
Machine Learning II

Martha White

April 3, 2025

Table of Contents

Notation Reference 5

1 Introduction to Machine Learning II 9
1.1 A Very Brief Refresher of the Basics of Machine Learning 9
1.2 Generative Models and Predictors . 12
1.3 Relationship to Statistics and Probability Theory 13
1.4 The Blessing and Curse of Dimensionality 13
1.5 Matrix Methods . 14

1.5.1 Matrix multiplication . 15
1.5.2 Matrix Inverse and Eigenvalue Decomposition 15
1.5.3 Basic Rules for Gradients with Vectors and Matrices 17

I Revisiting Concepts 19

2 Multivariate Probability Concepts 20
2.1 Multidimensional distributions . 20
2.2 Properties of Expectations . 25
2.3 Mixtures of Distributions . 26
2.4 Revisiting MLE with Multivariate Gaussians 28
2.5 Entropy and KL Divergence . 30

3 Revisiting Linear Regression 32
3.1 Ordinary Least-Squares (OLS) Regression 32

3.1.1 Extension to a Weighted Error Function 34
3.1.2 Predicting Multiple Outputs Simultaneously 34

3.2 Stability and the Bias-Variance of the OLS Solution 35
3.2.1 Sensitivity of the OLS solution . 35
3.2.2 Improving Stability with ℓ2 Regularization 37
3.2.3 The Bias-Variance Trade-off . 38

4 Multivariate Optimization Principles 41
4.1 Second-order Multivariate Gradient Descent 41
4.2 Visualizing the Hessian . 43
4.3 Contrasting Convergence Rates . 46
4.4 Stepsize Selection and Momentum . 48

5 Generalized Linear Models 51
5.1 A First Example: The Poisson Distribution 51
5.2 Exponential Family Distributions . 53
5.3 Formalizing Generalized Linear Models . 54

1

TABLE OF CONTENTS 2

5.4 Revisiting Logistic Regression . 56
5.5 Multinomial Logistic Regression . 56

6 Constrained Optimization with Proximal Methods 60
6.1 Proximal Methods . 60
6.2 Case Study: ℓ1 Regularization for Feature Selection 62
6.3 Case Study: Simplex Constraints for Mixture Models 64

7 Evaluating Generalization Performance 66
7.1 Defining Generalization Error . 66
7.2 Estimating Generalization Error using Cross Validation 67
7.3 Bias and Variance of the Cross Validation Estimator 68
7.4 Using Cross Validation to Select Hyperparameters 70

II Data Representations 74

8 Fixed Representations 76
8.1 The Utility of Projecting to Higher Dimensions 76
8.2 Radial Basis Function Networks . 77
8.3 Prototype Representations . 80
8.4 Feature Selection and Subselecting Prototypes 82

9 Learned Representations 84
9.1 Latent Factors and Factor Analysis . 84

9.1.1 Matrix Factorization Approaches . 85
9.1.2 Probabilistic Approaches . 88

9.2 Learning Representations with Neural Networks 90
9.2.1 Functions Produced by a Neural Network 90
9.2.2 Activations and Loss Functions . 92
9.2.3 The Backpropagation Algorithm . 93

9.3 Autoencoders and the Connection to PCA 96

10 Generalization Error in More Settings 98
10.1 Bias, Variance and Generalization Error . 98
10.2 Implicit Regularization with SGD & Large NNs 100
10.3 Moving Beyond the iid Setting . 102

10.3.1 Generalization Issues under Covariate Shift 102
10.3.2 Issues of Data Coverage and Using Inductive Biases 103
10.3.3 Nonstationarity and Generalization 104

III Generative Models 106

11 Simple Generative Models: Mixture Models 108
11.1 Using Mixture Models . 108
11.2 Learning Mixture Models . 110

TABLE OF CONTENTS 3

12 Generative Models using Data Representations 113
12.1 Connections to Models We Have Already Discussed 113
12.2 Variational Autoencoders . 114
12.3 Connection to Expectation-Maximization 117
12.4 Conditional Generative Models . 118

13 Evaluating Generative Models 120

IV Advanced Topics 122

14 Dealing with Missing Data 123
14.1 Imputation: Filling in Missing Values . 123
14.2 Imputation of Missing Data for Prediction 125
14.3 Direct Methods for Prediction Under Missing Data 127

15 Uncertainty Estimation and Bayesian Approaches 130
15.1 Bayesian Linear Regression . 130
15.2 Using the Bayesian Posterior over Weights 132
15.3 The Nonlinear Setting & Gaussian Processes 134

15.3.1 The Kernel Trick . 135
15.3.2 Kernelizing Bayesian Linear Regression 136

15.4 Uncertainty Estimation for Neural Networks using Ensembles 137

16 Learning on Temporal Data 140
16.1 Conditioning on History . 140
16.2 Recurrent Neural Networks . 141
16.3 Transformers . 142

Bibliography 143

A Extra Information 146
A.1 More on Linear Regression . 146

A.1.1 The Bias-Variance Trade-off . 146
A.2 More on Cross-Validation . 149
A.3 More on GLMs . 150
A.4 More on Constrained Optimization . 150

A.4.1 Detailed Steps for the Proximal Update 150
A.4.2 Beyond Closed-form Proximal Operators 150

A.5 More on Latent Factors . 152
A.5.1 More on Sparse Coding . 152

A.6 More on Backpropagation . 152
A.7 More on Mixture Models and EM . 155

A.7.1 Setting Up for the EM Algorithm . 155
A.7.2 The Expectation-Maximization Algorithm 157
A.7.3 Identifiability . 160
A.7.4 Connection to Mirror Descent . 160

A.8 More on Generative Models . 160

TABLE OF CONTENTS 4

A.8.1 Contrasting with Generative Classifiers 160
A.9 More on Generalization Theory . 161

A.9.1 A Shorter Overview . 162
A.9.2 A Generalization Bound for Linear Regression 163
A.9.3 Complexity of a function class . 164
A.9.4 A Generalization Bound for General Function Classes 165

A.10 More on Missing Data . 165
A.10.1 Multiple Imputation and the MAR Assumption 165
A.10.2 Naive Bayes and Missing Data . 167

B Convergence Rates for Gradient Descent 169
B.1 A Convergence Proof for Gradient Descent 169
B.2 Convergence Rate of Gradient Descent . 170
B.3 Convergence Rate of Stochastic Gradient Descent 171
B.4 Selecting the Size of the Mini-batch . 173

C Exercise Solutions 175
C.1 Chapter 2 Exercises . 175
C.2 Chapter 3 Exercises . 176
C.3 Representation Exercises . 176

Notation Reference

Set notation

X A generic set of values. For example, X = {0, 1} is the set containing only 0 and 1,
X = [0, 1] is the interval from 0 to 1 and X = R is the set of real numbers. Depending on
occasion, symbols such as A, B, Ω, and others will also be used as sets.

