CMPUT 367: Intermediate Machine Learning

Quiz Review

Comments

- The goal of the exam is to test (a) did you understand the basic ideas and (b) can you apply that understanding
- Answers can be relatively short, say at most 5 sentences
- I will mark these and will look for your thought process. As this is the second time this course is taught, I will err on the side of being generous; so help me out by letting me see how you reasoned about the question

Ch 2: Probability Basics

- Expectations and variance
- Independence and conditional independence \bullet
- Joint probabilities, marginal and conditional probabilities
- You will not yet be tested on
 - Mixtures of distributions
 - KL divergences to compare distributions

Some questions (1)

- Assume X is a random vector of dimension d, with covariance Σ

• Question: Does this mean \mathbf{X} is a multivariate Gaussian? Why or why not?

Some questions (2)

- Assume X is a random vector of dimension d, with covariance Σ
- **Question**: Does this mean \mathbf{X} is a multivariate Gaussian? Why or why not? \bullet
- **Answer:** No, covariance is defined for any of the distributions we talk • about. The variable ${f X}$ can even consist of both continuous and discrete random variables

Some questions (3)

- Assume X is a random vector of dimension d, with covariance Σ
- the formula for $Cov(X_1, X_2)$?
- Recall: $Cov(X_1, X_2) = \mathbb{E}[(X_1 \mathbb{E}[X_1])(X_2 \mathbb{E}[X_2])]$

• Follow-up question: If X_1 is continuous and X_2 is discrete, then what is

Some questions (4)

- Assume X is a random vector of dimension d, with covariance Σ
- Follow-up: If X_1 is continuous and X_2 is discrete, then what is the formula for $Cov(X_1, X_2)$?
- Answer: Let μ_1 and μ_2 be the means for X_1 and X_2 respectively $Cov(X_1, X_2) = \mathbb{E}[(X_1 - \mathbb{E}[X_1])(X_2 - \mathbb{E}[X_2])]$ $= \int_{\mathcal{X}_1} \sum_{x_2 \in \mathcal{X}_2} p(x_1, x_2)(x_1)$ $= \int_{\mathcal{X}_1} p(x_1) \sum_{x_2 \in \mathcal{X}_2} p(x_2 | x_2)$ lacksquare

$$(-\mu_1)(x_2 - \mu_2)dx_1$$

$$(x_1)(x_1 - \mu_1)(x_2 - \mu_2)dx_1$$

Some questions (5)

- Assume X is a random vector of dimension d, with covariance Σ
- Now assume \mathbf{X} is a multivariate Gaussian

• Question: If the first eigenvalue in Σ is very big (1000) and the second is very small (0.1), then what does this tell us about the shape of the Gaussian?

Some questions (5)

- Assume X is a random vector of dimension d, with covariance Σ
- Now assume \mathbf{X} is a multivariate Gaussian
- \bullet
- \bullet

Question: If the first eigenvalue in Σ is very big (1000) and the second is very small (0.1), then what does this tell us about the shape of the Gaussian?

Answer: The distribution is wide in one orientation and narrow in another

Example of eigenvalues

 $\Sigma = \begin{vmatrix} 1.0 & 0.75 \\ 0.75 & 1.0 \end{vmatrix}$

- This Σ has singular values: $\sigma_1 = 1.75$, $\sigma_2 = 0.25$
- These are also the eigenvalues for Σ !
- This is not true in general. Why is is true for Σ ?

Example of eigenvalues

 $\Sigma = \begin{vmatrix} 1.0 & 0.75 \\ 0.75 & 1.0 \end{vmatrix}$

decomposition is

tell us about Λ ?

