Introduction

CMPUT 367: Intermediate Machine Learning

A Second Course in ML

We get to build on an ML foundation and move to more advanced modeling

Reminder about the Basics

- Focused on understanding
- optimization concepts
- uncertainty quantification, using the language of probability
- how to formalize learning problems and estimate parameters
- reasoning about generalization capabilities (bias-variance, overfitting)
- Focused on linear models and prediction
- Touched briefly on nonlinear models using polynomial regression

Two Types of Uncertainty

- Uncertainty in our prediction: $Y \mid x$ is a distribution, returning $\hat{y}=f(x)$ will not perfectly match the observed y
- due to partial observability (e.g., predicting house price using only the age of the house, missing many important input variables like size etc).
- sometimes called aleatoric uncertainty
- Uncertainty in our estimate: we estimate f (or parameters \mathbf{w}) from data; we have a distribution $p(\mathbf{w} \mid \mathscr{D})$ that shrinks with more data
- we reasoned about the confidence in our estimator and about how many samples we need (this is the particular focus of Bayesian methods)
- sometimes called epistemic uncertainty

Intermediate ML

- Summary: you know about the key concepts of generalization and uncertainty, as well as optimization approaches
- These concepts are central and do not change when moving to more advanced models
- We can now focus on understanding more advanced models
- move from simple, linear models to nonlinear, high-dimensional models
- focus more on both prediction models and generative models
- understand the key concepts in data (re)representation, that enables us to extract powerful models that generalize well
- more on generalization theory, which is more interesting for this larger class of models (in higher-dimensions)

Course structure

- First few chapters revisit concepts from Basics of ML, but now for slightly more complex settings
- Understanding sensitivity of linear regression, using matrix analysis
- Learning $p(y \mid x)$ for more general distributions (exponential family)
- Hessians for second-order gradient descent and constrained optimization
- Improved approaches to evaluate generalization error (cross-validation)
- Then we move to the primary new topic: Data Representations
- Explain the goals of data representations
- Discuss prototype-based representations, latent variable models (PCA) and neural networks
- Show how our methods (predictions, generative models, Bayesian approaches) extend to use these nonlinear transformations
- Introduction to handling missing data (bonus topic)

Course topics

Revisiting concepts

1. Intermediate Probability (ch. 2) (i.e., a few more prob concepts)
2. Revisiting Linear Regression (with matrices) (ch. 3)
3. Intermediate Optimization (ch. 4) (mainly Hessians and momentum)
4. Generalized Linear Models (ch. 5) (to learn $p(y \mid x)$)
5. Constrained Optimization (ch. 6)
6. Evaluating Generalization Performance (ch. 7)

Course topics \#2

Data representations

7. Fixed Representations (ch. 8)
8. Learned Representations (ch. 9) (neural networks and latent variables)

Course topics \#2

Generative Models

9. Mixture models and Expectation-maximization (ch. 10)
10. Generative Models and Data Representations (ch. 11)

Course topics \#2

Theory Basics

11. Generalization Theory Basics (ch. 12)
12. Convergence Rates (for SGD) (ch. 13)

Course topics \#2

Advanced Topics

13. Dealing with Missing Data (ch. 14)
14. More Advanced Bayesian Approaches (ch. 15)

Course Admin

- Very similar to how Basics of ML (CMPUT 267) is structured
- Consistency is good
- We need to go over this briefly anyway, and you'll simply have to hear a similar description you may have heard before

Course essentials

- Course information: https://marthawhite.github.io/ml-intermediate/
- Schedule and readings
- Access-controlled course information: eClass
- Getting Started and FAQ (please visit this today!)
- Video recordings, links to lecture meetings and assignment submission

Hybrid Teaching

- Lectures will be in-person in a classroom AND on Zoom
- In class, I will project my screen. My screen will be shared in Zoom too.
- I will monitor Zoom questions.
- The lectures will be recorded and posted right after class.

Course essentials

- Course information: https://marthawhite.github.io/ml-intermediate/
- Schedule and readings
- Access-controlled course information: eClass
- Getting Started and FAQ (please visit this today!)
- Video recordings, links to lecture meetings and assignment submission
- Lectures: Tues. Thurs 3:30-4:50pm in CAB 243 and on Zoom
- Lectures will be recorded and posted on eClass
- Office hours: Tuesday noon - 1 pm (on Zoom and in-person in ATH 3-05)

Teaching Assistants

Samuel Neumann
Haseeb Shah
Hugo Luis Silva

- Office hours: see eClass for times and locations+Zoom links
- Typically question/answer sessions
- In a classroom, to allow space to bring laptops, etc.
- No TA office hours this week
- There is no lab, you can ask coding questions during office hours

Readings

- Readings are from the Intermediate ML textbook
- Available on course site and written by myself
- Disclaimer: These notes are still quite new
- I changed them a lot based on reactions from last year
- See the schedule for sections and for reading deadlines
- Readings have an associated marked component called Thought Questions

General Disclaimer

- This course is still relatively new and not yet fully polished
- It is a great opportunity to teach ML to a group of students that have taken the Basics of ML
- It is a bit like teaching a graduate class
- The notes and assignments are relatively new
- There will be some adjusting as we go and mistakes
- If this is going to make you really frustrated, then you should talk to me

