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PMFs and PDFs of Many Variables
We can consider a -dimensional random variable  with vector-valued 
outcomes , with each  chosen from some .  Then, 

Discrete case: 
 is a (joint) probability mass function if 

  

Continuous case: 
 is a (joint) probability density function if 

 

d ⃗X = (X1, …, Xd)
⃗x = (x1, …, xd) xi 𝒳i

p : 𝒳1 × 𝒳2 × … × 𝒳d → [0,1]

∑
x1∈𝒳1

∑
x2∈𝒳2

⋯ ∑
xd∈𝒳d

p(x1, x2, …, xd) = 1

p : 𝒳1 × 𝒳2 × … × 𝒳d → [0,∞)

∫𝒳1
∫𝒳2

⋯∫𝒳d

p(x1, x2, …, xd) dx1dx2…dxd = 1



Rules of Probability Already Covered 
the Multidimensional Case

Outcome space is  

Outcomes are multidimensional variables  

Discrete case: 
 is a (joint) probability mass function if   

Continuous case: 

 is a (joint) probability density function if   

But useful to recognize that we have multiple variables

𝒳 = 𝒳1 × 𝒳2 × … × 𝒳d

x = [x1, x2, . . . , xd]

p : 𝒳 → [0,1] ∑
x∈𝒳

p(x) = 1

p : 𝒳 → [0,∞) ∫𝒳
p(x) dx = 1



Marginal Distributions
A marginal distribution is defined for a subset of  by summing or 
integrating out the remaining variables.  (We will often say that we are 
"marginalizing over" or "marginalizing out" the remaining variables). 

Discrete case:   

Continuous: 
 

⃗X

p(xi) = ∑
x1∈𝒳1

⋯ ∑
xi−1∈𝒳i−1

∑
xi+1∈𝒳i+1

⋯ ∑
xd∈𝒳d

p(x1, …, xi−1, xi, xi+1, …, xd)

p(xi) = ∫𝒳1

⋯∫𝒳i−1
∫𝒳i+1

⋯∫𝒳d

p(x1, …, xi−1, xi, xi+1, …, xd) dx1…dxi−1dxi+1…dxd



Multidimensional PMF often is 
simply a multi-dimensional array
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Now record both commute time and number red lights

⌦ = {4, . . . , 14}⇥ {1, 2, 3, 4, 5}
PMF is normalized 2-d table (histogram) of occurrences



Multivariate PMF:  
Multinomial Distribution

• Sample space:  

•
 

•
where  

•  gives probability 

• Coefficient says how we can distribute n balls into d boxes such that the first 
box contains k1 balls, the second box k2 balls, etc. 

𝒳 = {0,1,…, n}d

p(x1, x2, …, xd) = {( n
x1, x2, …, xd) αx1

1 αx2
2 …αxd

d  if x1 + x2 + ⋯ + xd = n

0 otherwise

αi ≥ 0,
d

∑
i=1

αi = 1

αi



Example: Multiple Rolls

• n tosses of a 6-sided dice 

• d = 6, with number of times we saw a i 

•  means we saw 3 ones, 2 twos, 2 threes, 
1 four, 4 fives and 1 six. This means n = 13  

• All the  

• probability of seeing  ones,  twos, etc. (regardless of 
the order)

xi =
(x1, x2, …, x6) = (3,2,2,1,4,1)

αi = 1/6

p(x1, x2, …, x6) = x1 x2



More usefully for us:  
Multi-class classification

• Want to categorize an item into one of d classes 

• Only one “roll”: n = 1, 1 if the item is categorized as class i 

• Sample space:  (e.g., outcome is  for d = 4) 

•  

• When d = 2, then this is the Bernoulli 

• For d > 2, this is called a Categorical distribution 

xi =

𝒳 = {0,1}d (0,1,0,0)

p(x1, x2, …, xd) = {αx1
1 αx2

2 …αxd
d  if x1 + x2 + ⋯ + xd = 1

0 otherwise



Sampling from a  
categorical distribution

• The same as sampling proportionally to a table of probabilities 

• d items, with associated probabilities  where the probability for 

the last item is simply 

α1, …, αd−1

αd = 1 −
d−1

∑
j=

αj

Chapter 11

Generative Models and Data Representations

In this chapter we discuss how the data representation approaches allow us to learn more
complex generative models, not just more complex predictive models. We have already
seen how to learn generative models by making simple parametric assumptions on x, such
as assuming x is Gaussian or that it is a mixture model. Even with the generalization to
mixture models, however, these models can be quite limited, either requiring a large number
of mixtures, requiring a smarter distance than Euclidean distance or requiring careful tuning
of the number of mixture components.