- This Σ has singular values: $\sigma_1 = 1.75$, $\sigma_2 = 0.25$
- These are also the eigenvalues for Σ !
- For a square, symmetric matrix, the eigenvalue
- $\Sigma = U \Lambda U^{\top}$ for orthonormal U, diagonal Λ
- We also know Σ is positive definite. What does this

Example of eigenvalues

decomposition is

- This Σ has singular values: $\sigma_1 = 1.75$, $\sigma_2 = 0.25$
- These are also the eigenvalues for Σ !
- For a square, symmetric matrix, the eigenvalue
- $\Sigma = U \Lambda U^{\top}$ for orthonormal U, diagonal Λ
- $\pmb{\Sigma}$ is positive definite, so Λ is a diagonal matrix with positive terms on the diagonal Therefore, $\Sigma = U \Lambda U^{\top}$ is also a valid SVD

Ch 3: Revisiting Linear Regression

- Linear regression objective and closed-form matrix solution (OLS) • but you don't need to remember the formula
- Understanding why small singular values can indicate we get overfitting \bullet
- The utility of I2 regularization for avoiding issues with small singular values
- The bias-variance trade-off, and relationship to the covariance matrix and the singular values of the data matrix

Linear Regression Objectives

• LR objective
$$\frac{1}{2} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|_2^2 = \frac{1}{2}$$

• Ridge Regression objective $\frac{1}{2} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2 + \frac{\pi}{2} ||\mathbf{w}||_2^2$

Question: How do we get the LR objective from the RR objective? \bullet

$$\sum_{i=1}^{n} (\mathbf{x}_{i}^{\mathsf{T}}\mathbf{w} - y_{i})^{2}$$
$$\mathbf{w} - \mathbf{y} \|_{2}^{2} + \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2}$$

Linear Regression Objectives

- LR objective $\frac{1}{2} \|\mathbf{X}\mathbf{w} \mathbf{y}\|_2^2 = \frac{1}{2}$
- Ridge Regression objective $\frac{1}{2} \| \mathbf{X} \|$
- **Question**: How do we get the LR objective from the RR objective?
- **Answer**: Set $\lambda = 0$ (regularization weight is zero, so no regularizer)

$$\sum_{i=1}^{n} (\mathbf{x}_i^{\mathsf{T}} \mathbf{w} - y_i)^2$$

$$\mathbf{w} - \mathbf{y} \|_2^2 + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$$

Linear Regression Solution

• The closed form solution satisfies Aw = b for $A = X^T X$ and $b = X^T y$ • Question: Our goal is to minimize $\frac{1}{2} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2$. Why can't we just use $\mathbf{w} = \mathbf{X}^{-1}\mathbf{y}$? This would be great because then we would have $\mathbf{X}\mathbf{w} = \mathbf{y}$

Linear Regression Solution

- The closed form solution satisfies Aw = b for A = X'X and b = X'y
- Question: Our goal is to minimize $\frac{1}{2} ||\mathbf{X}\mathbf{w} \mathbf{y}||_2^2$. Why can't we just use $\mathbf{w} = \mathbf{X}^{-1}\mathbf{y}$? Then we would have $\mathbf{X}\mathbf{w} = \mathbf{y}$
- Answer: X is typically not a square matrix and so cannot be inverted (inverse only exists for square matrices)
- Instead, the pseudo-inverse $\mathbf{X}^{\dagger} \in \mathbb{R}^{d \times n}$ is the closest we get to an inverse and $\mathbf{w} = \mathbf{X}^{\dagger}\mathbf{y}$ (here $\mathbf{X}^{\dagger}\mathbf{X} = \mathbf{I} \in \mathbb{R}^{d \times d}$ if \mathbf{X} full rank, but $\mathbf{X}\mathbf{X}^{\dagger} \neq \mathbf{I} \in \mathbb{R}^{n \times n}$)
- Notice $\mathbf{X}\mathbf{w} = \mathbf{X}\mathbf{X}^{\dagger}\mathbf{y} \neq \mathbf{y}$, but in some sense closest approximation

Linear Regression Solution and Overfitting

- solutions for W
 - Namely this linear system is under-constrained
- More likely, \mathbf{A} is nearly low-rank; equivalently \mathbf{X} is nearly low-rank
- Typical reason: insufficient data
- spanned by the data

• The closed form solution satisfies Aw = b for $A = X^{T}X$ and $b = X^{T}y$

• If \mathbf{A} is low-rank (\mathbf{X} has a zero singular values), then there are infinitely many

• In d dimensions, the observed data **looks** like it lies in a lower-dimensional space, because it takes many points to start covering the actual region

- We know that \mathbf{X} can have small singular values if
 - input features are highly correlated (or linearly dependent)
 - OR we have insufficient data lacksquare
- does that imply that \mathbf{X} will be low rank?