Lectures

- Lectures will mostly involve me writing on my iPad (like a whiteboard)
- I highly encourage you to ask any question
- You can raise your hand and then ask outloud
- You can type questions in Zoom chat
- We will use Discord for any questions you think of outside of class, that I will address in class
- We will have small (exercise) breaks in class
- sometimes l'll give you a small derivation or exercise
- I will post my written notes afterwards (and videos will be published)

Course Discussion

- We have create a Discord group; please sign up!
- I want to generate as much class discussion as possible
- Please go there first to ask questions
- Please answer your classmates questions!
- We'll step in if there is misinformation, but in many cases you can all help each other faster than we can get to the question
- Peer discussions can very beneficial
- Details in FAQ and Getting Started linked on eClass

Prerequisites

- CMPUT 267 or CMPUT 296 (Basics of ML)
- or my permission based on your other background
- Linear algebra and Algorithms course
- Motivation to learn and think beyond the material
- This is what thought questions are meant to practice
- A desire to understand the mathematical underpinnings of ML

Using Julia instead of Python

- Many of you have used Julia at this point
- Some of you might have even liked it!
- Others were likely ambivalent
- And there is probably a subgroup of those that actively dislike Julia
- For those that have not used Julia, we have tutorials linked in Getting Started
- Regardless of whether you like or don't like it, it's just a language
- We provide you lots of guidance in the notebooks

But, but, don't I need Python to be useful in ML in the real world?

- No.
- Languages come and go. The foundational knowledge and ability to translate that into implementation is the key skill
- In fact, one constant in ML is how much you switch between languages, so you may as well practice now

Grading

- 30\%: Assignments
- Mixture of mathematical problems and programming exercises
- 5\%: Quiz on October 6
- 20\%: Midterm exam on November 17
- 35\%: Final exam December 12
- 10\%: Thought questions

Assignments

- Four assignments
- Coarse binned grading:
- 80-100 $\rightarrow 100$
-60-80 $\rightarrow 80$
- 40-60 $\rightarrow 60$
- 0-40 $\rightarrow 0$

Three exams

- Giving clear answers to short answer questions is a skill
- It takes practice!
- An important skill in CS is clear written communication.
- Practice questions will be available
- Exams will be in-person
- For all exams you are allowed a two page cheat-sheet
- One page, front-and-back
- No collaborating on cheat-sheats

Collaboration policy

Detailed version on the syllabus section of the website
You are encouraged to discuss assignments with other students:

1. You must list everyone you talked with about the assignment.
2. You may not share or look at each other's written work or code.
3. You must write up your solutions individually

Individual work only on exams: No collaboration allowed
If cheat-sheets have chunks of content that the same, then that is cheating

Academic conduct

- Submitting someone else's work as your own is plagiarism.
- So is helping someone else to submit your work as their own.
- We report all cases of academic misconduct to the university.
- The university takes academic misconduct very seriously. Possible consequences:
- Zero on the assignment or exam (virtually guaranteed)
- Zero for the course
- Permanent notation on transcript
- Suspension or expulsion from the university
- If you are thinking of cheating, since you are stuck or doing poorly, please just talk to me instead. We'll figure it out.

Additional Questions

- Any questions you have are likely answered in the FAQ and Getting Started document that we have linked on eClass
- Policies like "No late assignments accepted", "How to contact TAs", "What to do if you are going to miss a deadline or exam"
- "How can I get extra resources?" and "How can I brush up on my math background?"

Readings and Thought Questions

- It is critical that you do the readings
- I wrote the notes, and in class lectures essentially follow them quite closely
- If you read and understand the notes, you have learned a lot about ML
- Marked Thought Questions encourage you to actually do the readings

Thought questions

- Thought questions correspond to readings in the notes
- They should demonstrate that you have read and thought about the topics
- Needn't have an answer

General format:

1. First, show/explain how you understand a concept
2. Given this context, propose a follow-up question
3. Optional: Proposal an answer to the question, or the way you might find it

Example:
 "Good" Thought Question

"After reading about independence, I wonder how one could check in practice if two variables are independent, given a database of samples? Is this even possible? One possible strategy could be to approximate their conditional distributions, and examine the effects of changing a variable. But it seems like there could be other more direct or efficient strategies."

Example: "Bad" Thought Questions

- "I don't understand linear regression. Could you explain it again?"
- i.e., a request for an explanation. If you want to request a clarification, please use slido. avoid any clarification requests from thought questions
- "Derive the maximum likelihood approach for a Gaussian."
- i.e., an exercise question from a textbook. This is not showing your understanding
- "What is the difference between a probability mass function and a probability density function?"
- i.e., a question that could be directly answered by reading definitions
- BUT the following modification would be fine: "I understand that PMFs are for discrete random variables and PDFs are for continuous random variables. Is there a way we could define probabilities over both discrete and continuous random variables in a unified way, without having to define two different kinds of function?"

