Probability

CMPUT 367: Intermediate Machine Learning



PVIFs and PDEFs of Many Variaples

.
We can consider a d-dimensional random variable X = (X, ..., X;) with vector-valued
outcomes X = (xy, ..., Xx,), with each x; chosen from some .. Then,

Discrete case:
p: X XAy X ... XX ,;— [0,1]is a (joint) probability mass function if

Z Z Z P, X, .o xy) =1
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Continuous case:
p: X XAy X ... XA ,;— [0,00)is a (joint) probability density function if
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Rules of Probabillity Already Covered
the Multidimensional Case

Outcome spaceis X = XL | X X X ... X X,

Outcomes are multidimensional variables X =[xy, X5, . . . , X

Discrete case:
p . & — |0,1]is a (joint) probability mass function if Z p(x) =1
). (= A

Continuous case:

p . X — [0,00)is a (joint) probability density function ifJ p(xX)dx =1
VA

But useful to recognize that we have multiple variables



Marginal Distributions

A marginal distribution is defined "

integrating out the remamlng variable
‘marginalizing over” or "marginalizi
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Multidimensional PMFE often Is
simply a multi-dimensional array

Now record both commute time and number red lights
Q={4,...,14} x {1,2,3,4,5}

PMF is normalized 2-d table (histogram) of occurrences




Multivariate PMF-:
Multinomial Distribution

Sample space: X = {O,l,...,n}d

n X1 x2 Xdl o 00 —
p(xl,xZ, ...,xd) — { (Xl,xz,...,xd) al a2 ad |f.x1 +X2 + +'Xd —n

0 otherwise
d
where a; > 0, Z a =1
i=1
a; gives probability

Coefficient says how we can distribute n balls into d boxes such that the first
box contains k1 balls, the second box k2 balls, etc.




=xample: Multiple Rolls

N tosses of a 6-sided dice

d = 6, with X; = number of times we saw a |

o (X1,X, ..., %) = (3,2,2,1,4,1) means we saw 3 ones, 2 twos, 2 threes,
1 four, 4 fives and 1 six. Thismeansn = 13

All the a; = 1/6

p(xy, %5, ..., Xg) = probability of seeing x; ones, x, twos, etc. (regardless of
the order)



\Vore usefully for us:
\Vlulti-class classification

Want to categorize an item into one of d classes

Only one “roll”: n =1, x; = 1 if the item is categorized as class |
Sample space: X = {0,1 }d (e.g., outcome is (0,1,0,0) for d = 4)
o' .. X+ X+ xy =1

PX Xy oy X)) = {

0 otherwise

When d = 2, then this Is the Bernoull

For d > 2, this is called a Categorical distribution



Sampling from a
categorical distribution

 [he same as sampling proportionally to a table of probabilities
» ditems, with associated propabpllities ay, ..., a,_; where the probability for
d—1
the last item Is simply ar; = | — Z Q;

J=
1. Sample v uniformly from [0, 1] (u € [0, 1])

2. Set s=0,k=1
3. While s < u

(a) s+ s+ wy
(b) if s > u, return k
(c) k+k+1



Sampling from a
table of probabllities

e For probability values wy, ..., w,

1. Sample v uniformly from [0, 1] (u € [0, 1])
2. Set s =0,k =1
3. While s < u

(a) S < S+ W
(b) if s > u, return k
(c) k< k+1



\Vore usefully for us:
\Vlulti-class classification

Want to categorize an item into one of d classes
Only one “roll”: n =1, x; = 1 if the item is categorized as class |
Sample space: X = {0,1 }d (e.g., outcome is (0,1,0,0) for d = 4)

X1 X2 Ad | —
p(x;, %, X)) = {0‘1 ..ot ifxy +x+ e+ x; =1

0 otherwise

When d = 2, then this is the Bernoull

Question: If you have a dataset with classes % = {apple, banana, orange},
how would you convert it to use this distribution®?




\Vore usefully for us:
\Vlulti-class classification

Sample space: £ = {0,1 }d (e.g., outcome is (0,1,0,0) for d = 4)

SPs) 2] _
al'al...alifzi+zo+ - +72,=1

_ 1 42 d ] 9) d
p(zl,zz,...,zd)—{

0 otherwise

Question: If you have a dataset with classes % = {apple, banana, orange }, how would
you convert it to use this distribution®

Can rewrite RV Y to vector-valued RV Z that is a multinomial with d = 3
p(y = apple|x) = p(z = (1,0,0)[X)) = a;(X)

p(y = banana|x) = p(z = (0,1,0)|x)) = a,(x)

p(y = banana|X) = p(z = (0,0,1)|x)) = a5(x) = 1 — ;(X) — ay(x)

* Later we see how to parameterize &, @, in multinomial logistic regression



Multivariate Gaussian

1 Lo )
——(x=u)': _
T eXp( 2(X H) (X —p)

. with X € R™ andu € R?