P(X) The power set of X , a set containing all possible subsets of X .

[a, b] Closed interval with a < b, including both a and b.

(a, b) Open interval with a < b, with neither a nor b in the set.

(a, b] Open-closed interval with a < b, including b but not a.

[a, b) Closed-open interval with a < b, including a but not b.

Vector and matrix notation

x Unbold lowercase variables are generally scalars. However, when x ∈ X , where X is
not specified, x may imdicate a vector, a structured object such as graph, etc.

x Bold lowercase variables are vectors. By default, vectors are column vectors.

X Bold uppercase variables are matrices. This looks like a multivariate random variable,
X, but the random variable is italicized. It will often be clear from context when this is a
multivariate random variable and when it is a matrix.

X⊤ The transpose of the matrix. For two matrices A and B, it holds that

(AB)⊤ = B⊤A⊤.

An n× d matrix consisting of n vectors each of dimension d can be expressed as

X = [x1 x2 . . . xn]⊤ .

Xi: The i-th row of the matrix. A row vector.

X:j The j-th column of the matrix. A column vector.

5

TABLE OF CONTENTS 6

Tuples, vectors, and sequences

(x1, x2, . . . , xd) A tuple; i.e., an ordered list of d elements. When (x1, x2, . . . , xd) ∈ Rd,
the tuple will be treated as a column vector x = [x1 x2 . . . xd]⊤.

a1, . . . , am A sequence of m items. Index variables over these sequences are usually the
variables i, j, or k. For example,

∑m
i=1 ai or, if each ai is a vector of dimension d, then the

double index
∑m

i=1
∑d

j=1 aij .

Function notation

f : X → Y The function is defined on domain X to co-domain Y, taking values x ∈ X
and sending them to f(x) ∈ Y.

df
dx(x) The derivative of a function at x ∈ X , where f : X → R for X ⊂ R.

∇f(x) The gradient of a function at x ∈ X , where f : X → R for X ⊂ Rd. It holds that

∇f(x) =
(
∂f

∂x1
,
∂f

∂x2
, ...,

∂f

∂xd

)
.

ℓ : Rd → R A loss function indicating the error in prediction incurred by the given
weights, ℓ(w). If subscripted, ℓi typically indicates the loss on the ith instance, with ℓ(w) =
1
n

∑n
i=1 ℓi(w) for n instances.

c : Rd → R A generic objective function, that we want to minimize, for the learned
variable w. This could be, for example, a loss plus a regularizer.

Random variables and probabilities

X A univariate random variable is written in uppercase.

X The space of values for the random variable.

x Lowercase variable is an instance or outcome, x ∈ X .

X A multivariate random variable is written bold uppercase.

x Lowercase bold variable is a multivariate instance. In particular cases, when the
variable value is treated as a vector, we will use x.

N (µ, σ2) A univariate Gaussian distribution, with parameters µ, σ2.

TABLE OF CONTENTS 7

∼ indicates that a variable is distributed as e.g., X ∼ N (µ, σ2).

Parameters and estimation

D A data set, typically composed of n elements of multivariate inputs X ∈ Rn×d and
univariate outputs y ∈ Rn or multivariate outputs Y ∈ Rn×m. The data set will also be
referred to as a set of indexed tuples; i.e., D = {(x1, y1), (x2, y2), ..., (xn, yn)}.

F The function class or hypothesis space. Our learning algorithms will be restricted
implicitly to selecting a function from this set. For example, in linear regression, our
function class is F = {f : Rd → R | f(x) = x⊤wforsomew ∈ Rd}.

ω The true parameters for the (generalized) linear regression and classification models,
typically with ω ∈ Rd.

w The approximated parameters for the (generalized) linear regression and classification
models, typically with w ∈ Rd. When discussing w as the maximum likelihood solution on
some data, we write wML(D), to indicate that the variability arises from D.

maxa∈B c(a) The maximum value of a function c across values a in a set B.

argmaxa∈B c(a) The item a in set B that produces the maximum value c(a).

Norms

∥x∥ A norm on x.

∥x∥2 The ℓ2 norm on a vector, ∥x∥2 =
√∑d

i=1 x
2
i . This norm gives the Euclidean distance

from the origin of the coordinate system to x; that is, it is the length of vector x.

∥x∥22 The squared ℓ2 norm on a vector, ∥x∥22 =
∑d

i=1 x
2
i .

∥x∥p The general ℓp norm on a vector, ∥x∥p = (
∑d

i=1 |x|
p
i)1/p.

TABLE OF CONTENTS 8

Useful formulas and rules

log
(
x

y

)
= log(x)− log(y)

log (xy) = y log(x)
m∑

i=1
ai

ˆ
X
fi(x)p(x)dx =

ˆ
X

m∑
i=1

aifi(x)p(x)dx ▷ Can bring sum into integral

d

dx

ˆ
X
f(x)p(x)dx =

ˆ
X

d

dx
f(x)p(x)dx ▷ Can (almost always) bring derivative

into integral

Chapter 1

Introduction to Machine Learning II

These notes presume you have already learned about the basics of machine learning. This
includes the following core concepts: probabilistic underpinnings, estimators and formal-
izing objectives to obtain those estimators (MLE and MAP), evaluating confidence in an
estimator, bias-variance, generalization and overfitting, regularization and basic optimiza-
tion strategies and algorithms such as linear regression. Ideally, you know all the topics
from the Machine Learning I notes [31]. The ML I notes are quite short, and could be read
now before diving deeply into these ML II notes. The ML I notes are also full of exercises
that could be a good way to brush up on your knowledge. In this chapter, we provide a
very brief overview of ML I in Section 1.1.

These notes expand on these basics from ML I, primarily by revisiting and extending
each of the concepts and by introducing a key concept not yet covered: data representation.
You will see more complex distributions and maximum likelihood applied to those distri-
butions (e.g., mixture models and expectation-maximization). With these more complex
distributions, it becomes more sensible to discuss generative models, not just predictors;
this course will cover both more, as opposed to the basics which focused primarily on pre-
diction. You will also see more advanced ways to learn nonlinear predictors, beyond simply
using polynomial features, including neural networks and kernel (similarity) features. You
will see other regularization approaches and more advanced optimization strategies (e.g.,
proximal methods for ℓ1 regularization). We will cover Bayesian methods and uncertainty
estimation generalization for a broader class of models.