Thought Question marks (10\%)

- Four Thoughts Question deadlines (TQ1, TQ2, TQ3, TQ4)
- For each, you need to submit two questions about different subsections in the readings
- e.g., for TQ1, you might submit one for Section 2.1 and say one for Section 3.2 (please label the corresponding question in your submission)
- Sometimes the question is more high-level and spans sections. That is fine too; you can write (Spans sections) as the section
- 9% of this mark is for the average of the best three of four
- 1% of this mark is for posting your question on Discord for feedback

One Final Comment

- There is a lot to learn in Machine Learning
- You might ask yourself, why are we learning topic X and not topic Y ?
- For example, you might have heard of GANs and are wondering why we learn about VAEs instead of GANs
- Or you might wonder why we learn about PCA, when everyone just uses neural networks anyway
- The answer: my primary goals it to teach you skills not topics
- certain algorithms/topics are useful case studies to teach those skills
- if you know the underlying concept/approach, you can learn new (more advanced) things yourself

On to the course!

- The introductory chapter discusses
- Generative Models and Predictors
- The Blessing and Curse of Dimensionality
- Matrix Methods
- A Brief Refresher of Basics of ML
- Let us briefly discuss those here before moving to Intermediate Probability

Prediction Models and Generative Models

- We looked at both learning $p(x)$ and $p(y \mid x)$
- We usually think of $p(x)$ as a generative model and learn $p(y \mid x)$ for prediction (using $\mathbb{E}[Y \mid x]$ for regression and $p(y \mid x)$ for classification)
- This distinction is not quite right. Rather, key is how we use these models
- Generative models: learn (complex) distributions to generate potential outcomes; focus is obtaining accurate models of the target variable
- Prediction models: learn (simple) distributions to facilitate prediction; focus is obtaining useful predictions, even if distribution not quite right

Examples

- Let X be images of faces (a multi-dimensional RV) and Y be a binary RV that is 0 if the face is not narrow and 1 if it is narrow
- $p(x)$ is a generative model, because we will simulate hypothetical faces by sampling $x \sim p$
- $p(y \mid x)$ is a prediction model, since we will use this to classify if the face is narrow or not narrow
- $p(x \mid y)$ is a conditional generative model, because we will simulate hypothetical faces, conditioned on whether they are narrow or not
- The distinction is primarily on the complexity of the RV that we are modelling; otherwise, for each case we still learn a (conditional) distribution

What is a complex distribution?

More simple
More complex

This distinction matters a lot

- Once we are modelling more complex variables, then we have to consider how to do so efficiently and still enable sampling from that distribution
- Sampling from a Bernoulli is easy. Sampling from the set of all faces is harder
- So, though they are clearly highly related and the distinction is not quite crisp, the field of generative modelling is quite distinct from prediction
- For prediction, we often care primarily about classification (simple discrete targets) or means of targets (modelled as univariate Gaussians)
- For generative models, we often care about learning complex distributions

Blessing and Curse of Dimensionality

- Interesting concentration phenomena occur in high-dimensions
- The volume of a high-dimensional ball concentrates near its surface, rather than the interior
- This phenomena has ramifications for us when learning
- Blessing: data becomes separable in high-dimensions
- Curse: distances become less meaningful
- High-dimensional representations can significantly improve performance, we simply have to be careful about how we use them

Let us now no longer use these loaded terms

Matrix Methods

- Basics of ML (mostly) avoided matrices
- Intermediate ML will embrace this tool (linear algebra is useful)
- Primarily, we use:
- Matrix-vector and matrix-matrix product
- Matrix inverses
- Matrix decompositions (eigenvalue decomposition, svd)

A matrix is an $m x n$ array

$$
\mathbf{A}=\left[\begin{array}{ccc}
a_{11} & a_{12} & \cdots \\
a_{21} & a_{12} \\
a_{22} & \cdots & a_{2 n} \\
a_{m 1} a_{m 2} & \ldots & a_{m n}
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{m}
\end{array}\right]
$$

Matrix-vector product

$$
\mathbf{A} \mathbf{x}=\left[\begin{array}{c}
\left\langle\mathbf{a}_{1}, \mathbf{x}\right\rangle \\
\left\langle\mathbf{a}_{2}, \mathbf{x}\right\rangle \\
\ldots \\
\left\langle\mathbf{a}_{m}, \mathbf{x}\right\rangle
\end{array}\right]=\left[\begin{array}{c}
\left\langle\mathbf{A}_{1:}, \mathbf{x}\right\rangle \\
\left\langle\mathbf{A}_{2:}, \mathbf{x}\right\rangle \\
\ldots \\
\left\langle\mathbf{A}_{m:}, \mathbf{x}\right\rangle
\end{array}\right] \in \mathbb{R}^{m}
$$

$$
\mathbf{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
& \ldots & & \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{a}_{1} \\
\mathbf{a}_{2} \\
\ldots \\
\mathbf{a}_{m}
\end{array}\right]
$$

