf{X}^{\top} \mathbf{y}=n\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \frac{1}{n} \mathbf{X}^{\top} \mathbf{y}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}$

Some optimization questions

- We use $c(\mathbf{w})=\frac{1}{n} \sum_{i=1}^{n} c_{i}(\mathbf{w})$. But when we did LR we used

$$
c(\mathbf{w})=\sum_{i=1}^{n} c_{i}(\mathbf{w})=\frac{1}{2}\|\mathbf{X} \mathbf{w}-\mathbf{y}\|_{2}^{2} \text {. Is this mismatch a problem? }
$$

. How do we write the Ridge Regression loss as $c(\mathbf{w})=\frac{1}{n} \sum_{i=1}^{n} c_{i}(\mathbf{w})$?

A normalized RR objective

- $\frac{1}{2}\|\mathbf{X w}-\mathbf{y}\|_{2}^{2}+\frac{\lambda}{2}\|\mathbf{w}\|_{2}^{2}$. What is the normalized c ?
- $c(\mathbf{w})=\frac{1}{n} \sum_{i=1}^{n} c_{i}(\mathbf{w})=\frac{1}{2 n}\|\mathbf{X} \mathbf{w}-\mathbf{y}\|_{2}^{2}+\frac{\lambda}{2 n}\|\mathbf{w}\|_{2}^{2}=\frac{1}{n}\left(\frac{1}{2}\|\mathbf{X} \mathbf{w}-\mathbf{y}\|_{2}^{2}+\frac{\lambda}{2}\|\mathbf{w}\|_{2}^{2}\right)$
- Therefore must have $c_{i}(\mathbf{w})=\frac{1}{2}\left(\mathbf{x}_{i}^{\top} \mathbf{w}-y_{i}\right)^{2}+\frac{\lambda}{2}\|\mathbf{w}\|_{2}^{2}$
- Makes very clear that regularizer has a diminishing role with increasing n

A normalized RR objective

- $\frac{1}{2}\|\mathbf{X w}-\mathbf{y}\|_{2}^{2}+\frac{\lambda}{2}\|\mathbf{w}\|_{2}^{2}$. What is the normalized c?
- $c(\mathbf{w})=\frac{1}{n} \sum_{i=1}^{n} c_{i}(\mathbf{w})=\frac{1}{2 n}\|\mathbf{X} \mathbf{w}-\mathbf{y}\|_{2}^{2}+\frac{\lambda}{2 n}\|\mathbf{w}\|_{2}^{2}=\frac{1}{n}\left(\frac{1}{2}\|\mathbf{X} \mathbf{w}-\mathbf{y}\|_{2}^{2}+\frac{\lambda}{2}\|\mathbf{w}\|_{2}^{2}\right)$
- Therefore must have $c_{i}(\mathbf{w})=\frac{1}{2}\left(\mathbf{x}_{i}^{\top} \mathbf{w}-y_{i}\right)^{2}+\frac{\lambda}{2}\|\mathbf{w}\|_{2}^{2}$
- Makes very clear that regularizer has a diminishing role with increasing n
- Question: What is the mini-batch SGD update for RR?

Mini-batch SGD for RR

- Therefore must have $c_{i}(\mathbf{w})=\frac{1}{2}\left(\mathbf{x}_{i}^{\top} \mathbf{w}-y_{i}\right)^{2}+\frac{\lambda}{2}\|\mathbf{w}\|_{2}^{2}$
- Question: What is the mini-batch SGD update for RR?
- $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t}-\boldsymbol{\eta}_{t} \cdot \frac{1}{b} \sum_{i \in \mathscr{B}} \nabla c_{i}\left(\mathbf{w}_{t}\right)$
- where $\nabla c_{i}(\mathbf{w})=\left(\mathbf{x}_{i}^{\top} \mathbf{w}-y_{i}\right) \mathbf{x}_{i}+\lambda \mathbf{w}$

The Hessian and curvature

- The Hessian and second-derivative have a clear correspondence using the directional derivative
- The curvature (second-derivative) is about the shape of the bowl (wide flat bowl, or steep bowl)
- The gradient is at a specific point in that bowl, and can be big or small

Visualizing the difference

Curvature is 0.5 (more flat)

Second-order stepsize is always 2 here, for both gradients

The Hessian has two uses

- The Hessian also helps us know: are we in a local-min, local-max or potentially a saddlepoint?
- But this question only uses the sign of the eigenvalues of the Hessian. The magnitudes give additional information (about curvature)
- Signs tell us type of bowl (convex or concave)
- Magnitudes tells us the shape of the bowl
- We care more about Hessian approximations to approximate curvature

Momentum

- Replaces update with an exponential average of gradients
- $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t}-\boldsymbol{\eta}_{t} \cdot \mathbf{g}_{t}$ becomes $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t}-\boldsymbol{\eta}_{t} \cdot \mathbf{m}_{t+1}$ for either
- $\mathbf{m}_{t+1}=\mathbf{g}_{t}+\beta \mathbf{m}_{t}$ or normalized $\mathbf{m}_{t+1}=(1-\beta) \mathbf{g}_{t}+\beta \mathbf{m}_{t}$
- Smooths descent direction

