Probability

CMPUT 367: Intermediate Machine Learning
Chapter 2

PMFs and PDFs of Many Variables

We can consider a d-dimensional random variable $\vec{X}=\left(X_{1}, \ldots, X_{d}\right)$ with vector-valued outcomes $\vec{x}=\left(x_{1}, \ldots, x_{d}\right)$, with each x_{i} chosen from some \mathscr{X}_{i}. Then,

Discrete case:

$p: X_{1} \times X_{2} \times \ldots \times X_{d} \rightarrow[0,1]$ is a (joint) probability mass function if

$$
\sum_{x_{1} \in \mathscr{X}_{1}} \sum_{x_{2} \in \mathscr{X}_{2}} \cdots \sum_{x_{d} \in \mathscr{X}_{d}} p\left(x_{1}, x_{2}, \ldots, x_{d}\right)=1
$$

Continuous case:
$p: \mathscr{X}_{1} \times X_{2} \times \ldots \times X_{d} \rightarrow[0, \infty)$ is a (joint) probability density function if

$$
\int_{X_{1}} \int_{X_{2}} \ldots \int_{X_{d}} p\left(x_{1}, x_{2}, \ldots, x_{d}\right) d x_{1} d x_{2} \ldots d x_{d}=1
$$

Rules of Probability Already Covered the Multidimensional Case

Outcome space is $\mathscr{X}=X_{1} \times X_{2} \times \ldots \times X_{d}$
Outcomes are multidimensional variables $\mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{d}\right]$
Discrete case:
$p: \mathscr{X} \rightarrow[0,1]$ is a (joint) probability mass function if $\sum_{\mathbf{x} \in \mathscr{X}} p(\mathbf{x})=1$
Continuous case:
$p: \mathscr{X} \rightarrow[0, \infty)$ is a (joint) probability density function if $\int_{\mathscr{X}} p(\mathbf{x}) d \mathbf{x}=1$
But useful to recognize that we have multiple variables

Marginal Distributions

A marginal distribution is defined for a subset of \vec{X} by summing or integrating out the remaining variables. (We will often say that we are "marginalizing over" or "marginalizing out" the remaining variables).

Discrete case: $p\left(x_{i}\right)=\sum_{x_{i} \in X_{1}} \cdots \sum_{x_{i-1} \in X_{i-1}} \sum_{x_{i+1} \in X_{i+1}} \cdots \sum_{x_{d} \in X_{d}} p\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{d}\right)$
Continuous:
$p\left(x_{i}\right)=\int_{x_{1}} \ldots \int_{x_{i-1}} \int_{x_{i+1}} \ldots \int_{x_{d}} p\left(x_{1}, \ldots, x_{i-1}, x_{i} x_{i+1}, \ldots, x_{d}\right) d x_{1} \ldots d x_{i-1} d x_{i+1} \ldots d x_{d}$

Multidimensional PMF often is simply a multi-dimensional array

Now record both commute time and number red lights

$$
\Omega=\{4, \ldots, 14\} \times\{1,2,3,4,5\}
$$

PMF is normalized 2-d table (histogram) of occurrences

Multivariate PMF: Multinomial Distribution

- Sample space: $\mathscr{X}=\{0,1, \ldots, n\}^{d}$
. $p\left(x_{1}, x_{2}, \ldots, x_{d}\right)=\left\{\begin{array}{l}\binom{n}{x_{1}, x_{2}, \ldots, x_{d}} \alpha_{1}^{x_{1}} \alpha_{2}^{x_{2}} \ldots \alpha_{d}^{x_{d} \text { if } x_{1}+x_{2}+\cdots+x_{d}=n} \\ 0 \quad \text { otherwise }\end{array}\right.$
- where $\alpha_{i} \geq 0, \quad \sum_{i=1}^{d} \alpha_{i}=1$
- α_{i} gives probability
- Coefficient says how we can distribute n balls into d boxes such that the first box contains k1 balls, the second box k2 balls, etc.