Matrix-matrix product

$A \in \mathbb{R}^{m \times n} \quad \mathbf{B} \in \mathbb{R}^{n \times k}$

$$
\mathbf{A B}=\left[\mathbf{A B}_{:, 1}, \mathbf{A B}_{:, 2}, \ldots, \mathbf{A B}_{:, k}\right]=\left[\begin{array}{cccc}
\mathbf{A}_{1,} \mathbf{B}_{:, 1} & \mathbf{A}_{1,:} \mathbf{B}_{:, 2} & \ldots & \mathbf{A}_{1,:} \mathbf{B}_{:, k} \\
\mathbf{A}_{2,:} \mathbf{B}_{:, 1} & \mathbf{A}_{2,:} \\
\mathbf{B}_{:, 2} & \ldots & \mathbf{A}_{2,:} \mathbf{B}_{:, k} \\
\mathbf{A}_{m,:} \mathbf{B}_{:, 1} & \ldots & \mathbf{A}_{m,:} \mathbf{B}_{;, 2} & \ldots \\
\mathbf{A}_{m,:} \mathbf{B}_{:, k}
\end{array}\right] \in \mathbb{R}^{m \times k}
$$

A nicer picture of matrix multiplication

$$
A \in \mathbb{R}^{m \times n} \quad \mathbf{B} \in \mathbb{R}^{n \times k}
$$

B

What is m, n and k in this example?

$$
m=4, n=2, k=3
$$

Matrix-matrix product

$$
A \in \mathbb{R}^{m \times n} \quad \mathbf{B} \in \mathbb{R}^{n \times k}
$$

$$
\mathbf{A B}=\left[\mathbf{A B}_{:, 1}, \mathbf{A B}_{:, 2}, \ldots, \mathbf{A B}_{:, k}\right]=\left[\begin{array}{cccc}
\mathbf{A}_{1,:} \mathbf{B}_{:, 1} & \mathbf{A}_{1,:} \mathbf{B}_{;, 2} & \ldots & \mathbf{A}_{1,3} \mathbf{B}_{: / k} \\
\mathbf{A}_{2,,} \mathbf{B}_{:, 1} & \mathbf{A}_{2,:} \\
\mathbf{A}_{m, 2} & \ldots & \mathbf{A}_{2,:} \mathbf{B}_{:, k} \\
\mathbf{A}_{m,:} & \ldots & & \mathbf{B}_{:, 1} \\
\mathbf{A}_{m,:}, \mathbf{B}_{:, 2} & \ldots & \mathbf{A}_{m,:}: \mathbf{B}_{:, k}
\end{array}\right] \in \mathbb{R}^{m \times k}
$$

Notice that the inner dimension matches: $m \times n$ times $n \times k$ produces a $m \times k$ matrix

It is an easy rule of thumb to check if you have made a mistake somewhere, by checking that these dimension match and you have a valid operation

Matrix Inverse for Diagonal Matrix

$$
\mathbf{A}=\left[\begin{array}{ccccc}
a_{1} & 0 & \ldots & 0 & 0 \\
0 & a_{2} & 0 & \ldots & 0 \\
& \ldots & & & \\
0 & 0 & \ldots & 0 & a_{d}
\end{array}\right] \quad \mathbf{A}^{-1}=\left[\begin{array}{ccccc}
1 / a_{1} & 0 & \ldots & 0 & 0 \\
0 & 1 / a_{2} & 0 & \ldots & 0 \\
& \ldots & & & \\
0 & 0 & \ldots & 0 & 1 / a_{d}
\end{array}\right]
$$

where you can verify that $\mathbf{A A}^{-1}=\mathbf{I}$ for identity matrix \mathbf{I} that has 1 s on the diagonal

$$
\mathbf{I} \xlongequal{\text { def }}\left[\begin{array}{ccccc}
1 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & \ldots & 0 \\
& \ldots & & & \\
0 & 0 & \ldots & 0 & 1
\end{array}\right]
$$

Matrix Decompositions

- Singular Value Decomposition (SVD)
- every matrix has an SVD
- Eigenvalue Decomposition
- every square, symmetric matrix has an eigenvalue decomposition
- other matrices do too, but we don't need to reason about the eigenvalue decomposition for anything by square, symmetric matrices
- These decompositions are useful for reasoning about the properties of the matrix and computing the inverse of the matrix

A matrix as an operator

- \mathbf{M} is an operator on vectors: $\tilde{\mathbf{x}}=\mathbf{M x}$
- it transforms the input vector \mathbf{x} to a new $\tilde{\mathbf{X}}$
- How can we reason about the properties of this operator?

Singular Value Decomposition

- \mathbf{M} is an operator on vectors: $\tilde{\mathbf{x}}=\mathbf{M x}$
- it transforms the input vector \mathbf{x} to a new $\tilde{\mathbf{x}}$
- Any matrix can be decomposed using an SVD: $\mathbf{M}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$
- $\boldsymbol{\Sigma}$ is a diagonal matrix with nonnegative elements on the diagonal
- \mathbf{U}, \mathbf{V} are orthonormal matrices, meaning that
- $\mathbf{U}^{\top} \mathbf{U}=\mathbf{I}$
- $\mathbf{V}^{\top} \mathbf{V}=\mathbf{I}$

Singular Value Decomposition
 \author{ $\mathbf{M}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$

 \[\mathbf{M} \mathbf{x}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top} \mathbf{x}=\mathbf{U} \boldsymbol{\Sigma}\left(\mathbf{V}^{\top} \mathbf{x}\right)
\]}

Every matrix is a linear operator that can be decomposed into a rotation (V), scaling (Sigma), and rotation (U) operation

Exercise: What happens if a singular value is zero?