LR and Overfitting

• Question: If the true y is only a function of the first two features of \mathbf{X} , then

- We know that \mathbf{X} can have small singular values if
 - input features are highly correlated (or linearly dependent)
 - OR we have insufficient data
- Question: If the true y is only a function of the first three features of \mathbf{X} , then does that imply that \mathbf{X} will be low rank?
- **Answer:** likely not. They are different random variables. The functional • relationship is about how the RVs x and y are related. It does not necessarily imply anything about the relationships between RVs within \mathbf{X}

LR and Overfitting

- imply that \mathbf{X} will be low rank?
- \bullet relationship is about how the RVs x and y are related. It does not
- reason for the relationship, without further info

LR and Overfitting

• If the true y is only a function of the first three features of \mathbf{X} , then does that

Answer: likely not. They are different random variables. The functional necessarily imply anything about the relationships between RVs within \mathbf{x}

Exception: y might only be a function of the first three features because the rest are all perfectly redundant. Then both y is only related to the first three features AND \mathbf{X} is low rank. But there is no reason to believe this is the

The LR solution, with and without regularization

- If λ reasonably big (say 10^-3), then we avoid dividing by a very small singular value
- **Question:** Why do we subscript these with MLE and MAP? \bullet

Bias and variance

 \mathbf{W}_{MLE} is unbiased and potentially

 \bullet $\mathbf{W}_{\mbox{MAP}}$ is biased and lower variance.

- Question: when do we expect $w_{\mbox{MAP}}$ to be better than $w_{\mbox{MLE}}?$

Thigh-variance,
$$\sigma^2 \mathbb{E}\left[\sum_{j=1}^d \sigma_j^{-2}\right]$$

ce, $\sigma^2 \mathbb{E}\left[\sum_{j=1}^d \frac{\sigma_j^2}{(\sigma_j^2 + \lambda)^2}\right]$

Bias and variance

 \mathbf{W}_{MLE} is unbiased and potentially

 \bullet $w_{\mbox{MAP}}$ is biased and lower variand

- **Exercise**: show that the variance for $w_{\mbox{MAP}}$ always lower than $w_{\mbox{MLE}}$

Thigh-variance,
$$\sigma^2 \mathbb{E}\left[\sum_{j=1}^d \sigma_j^{-1}\right]$$

ce, $\sigma^2 \mathbb{E}\left[\sum_{j=1}^d \frac{\sigma_j^2}{(\sigma_j^2 + \lambda)^2}\right]$

You will not be tested on

- Predicting multiple outputs simultaneously
- Using weighted error functions
- regression)
- The formulas for bias and variance for OLS and ridge regression

Ch 3: Revisiting Linear Regression

The closed-form solutions for OLS or ridge regression (I2-regularized linear

Ch. 4: Optimization

- Second-order multivariate gradient descent
- Understanding why the Hessian in the second-order update accounts for differences in curvature in different dimensions
- Understanding the importance of an adaptive vector stepsize
- The mini-batch stochastic gradient descent (SGD) update rule
- Understanding why SGD is a more computationally efficient update than GD
- Understanding the momentum update

Ch. 4: Optimization

- You will not be tested on ullet
- Remembering the formulas for momentum, RMSProp and Adam.
- You will not need to compute any Hessians

But you should at this point know the second-order and first-order gradient descent and mini-batch SGD updates (these are very generic)

- Assumes we have $c(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} c_i(\mathbf{w})$
- Second-order GD: $\mathbf{W}_{t+1} \leftarrow \mathbf{W}_t \mathbf{H}_{c(w_t)}^{-1} \nabla c(\mathbf{W}_t)$
- First-order GD with vector stepsizes: $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t \boldsymbol{\eta}_t \cdot \nabla c(\mathbf{w}_t)$
 - element-wise product with stepsize
- lacksquare $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - \boldsymbol{\eta}_t \cdot \frac{1}{b} \sum \nabla c_i(\mathbf{w}_t)$ $i \in \mathscr{B}$