Throughout, we will see the central concept of data representation. Many methods rely
on re-representing inputs, to facilitate modeling. We already touched on this lightly with
polynomial features. Inputs were transformed into polynomial features, to make it easy
to learn nonlinear predictors using linear regression. We will discuss how high-dimensional
representations can facilitate learning linear regressors and classifiers. We will also dis-
cuss how identifying a (compact) set of latent factors provides a data representation that
facilitates learning generative models (distributions) and handling missing data.

1.1 A Very Brief Refresher of the Basics of Machine Learning

In this section we do a whirlwind refresher of the concepts and terminology learned in the
basics of machine learning. Our primary goal was to learn a prediction function fw : X → Y,
parameterized by a vector of weights w ∈ Rk. This prediction function inputs a vector of
observations x ∈ X ⊂ Rd and outputs a prediction ŷ ∈ Y. If Y is a discrete, unordered set,
like Y = {giraffe, hippo, ostrich}, then we call the problem of finding f a classification

9

CHAPTER 1. INTRODUCTION TO MACHINE LEARNING II 10

problem. If Y is continuous, then we say it is a regression problem.1
We discussed (a) how to learn such a function and (b) how to evaluate if that function

is good. To learn the function, we needed a clear criterion (objective function) to optimize.
We discussed that the ultimate goal is to find a function f with low expected cost,
E[cost(f(X), Y)], which we later called the generalization error of f . This cost was
different for different problems. For regression, we used cost(f(x), y) = (f(x)− y)2 and for
classification we used the 0-1 cost

cost(ŷ, y) =

0 when y = ŷ

1 when y ̸= ŷ

We found that these choices for costs implied that the optimal predictor for regression
is f∗(x) = E[Y |x] and for classification is f∗(x) = argmaxy∈Y p(y|x). This motivated
estimating p(y|x), or the mean of this distribution E[Y |x], using data.

Formalizing the problem was fun, but now we have the hard part of estimating these
unknown quantities. We know f∗(x) = E[Y |x] for regression, but we don’t have E[Y |x]!
Instead, we only have a dataset of samples D def= {(xi, yi)}ni=1 where (xi, yi) ∼ p where
p(x, y) = p(y|x)p(x). This dataset is a poor proxy, but we will have to make do. The
parameters w for the function we learn are actually parameters for the distribution of
p(y|x). Therefore, we decided to find parameters that were the most likely, given the data:
the MAP objective.

For regression we modeled the conditional distribution as a Gaussian with fixed variance
σ2, written as p(y|x) = N (fw(x), σ2) . The data gives us clues about the true f∗ that defines
the conditional mean. We want to pick the fw that is the most likely, given this evidence.
In other words, the MAP objective is

argmax
w∈Rk

p(w|D) = argmax
w∈Rk

p(D|w)p(w)

= argmax
w∈Rk

n∑
i=1

ln p(yi|xi,w) + ln p(w)

= argmin
w∈Rk

−
n∑

i=1
ln p(yi|xi,w)− ln p(w)

where the first step drops constants, the second uses monotonicity of log and the third
uses the equivalence between maximizing a function and minimizing the negative of that
function. The term p(D|w) is called the likelihood, the term p(w) the prior (before seeing
evidence) and the term p(w|D) the posterior (after seeing evidence).

The prior allows us to inject our own knowledge, and so constrain the space of possible
solutions. We considered a Gaussian prior on w, to encourage the weights to be near zero.
We did so because we concluded large weights can indicate overfitting. Overfitting occurs
when the learned function fw specializes to the training set, at the cost of generalization

1If Y is discrete but ordered, then sometimes this is modeled as an ordinal regression problem. An
example of an ordinal regression problem is one where the goal is to predict the number of injuries in a
day. Then Y = {0, 1, 2, 3, 4, . . .}, and the set is ordered: 4 injuries is more similar to 5 injuries, than to 100
injuries. We did not talk about ordinal regression before, but when we talk about generalized linear models,
we will see how Poisson regression can be used for this ordinal regression problem.

CHAPTER 1. INTRODUCTION TO MACHINE LEARNING II 11

performance. We saw that for very small training sets, with polynomial regression, we
could almost perfectly fit the training dataset, but the resulting function had very poor
generalization error. The true underlying function was actually simpler, and the additional
degrees of freedom from the polynomial was used to fit noise (from variance σ2 in Y |x)
rather than identify the pattern E[Y |x]. This addition of a Gaussian prior corresponded to
ℓ2 regularization.

In some cases, we may not want to constrain solutions with a prior, potentially because
we simply do not know what prior to pick. In that case, we may want to maximize the
likelihood. As we discussed, conceptually this is like picking a uniform prior in MAP. This
maximum likelihood (MLE) objective—equivalently negative log likelihood objective—
is

argmin
w∈Rk

−
n∑

i=1
ln p(yi|xi,w).

After finding this function fw, using MAP or MLE, we want to evaluate if it is good.
The gold standard is the generalization error of fw: E[(fw(X) − Y)2]. However, again we
cannot directly compute this, as it is an expectation over all possible pairs (x, y). Instead,
we can use data to estimate it and we can reason conceptually (or theoretically) about
whether we should expect fw to have good generalization error.

To estimate the generalization error with data, we can use a (hold-out) test set. This
means that we take the dataset and split it into a training set (say 80% of the data)
D = {(xi, yi)}ni=1 and use the rest as a test set Dtest = {(xi, yi)}n+m

i=n+1. This ensures that
the test set is independent of the training set: they have independent samples of pairs (x, y).
We can then use a sample average estimate of the generalization error using

GE(fw) ≈ ĜE(fw) def= 1
m

n+m∑
i=n+1

cost(fw(xi), yi)

It is not enough to simply use this sample average estimate, we also want a notion of
confidence in this estimate. In other words, we want a less vague relationship between
GE(fw) and ĜE(fw) than our approximately equals to symbol ≈. We obtained a more pre-
cise relationship using a confidence interval around ĜE(fw). When reporting our estimate
of generalization error, therefore, we provide the interval [ĜE(fw)− ϵ, ĜE(fw) + ϵ] for an ϵ
that gives the width of the interval, determined by distributional assumptions and the level
of confidence required 1−δ. For example, if we assumed errors (fw(Xi)−Yi)2 are Gaussian
distributed with unknown mean and variance, then we modeled ĜE(fw) using a Student
t-distribution. The resulting confidence interval, say if δ = 0.05 and m = 10, is given by
ϵ = 2.26√

m
× Sm for Sm the unbiased sample standard deviation of the errors.