Example: Multiple Rolls

- n tosses of a 6-sided dice
- $\mathrm{d}=6$, with $x_{i}=$ number of times we saw a i
- $\left(x_{1}, x_{2}, \ldots, x_{6}\right)=(3,2,2,1,4,1)$ means we saw 3 ones, 2 twos, 2 threes, 1 four, 4 fives and 1 six. This means $\mathrm{n}=13$
- All the $\alpha_{i}=1 / 6$
- $p\left(x_{1}, x_{2}, \ldots, x_{6}\right)=$ probability of seeing x_{1} ones, x_{2} twos, etc. (regardless of the order)

More usefully for us: Multi-class classification

- Want to categorize an item into one of d classes
- Only one "roll": $\mathrm{n}=1, x_{i}=1$ if the item is categorized as class i
- Sample space: $\mathscr{X}=\{0,1\}^{d}$ (e.g., outcome is $(0,1,0,0)$ for $\left.\mathrm{d}=4\right)$
. $p\left(x_{1}, x_{2}, \ldots, x_{d}\right)= \begin{cases}\alpha_{1}^{x_{1}} \alpha_{2}^{x_{2}} \ldots \alpha_{d}^{x_{d}} \text { if } x_{1}+x_{2}+\cdots+x_{d}=1 \\ 0 & \text { otherwise }\end{cases}$
- When $\mathrm{d}=2$, then this is the Bernoulli
- For $\mathrm{d}>2$, this is called a Categorical distribution

Sampling from a categorical distribution

- The same as sampling proportionally to a table of probabilities
- d items, with associated probabilities $\alpha_{1}, \ldots, \alpha_{d-1}$ where the probability for the last item is simply $\alpha_{d}=1-\sum_{j=}^{d-1} \alpha_{j}$

1. Sample u uniformly from $[0,1](u \in[0,1])$
2. Set $s=0, k=1$
3. While $s<u$
(a) $s \leftarrow s+w_{k}$
(b) if $s \geq u$, return k
(c) $k \leftarrow k+1$

Sampling from a table of probabilities

- For probability values w_{1}, \ldots, w_{d}

1. Sample u uniformly from $[0,1](u \in[0,1])$
2. Set $s=0, k=1$
3. While $s<u$
(a) $s \leftarrow s+w_{k}$
(b) if $s \geq u$, return k
(c) $k \leftarrow k+1$

More usefully for us: Multi-class classification

- Want to categorize an item into one of d classes
- Only one "roll": $\mathrm{n}=1, x_{i}=1$ if the item is categorized as class i
- Sample space: $\mathscr{X}=\{0,1\}^{d}$ (e.g., outcome is $(0,1,0,0)$ for $\mathrm{d}=4$)
. $p\left(x_{1}, x_{2}, \ldots, x_{d}\right)= \begin{cases}\alpha_{1}^{x_{1}} \alpha_{2}^{x_{2}} \ldots \alpha_{d}^{x_{d}} \text { if } x_{1}+x_{2}+\cdots+x_{d}=1 \\ 0 & \text { otherwise }\end{cases}$
- When $\mathrm{d}=2$, then this is the Bernoulli
- Question: If you have a dataset with classes $\mathscr{Y}=$ \{apple, banana, orange $\}$, how would you convert it to use this distribution?

More usefully for us: Multi-class classification

- Sample space: $\mathscr{Z}=\{0,1\}^{d}$ (e.g., outcome is $(0,1,0,0)$ for $\left.d=4\right)$
. $p\left(z_{1}, z_{2}, \ldots, z_{d}\right)= \begin{cases}\alpha_{1}^{z_{1}} \alpha_{2}^{z_{2}} \ldots \alpha_{d}^{z_{d}} \text { if } z_{1}+z_{2}+\cdots+z_{d}=1 \\ 0 & \text { otherwise }\end{cases}$
- Question: If you have a dataset with classes $\mathscr{Y}=\{$ apple, banana, orange $\}$, how would you convert it to use this distribution?
- Can rewrite RV Y to vector-valued $\mathrm{RV} Z$ that is a multinomial with $\mathrm{d}=3$
- $p(y=\operatorname{apple} \mid \mathbf{x})=p(z=(1,0,0) \mid \mathbf{x}))=\alpha_{1}(\mathbf{x})$
- $p(y=$ banana $\mid \mathbf{x})=p(z=(0,1,0) \mid \mathbf{x}))=\alpha_{2}(\mathbf{x})$
- $p(y=$ banana $\mid \mathbf{x})=p(z=(0,0,1) \mid \mathbf{x}))=\alpha_{3}(\mathbf{x})=1-\alpha_{1}(\mathbf{x})-\alpha_{2}(\mathbf{x})$