$$
\mathbf{M} \mathbf{x}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top} \mathbf{x}=\mathbf{U} \boldsymbol{\Sigma}\left(\mathbf{V}^{\top} \mathbf{x}\right)
$$

- Every matrix is a linear operator that can be decomposed into a rotation (V), scaling (Sigma), and rotation (U) operation
- What does the scaling operation do?
- Answer: it zeros out a component of $\tilde{\mathbf{x}}=\mathbf{V}^{\top} \mathbf{x}$
- $\mathbf{U} \tilde{\mathbf{x}}=\sum_{i=1}^{n} \mathbf{u}_{i} \tilde{x}_{i}=\sum_{i=1}^{n-1} \mathbf{u}_{i} \tilde{x}_{i}$ is a weighted sum of $\mathrm{n}-1$ basis vector
- It reduces the dimension by 1: it projects the vector into a lowerdimensional space

Example using SVD on data matrix

- $\mathbf{X} \in \mathbb{R}^{n \times d}$ for n samples and d features
- Let's imagine d=2
- $\mathbf{X}=\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}=\left[\mathbf{u}_{1}, \mathbf{u}_{2}\right] \operatorname{diag}\left(\sigma_{1}, \sigma_{2}\right)\left[\mathbf{v}_{1}^{\top} ; \mathbf{v}_{2}^{\top}\right]=\sum_{j=1}^{2} \sigma_{j} \mathbf{u}_{j} \mathbf{v}_{j}^{\top}$
- where $\mathbf{u}_{j} \in \mathbb{R}^{n}, \sigma_{j} \geq 0, \mathbf{v}_{j} \in \mathbb{R}^{2}, \mathbf{V}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}\right]$
- A row (sample) equals $\mathbf{x}_{i}=U_{i 1} \sigma_{1} \mathbf{v}_{1}^{\top}+U_{i 2} \sigma_{2} \mathbf{v}_{2}^{\top}=\beta_{1} \mathbf{v}_{1}^{\top}+\beta_{2} \mathbf{v}_{2}^{\top}$
- a linear combination of (right singular) vectors \mathbf{v}_{j}

Visualizing $\sigma_{2}=0$

Full rank X

$\sigma_{2}=0$ for X

$$
X=\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right]\left[\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2}
\end{array}\right]\left[v_{1}^{\top} ; v_{2}^{\top}\right]
$$

All points only vary in one dimension

The effect on predictions

- $\hat{y}=\mathbf{X} \mathbf{w}=\tilde{\mathbf{X}} \tilde{\mathbf{w}}$ where $\tilde{\mathbf{w}}=\mathbf{V}^{\top} \mathbf{w}$
- $\tilde{\mathbf{X}}=\left[\sigma_{1} \mathbf{u}_{1}, \mathbf{0}\right]$, meaning $\tilde{\mathbf{X}} \tilde{\mathbf{w}}=\sigma_{1} \mathbf{u}_{1} \tilde{w}_{1}$
- Effectively only have one degree of freedom
- Usually for a 2d input space, for a linear function, y lies on a 2d plane. Here, it lies on a 1d plane (a line)

Effectively learning in a lower-dimensional space

Full rank X

$$
\sigma_{2}=0 \text { for } X
$$

Rank of a matrix

- The number of non-zero singular values is the rank
- The rank of a matrix is the dimension of the space it spans
- In this example, it is the dimension of the space that it projects vectors to
- For a matrix with one singular value that is zero, it projects all vector to one dimension lower (a plane in dimension n -1 inside the large n -dimensional space)

Eigenvalue Decomposition

- A square symmetric matrix $\mathbf{M}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\top}$
- $\boldsymbol{\Lambda}$ is a diagonal matrix
- Notice this is really an SVD, where the second rotation is \mathbf{U} again
- Computing the inverse is now easy: $\mathbf{M}^{-1}=\mathbf{U} \boldsymbol{\Lambda}^{-1} \mathbf{U}^{\top}$
- How do we know? We can check.

Checking the Inverse Condition

$$
\begin{aligned}
& \mathbf{M}^{-1}=\mathbf{U} \mathbf{\Lambda}^{-1} \mathbf{U}^{\top} \\
& \mathbf{M} \mathbf{M}^{-1}=\left(\mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\top}\right) \mathbf{U} \boldsymbol{\Lambda}^{-1} \mathbf{U}^{\top} \\
&=\mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\top} \mathbf{U} \mathbf{\Lambda}^{-1} \mathbf{U}^{\top} \\
&=\mathbf{U} \mathbf{\Lambda} \mathbf{I} \mathbf{\Lambda}^{-1} \mathbf{U}^{\top} \\
&=\mathbf{U} \mathbf{\Lambda} \mathbf{\Lambda}^{-1} \mathbf{U}^{\top} \\
&=\mathbf{U} \mathbf{I} \mathbf{U}^{\top} \\
&=\mathbf{U} \mathbf{U}^{\top} \\
&=\mathbf{I}
\end{aligned}
$$

Exercise: Check that $\mathbf{M}^{-1} \mathbf{M}=\mathbf{I}$

Refresher of Basics of ML

- Goal was to learn a prediction function $f_{\mathbf{w}}: \mathscr{X} \rightarrow \mathscr{Y}$ for weights \mathbf{w}
- Input vector of observations $\mathbf{x} \in \mathbb{R}^{d}$
- Outputs a prediction $\hat{y} \in \mathscr{Y}$
- If \mathscr{Y} is a discrete, unordered set, then we have a classification problem
- If \mathscr{Y} is a continuous set, then we have a regression problem
- (Some cases we have a discrete, order set, and get ordinal regression)

Main goals

- How do we learn this function?
- How do we evaluate whether it is good?