In addition to empirical measures, we also reasoned about whether we should expect
fw to generalize well. For example, we reasoned that if fw is a 9th-order polynomial but
we only have three data points, then likely we will not generalize well due to overfitting.
This conceptual reasoning is about the bias and variance of different function classes
and algorithms to find these functions. We reasoned that in some cases it was worthwhile
to incur some bias to reduce variance. Ultimately, we combine conceptual reasoning to
select the set of models we consider (e.g., low or high order polynomials, with or without
regularization) with empirical estimates of generalization error to deploy learned functions.

A theme underlying the entire course is the notion of a probabilistic formulation to
quantify uncertainty in our estimators. We have sensible ways to obtain sample average

CHAPTER 1. INTRODUCTION TO MACHINE LEARNING II 12

estimators, or parameters of distributions like the variance, or the parameters for a function
that give conditional distributions. But, we may also want to know the uncertainty in our
estimates. For sample averages, we use concentration inequalities to get confidence intervals
to reflect this uncertainty. For our parameterized functions, such as in linear regression, we
use a Bayesian approach to obtain credible intervals over both the parameters and the
predictions.

All of the above equally applies to classification with logistic regression. We used
the same analysis to reason about (a) optimal predictors for classification, (b) the resulting
MAP or MLE optimization problem to approximate the predictor and (c) conceptual and
empirical strategies to evaluating generalization error of the learned functions.

Finally, an important theme throughout the course was optimization algorithms
strategies to actually solve the optimization problems. We spent a lot of time formalizing
and understanding the goals of learning, as described above, but eventually we have to
actually implement it on a computer. We discussed gradient descent to solve our smooth,
continuous optimization problems, and the importance of step-size selection. We then
discussed the clever generalization to mini-batch stochastic gradient descent, which
similarly reaches local minima but with less computation.

1.2 Generative Models and Predictors

There are two typical goals in machine learning: learning a generative model and learning
a predictor. Many of the concepts are similar between the two, because they both rely
on estimating parameters for a distribution. When we learn the distribution p(x), we are
learning a generative model. When we learned the conditional distribution p(y|x), in
regression and classification, we were learning a predictor.

This distinction, however, is not quite crisp. The real defining difference is how we will
use the models we learn. We typically learn a generative model, to allow us to sample—or
generate—items. For example, we might learn a generative model of faces, to allow us to
generate new images of faces. The model produces hypothetical images, rather than making
predictions. This means that we could in fact learn a conditional generative model, p(y|x),
where different faces y could be sampled depending on context x. For example, we may
want to set x = narrow to sample only narrow faces. This face distribution p(y|x) is much
more complex than the distributions we considered for regression and classification.

In regression, on the other hand, we are primarily interested in statistics of the distribu-
tion that enable us to make predictions. The distributions themselves can be quite simple.
For example, for linear regression, we assumed p(y|x) is Gaussian with a fixed variance
across all x. Our predictions usually correspond to E[Y |x], though it can also be sensible
to use other statistics like the median(Y |x). The power and complexity is in the features x,
for which we are not trying to estimate the distribution. Using the same example as above,
x could be features and y might be a label such as narrow or not narrow. The distribution
p(y|x) is a conditional Bernoulli, which is simple even though x is complex. This contrasts
the above where our goal was to learn the distribution over the complex object, namely
over the faces.

In summary, the primary differences are in (a) how we use the distribution and (b) the
complexity of the distribution. Both generative models and prediction models will rely on
similar nonlinear modelling tools, like neural networks and kernels. But, on top of those

CHAPTER 1. INTRODUCTION TO MACHINE LEARNING II 13

approaches, the strategies will look different due to these two differences. The algorithms we
use to learn generative models will typically be slightly more complex, to learn these more
complex distributions. Moreover, we will have to evaluate the generative models differently,
since their use case is different. In the basics, we only discussed evaluating prediction
models; now, we will also discuss how to evaluate generative models.

1.3 Relationship to Statistics and Probability Theory

Machine learning is based on tools from statistics and from probability. You may wonder
why much of machine learning comes out of computer science departments, rather than
statistics. The answer is primarily due to a difference in focus. Statistics historically
focused on understanding data. Consequently, inference more so than prediction is critical.
For prediction, we want to learn a function f on inputs x that give us accurate predictions
of y. For inference, we instead want to understand the relationship between the inputs x
and targets y. Which inputs are most correlated with the target? And is an input variable
positively or negatively correlated?

Simple and interpretable models are useful for inference. For example, linear models
can make the relationship between an input variable xj and y more clear. If the coefficient
is large, xj may be an important predictor for y. Further, if it is negative, the correlation
is negative. Nonlinear models can complicate understanding the relationships.

Conversely, for prediction, with the advent of more and more data, it is feasible to learn
larger and more complex models. These more complex models are straightforward to use
for prediction, because the interpretability is not as relevant. Our focus in this course is
on using models—namely to obtain predictive models and generative distributions—rather
than inference.

1.4 The Blessing and Curse of Dimensionality

This course focuses on high-dimensional vectors of features (representations). High dimen-
sionality can be both a blessing and a curse. The term curse of dimensionality actually arose
from solving high-dimensional dynamic programming problems. Each added dimension can
cause an exponential growth in the search space for such discrete optimization problems.
In machine learning, we typically focus on continuous variables, rather than discrete, but
similar difficulties with increasing dimension do arise. The curse in machine learning usually
takes two forms: the requirements on the number of samples and the fact that similarities
breakdown in high dimensions.

The first issue arises due to how quickly (exponentially) the volume of a d-dimensional
space grows. With more features—higher dimensionality—we require more samples to iden-
tify the correct model. Imagine we have a [0, 1]d space and we want to cover our input space
with a grid. Say, we want to reason about seeing a point x ∈ Rd for each region of the input
space, at a spacing of 0.1 (10 per dimension). If d = 1 and we only have an interval, we
only need 10 points to cover the space at a resolution of 0.1. If we have d = 2, then we need
102 = 100 points to cover at the same resolution. In general, we need 10d, which means
that for d = 3 we need 1000 points, for d = 4 we need 10, 000 and quickly this balloons out
of proportion. We do not actually need to fully cover our space in machine learning, but

CHAPTER 1. INTRODUCTION TO MACHINE LEARNING II 14

we can see that in higher dimensions a small number of samples barely covers the space at
all. We see a minuscule fraction of the possible input space.