All the Updates

Mini-batch SGD with vector stepsizes, using a mini-batch ${\mathscr B}$ of indices:

Some optimization questions

• We use
$$c(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} c_i(\mathbf{w})$$
. But
 $c(\mathbf{w}) = \sum_{i=1}^{n} c_i(\mathbf{w}) = \frac{1}{2} ||\mathbf{X}\mathbf{w} - \mathbf{y}||$

How do we write the Ridge Regres

t when we did LR we used

 $\mathbf{y} \|_{2}^{2}$. Is this mismatch a problem?

ssion loss as
$$c(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} c_i(\mathbf{w})$$
?

Some optimization questions

• We use
$$c(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} c_i(\mathbf{w})$$
. But
 $c(\mathbf{w}) = \sum_{i=1}^{n} c_i(\mathbf{w}) = \frac{1}{2} ||\mathbf{X}\mathbf{w} - \mathbf{y}||$

- **Answer**: the constant 1/n in front does not change the solution. For OLS, it is really not necessary to include 1/n. When talking about GD and SGD, its useful to think of c as an expectation over losses per sample
- Though even for OLS it can be useful to normalize

- t when we did LR we used
- $\mathbf{y} \|_{2}^{2}$. Is this mismatch a problem?

Extra: What is the OLS solution for the normalized objective?

•
$$c(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} c_i(\mathbf{w}) = \frac{1}{2n} ||\mathbf{X}\mathbf{w}|$$

•
$$\frac{1}{n} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} = \frac{1}{n} \mathbf{X}^{\mathsf{T}} \mathbf{y}$$
 and so $\mathbf{w} =$

Notice that the 1/n comes outside the inverse and becomes n

•
$$\mathbf{w} = \left(\frac{1}{n}\mathbf{X}^{\mathsf{T}}\mathbf{X}\right)^{-1}\frac{1}{n}\mathbf{X}^{\mathsf{T}}\mathbf{y} = n\left(\mathbf{X}^{\mathsf{T}}\mathbf{X}\right)^{-1}\frac{1}{n}\mathbf{X}^{\mathsf{T}}\mathbf{y} = \left(\mathbf{X}^{\mathsf{T}}\mathbf{X}\right)^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

 $-\mathbf{y}\|_2^2$ gives gradients

$$\left(\frac{1}{n}\mathbf{X}^{\mathsf{T}}\mathbf{X}\right)^{-1}\frac{1}{n}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

Some optimization questions

• We use
$$c(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} c_i(\mathbf{w})$$
. But
 $c(\mathbf{w}) = \sum_{i=1}^{n} c_i(\mathbf{w}) = \frac{1}{2} ||\mathbf{X}\mathbf{w} - \mathbf{y}||$

How do we write the Ridge Regres

t when we did LR we used

 $\mathbf{y} \|_{2}^{2}$. Is this mismatch a problem?

ssion loss as
$$c(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} c_i(\mathbf{w})$$
?

A normalized RR objective

•
$$\frac{1}{2} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|_2^2 + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$$
. What i
• $c(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^n c_i(\mathbf{w}) = \frac{1}{2n} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|$

• Therefore must have $c_i(\mathbf{w}) = \frac{1}{2}(\mathbf{x})$

is the normalized c?

$$|_{2}^{2} + \frac{\lambda}{2n} \|\mathbf{w}\|_{2}^{2} = \frac{1}{n} \left(\frac{1}{2} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|_{2}^{2} + \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2} \right)$$
$$\mathbf{x}_{i}^{\mathsf{T}} \mathbf{w} - y_{i}^{2} + \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2}$$

Makes very clear that regularizer has a diminishing role with increasing n

A normalized RR objective

•
$$\frac{1}{2} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|_2^2 + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$$
. What i
• $c(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^n c_i(\mathbf{w}) = \frac{1}{2n} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|$