Normalizing the momentum

- Equivalent to use $\mathbf{m}_{t+1}=\mathbf{g}_{t}+\beta \mathbf{m}_{t}$ or normalized $\mathbf{m}_{t+1}=(1-\beta) \mathbf{g}_{t}+\beta \mathbf{m}_{t}$
- To get the normalized one, equivalent to use $\mathbf{m}_{t+1}=\mathbf{g}_{t}+\beta \mathbf{m}_{t}$ and then normalize ($1-\beta$) \mathbf{m}_{t+1}; the normalization absorbed into the stepsize η
. Notice $\mathbf{m}_{t+1}=\mathbf{g}_{t}+\beta \mathbf{m}_{t}=\mathbf{g}_{t}+\beta \mathbf{g}_{t-1}+\beta^{2} \mathbf{m}_{t-1}=\ldots=\sum_{i=0}^{t} \beta^{i} \mathbf{g}_{t-i}$
- $\mathbf{m}_{t+1}=(1-\beta) \mathbf{g}_{t}+\beta \mathbf{m}_{t}=(1-\beta) \mathbf{g}_{t}+\beta(1-\beta) \mathbf{g}_{t-1}+\beta^{2} \mathbf{m}_{t-1}=\ldots=(1-\beta) \sum_{i=0}^{t} \beta^{i} \mathbf{g}_{t-i}$

Momentum vs RMSProp

- RMSProp slows down descent if several big gradients in a row
- Momentum seems to accelerate if so. What's the deal?

Momentum vs RMSProp

- RMSProp slows down descent if several big gradients in a row
- Momentum seems to accelerate if so. What's the deal?
- Answer: we should think of momentum actually more as dampening.
- It takes an average of gradient, so it doesn't really accumulate large values (as long as we normalize, or make the stepsize out in front a bit smaller)
- But it nicely avoids oscillating when gradients change signs
- RMSProp does not as effectively prevent oscillation, since it just uses magnitude not sign

Ch. 5: Generalized Linear Models

- Understand the purpose of the generalization from linear regression to GLMs
- Understand that the exponential family distribution underlies GLMs
- Know that linear regression, Poisson regression, logistic regression and multinomial logistic regression are examples of GLMs
- Know the distributions and transfers that correspond to each of these four GLMs
- e.g., Poisson regression has a Poisson distribution $p(y \mid x)$ with transfer exp

Generalized Linear Models (GLMs)

- Generalizes linear regression and $p(y \mid x)$ a Gaussian: allows $p(y \mid x)$ to be any natural exponential family distribution with natural parameter $\theta(x)$
- In GLMs, we learn the natural parameter $\theta(x)=x^{\top} w$
- Then $\mathbb{E}[Y \mid x]=g(\theta(x))$ for transfer function g
- e.g., Gaussian with fixed (unknown) variance has $g=$ identity
- e.g., Bernoulli has $g=\sigma$ (i.e., $\sigma(\theta(x))=\mathbb{E}[Y \mid x]$)
- e.g., Poisson p(y|x) has $g=\exp$
- e.g., Multinomial (categorial) $p(y \mid x)$ for multi-class has $g=$ softmax

Exponential Family Distribution

- Generalize from $p(y \mid \mathbf{x})=\mathcal{N}\left(\mathbf{x}^{\top} \mathbf{w}, \sigma^{2}\right)$ to a wider set of distributions
- $p(y \mid \mathbf{x})=\exp (\theta(\mathbf{x}) y-a(\theta(\mathbf{x}))+b(y))$ for $\theta(\mathbf{x})=\mathbf{x}^{\top} \mathbf{w}$
- More generally, y can also be multivariate giving. Let \mathbf{y} be a row vector.
- $p(\mathbf{y} \mid \mathbf{x})=\exp (\langle\theta(\mathbf{x}), \mathbf{y}\rangle-a(\theta(\mathbf{x}))+b(y))$ for $\theta(\mathbf{x})=\mathbf{x W}$
- and where the log-partition function a inputs vectors instead of scalars
- For these distributions, using $g=\nabla a$ and $\theta(\mathbf{x})=\mathbf{x W}$ with log-likelihood results in a convex optimization

Exponential Family Distribution

- Generalize from $p(y \mid \mathbf{x})=\mathscr{N}\left(\mathbf{x}^{\top} \mathbf{w}, \sigma^{2}\right)$ to a wider set of distributions
- More generally, y can also be multivariate giving. Let \mathbf{y} be a row vector.
- $p(\mathbf{y} \mid \mathbf{x})=\exp (\langle\theta(\mathbf{x}), \mathbf{y}\rangle-a(\theta(\mathbf{x}))+b(y))$ for $\theta(\mathbf{x})=\mathbf{x} \mathbf{W}$
- and where the log-partition function a inputs vectors instead of scalars
- For these distributions, using $g=\nabla a$ and $\theta(\mathbf{x})=\mathbf{x W}$ with log-likelihood results in a convex optimization
- Question: why is it useful that this is a convex optimization?

Switch to whiteboard and practice quiz

- The practice quiz cover the remaining review