The second issue arises from counterintuitive concentration phenomena—discussed more
later—that occur in high-dimensions. Namely, the volume of a high-dimensional ball or cube
is concentrated near its surface, rather than the interior. One implication of this phenomena
is that, in high-dimensions, the distance between a vector and any other random vector is
likely to be close to the average distance. More specifically, give a randomly sampled dataset
of points, the distance to the closest and nearest neighbors for a given point in that dataset
approaches one [7]. This means that relying on similarities between feature vectors—as we
do in certain learning algorithms—can be ineffective.

This phenomena, however, also provides a blessing. In high-dimensions, data becomes
separable. That is, if we want to classify individual points differently, then projecting into
higher dimensions quickly makes this feasible. For example, when using a feature expansion,
such as with prototype representations in Chapter 8, we can find a linear classifier in this
new space that perfectly separates the two classes.

More generally, the loaded terminology of curse and blessing detracts from the fact that
different situations warrant different strategies. The properties of high-dimensional spaces
need to be considered carefully, to avoid known failures. But, there is no doubt that learning
high-dimensional data representations is an important way forward for prediction. More
complex models, with many many parameters, can significantly improve performance and do
not suffer from some of the overfitting problems that intuitively might have been expected.
Leveraging these nice properties, particularly given by neural networks, has generated a
flurry of work in machine learning.

1.5 Matrix Methods

The basics course avoided matrix methods. Comfort with linear algebra takes time, and
is not strictly needed to implement some of the most commonly used machine learning
methods. As you learned, many of the estimation approaches can use (stochastic) gradient
descent. Our focus was on understanding how stochastic gradient descent can reach station-
ary points, the role of the stepsize in doing so, and why it is that we would want to reach
stationary points. This procedure is quite generic, requiring simply that we can compute
the gradient of our specified objective. For example, for linear regression, the gradient for
a single sample consisted of the (signed) error of our prediction times the feature vector for
that input.

In some cases, however, we can find closed form solutions using matrix methods. In
linear regression, for example, we could have computed the solution by iterating over the
entire dataset only once—instead of for multiple epochs—and computing a matrix inverse.
We can express the linear regression solution as the inverse of a matrix times a vector. This
expression allows us to better understand the properties of the linear regression solution,
as we will see in this course.

Similarly, matrix approaches can elucidate what is learned under certain data repre-
sentations. For the latent variable methods we consider, formalizing the problem using
matrices will help us understand the latent factors extracted.

For this course, I expect you to recall a few basics, summarized in this section.

CHAPTER 1. INTRODUCTION TO MACHINE LEARNING II 15

1.5.1 Matrix multiplication

Recall that a m× n matrix A is a two-dimensional array with m rows and n columns.

A =

a11 a12 . . . a1n

a21 a22 . . . a2n

. . .
am1 am2 . . . amn

 =

a1
a2
. . .
am

where ai

def= [ai1, ai2, . . . , ain] is a vector corresponding to the ith row. The symbol is bold,
to indicate it is a vector. Sometimes, this row vector is written using the notation Ai: where
the colon indicates the entire row from 1 to n is used. Similarly, to reference a column,
we use A:j . When you multiply a vector x ∈ Rn with this matrix, the matrix-vector dot
product corresponds to doing a dot product between x and each row of A:

Ax =

⟨a1,x⟩
⟨a2,x⟩
. . .
⟨am,x⟩

 =

⟨A1:,x⟩
⟨A2:,x⟩
. . .

⟨Am:,x⟩

 ∈ Rm

The resulting vector is the same dimension as the number of rows of A. More generally, if
we do a matrix-matrix product with another matrix B ∈ Rn×k

AB = [AB:,1,AB:,2, . . . ,AB:,k] =

A1,:B:,1 A1,:B:,2 . . . A1,:B:,k
A2,:B:,1 A2,:B:,2 . . . A2,:B:,k

. . .
Am,:B:,1 Am,:B:,2 . . . Am,:B:,k

 ∈ Rm×k

To multiply these matrices, the inner dimension n has to match: A is m×n and B is n×k.
The resulting matrix has the same number of rows as A and number of columns as B. It
is a useful sanity check in derivations, to see if you have made a mistake, to check if all
the dimensions match. If you find yourself multiplying two matrices with different inner
dimensions, then something went wrong.

A useful rule is that (AB)⊤ = B⊤A⊤. Recall that the transpose involves flipping the
matrix around its diagonal. Namely,

A =

a11 a12 . . . a1n

a21 a22 . . . a2n

. . .
am1 am2 . . . amn

 A⊤ =

a11 a21 . . . am1
a12 a22 . . . am2

. . .
a1n a2n . . . amn

If A ∈ Rm×n, then A⊤ ∈ Rn×m.

Exercise 1: Prove that (AB)⊤ = B⊤A⊤. You can do so by computing both the rhs and
lhs and ensuring they are the same. □

1.5.2 Matrix Inverse and Eigenvalue Decomposition

We will also use matrix inverses. Recall that for a scalar number a, it’s inverse a−1 is 1/a,
because aa−1 = 1 (which is the definition of an inverse). For a diagonal matrix A, its inverse

CHAPTER 1. INTRODUCTION TO MACHINE LEARNING II 16

is similarly straightforward:

A =

a1 0 . . . 0 0
0 a2 0 . . . 0

. . .
0 0 . . . 0 ad

 A−1 =

1/a1 0 . . . 0 0

0 1/a2 0 . . . 0
. . .

0 0 . . . 0 1/ad

where you can verify that AA−1 = I for identity matrix I that has 1s on the diagonal

I def=

1 0 . . . 0 0
0 1 0 . . . 0

. . .
0 0 . . . 0 1

We will also use determinants and matrix decompositions—including the eigenvalue

decomposition and singular value decomposition—as well as the rank of a matrix. Ev-
ery matrix X ∈ Rm×n has a singular value decomposition X = UΣV⊤ where U =
[u1, . . . ,um] ∈ Rm×m is the orthonormal matrix composed of the left singular vectors,
V = [v1, . . . ,vn] ∈ Rn×n is the orthonormal matrix composed of the right singular vectors.
An orthonormal matrix U is square matrix that satisfies U⊤U = I and UU⊤ = I. The ma-
trix of nonnegative singular values Σ ∈ Rm×n is a diagonal matrix with zero padding in the
dimension that is larger. For example, consider the case where m > n. The diagonal entries
in Σ are the singular values, which we typically order in descending order σ1, σ2, . . . , σn,
giving

Σ def=

σ1 0 0 . . . 0
0 σ2 0 . . . 0

...
0 0 . . . 0 σn

0 0 . . . 0 0
... (m− n) rows of zeros

0 0 . . . 0 0

=
[
Σn

0

]
where Σn

def=

σ1 0 . . . 0
0 σ2 . . . 0

...
0 0 . . . σn

 .