• Therefore must have $c_i(\mathbf{w}) = \frac{1}{2}(\mathbf{x})$

- \bullet
- **Question:** What is the mini-batch SGD update for RR?

is the normalized c?

$$|_{2}^{2} + \frac{\lambda}{2n} \|\mathbf{w}\|_{2}^{2} = \frac{1}{n} \left(\frac{1}{2} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|_{2}^{2} + \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2} \right)$$
$$\mathbf{x}_{i}^{\mathsf{T}} \mathbf{w} - y_{i}^{2} + \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2}$$

Makes very clear that regularizer has a diminishing role with increasing n

Mini-batch SGD for RR

• Therefore must have $c_i(\mathbf{w}) = \frac{1}{2}(\mathbf{x}_i^{\mathsf{T}}\mathbf{w} - y_i)^2 + \frac{\lambda}{2}\|\mathbf{w}\|_2^2$

Question: What is the mini-batch SGD update for RR? lacksquare

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - \boldsymbol{\eta}_t \cdot \frac{1}{b} \sum_{i \in \mathscr{B}} \nabla c_i(\mathbf{w}_t)$$

• where $\nabla c_i(\mathbf{w}) = (\mathbf{x}_i^{\top}\mathbf{w} - y_i)\mathbf{x}_i + \lambda \mathbf{w}$

The Hessian and curvature

- directional derivative
- bowl, or steep bowl)

• The Hessian and second-derivative have a clear correspondence using the

• The curvature (second-derivative) is about the shape of the bowl (wide flat

• The gradient is at a specific point in that bowl, and can be big or small

Second-order stepsize is always 2 here, for both gradients Second-order stepsize is always 0.5 here, for both gradients

the difference

$$f(x)=2x^{2}$$

$$f'(x)=2$$
big gradient
advent

$$Gurrature is 2.0$$
(more steep).

The Hessian has two uses

- The Hessian also helps us know: are we in a local-min, local-max or potentially a saddlepoint?
- magnitudes give additional information (about curvature)
 - Signs tell us type of bowl (convex or concave)
 - Magnitudes tells us the shape of the bowl

• But this question only uses the sign of the eigenvalues of the Hessian. The

• We care more about Hessian approximations to approximate curvature

Momentum

- Replaces update with an exponential average of gradients
- $\mathbf{W}_{t+1} \leftarrow \mathbf{W}_t \boldsymbol{\eta}_t \cdot \mathbf{g}_t$ becomes $\mathbf{W}_{t+1} \leftarrow \mathbf{W}_t \boldsymbol{\eta}_t \cdot \mathbf{m}_{t+1}$ for either
- $\mathbf{m}_{t+1} = \mathbf{g}_t + \beta \mathbf{m}_t$ or normalized $\mathbf{m}_{t+1} = (1 \beta)\mathbf{g}_t + \beta \mathbf{m}_t$
- Smooths descent direction

Normalizing the momentum

- Equivalent to use $\mathbf{m}_{t+1} = \mathbf{g}_t + \beta \mathbf{m}_t$ or normalized $\mathbf{m}_{t+1} = (1 - \beta)\mathbf{g}_t + \beta \mathbf{m}_t$

Notice $\mathbf{m}_{t+1} = \mathbf{g}_t + \beta \mathbf{m}_t = \mathbf{g}_t +$

 $\mathbf{m}_{t+1} = (1 - \beta)\mathbf{g}_t + \beta\mathbf{m}_t = (1 - \beta)\mathbf{g}_t - \beta\mathbf{g}_t -$

• To get the normalized one, equivalent to use $\mathbf{m}_{t+1} = \mathbf{g}_t + \beta \mathbf{m}_t$ and then normalize $(1 - \beta)\mathbf{m}_{t+1}$; the normalization absorbed into the stepsize η

$$\beta \mathbf{g}_{t-1} + \beta^2 \mathbf{m}_{t-1} = \dots = \sum_{i=0}^{t} \beta^i \mathbf{g}_{t-i}$$

+
$$\beta(1 - \beta)\mathbf{g}_{t-1} + \beta^2 \mathbf{m}_{t-1} = \dots = (1 - \beta) \sum_{i=0}^{t} \beta^i \mathbf{g}_{t-i}$$

Momentum vs RMSProp

- RMSProp slows down descent if several big gradients in a row
- Momentum seems to accelerate if so. What's the deal?