We first discuss one simple way to improve the capacity of these models: mapping to a
new space with a data representation, and then using simpler parametric models. We then
discuss how to directly learn complex distributions, with neural networks, using the idea of
reparameterization.

11.1 Connections to Models We Have Already Discussed

We have two goals with generative models: learning a good approximation p̂(x) to a poten-
tially complex distribution p(x) and having an e�cient approach to sample from p̂. When
selecting our approximation strategy, we have to keep both in mind. We have actually
already seen several models where generating samples is straightforward, including mixture
models and probabilistic PCA.

First consider mixture models. They are the sum of m components p1, p2, . . . , pm. As
long as it is easy to sample x ≥ pk, then it is easy to sample from the mixture model p.
The sampling procedure involves first sampling k proportionally to probabilities p[k] = wk.
The algorithm to do so simply needs a sample from a uniform distribution over [0, 1]:

1. Sample u uniformly from [0, 1] (u œ [0, 1])

2. Set s = 0, k = 1

3. While s < u

(a) s Ω s + wk

(b) if s Ø u, return k

(c) k Ω k + 1

The idea for this algorithm is simple. We discretize the interval [0, 1] into m buckets, with
the first bucket of size w1, the second of size w2 and so on. Then we uniformly randomly
pick a number in the range [0, 1], and return the bucket that u falls into. In expectation,
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Sampling from a  
table of probabilities

• For probability values w1, …, wd
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More usefully for us:  
Multi-class classification

• Want to categorize an item into one of d classes 

• Only one “roll”: n = 1, 1 if the item is categorized as class i 

• Sample space:  (e.g., outcome is  for d = 4) 

•  

• When d = 2, then this is the Bernoulli 

• Question: If you have a dataset with classes , 
how would you convert it to use this distribution? 

xi =

𝒳 = {0,1}d (0,1,0,0)

p(x1, x2, …, xd) = {αx1
1 αx2

2 …αxd
d  if x1 + x2 + ⋯ + xd = 1

0 otherwise

𝒴 = {apple, banana, orange}



More usefully for us:  
Multi-class classification

• Sample space:  (e.g., outcome is  for d = 4) 

•  

• Question: If you have a dataset with classes , how would 
you convert it to use this distribution?  

• Can rewrite RV  to vector-valued RV  that is a multinomial with d = 3 

•  

•  

•

𝒵 = {0,1}d (0,1,0,0)

p(z1, z2, …, zd) = {αz1
1 αz2

2 …αzd
d  if z1 + z2 + ⋯ + zd = 1

0 otherwise

𝒴 = {apple, banana, orange}

Y Z

p(y = apple |x) = p(z = (1,0,0) |x)) = α1(x)

p(y = banana |x) = p(z = (0,1,0) |x)) = α2(x)

p(y = banana |x) = p(z = (0,0,1) |x)) = α3(x) = 1 − α1(x) − α2(x)

* Later we see how to parameterize  in multinomial logistic regressionα1, α2



Multivariate Gaussian

•
 

• with  and  

• The covariance matrix  consists of the covariance between each variable 

•

p(x) =
1

(2π)d |Σ |
exp (−

1
2

(x − μ)⊤Σ−1(x − μ))
Σ ∈ ℝd×d μ ∈ ℝd

Σ

Σij = Cov(Xi, Xj)
Important note! This Sigma matrix is not the same as singular values! 

We re-use this symbol to mean two different things



The Covariance Matrix
X = [X1, . . . , Xd]

where p(y|x) = p(x, y)/p(x).
⇤

In many situations we need to analyze more than two random variables. A simple
two-dimensional summary of all pairwise covariance values involving d random variables
X1, X2, . . . , Xd is called the covariance matrix. More formally, the covariance matrix is
defined as

⌃ = [⌃ij ]
d

i,j=1

where

⌃ij = Cov[Xi, Xj ]

= E [(Xi � E [Xi]) (Xj � E [Xj ])]

with the full matrix written as

⌃ = Cov[X,X]

= E[(X � E[X])(X � E(X)>]

= E[XX>]� E[X]E[X]>.