Any matrix X ∈ Rn×d can be decomposed into its singular value decomposition, because any
linear transformation can be decomposed into a rotation (multiplication by V⊤), followed
by a scaling (multiplication by Σ), followed again by a rotation (multiplication by U).

Sometimes we use the thin SVD, where drop the columns of U and rows of V corre-
sponding to the zero parts of Σ. Let us call these Uk ∈ Rm×k and Vk ∈ Rk×n, the first
k columns and rows respectively where k = min(m,n). For the above, where we consider
m > n, we have k = n. We can do this because the zero parts of Σ remove those rows or
columns in the multiplication:2

X = UΣV⊤ = UkΣkV⊤
k .

2You might wonder why we do not simply define the SVD this way, since it has less redundant information.
The reason is that we need U and V to be orthonormal matrices, which means they must be square. The
thin versions still satisfy useful orthogonality properties, namely that for m > n with k = n, U⊤

k Uk = I but
we no longer have UkU⊤

k = I.

CHAPTER 1. INTRODUCTION TO MACHINE LEARNING II 17

In this example, where m > n and k = n, we have that Vk = V. But we still define this
Vk since more generally for the thin SVD we might have m < n and then V is the one that
is made smaller.

This decomposition simplifies analysis of the properties of a matrix. For example, the
number of non-zero singular values constitutes the rank of X. To see why, assume σn = 0,
and σn−1 > 0, meaning X has rank n− 1. Take any vector w ∈ Rn, and consider Xw. We
can write this product as

UΣV⊤w = UΣw̃ for w̃ = V⊤w.

The product Σw̃ sets the last dimension of w̃ to zero, effectively removing that dimension
and so projecting w̃ into a lower-dimensional (n− 1) space. Then it rotates that projected
vector afterwards, using U, but cannot undo the projection into a lower-dimensional space.
Therefore, Xw can only produce ŷ = Xw that lie in a n− 1-dimensional plane.

The eigenvalue decomposition is similar to the SVD, but is only defined for square ma-
trices A ∈ Rm×m. We will further only consider the eigenvalue decomposition of symmetric
matrices—since that is all that we need for these notes—which slightly simplifies the de-
composition. The eigenvalue decomposition of a square, symmetric matrix is A = UΛU⊤

for orthonormal matrix U ∈ Rm×m and diagonal matrix Λ ∈ Rm×m, where now the entries
can be both positive and negative. The number of non-zero elements again tell us the rank
of the matrix.

The eigenvalue decomposition—and the SVD, for that matter—make computation of
the inverse straightfoward. Namely, if A is full rank and so invertible, we get that

AA−1 = (UΛU⊤)UΛ−1U⊤

= UΛU⊤UΛ−1U⊤ ▷U⊤U = I by definition of orthonormal matrices
= UΛIΛ−1U⊤ ▷ Identity operator I has no impact
= UΛΛ−1U⊤ ▷ΛΛ−1 = I
= UIU⊤

= UU⊤ ▷UU⊤ = I by definition of orthonormal matrices
= I

Exercise 2: Go through the same steps above, and prove that given the SVD A = UΣV⊤

of a full-rank symmetric, square matrix, the matrix A−1 = VΣ−1U⊤ is the inverse of A. □

1.5.3 Basic Rules for Gradients with Vectors and Matrices

For derivatives, there are useful rules that you are familiar with, such as d
dwaw = a, d

dww
2 =

2w and d
dwe

w = ew. We can similarly write down such rules for the multivariate setting,
to simplify computation of gradients without having to go resort to computing each partial
derivative. Each of the following rules can be verified by computing partial derivatives,
with the rules you are used to for the univariate case. We summarize the key rules for this
document here; for a more complete reference, see the matrix cookbook [21].

Three useful rules are summarized in Table 1.1. Note to obtain the derivative for the
function f(x) = x⊤A, one can first obtain the derivative for f(x)⊤ = A⊤x and then take

CHAPTER 1. INTRODUCTION TO MACHINE LEARNING II 18

f(x) ∂f
∂x

x⊤x 2x
Ax A⊤

x⊤Ax Ax + A⊤x

Table 1.1: Useful derivative formulas of vectors with respect to vectors. The derivative of
vector-valued function f : Rd×1 → Rm×1 with respect to vector x ∈ Rd×1 is an d×m matrix
M with components Mij = ∂yj/∂xi, i ∈ {1, 2, . . . , d} and j ∈ {1, 2, . . . ,m}. A derivative of
scalar with respect to a vector, where m = 1, is a special case of this situation that results
in an d × 1 column vector. Note that in the table, m is not the same for each row. For
example, f(x) = x⊤x is a scalar, whereas for a general matrix A ∈ Rm×d, f(x) = Ax is a
m-dimensional vector.

its transpose because (
∇f(x)

)⊤ = ∇
(
f(x)⊤).

Therefore, because ∇(f(x)⊤) = A, we get that ∇f(x) = A⊤. Note that because of this
equivalence in the above equation, we will often drop the brackets and simply write ∇f(x)⊤

instead of ∇
(
f(x)⊤).

Part I

Revisiting Concepts

19

Chapter 2

Multivariate Probability Concepts

You have already learned about basic probability concepts, including discrete and contin-
uous random variables; pmfs and pdfs; expectations, covariances and moments; indepen-
dence and conditional independence. In this chapter, we discuss more complex distributions,
including multidimensional distributions and mixture models. We additionally discuss en-
tropy, which provides another piece of information about a distribution, and KL divergences
that allow us to compare two distributions.

2.1 Multidimensional distributions

Recall that discrete random variables have probability mass functions (pmfs) and con-
tinuous random variables have probability density functions (pdfs). You have already seen
several examples of such distributions for univariate random variables (one-dimensional ran-
dom variables). These included Bernoulli, uniform and Poisson distributions for discrete
and uniform, Gaussian, exponential and Gamma distributions for continuous random vari-
ables. In this section we briefly revisit these definitions, generally for multivariate random
variables—which include the univariate ones as a special case—and provide a few examples.