Momentum vs RMSProp

- RMSProp slows down descent if several big gradients in a row
- Momentum seems to accelerate if so. What's the deal?
- Answer: we should think of momentum actually more as dampening.
- It takes an average of gradient, so it doesn't really accumulate large values (as long as we normalize, or make the stepsize out in front a bit smaller)
- But it nicely avoids oscillating when gradients change signs
- RMSProp does not as effectively prevent oscillation, since it just uses magnitude not sign

Ch. 5: Generalized Linear Models

- Understand the purpose of the generalization from linear regression to GLMs
- Understand that the exponential family distribution underlies GLMs
- Know that linear regression, Poisson regression, logistic regression and multinomial logistic regression are examples of GLMs
- Know the distributions and transfers that correspond to each of these four GLMs
 - e.g., Poisson regression has a Poisson distribution $p(y \mid x)$ with transfer exp

Generalized Linear Models (GLMs)

- Generalizes linear regression and $p(y \mid x)$ a Gaussian: allows $p(y \mid x)$ to be any natural exponential family distribution with natural parameter $\theta(x)$
- In GLMs, we learn the natural parameter $\theta(x) = x^{\top} w$
- Then $\mathbb{E}[Y|x] = g(\theta(x))$ for transfer function g
 - e.g., Gaussian with fixed (unknown) variance has g = identity
 - e.g., Bernoulli has $g = \sigma$ (i.e., $\sigma(\theta(x)) = \mathbb{E}[Y|x]$)
 - e.g., Poisson p(y | x) has g = exp
 - e.g., Multinomial (categorial) $p(y \mid x)$ for multi-class has g = softmax

Exponential Family Distribution

- Generalize from $p(y | \mathbf{x}) = \mathcal{N}(\mathbf{x}^{\mathsf{T}}\mathbf{w}, \sigma^2)$ to a wider set of distributions
- $p(y | \mathbf{x}) = \exp(\theta(\mathbf{x})y a(\theta(\mathbf{x})) + b(y))$ for $\theta(\mathbf{x}) = \mathbf{x}^{\mathsf{T}}\mathbf{w}$
- More generally, y can also be multivariate giving. Let ${f y}$ be a row vector.
- $p(\mathbf{y} | \mathbf{x}) = \exp(\langle \theta(\mathbf{x}), \mathbf{y} \rangle a(\theta(\mathbf{x})) + b(\mathbf{y}))$ for $\theta(\mathbf{x}) = \mathbf{x}W$
- and where the log-partition function a inputs vectors instead of scalars
- For these distributions, using $g = \nabla a$ and $\theta(\mathbf{x}) = \mathbf{x}\mathbf{W}$ with log-likelihood results in a convex optimization

Exponential Family Distribution

- Generalize from $p(y | \mathbf{x}) = \mathcal{N}(\mathbf{x}^{\mathsf{T}} \mathbf{w}, \sigma^2)$ to a wider set of distributions
- More generally, y can also be multivariate giving. Let y be a row vector.

•
$$p(\mathbf{y} | \mathbf{x}) = \exp(\langle \theta(\mathbf{x}), \mathbf{y} \rangle - a(\theta(\mathbf{x})) + b(\mathbf{y}))$$
 for $\theta(\mathbf{x}) = \mathbf{x}\mathbf{W}$

- and where the log-partition function a inputs vectors instead of scalars
- results in a convex optimization
- Question: why is it useful that this is a convex optimization?

• For these distributions, using $g = \nabla a$ and $\theta(\mathbf{x}) = \mathbf{x}\mathbf{W}$ with log-likelihood

Switch to whiteboard and practice quiz

• The practice quiz cover the remaining review