Formalizing the learning problem

- We need a clear criterion (objective function) to optimize
- Ultimate goal: function with low expected cost $\mathbb{E}[\operatorname{cost}(f(\mathbf{x}), y)]$
- later we called this generalization error
- For regression, cost was squared error
- Optimal predictor is $f^{*}(\mathbf{x})=\mathbb{E}[Y \mid \mathbf{x}]$
- For classification, we used the 0-1 cost
- Optimal predictor is $f^{*}(\mathbf{x})=\arg \max _{y \in \mathscr{y}} p(y \mid \mathbf{x})$

Beyond formalization, to implementation

- We cannot directly find these optimal predictors, rather we are stuck using data sampled from $p(\mathbf{x}, y)$
- Formalized the MAP and MLE objectives on this data, as a reasonable proxy to approximate these optimal predictors
- MAP $\max _{\theta} p(\theta \mid \mathscr{D})$ versus MLE $\max p(\mathscr{D} \mid \theta)$ θ
θ

MAP Objective

- For regression we assume $p(y \mid \mathbf{x})=\mathcal{N}\left(f_{\mathbf{w}}(\mathbf{x}), \sigma^{2}\right)$, and Gaussian prior on weights
- The MAP objective corresponded to 12 regularized linear regression (ridge regression)

$$
\begin{aligned}
& \operatorname{argmax} p(\mathbf{w} \mid \mathcal{D})=\operatorname{argmax} p(\mathcal{D} \mid \mathbf{w}) p(\mathbf{w}) \\
& \mathbf{w} \in \mathbb{R}^{k} \quad \mathbf{w} \in \mathbb{R}^{k} \\
& =\underset{\mathbf{w} \in \mathbb{R}^{k}}{\operatorname{argmax}} \sum_{i=1}^{n} \ln p\left(y_{i} \mid \mathbf{x}_{i}, \mathbf{w}\right)+\ln p(\mathbf{w}) \\
& =\underset{\mathbf{w} \in \mathbb{R}^{k}}{\operatorname{argmin}}-\sum_{i=1}^{n} \ln p\left(y_{i} \mid \mathbf{x}_{i}, \mathbf{w}\right)-\ln p(\mathbf{w}) \\
& \text { - The objective became } \sum_{i=1}^{n}\left(f_{\mathbf{w}}\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}+\lambda\|\mathbf{w}\|_{2}^{2}
\end{aligned}
$$

MLE Objective

- MLE for was the linear regression objective, without regularization (no prior)
- MLE objective is $\sum_{i=1}^{n}\left(f_{\mathbf{w}}\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}$
- For logistic regression (binary classification), it was the cross-entropy objective

MLE Objective

- MLE for was the linear regression objective, without regularization (no prior)
- MLE objective is $\sum_{i=1}^{n}\left(f_{\mathbf{w}}\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2} \quad$ MAP: $\sum_{i=1}^{n}\left(f_{\mathbf{w}}\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}+\lambda\|\mathbf{w}\|_{2}^{2}$
- For logistic regression (binary classification), it was the cross-entropy objective
- Question: what is the MAP objective for binary classification with a Gaussian prior?
- Question: what is the MAP objective for polynomial regression with a Gaussian prior?

MLE Objective

- MLE for was the linear regression objective, without regularization (no prior)
. MLE objective is $\sum_{i=1}^{n}\left(f_{\mathbf{w}}\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2} \quad$ MAP: $\sum_{i=1}^{n}\left(f_{\mathbf{w}}\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}+\lambda\|\mathbf{w}\|_{2}^{2}$
- For logistic regression (binary classification), it was the cross-entropy objective
- Question: what is the MAP objective for binary classification with a Gaussian prior?
- Answer: cross-entropy $(\mathbf{w})+\lambda\|\mathbf{w}\|_{2}^{2}$
- Question: what is the MAP objective for polynomial regression with a Gaussian prior?
. Answer: $\sum_{i=1}^{n}\left(f_{\mathbf{w}}\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}+\lambda\|\mathbf{w}\|_{2}^{2}$ for $f_{\mathbf{w}}\left(\mathbf{x}_{i}\right)$ a polynomial function

MAP vs MLE

- MAP adds prior information, to help prevent overfitting
- The I 2 regularizer preferred simpler solutions, those where weights did not deviate too far from zero
- We will revisit why very soon, now with matrices

Announcements

- Assignment 1 released, please get started!
- Make sure you upgrade Julia
- Thought Questions 1 due very soon (September 20)
- Biggest reading since it covers much of the background
- Some typos in the notes, updated on the website
- I will be adding more examples, but I will try to limit big modifications to the notes only to later parts, before Reading Assignments
- Assignment 0 also released, these are just practice exercises for your fun

Exercise

- We derived linear regression using MLE
- How would you derive polynomial regression using MLE?