Let X = (X1, X2, . . . , Xd) be a d-dimensional random variable with vector-valued out-
comes x = (x1, x2, . . . , xd), such that each xi is chosen from some Xi. The sample space
for X is X = X1 ×X2 × . . . ,×Xd. For the discrete case, each Xi is a countable set, such as
{1, 2, 3} or the set of integers; for the continuous case, it is a continuous (uncountable) set,
such as [−1, 1] or the set of all reals.

For the discrete case, any function p : X → [0, 1] is called a probability mass function
(pmf) if ∑

x1∈X1

∑
x2∈X2

· · ·
∑

xd∈X d

p (x1, x2, . . . , xd) = 1.

One example of the multidimensional pmf is the multinomial distribution, which generalizes
the binomial distribution to the case when the number of outcomes in any trial is a positive
integer d ≥ 2. The multinomial distribution is used to model a sequence of n independent
and identically distributed (i.i.d.) trials with d outcomes. At each point (x1, x2, . . . , xd) in
the sample space, the multinomial pmf provides the probability that the outcome 1 occurred
x1 times, outcome 2 occurred x2 times, etc. Of course, 0 ≤ xi ≤ n for all i and

∑d
i=1 xi = n.

For example, an experiment consisting of n tosses of a fair six-sided die and counting the
number of occurrences of each number can be described by a multinomial distribution.

More formally, given the sample space X = {0, 1, . . . , n}d, the multinomial pmf is defined

20

CHAPTER 2. MULTIVARIATE PROBABILITY CONCEPTS 21

as

p(x1, x2, . . . , xd) =

(n

x1,x2,...,xd

)
αx1

1 αx2
2 . . . αxd

d if x1 + x2 + · · ·+ xd = n

0 otherwise

where αi’s are positive coefficients such that
∑d

i=1 αi = 1. That is, each coefficient αi gives
the probability of outcome i in any trial. The multinomial coefficient(

n

k1, k2, . . . , kd

)
= n!
k1!k2! · · · kd!

generalizes the binomial coefficient by enumerating all ways in which one can distribute n
balls into d boxes such that the first box contains k1 balls, the second box k2 balls, etc.

This distribution is useful for us for multi-class classification, where we categorize an item
into one of m classes. We will more specifically consider a special case of the multinomial,
where n = 1. Then d corresponds to the number of classes m and only one class is successful,
namely only one xi is 1 and the remainder are 0. The distribution corresponds to the
probability of each class being the correct class (for a given input). Simplifying the above,
we have X = {0, 1}d and pmf

p(x1, x2, . . . , xd) =

αx1

1 αx2
2 . . . αxd

d if x1 + x2 + · · ·+ xd = 1

0 otherwise

When d = 2, this reduces to the Bernoulli distribution. The above pmf for d = 2 is αx1
1 αx2

2 ,
where x1 + x2 = 1 and α1 +α2 = 1. If we think of outcome 1 as, say, Heads and outcome 2
as Tails, then we can rewrite this equivalently as α1 = α, α2 = 1−α and x = x1 which is 1
when the outcome is Heads, and 0 when it is tails. Then αx1

1 αx2
2 = αx(1−α)1−x. Therefore,

we can think of this distribution as the multidimensional generalization of the Bernoulli.
Other distributions we discussed for the univariate case can be extended to the mul-

tivariate case. The extension does not simply correspond to separately modelling each
component of the vector, independently. Rather, the multivariate extensions typically al-
low us to reason about relationships between the variables. For the above multinomial,
for example, we know if one variable has a successful outcome, and n = 1, then we know
another cannot have a successful outcome. This is very different from separately modelling
each component with a Bernoulli, which allows for multiple variables to be 1. For example,
(1, 1, 0, 0) might a possible outcome if each entry is modelled separately as a Bernoulli, but
would not be possible under the multinomial with n = 1. Similarly, the extension of the
Poisson to the multivariate Poisson considers relationships—like covariances—between the
variables. We do not use the multivariate Poisson distribution in these notes, and so we do
not discuss it further.

Exercise 3: The extension of the uniform distribution to the multivariate case is relatively
straightforward, because each dimension is independent. Write down the pmf, assuming
Xi = {1, 2, . . . , n} for all i. Recall that for a univariate pmf p(x) = 1/n, with outcome space
x ∈ {1, 2, . . . , n}. Verify that your multidimensional uniform is a valid pmf. □

CHAPTER 2. MULTIVARIATE PROBABILITY CONCEPTS 22

<latexit sha1_base64="XP/RghjTiDth7RULcks/118C9OU=">AAACPXicbVBNT9wwFHT47vLRhR57sVgVcVolCBUuSAguPW7VXUBaRyvHeclaOE5kvyCtovwxLvwHbty4cGiFuPZaZ8mhhY5keTzznu03UaGkRd9/8BYWl5ZXVtc+dNY3Nrc+drd3LmxeGgEjkavcXEXcgpIaRihRwVVhgGeRgsvo+rzxL2/AWJnrIc4KCDOeaplIwdFJk+6QRbmK7SxzW8V+yDTjNT2hTEGCYxZBKnXFjeGzuhKipkHfp3vUp4zRhjRHBjpuSygzMp1iOOn2/L4/B31Pgpb0SIvBpHvP4lyUGWgUils7DvwCQ3crSqGg7rDSQsHFNU9h7KjmGdiwmk9f0y9OiWmSG7c00rn6d0fFM9sM6CozjlP71mvE/3njEpPjsJK6KBG0eH0oKRXFnDZR0lgaEKhmjnBhpPsrFVNuuEAXeMeFELwd+T25OOgHX/sH3w97p2dtHGvkM9kl+yQgR+SUfCMDMiKC3JJH8pP88u68J+/Ze3ktXfDank/kH3i//wC7ia0K</latexit>