Multivariate Gaussian

. $p(\mathbf{x})=\frac{1}{\sqrt{(2 \pi)^{d}|\mathbf{\Sigma}|}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)$

- with $\boldsymbol{\Sigma} \in \mathbb{R}^{d \times d}$ and $\boldsymbol{\mu} \in \mathbb{R}^{d}$
- The covariance matrix $\boldsymbol{\Sigma}$ consists of the covariance between each variable
- $\Sigma_{i j}=\operatorname{Cov}\left(X_{i}, X_{j}\right)$

Important note! This Sigma matrix is not the same as singular values!
We re-use this symbol to mean two different things

The Covariance Matrix

$$
\begin{aligned}
& \boldsymbol{X}=\left[X_{1}, \ldots, X_{d}\right] \\
\Sigma_{i j} & =\operatorname{Cov}\left[X_{i}, X_{j}\right] \\
& =\mathbb{E}\left[\left(X_{i}-\mathbb{E}\left[X_{i}\right]\right)\left(X_{j}-\mathbb{E}\left[X_{j}\right]\right)\right] \\
\boldsymbol{\Sigma} & =\operatorname{Cov}[\boldsymbol{X}, \boldsymbol{X}] \in \mathbb{R}^{d \times d} \\
& =\mathbb{E}\left[(\boldsymbol{X}-\mathbb{E}[\boldsymbol{X}])\left(\boldsymbol{X}-\mathbb{E}(\boldsymbol{X})^{\top}\right]\right. \\
& =\mathbb{E}\left[\boldsymbol{X} \boldsymbol{X}^{\top}\right]-\mathbb{E}[\boldsymbol{X}] \mathbb{E}[\boldsymbol{X}]^{\top} .
\end{aligned}
$$

The Covariance Matrix

$$
\begin{aligned}
\boldsymbol{X}=\left[X_{1}, \ldots, X_{d}\right] \quad \boldsymbol{\Sigma} & =\operatorname{Cov}[\boldsymbol{X}, \boldsymbol{X}] \in \mathbb{R}^{d \times d} \\
& =\mathbb{E}\left[(\boldsymbol{X}-\mathbb{E}[\boldsymbol{X}])\left(\boldsymbol{X}-\mathbb{E}(\boldsymbol{X})^{\top}\right]\right. \\
& =\mathbb{E}\left[\boldsymbol{X} \boldsymbol{X}^{\top}\right]-\mathbb{E}[\boldsymbol{X}] \mathbb{E}[\boldsymbol{X}]^{\top} .
\end{aligned}
$$

Outer product

$$
\mathbf{x}^{\top} \mathbf{y}=\sum_{i=1}^{d} x_{i} y_{i}
$$

$$
\mathbf{x} \mathbf{y}^{\top}=\left[\begin{array}{cccc}
x_{1} y_{1} & x_{1} y_{2} & \ldots & x_{1} y_{d} \\
x_{2} y_{1} & x_{2} y_{2} & \ldots & x_{2} y_{d} \\
\vdots & \vdots & & \vdots \\
x_{d} y_{1} & x_{d} y_{2} & \ldots & x_{d} y_{d}
\end{array}\right]
$$

Covariance for two dimensions

$$
\begin{aligned}
\boldsymbol{X}=\left[X_{1}, \ldots, X_{d}\right] & \boldsymbol{\Sigma} & =\operatorname{Cov}[\boldsymbol{X}, \boldsymbol{X}] \in \mathbb{R}^{d \times d} \\
& & =\mathbb{E}\left[(\boldsymbol{X}-\mathbb{E}[\boldsymbol{X}])\left(\boldsymbol{X}-\mathbb{E}(\boldsymbol{X})^{\top}\right]\right. \\
\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d} & & =\mathbb{E}\left[\boldsymbol{X} \boldsymbol{X}^{\top}\right]-\mathbb{E}[\boldsymbol{X}] \mathbb{E}[\boldsymbol{X}]^{\top} .
\end{aligned}
$$