- p(X) =

e The covariance matrix 2« consists of the covariance between each variable

o Zl] — COV(XZ, )(])

Important note! This Sigma matrix is not the same as singular values!
We re-use this symbol to mean two different things



The Covariance Matrix

X = [Xy,..., X,]

Eij — COV[XZ', X]]
v [(X@ — & [Xz]) (Xj — £ [XJD]

3 = Cov| X, X

XX '] -

c Rdxd

U X |

2[(X — E[X])(X —E(X) ]

(X




The Covariance Matrix

%dXd

X =[Xq,..., X, > = Cov[X,X] €
=E[(X - E[X])(X — E(X) ]
—E[XX']|-E[X|E[X]".

X,y € R4
Dot produgt Outer product
XTY — szyz
i=1 L1Y1r T1Y2 ... T1Yd
- L2Y1r L2Y2 ... IL2Yd
Xy =

rdyi® Tqys2 ... TdYd



Covariance for two dimensions

%dXd

X =[Xq,..., X4 > = Cov[X,X] €
=E[(X - E[X])(X - E(X) |
I XX']-E[X]|E[X]'.

X,y € R4

Example:

i XQXl X22 ] I “:[XQ] “:[Xl] ‘E[XQ]Q




Multivariate Gaussian Example

1 1 T —1 7
plw) = exp| —=(w—p) X (w—pu
27) k| 3] 2
] ] i _ - _
| M _ -1 _ | 10
— — — 1
- H2 _ _ _ 2
W1 — H1
W — U = H
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] S _ - _
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Visually
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The weighted norm with correlations

€1 . I L1 — U ]
I €9 ) - I Lo — U9 )
* The weighted norm gives a distance to the mean, for the covariance
i €1 ) i 2.3 —1.7 1 €1 ) o i 2.361 — 1.762 ) i €1 )
I €9 ) I —1.7 2.3 11 €9 ) - I —1.761 —|—2.3€2 ) I €9 )

236% + 236% — 2.46162

» |f e, is the opposite sign from e,, then the distance is larger (-2.4 ™ negative
number = positive number added to distance)

o |f e, is the same sign as e,, then the distance is larger (-2.4 * positive = negative)




1 he determinant component
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= | 22| = det(X) = product of singular values

reflects the magnitude of the covariance

What is the determinant of this Sigma?



1 he determinant component
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| 22| = det(X) = product of singular values

reflects the magnitude of the covariance

1.0 0.75

What is the determinant of this other Sigma®? =1 075 1.0

It has singular values: 6, = 1.75, 6, = 0.25



1 he determinant component

1 1 Ty —1
exXp | —=(w — >, W —
)3 Tk -

3
&
|

=10 9 | 2| = det(2) = product of singular values

reflects the magnitude of the covariance

1.0 0.75
What is the determinant of this other Sigma? 2, = 075 1.0

It has singular values: 6, = 1.75, 6, = 0.25
Answer: o, X 6, ~ .44



Mixture of Distributions

Mixture model:

T

A set of m probability distributions, {p;(z)}._,

p(x) = Z w;p; ()

where w = (wq, ws, ..., w,,) and non-negative and

221 w; = 1



Mixture of Gaussians

Mixture of m = 2 Gaussian distributions:

w1 — 075, W9 — 0.25

0.5

0.4

0.3

0.2

0.1

........ =1, 0=1
........ u=-2 0=0.75
mixture
eannssgjuuct® I .Q..' ......... L | K
-2 -1 0 2 3 4

p(x) = Z w;p; ()



EXercise

m
Show that p(x) = Z w;pAx) is a valid pmf if the p. are valid pmfs
i=1

m
when Zwl-z landw, > 0
i=1

» Show this also for the case where p is a pdf and the p; are pdfs



Exercise Solution for PMFsS

@) =) wp )
=1

» p(x) = 0 because w;p,(x) = 0, sum of nonnegative #s is nonnegative




Exercise Solution for PMFsS

Y p) =) ﬁ‘, WP (x)
XEX xed i=1




Exercise Solution for PDFsS

Y=Y Y wno [ p(x)dx = J 3 wipix)d
yA AR

XEX xed i=1 =1
= Z Z W;p(X) = ZJ w; p(x)dx
i=1 xe¥ =1 4
= 2 W, Z pi(x) = Z Wi J pix)dx
=1 xXeX =1 v4




Mixture Can Produce
Complex Distributions

b=0.4 b=0.2
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* Image from https://people.ucsc.edu/~ealdrich/Teaching/Econ114/LectureNotes/kde.html



Exercise Question

Multidimensional PMFs essentially allow any distribution (table of probabilities)
Densities for Continuous RVs are more restricted (even with mixtures)

Why not just discretize our variables and use PMFs?

Example: imagine the RV is in the range [-10, 10]

You discretize into chunks of size 0.1. How many parameters do you have to
learn”

What if you use a Gaussian mixture with 5 components?