Here, the diagonal elements of a d ⇥ d covariance matrix are individual variance values for
each variable Xi and the off-diagonal elements are the covariance values between pairs of
variables. The covariance matrix is symmetric and positive semi-definite, i.e., ⌃ ⌫ 0. We
will discuss more about positive semi-definite matrices later in the notes.

Properties of expectations

Here we review, without proofs, some useful properties of expectations. We can generically
consider multivariate random variables, X 2 Rd and Y 2 Rd, for d 2 N, with univariate
random variables as a special case. We consider the more general case because it will be
useful to start thinking directly in terms of random vectors. For a constant c 2 R, it holds
that:

1. E [cX] = cE [X]

2. E [X + Y ] = E [X] + E [Y ]

3. V [c] = 0 . the variance of a constant is zero

4. V[X] ⌫ 0 (i.e., is positive semi-definite), where for d = 1, V[X] � 0 is a scalar. Note
that V[X] is shorthand for Cov[X,X].

5. V[cX] = c2V[X].

6. Cov[X,Y ] = E[(X � E[X])(Y � E(Y )>] = E[XY >]� E[X]E[Y ]>

7. Cov[X + Y ] = V[X] + V[Y ] + 2Cov[X,Y ]

In addition, if X and Y are independent random variables, it holds that:

1. E [XiYj ] = E [Xi]E [Yj ] for all i, j

2. Cov[X + Y ] = V[X] + V[Y ]

3. Cov[X,Y ] = 0.
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The Covariance Matrix
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Dot product

x>y =
dX

i=1

xiyi

Outer product

x,y 2 Rd

xy> =

2

6664

x1y1 x1y2 . . . x1yd
x2y1 x2y2 . . . x2yd
...

...
...

xdy1 xdy2 . . . xdyd

3

7775

2 Rd⇥d



Covariance for two dimensions
X = [X1, . . . , Xd]

where p(y|x) = p(x, y)/p(x).
⇤

In many situations we need to analyze more than two random variables. A simple
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Multivariate Gaussian Example
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�
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2

�
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�
=


1
10 (!1 � µ1)
1
2 (!2 � µ2)

�


1
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1
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�
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1

10
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1
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Visually
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The weighted norm with correlations

• The weighted norm gives a distance to the mean, for the covariance

<latexit sha1_base64="KIClrOMp6e5OKWFc5bkjhq/g50U="></latexit>
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The determinant component
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|Σ | = det(Σ) = product of singular values

What is the determinant of this Sigma?

(reflects the magnitude of the covariance)
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The determinant component

⌃ =


10 0
0 2

�
|Σ | = det(Σ) = product of singular values

What is the determinant of this other Sigma?

(reflects the magnitude of the covariance)
<latexit sha1_base64="HNDAEzU2J9AR8o1Us9hukeSG/gw="></latexit>

⌃ =


1.0 0.75
0.75 1.0

�

It has singular values: ,  
Answer: 

σ1 = 1.75 σ2 = 0.25
σ1 × σ2 ≈ 0.44



Mixture of Distributions



Mixture of Gaussians



Exercise

•
Show that  is a valid pmf if the  are valid pmfs 

•
when  and  

• Show this also for the case where  is a pdf and the  are pdfs 

p(x) =
m

∑
i=1

wipi(x) pi

m

∑
i=1

wi = 1 wi ≥ 0

p pi



Exercise Solution for PMFs

•
  

•  because , sum of nonnegative #s is nonnegative 

p(x) =
m

∑
i=1

wipi(x)

p(x) ≥ 0 wipi(x) ≥ 0



Exercise Solution for PMFs
∑
x∈𝒳

p(x) = ∑
x∈𝒳

m

∑
i=1

wipi(x)

=
m

∑
i=1

∑
x∈𝒳

wipi(x)

=
m

∑
i=1

wi ∑
x∈𝒳

pi(x)

=1

=
m

∑
i=1

wi = 1



Exercise Solution for PDFs
∑
x∈𝒳

p(x) = ∑
x∈𝒳

m

∑
i=1

wipi(x)

=
m

∑
i=1

∑
x∈𝒳

wipi(x)

=
m

∑
i=1

wi ∑
x∈𝒳

pi(x)

=1

=
m

∑
i=1

wi = 1

∫𝒳
p(x)dx = ∫𝒳

m

∑
i=1

wipi(x)dx

=
m

∑
i=1

∫𝒳
wipi(x)dx

=
m

∑
i=1

wi ∫𝒳
pi(x)dx

=1

=
m

∑
i=1

wi = 1



Mixture Can Produce  
Complex Distributions

* Image from https://people.ucsc.edu/~ealdrich/Teaching/Econ114/LectureNotes/kde.html



Exercise Question

• Multidimensional PMFs essentially allow any distribution (table of probabilities) 

• Densities for Continuous RVs are more restricted (even with mixtures) 

• Why not just discretize our variables and use PMFs?  