Polynomial function is a strict generalization of linear functions

Polynomial regression derivation

- $p(y \mid \mathbf{x})=\mathscr{N}\left(f_{\mathbf{w}}(\mathbf{x}), \sigma^{2}\right)$ for polynomial function $f_{\mathbf{w}}(\mathbf{x})$
. MLE objective is $\sum_{i=1}^{n}-\ln p\left(y_{i} \mid \mathbf{x}_{i}\right)$

$$
\begin{aligned}
\ln p\left(y_{i} \mid \mathbf{x}_{i}\right) & =-\frac{1}{2} \ln \left(2 \pi \sigma^{2}\right)+\ln \exp \left(-\frac{1}{2 \sigma^{2}}\left(f_{\mathbf{w}}\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}\right) \\
& =\text { constants }-\frac{1}{2 \sigma^{2}}\left(f_{\mathbf{w}}\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}
\end{aligned}
$$

Polynomial regression derivation

- $p(y \mid \mathbf{x})=\mathscr{N}\left(f_{\mathbf{w}}(\mathbf{x}), \sigma^{2}\right)$ for polynomial function $f_{\mathbf{w}}(\mathbf{x})$
- $\ln p\left(y_{i} \mid \mathbf{x}_{i}\right)=$ constants $-\frac{1}{2 \sigma^{2}}\left(f_{\mathbf{w}}\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}$
- MLE objective is $\sum_{i=1}^{n}\left(f_{\mathbf{w}}\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}$ because for constants c_{1}, c_{2}
- $\arg \min _{\mathbf{w}} \sum_{i=1}^{n}\left(f_{\mathbf{w}}\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}=\arg \min _{\mathbf{w}} c_{1}+c_{2} \sum_{i=1}^{n}\left(f_{\mathbf{w}}\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}$

I2-regularized polynomial regression

- Do you think 12 regularization is more useful for polynomial regression
- (Q1) for high-degree polynomials rather than low-degree ones?
- (Q2) than for linear regression?

Evaluating a function

- Now we know how to find a function $f_{\mathbf{w}}$, but how do we evaluate if it is good?
- One simple way is to split the data into training and test data
- e.g., take a dataset of size 10k, use $8 k$ for training, $2 k$ for testing
- Then we learn $f_{\mathbf{w}}$ on the training data
- And get an estimate of generalization error on the test set

Exercise

- Imagine we learned $f_{\mathbf{w}}$ using polynomial regression with $\mathrm{p}=3$
- $\boldsymbol{\phi}(\mathbf{x})=\left[1, x_{1}, x_{2}, \ldots, x_{d}, x_{1} x_{2}, \ldots, x_{d}^{3}\right]$
- $f_{\mathbf{w}}(\mathbf{x})=\boldsymbol{\phi}(\mathbf{x})^{\top} \mathbf{w}$
- What is the size of \mathbf{w} ?
- How do we evaluate $f_{\mathbf{w}}$ on the test set? (What is the formula)

Exercise

- Imagine we learned $f_{\mathbf{w}}$ using polynomial regression with $\mathrm{p}=3$
- $\boldsymbol{\phi}(\mathbf{x})=\left[1, x_{1}, x_{2}, \ldots, x_{d}, x_{1} x_{2}, \ldots, x_{d}^{3}\right]$
- $f_{\mathbf{w}}(\mathbf{x})=\boldsymbol{\phi}(\mathbf{x})^{\top} \mathbf{w}$
- What is the dimension (size) of \mathbf{w} ?
- Same number of elements as $\boldsymbol{\phi}(\mathbf{x})$
- How do we evaluate $f_{\mathbf{w}}$ on the test set? (What is the formula)
- $\frac{1}{m} \sum_{\left(\mathbf{x}_{i} y_{i}\right) \in \mathscr{D}_{\text {test }}}\left(f_{\mathbf{w}}\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}$ for m the number of test samples

Exercise

- Imagine we learned $f_{\mathbf{w}}$ using polynomial regression with $\mathrm{p}=3$
- $\boldsymbol{\phi}(\mathbf{x})=\left[1, x_{1}, x_{2}, \ldots, x_{d}, x_{1} x_{2}, \ldots, x_{d}^{3}\right]$
- $f_{\mathbf{w}}(\mathbf{x})=\boldsymbol{\phi}(\mathbf{x})^{\top} \mathbf{w}$
- If we had learned $f_{\boldsymbol{\beta}}$ with $p=2$, then would
- $f_{\boldsymbol{\beta}}$ have lower or higher training error than $f_{\mathbf{w}}$?
- $f_{\boldsymbol{\beta}}$ have lower or higher testing error than $f_{\mathbf{w}}$?

Exercise

- Imagine we learned $f_{\mathbf{w}}$ using polynomial logistic regression with $\mathrm{p}=3$
- $\boldsymbol{\phi}(\mathbf{x})=\left[1, x_{1}, x_{2}, \ldots, x_{d}, x_{1} x_{2}, \ldots, x_{d}^{3}\right]$
- $f_{\mathbf{w}}(\mathbf{x})=1$ if $\boldsymbol{\phi}(\mathbf{x})^{\top} \mathbf{w}>0$, else $=0$
- How do we evaluate $f_{\mathbf{w}}$ on the test set? (What is the formula?)