Contrast to Sum of Gaussians

Let ¥ = W1X1 + W2X2 for Wi, W > O,WI + WhH = |

Let X be an RV with a pdf that is Gaussian mixture model with two
components, and the same weights wy, w, > O,w; +w, = 1

X#Y

Y is a Gaussian RV, so they can’t be the same (bimodal vs unimodal)

Mixture model uses convex combo of pdfs, not of RVs



INndependence and Decorrelation

e Recallif Xand Y are independent, then E[XY | = E[X]E[Y]

* |[ndependent RVs have zero correlation

Recall: Cov| X, Y| = E[XY]| — E|X]E[Y]

» Uncorrelated RVs (i.e., Cov(X, Y) = 0) might be dependent

i.e., p(x,y) # p(xX)p(y)).

» Correlation (Pearson's correlation coefficient) shows linear relationships; but can
MIssS nonlinear relationships

. Example: X ~ Unifoom{—=2, — 1,0,1,2}, Y = X?
e EIXY]=2(-2%x4)+22%x4)+ 2(-1x1D)+.2(1 x1)+.2(0x0)
. E[X]=0
. So E[XY] - E[X]E[Y]=0—-0E[Y]=0




Alternative: Mutual Information
(using the KL Divergence)

Mutual information I(X; Y) = Dy (py, | | PPy)
Only zero when X and Y independent



ENtropy

-2 X p())logp(x) X discrete
H(X) =
) — I o p(X)logp(x)dx X continuous

—ntropy measures level of dispersion (like variance), but looks at the total
spread in probabillities, rather than deviation from the mean

d
For a zero-mean X, H(X) < E(IH 27+ 1 + Indet )

e equal if X is a multivariate Gaussian

Another example: entropy of exponential distribution is —I[nA + 1, whereas
the variance is 1/4% (mean is 1/.)



Exponential Distribution

An exponential distribution iIs a distribution over the positive reals. It has one

parameter 4 > 0.
O — R+ entropy = —InAd + 1

p(w) = Aexp(—Aiw)

lambda = 0.5
entropy = —[n0.5+ 1~ 1.7

variance = 1/0.5% = 4

lambda = 1.5
entropy = —Inl.5+ 1 =~ 0.6
variance = 1/1.5% ~ 0.44

1.90 |

variance = 1/1% (mean is 1/1)
1.25 |

1.00

N

= 0.75 F

R

0.50 |5

0.20 1

0.00 |

A= 0.5
— )\ —
A=15




KL Divergence

* Images from Wikipedia

——r’_‘ e

| 1 1 1 | 1 — -
- 4 -2 > 4

Original Gaussian PDF’s KL Area to be Integrated

Called a divergence, does not satisfy requirements to be a metric/distance
- Not symmetric

- But does satisfy Dk (p||g) = 0 and
- Dk(pl1g) = 0ifand only if (iff) p = g




Alternative: Mutual Information
(using the KL Divergence)
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Dy, (P0) L(plla) = Y p(a)log =2 plz)

reX QIZ’)

or

KL(p||q) = /X p(x)log S(m)dw

Original Gaussian PDF’s KL Area to be Integrated

Mutual information I(X; Y) = DKL(pxy‘ | pxpy)



Revisiting Our Example

« Example: X ~ Uniform{—2, — 1,0,1,2}, Y = X?
e E[XY]|—E[X]E[Y]=0-=0E[Y]=0

e X =1{-2,—-1,0,1,2} and ¥ = {0,1,4}

e p(x,y)=0ify# xz, and else I1s 1/5 (is this a valid pmf”? how do you know?)
. p(x) = 1/5and p(0) = 1/5,p,(1) =2/5,p(4) = 2/5

px,y)
. KL(p| ‘pxpy) — Z p(x, y)log
(X VEXXY px(x)py(y)



Revisiting Our Example

e p(x,y) =0ify # x2, and else is 1/5 (is this a valid pmf? how do you know?)
. p.(x)=1/5and py(O) = 1/5,py(1) — Z/S»Py(4) — 2/5

p(x,y)
KI—(p‘ ‘pxpy) — Z p(x, y)l()g
(X YVEXXY Px(x)Py(Y)

1 1/5
= Z — log
S 1/5py(y)

=% Z log :

ety DY)

1 1 | 1 5
= —[1 + 41 — —[loe5+4log—]~ 1.05+#0
5[Og T ng/s] 5[og ng] F



Fun Fact

Imagine you want to learn a distribution. There is some true underlying distribution
Do, but you do not know even what type it is

* Might be Gaussian, might be a mixture model, might be something we don’t have
a hame for

Minimizing the KL to the true distribution corresponds to minimizing the negative log
iIkelihood In expectation over all data

arg mgn Dy (pol | pg) = arg mgn — E[In py(X)]

Further motivates using MLE, since with more data we get closer and closer to
n

1
minimizing —E[In py(X)] = — Z — In py(x;)
i




Fun Fact

Imagine you want to learn a distribution. There is some true underlying
distribution p,, but you do not know even what type it is

* Might be Gaussian, might be a mixture model, might be something we
don’t have a name for

arg mein Dy (pol | pg) = arg mein — E[ln py(X)]

Question: Imagine we learn a Gaussian, and the true distribution is
Gaussian. Is there a py that can get zero Dk (pg | | pg)?

What if we learn a Gaussian, but p, is a mixture model?