• Example: imagine the RV is in the range [-10, 10] 

• You discretize into chunks of size 0.1. How many parameters do you have to 
learn? 

• What if you use a Gaussian mixture with 5 components?



Contrast to Sum of Gaussians

• Let  for   

• Let  be an RV with a pdf that is Gaussian mixture model with two 
components, and the same weights  

•  

•  is a Gaussian RV, so they can’t be the same (bimodal vs unimodal) 

• Mixture model uses convex combo of pdfs, not of RVs

Y = w1X1 + w2X2 w1, w2 ≥ 0,w1 + w2 = 1

X
w1, w2 ≥ 0,w1 + w2 = 1

X ≠ Y

Y



Independence and Decorrelation
• Recall if X and Y are independent, then   

• Independent RVs have zero correlation  

        Recall:  

• Uncorrelated RVs (i.e., ) might be dependent  
(i.e., ). 
• Correlation (Pearson's correlation coefficient) shows linear relationships; but can 

miss nonlinear relationships 
• Example: ,  

•  
•  
• So 

𝔼[XY] = 𝔼[X]𝔼[Y]

Cov[X, Y] = 𝔼[XY] − 𝔼[X]𝔼[Y]

Cov(X, Y) = 0
p(x, y) ≠ p(x)p(y)

X ∼ Uniform{−2, − 1,0,1,2} Y = X2

𝔼[XY] = .2(−2 × 4) + .2(2 × 4) + .2(−1 × 1) + .2(1 × 1) + .2(0 × 0)
𝔼[X] = 0

𝔼[XY] − 𝔼[X]𝔼[Y] = 0 − 0𝔼[Y] = 0



Alternative: Mutual Information 
(using the KL Divergence)

Mutual information  
Only zero when X and Y independent

I(X; Y) = DKL(pxy | |pxpy)



Entropy

•
 

• Entropy measures level of dispersion (like variance), but looks at the total 
spread in probabilities, rather than deviation from the mean 

• For a zero-mean ,  

• equal if X is a multivariate Gaussian 

• Another example: entropy of exponential distribution is , whereas 
the variance is  (mean is )

H(X) = {
−∑x∈𝒳 p(x)log p(x) X discrete

− ∫
𝒳

p(x)log p(x)dx X continuous

X H(X) ≤
d
2

(ln 2π + 1 + ln det Σ)

−lnλ + 1
1/λ2 1/λ



Exponential Distribution
An exponential distribution is a distribution over the positive reals.  It has one 
parameter . 

 

 

λ > 0

Ω = ℝ+

p(ω) = λ exp(−λω)

entropy =   
variance =  (mean is )

−lnλ + 1
1/λ2 1/λ

lambda = 0.5 
entropy =   
variance =   
 
lambda = 1.5 
entropy =   
variance =  

−ln0.5 + 1 ≈ 1.7
1/0.52 = 4

−ln1.5 + 1 ≈ 0.6
1/1.52 ≈ 0.44



KL Divergence

KL(p||q) =
X

x2X
p(x) log

p(x)

q(x)

=
X

x2X
p(x) [log p(x)� log q(x)]

=
X

x2X
p(x) log p(x)�

X

x2X
p(x) log q(x)

<latexit sha1_base64="9AKpmBK2cWkXEOnZmrdAMoTKgD4="></latexit>

or

KL(p||q) =
Z

X
p(x) log

p(x)

q(x)
dx

<latexit sha1_base64="KG0zdAqSBfbo9nwjY1FE/ceTcQw="></latexit>

* Images from Wikipedia

Called a divergence, does not satisfy requirements to be a metric/distance

- Not symmetric

- But does satisfy  and

-  if and only if (iff) 

DKL(p | |q) ≥ 0
DKL(p | |q) = 0 p = q



Alternative: Mutual Information 
(using the KL Divergence)

KL(p||q) =
X

x2X
p(x) log

p(x)

q(x)

=
X

x2X
p(x) [log p(x)� log q(x)]