Exercise

- Imagine we learned $f_{\mathbf{w}}$ using polynomial logistic regression with $\mathrm{p}=3$
- $\boldsymbol{\phi}(\mathbf{x})=\left[1, x_{1}, x_{2}, \ldots, x_{d}, x_{1} x_{2}, \ldots, x_{d}^{3}\right]$
- $f_{\mathbf{w}}(\mathbf{x})=1$ if $\boldsymbol{\phi}(\mathbf{x})^{\top} \mathbf{w}>0$, else $=0$
- How do we evaluate $f_{\mathbf{w}}$ on the test set? (What is the formula?)
- $\frac{1}{m} \sum_{\left(\mathbf{x}_{i} y_{i}\right) \in \mathscr{D}_{\text {test }}} 1\left(f_{\mathbf{w}}\left(\mathbf{x}_{i}\right) \neq y_{i}\right)$ for m the number of test samples

Conceptual Evaluation

- We can empirically evaluate and we often reason about when estimators should or should not perform well
- We discussed bias and variance, and the connection to generalization error
- If it sometimes worth introducing bias to reduce variance, and so reduce the MSE to the true function in expectation

Different Cases

(a) η small, F complex (e.g. $F=8^{\text {th }}$ degree polynomials)
(b) η small, f simple (eeg linear) Case 1: fauve simple
Case 2: ftrue complex
(c) η big, F complex
(d) η big, f simple

Case 1: $f_{\text {true }}$ simple
Case 2: fauve complex

Uncertainty in Our Estimator

- Confidence intervals to assess uncertainty in a mean estimator
- obtained using distributional assumptions like the student-t and with less assumptions using concentration inequalities
- also discussed using Bayesian approach to get credible interval
- Bayesian methods obtain $p(\mathbf{w} \mid \mathscr{D})$ the posterior
- can use this to get a credible interval over the weights and over predictions

Probability and Optimization at the Core

- Through used optimization tools, to have practical ways to obtain weights
- The objective function told us what to optimize, but not how to do so
- We discussed
- brute-force search for low-dimensional, discrete problems
- gradient descent for smooth, continuous optimization problems
- more efficient approximation to GD using mini-batch stochastic GD (SGD)
- when GD or SGD will reach global solutions or get stuck in local minima (or saddlepoints)

Fun Fact about Saddlepoints

- We seemed to worry about local minima than saddlepoints
- It is believed that SGD often skips past saddlepoints
- It is actually hard work to descend perfectly to a saddlepoint more likely you overshoot and keep descending

- It is harder to jump out of a local minima, using only the stochasticity from SGD

Final Exercise

- Let's go back to the first example we looked at in Basics of ML and see if you can answer the questions for yourself now
- And see if you can explain it to your past self

Example: Predicting house prices

- Goal: we want to predict house prices, given only the age of the house $f($ age $)=$ price of the house
- Dataset: house sales this year, with attributes age and target value price

$$
\left\{\left(\text { age }_{1}, \text { price }_{1}\right),\left(\text { age }_{2}, \text { price }_{2}\right), \ldots,\left(\text { age }_{9}, \text { price }_{9}\right)\right\}
$$

- Idea: A function that accurately outputs price from age for these specific pairs might also provide good predictions for new houses

Formalizing the problem

Definitions:

Let x be age and y be price
Let $D=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{9}, y_{9}\right)\right\}$ be our dataset

Objective:

We want to make the difference between $f\left(x_{i}\right)$ and y_{i} small

$$
\min _{f \text { in function space }} \sum_{i=1}^{9}\left(f\left(x_{i}\right)-y_{i}\right)^{2}
$$

Questions:

1. Why are we squaring the difference?
2. Why are we summing up the errors?
3. What could we consider for the function space?

Linear function space

Definition:

A function f is a linear function of x if it can be written as $f(x)=w_{0}+w_{1} x$
$\min _{f \text { in linear functions }} \sum_{i=1}^{9}\left(f\left(x_{i}\right)-y_{i}\right)^{2}$

Solving for the optimal function

Objective becomes:

$\min _{f \text { in function space }} \sum_{i=1}^{9}\left(f\left(x_{i}\right)-y_{i}\right)^{2}=\min _{w_{0}, w_{1}} \sum_{i=1}^{9} \underbrace{\left(w_{0}+w_{1} x_{i}-y_{i}\right)^{2}}_{f\left(x_{i}\right)}$

Questions:

1. Would you use this to predict the value of a house? Why/why not?
2. Will this predict well? How do we know?
3. What is missing to make these assessments?

Solving for the optimal function

Objective becomes:
$\min _{\text {in function space }} \sum_{i=1}^{9}\left(f\left(x_{i}\right)-y_{i}\right)^{2}=\min _{w_{0}, w_{1}} \sum_{i=1}^{9} \underbrace{\left(w_{0}+w_{1} x_{i}-y_{i}\right)^{2}}_{f\left(x_{i}\right)}$

Questions:

1. How might you evaluate your predictor?
2. How might you improve this predictor?