Example:

$$
\mathbb{E}\left[\begin{array}{cc}
X_{1}^{2} & X_{1} X_{2} \\
X_{2} X_{1} & X_{2}^{2}
\end{array}\right]-\left[\begin{array}{cc}
\mathbb{E}\left[X_{1}\right]^{2} & \mathbb{E}\left[X_{1}\right] \mathbb{E}\left[X_{2}\right] \\
\mathbb{E}\left[X_{2}\right] \mathbb{E}\left[X_{1}\right] & \mathbb{E}\left[X_{2}\right]^{2}
\end{array}\right]
$$

Multivariate Gaussian Example

$$
\begin{gathered}
p(\boldsymbol{\omega})=\frac{1}{\sqrt{(2 \pi)^{k}|\boldsymbol{\Sigma}|}} \exp \left(-\frac{1}{2}(\boldsymbol{\omega}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{\omega}-\boldsymbol{\mu})\right) \\
\boldsymbol{\mu}=\left[\begin{array}{c}
\mu_{1} \\
\mu_{2}
\end{array}\right] \boldsymbol{\Sigma}=\left[\begin{array}{cc}
10 & 0 \\
0 & 2
\end{array}\right] \quad \boldsymbol{\Sigma}^{-1}=\left[\begin{array}{cc}
\frac{1}{10} & 0 \\
0 & \frac{1}{2}
\end{array}\right] \\
\boldsymbol{\omega}-\boldsymbol{\mu}=\left[\begin{array}{l}
\omega_{1}-\mu_{1} \\
\omega_{2}-\mu_{2}
\end{array}\right] \\
{\left[\begin{array}{c}
\frac{1}{10}\left(\omega_{1}-\mu_{1}\right) \\
\frac{1}{2}\left(\omega_{2}-\mu_{2}\right)
\end{array}\right]^{\top}\left[\begin{array}{c}
\omega_{1}-\mu_{1} \\
\omega_{2}-\mu_{2}
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{10} & 0 \\
0 & \frac{1}{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{10}\left(\omega_{1}-\mu_{1}\right) \\
\frac{1}{2}\left(\omega_{2}-\mu_{2}\right)
\end{array}\right]=\frac{1}{10}\left(\omega_{1}-\mu_{1}\right)^{2}+\frac{1}{2}\left(\omega_{2}-\mu_{2}\right)^{2}}
\end{gathered}
$$

Visually

$\boldsymbol{\Sigma}=\left[\begin{array}{cc}1.0 & 0.75 \\ 0.75 & 1.0\end{array}\right]$

$\boldsymbol{\Sigma}=\left[\begin{array}{cc}1.0 & 0.75 \\ 0.75 & 1.0\end{array}\right]$

$$
\mathbf{\Sigma}^{-1}=\left(\begin{array}{rr}
2.3 & -1.7 \\
-1.7 & 2.3
\end{array}\right)
$$

The weighted norm with correlations

$$
\left[\begin{array}{l}
e_{1} \\
e_{2}
\end{array}\right] \doteq\left[\begin{array}{l}
x_{1}-u_{1} \\
x_{2}-u_{2}
\end{array}\right]
$$

- The weighted norm gives a distance to the mean, for the covariance

$$
\begin{aligned}
{\left[\begin{array}{l}
e_{1} \\
e_{2}
\end{array}\right]^{\top}\left[\begin{array}{cc}
2.3 & -1.7 \\
-1.7 & 2.3
\end{array}\right]\left[\begin{array}{l}
e_{1} \\
e_{2}
\end{array}\right] } & =\left[\begin{array}{c}
2.3 e_{1}-1.7 e_{2} \\
-1.7 e_{1}+2.3 e_{2}
\end{array}\right]^{\top}\left[\begin{array}{l}
e_{1} \\
e_{2}
\end{array}\right] \\
& =2.3 e_{1}^{2}+2.3 e_{2}^{2}-2.4 e_{1} e_{2}
\end{aligned}
$$

- If e_{1} is the opposite sign from e_{2}, then the distance is larger (-2.4 * negative number $=$ positive number added to distance)
- If e_{1} is the same sign as e_{2}, then the distance is larger (-2.4 * positive $=$ negative $)$