=
X

x2X
p(x) log p(x)�

X

x2X
p(x) log q(x)

<latexit sha1_base64="9AKpmBK2cWkXEOnZmrdAMoTKgD4="></latexit>

or

KL(p||q) =
Z

X
p(x) log

p(x)

q(x)
dx

<latexit sha1_base64="KG0zdAqSBfbo9nwjY1FE/ceTcQw=">AAACP3icbVBNTxsxFPRCW8L2g0CPvVhEReESbQDxcUBC9FKpHEBqQqQ4iryON1h47cV+ixI5+8+49C/0xpULh1YVV254k6hqS0eyNZ73np5n4kwKC1F0Gywsvnj5aqmyHL5+8/bdSnV1rW11bhhvMS216cTUcikUb4EAyTuZ4TSNJT+PLz+V9fNrbqzQ6iuMM95L6VCJRDAKXupX2xsE+AicNgUh4Yx/OSnqGZ5M8NUmDjcOMREK+o6kFC4Yla5TFDirjzYxkXqISWIoc+W7cFfljQcjQvrVWtSIpsDPSXNOamiO0371OxlolqdcAZPU2m4zyqDnqAHBJC9CklueUXZJh7zrqaIptz039V/gj14Z4EQbfxTgqfrnhKOpteM09p2lCftvrRT/V+vmkOz3nFBZDlyx2aIklxg0LsPEA2E4Azn2hDIj/F8xu6A+EPCRh9MQDkrs/rb8nLS3Gs3txs7ZTu3oeB5HBX1A66iOmmgPHaHP6BS1EEM36A79QD+Db8F98Ct4mLUuBPOZ9+gvBI9PY6Kusg==</latexit>

Mutual information  I(X; Y) = DKL(pxy | |pxpy)



Revisiting Our Example
• Example: ,  

•  

•  and  

•  if , and else is 1/5 (is this a valid pmf? how do you know?) 

•  and  

•

X ∼ Uniform{−2, − 1,0,1,2} Y = X2

𝔼[XY] − 𝔼[X]𝔼[Y] = 0 − 0𝔼[Y] = 0

𝒳 = {−2, − 1,0,1,2} 𝒴 = {0,1,4}

p(x, y) = 0 y ≠ x2

px(x) = 1/5 py(0) = 1/5,py(1) = 2/5,py(4) = 2/5

KL(p | |pxpy) = ∑
(x,y)∈𝒳×𝒴

p(x, y)log
p(x, y)

px(x)py(y)



Revisiting Our Example
•  if , and else is 1/5 (is this a valid pmf? how do you know?) 

•  and  

•

p(x, y) = 0 y ≠ x2

px(x) = 1/5 py(0) = 1/5,py(1) = 2/5,py(4) = 2/5

KL(p | |pxpy) = ∑
(x,y)∈𝒳×𝒴

p(x, y)log
p(x, y)

px(x)py(y)

= ∑
x∈𝒳,y=x2

1
5

log
1/5

1/5py(y)

=
1
5 ∑

x∈𝒳,y=x2

log
1

py(y)

=
1
5

[log
1

1/5
+ 4 log

1
2/5

] =
1
5

[log 5 + 4 log
5
2

] ≈ 1.05 ≠ 0



Fun Fact
• Imagine you want to learn a distribution. There is some true underlying distribution 

, but you do not know even what type it is 
• Might be Gaussian, might be a mixture model, might be something we don’t have 

a name for   

• Minimizing the KL to the true distribution corresponds to minimizing the negative log 
likelihood in expectation over all data 

•  

• Further motivates using MLE, since with more data we get closer and closer to 

minimizing 

p0

arg min
θ

DKL(p0 | |pθ) = arg min
θ

− 𝔼[ln pθ(X)]

−𝔼[ln pθ(X)] ≈
1
n

n

∑
i=1

− ln pθ(xi)



Fun Fact
• Imagine you want to learn a distribution. There is some true underlying 

distribution , but you do not know even what type it is 
• Might be Gaussian, might be a mixture model, might be something we 

don’t have a name for   

•  

• Question: Imagine we learn a Gaussian, and the true distribution is 
Gaussian. Is there a  that can get zero ? 

• What if we learn a Gaussian, but  is a mixture model?

p0

arg min
θ

DKL(p0 | |pθ) = arg min
θ

− 𝔼[ln pθ(X)]

pθ DKL(p0 | |pθ)

pθ