The determinant component

$$
\begin{array}{r}
p(\boldsymbol{\omega})=\frac{1}{\sqrt{(2 \pi)^{k}|\boldsymbol{\Sigma}|}} \exp \left(-\frac{1}{2}(\boldsymbol{\omega}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{\omega}-\boldsymbol{\mu})\right) \\
\boldsymbol{\Sigma}=\left[\begin{array}{cc}
10 & 0 \\
0 & 2
\end{array}\right] \quad \begin{array}{l}
|\boldsymbol{\Sigma}|=\operatorname{det}(\boldsymbol{\Sigma})=\text { product of singular values } \\
\\
\text { (reflects the magnitude of the covariance) }
\end{array}
\end{array}
$$

What is the determinant of this Sigma?

The determinant component

$$
p(\boldsymbol{\omega})=\frac{1}{\sqrt{(2 \pi)^{k}|\boldsymbol{\Sigma}|}} \exp \left(-\frac{1}{2}(\boldsymbol{\omega}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{\omega}-\boldsymbol{\mu})\right)
$$

$\boldsymbol{\Sigma}=\left[\begin{array}{cc}10 & 0 \\ 0 & 2\end{array}\right] \quad|\boldsymbol{\Sigma}|=\operatorname{det}(\boldsymbol{\Sigma})=$ product of singular values (reflects the magnitude of the covariance)

What is the determinant of this other Sigma? $\quad \boldsymbol{\Sigma}=\left[\begin{array}{cc}1.0 & 0.75 \\ 0.75 & 1.0\end{array}\right]$
It has singular values: $\sigma_{1}=1.75, \sigma_{2}=0.25$

The determinant component

$$
p(\boldsymbol{\omega})=\frac{1}{\sqrt{(2 \pi)^{k}|\boldsymbol{\Sigma}|}} \exp \left(-\frac{1}{2}(\boldsymbol{\omega}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{\omega}-\boldsymbol{\mu})\right)
$$

$\boldsymbol{\Sigma}=\left[\begin{array}{cc}10 & 0 \\ 0 & 2\end{array}\right] \quad|\boldsymbol{\Sigma}|=\operatorname{det}(\boldsymbol{\Sigma})=$ product of singular values (reflects the magnitude of the covariance)

What is the determinant of this other Sigma? $\quad \boldsymbol{\Sigma}=\left[\begin{array}{cc}1.0 & 0.75 \\ 0.75 & 1.0\end{array}\right]$
It has singular values: $\sigma_{1}=1.75, \sigma_{2}=0.25$
Answer: $\sigma_{1} \times \sigma_{2} \approx 0.44$

Mixture of Distributions

Mixture model:

A set of m probability distributions, $\left\{p_{i}(x)\right\}_{i=1}^{m}$

$$
p(x)=\sum_{i=1}^{m} w_{i} p_{i}(x)
$$

where $\boldsymbol{w}=\left(w_{1}, w_{2}, \ldots, w_{m}\right)$ and non-negative and

$$
\sum_{i=1}^{m} w_{i}=1
$$

Mixture of Gaussians

Mixture of $m=2$ Gaussian distributions:

$$
p(x)=\sum_{i=1}^{m} w_{i} p_{i}(x)
$$

$$
w_{1}=0.75, w_{2}=0.25
$$

Exercise

- Show that $p(x)=\sum_{i=1}^{m} w_{i} p_{i}(x)$ is a valid pmf if the p_{i} are valid pmfs
- when $\sum_{i=1}^{m} w_{i}=1$ and $w_{i} \geq 0$
- Show this also for the case where p is a pdf and the p_{i} are pdfs

Exercise Solution for PMFs

. $p(x)=\sum_{i=1}^{m} w_{i} p_{i}(x)$

- $p(x) \geq 0$ because $w_{i} p_{i}(x) \geq 0$, sum of nonnegative \#s is nonnegative

Exercise Solution for PMFs

$$
\begin{aligned}
& \sum_{x \in P} p(x)=\sum_{k \in Y} \sum_{i=1}^{m} w_{p}(x) \\
& =\sum_{t=1, \in \in \mathcal{P}_{p}} w_{p}(x) \\
& =\sum_{i=1}^{m} \sum_{i=1} \sum_{\substack{x \in x \\
=1}} p_{i}
\end{aligned}
$$

Exercise Solution for PDFs

$$
\begin{aligned}
\sum_{x \in \mathscr{X}} p(x) & =\sum_{x \in \mathscr{X}} \sum_{i=1}^{m} w_{i} p_{i}(x) & \int_{\mathscr{X}} p(x) d x & =\int_{\mathscr{X}} \sum_{i=1}^{m} w_{i} p_{i}(x) d x \\
& =\sum_{i=1}^{m} \sum_{x \in \mathscr{X}} w_{i} p_{i}(x) & & =\sum_{i=1}^{m} \int_{\mathscr{X}} w_{i} p_{i}(x) d x \\
& =\sum_{i=1}^{m} w_{i} \underbrace{\sum_{x \in \mathscr{X}} p_{i}(x)}_{=1} & & =\sum_{i=1}^{m} w_{i} \underbrace{\int_{\mathscr{X}} p_{i}(x) d x}_{=1} \\
& =\sum_{i=1}^{m} w_{i}=1 & & =\sum_{i=1}^{m} w_{i}=1
\end{aligned}
$$

Mixture Can Produce
 Complex Distributions

$$
b=0.4
$$

$$
b=0.2
$$

[^0]
Exercise Question

- Multidimensional PMFs essentially allow any distribution (table of probabilities)
- Densities for Continuous RVs are more restricted (even with mixtures)
- Why not just discretize our variables and use PMFs?
- Example: imagine the RV is in the range [-10, 10]
- You discretize into chunks of size 0.1. How many parameters do you have to learn?
- What if you use a Gaussian mixture with 5 components?

Contrast to Sum of Gaussians

- Let $Y=w_{1} X_{1}+w_{2} X_{2}$ for $w_{1}, w_{2} \geq 0, w_{1}+w_{2}=1$
- Let X be an RV with a pdf that is Gaussian mixture model with two components, and the same weights $w_{1}, w_{2} \geq 0, w_{1}+w_{2}=1$
- $X \neq Y$
- Y is a Gaussian RV, so they can't be the same (bimodal vs unimodal)
- Mixture model uses convex combo of pdfs, not of RVs

Independence and Decorrelation

- Recall if X and Y are independent, then $\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$
- Independent RVs have zero correlation

Recall: $\operatorname{Cov}[X, Y]=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]$

- Uncorrelated RVs (i.e., $\operatorname{Cov}(X, Y)=0)$ might be dependent (i.e., $p(x, y) \neq p(x) p(y))$.
- Correlation (Pearson's correlation coefficient) shows linear relationships; but can miss nonlinear relationships
- Example: $X \sim$ Uniform $\{-2,-1,0,1,2\}, Y=X^{2}$
- $\mathbb{E}[X Y]=.2(-2 \times 4)+.2(2 \times 4)+.2(-1 \times 1)+.2(1 \times 1)+.2(0 \times 0)$
- $\mathbb{E}[X]=0$
- So $\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]=0-0 \mathbb{E}[Y]=0$

Alternative: Mutual Information (using the KL Divergence)

Mutual information $I(X ; Y)=D_{K L}\left(p_{x y}| | p_{x} p_{y}\right)$

Only zero when X and Y independent

Entropy

. $H(X)= \begin{cases}-\sum_{x \in X} p(x) \log p(x) & X \text { discrete } \\ -\int_{X} p(x) \log p(x) d x & X \text { continuous }\end{cases}$

- Entropy measures level of dispersion (like variance), but looks at the total spread in probabilities, rather than deviation from the mean
- For a zero-mean $\mathbf{X}, H(\mathbf{X}) \leq \frac{d}{2}(\ln 2 \pi+1+\ln \operatorname{det} \boldsymbol{\Sigma})$
- equal if X is a multivariate Gaussian
- Another example: entropy of exponential distribution is $-\ln \lambda+1$, whereas the variance is $1 / \lambda^{2}$ (mean is $1 / \lambda$)

Exponential Distribution

An exponential distribution is a distribution over the positive reals. It has one parameter $\lambda>0$.

KL Divergence

* Images from Wikipedia

Original Gaussian PDF's

KL Area to be Integrated
$\mathrm{KL}(p \| q)=\sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}$
or
$\mathrm{KL}(p \| q)=\int_{\mathcal{X}} p(x) \log \frac{p(x)}{q(x)} d x$

Called a divergence, does not satisfy requirements to be a metric/distance

- Not symmetric
- But does satisfy $D_{\mathrm{KL}}(p \| q) \geq 0$ and
- $D_{\mathrm{KL}}(p \| q)=0$ if and only if (iff) $p=q$

Alternative: Mutual Information (using the KL Divergence)

Mutual information $I(X ; Y)=D_{K L}\left(p_{x y}| | p_{x} p_{y}\right)$

Revisiting Our Example

- Example: $X \sim$ Uniform $\{-2,-1,0,1,2\}, Y=X^{2}$
- $\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]=0-0 \mathbb{E}[Y]=0$
- $X=\{-2,-1,0,1,2\}$ and $\mathscr{Y}=\{0,1,4\}$
- $p(x, y)=0$ if $y \neq x^{2}$, and else is $1 / 5$ (is this a valid pmf? how do you know?)
- $p_{x}(x)=1 / 5$ and $p_{y}(0)=1 / 5, p_{y}(1)=2 / 5, p_{y}(4)=2 / 5$
- $\mathrm{KL}\left(p \| p_{x} p_{y}\right)=\sum_{(x, y) \in \mathscr{X} \times \mathscr{y}} p(x, y) \log \frac{p(x, y)}{p_{x}(x) p_{y}(y)}$

Revisiting Our Example

- $p(x, y)=0$ if $y \neq x^{2}$, and else is $1 / 5$ (is this a valid pmf? how do you know?)
- $p_{x}(x)=1 / 5$ and $p_{y}(0)=1 / 5, p_{y}(1)=2 / 5, p_{y}(4)=2 / 5$

$$
\begin{aligned}
\mathrm{KL}\left(p \| p_{x} p_{y}\right) & =\sum_{(x, y) \in \mathscr{X} \times \mathscr{Y}} p(x, y) \log \frac{p(x, y)}{p_{x}(x) p_{y}(y)} \\
& =\sum_{x \in \mathscr{X}, y=x^{2}} \frac{1}{5} \log \frac{1 / 5}{1 / 5 p_{y}(y)} \\
& =\frac{1}{5} \sum_{x \in \mathscr{X}, y=x^{2}} \log \frac{1}{p_{y}(y)} \\
& =\frac{1}{5}\left[\log \frac{1}{1 / 5}+4 \log \frac{1}{2 / 5}\right]=\frac{1}{5}\left[\log 5+4 \log \frac{5}{2}\right] \approx 1.05 \neq 0
\end{aligned}
$$

Fun Fact

- Imagine you want to learn a distribution. There is some true underlying distribution p_{0}, but you do not know even what type it is
- Might be Gaussian, might be a mixture model, might be something we don't have a name for
- Minimizing the KL to the true distribution corresponds to minimizing the negative log likelihood in expectation over all data
- $\arg \min _{\theta} D_{\mathrm{KL}}\left(p_{0}| | p_{\theta}\right)=\arg \min _{\theta}-\mathbb{E}\left[\ln p_{\theta}(X)\right]$
- Further motivates using MLE, since with more data we get closer and closer to
minimizing $-\mathbb{E}\left[\ln p_{\theta}(X)\right] \approx \frac{1}{n} \sum_{i=1}^{n}-\ln p_{\theta}\left(x_{i}\right)$

Fun Fact

- Imagine you want to learn a distribution. There is some true underlying distribution p_{0}, but you do not know even what type it is
- Might be Gaussian, might be a mixture model, might be something we don't have a name for
- $\arg \min _{\theta} D_{\mathrm{KL}}\left(p_{0}| | p_{\theta}\right)=\arg \min _{\theta}-\mathbb{E}\left[\ln p_{\theta}(X)\right]$
- Question: Imagine we learn a Gaussian, and the true distribution is Gaussian. Is there a p_{θ} that can get zero $D_{\mathrm{KL}}\left(p_{0} \| p_{\theta}\right)$?
- What if we learn a Gaussian, but p_{θ} is a mixture model?

[^0]: * Image from https://people.ucsc.edu/~ealdrich/Teaching/Econ114/LectureNotes/kde.html