⌃ =

1.0 0
0 1.0

� <latexit sha1_base64="VYYnITxhVqa2KmoHZj04CYwQLNM=">AAACQ3icbVBNT9wwEHWAwnbb0gWOvVisinqKEtQWLkiIXjhu1S4g1tHKcSZZC8eJ7AnSKsp/48If4MYf6IUDVdVrpXp3c+DrSdY8vTdje15cKmkxCG69peWVV6trndfdN2/frb/vbWye2KIyAoaiUIU5i7kFJTUMUaKCs9IAz2MFp/HFt5l/egnGykL/xGkJUc4zLVMpODpp3DtncaESO81dqdkPmeW8oQeUKUhxxGLIpK65MXza1EI0NPQDukMDf+8LZWxRd+YiA520jZQZmU0wGvf6gR/MQZ+TsCV90mIw7t2wpBBVDhqF4taOwqDEyN2KUihouqyyUHJxwTMYOap5Djaq5xk09KNTEpoWxh2NdK4+nKh5bmdrus6c48Q+9WbiS96ownQ/qqUuKwQtFg+llaJY0FmgNJEGBKqpI1wY6f5KxYQbLtDF3nUhhE9Xfk5Odv3wq7/7/XP/8KiNo0M+kG3yiYRkjxySYzIgQyLIFflF7slv79q78/54fxetS147s0Uewfv3HwyLrno=</latexit>

⌃ =

1.0 0.75
0.75 1.0

� <latexit sha1_base64="VYYnITxhVqa2KmoHZj04CYwQLNM=">AAACQ3icbVBNT9wwEHWAwnbb0gWOvVisinqKEtQWLkiIXjhu1S4g1tHKcSZZC8eJ7AnSKsp/48If4MYf6IUDVdVrpXp3c+DrSdY8vTdje15cKmkxCG69peWVV6trndfdN2/frb/vbWye2KIyAoaiUIU5i7kFJTUMUaKCs9IAz2MFp/HFt5l/egnGykL/xGkJUc4zLVMpODpp3DtncaESO81dqdkPmeW8oQeUKUhxxGLIpK65MXza1EI0NPQDukMDf+8LZWxRd+YiA520jZQZmU0wGvf6gR/MQZ+TsCV90mIw7t2wpBBVDhqF4taOwqDEyN2KUihouqyyUHJxwTMYOap5Djaq5xk09KNTEpoWxh2NdK4+nKh5bmdrus6c48Q+9WbiS96ownQ/qqUuKwQtFg+llaJY0FmgNJEGBKqpI1wY6f5KxYQbLtDF3nUhhE9Xfk5Odv3wq7/7/XP/8KiNo0M+kG3yiYRkjxySYzIgQyLIFflF7slv79q78/54fxetS147s0Uewfv3HwyLrno=</latexit>

⌃ =

1.0 0.75
0.75 1.0

�

Figure 2.1: The multivariate Gaussian distribution with d = 2, for two different covari-
ances. In (a), the covariance between random variables is zero, with only entries on the
diagonal. In (b) and (c), the two components are correlated. This means that they have
unit variance and a positive correlation, where if one is larger then it is more likely that the
other is larger, and if one is smaller then it is more likely that the other is smaller. This
correlation is emphasized in (c), looking from above, where we can clearly see the strong
positive correlation between x and y: the density is higher for pairs where x and y are
similar.

For the continuous case, any function p : X → [0,∞) is a probability density function
(pdf) if

ˆ
X
p(x)dx =

ˆ
X1

· · ·
ˆ

Xd

p(x1, x2, . . . , xd)dx1 · · · dxd = 1.

For example, if Xi = R, giving X = Rd, this integral is
ˆ ∞

−∞
· · ·
ˆ ∞

−∞
p(x1, x2, . . . , xd)dx1 · · · dxd.

If Xi = [−1, 1], giving X = [−1, 1]d, this integral is
ˆ 1

−1
· · ·
ˆ 1

−1
p(x1, x2, . . . , xd)dx1 · · · dxd.

Recall that the density p(x) at a point x can be greater than one, which is why the range
of p is [0,∞).

The most useful multivariate generalization for us to consider is that for the Gaussian
distribution. The multivariate Gaussian distribution is a generalization of the Gaussian or
normal distribution to the d-dimensional case, with X = Rd. It is defined as

p(x) = 1√
(2π)d|Σ|

exp
(
−1

2(x− µ)⊤Σ−1(x− µ)
)
, (2.1)

CHAPTER 2. MULTIVARIATE PROBABILITY CONCEPTS 23

with parameters µ ∈ Rd and a d-by-d covariance matrix Σ ∈ Rd×d. We will refer to this
distribution as N (µ,Σ); it is depicted in Figure 2.1.

This formula contains several new concepts, so let us step through it slowly. First,
recall the definition of the covariance matrix. It is a two-dimensional array, where each
entry corresponds to the covariance between two random variables

Σij = Cov[Xi, Xj]
= E [(Xi − E [Xi]) (Xj − E [Xj])]

where our multivariate random variable is X = (X1, X2, . . . , Xd). Notice that the diagonal
of this matrix corresponds to the variances of each entry

Σii = Cov[Xi, Xi] = Var[Xi]

The formula includes |Σ|, which is called the determinant of Σ. For us, this determinant
reflects the overall variance: if it is large in most directions, this determinant will be large,
and if there are some directions where the density is very peaked (low variance), then it
could be very small. In this simplest case, when the covariance between random variables is
zero, the covariance is a diagonal matrix. Namely, it has the variances on the main diagonal,
with zeros everywhere else

Σ =

Var[X1] 0 . . . 0 0

0 Var[X2] 0 . . . 0
. . .

0 0 . . . 0 Var[Xd]

 =

σ2

1 0 . . . 0 0
0 σ2

2 0 . . . 0
. . .

0 0 . . . 0 σ2
d

where we write σ2

i
def= Var[Xi], in other words where σi is the standard deviation for the

ith variable. Then the determinant is |Σ| = σ2
1σ

2
2 . . . σ

2
d, the product of these variances.

Therefore, the first term includes a normalization with the magnitudes of the variances.
Let us continue with this simpler case, to understand the second component with a

matrix inverse. In Section 1.5, we discussed that the inverse of a diagonal matrix is the
inverse of each scalar on the diagonal

Σ−1 =

1/σ2

1 0 . . . 0 0
0 1/σ2

2 0 . . . 0
. . .

0 0 . . . 0 1/σ2
d

When we take the matrix-vector product Σ−1(x − µ), we are scaling each component by
the correspond diagonal element

Σ−1(x− µ) =

1

σ2
1
(x1 − µ1)

1
σ2

2
(x2 − µ2)
. . .

1
σ2

d
(xd − µd)

 (2.2)

CHAPTER 2. MULTIVARIATE PROBABILITY CONCEPTS 24

Let v = Σ−1(x− µ). Then, we take the dot product again with (x− µ) to get

(x− µ)⊤Σ−1(x− µ) = (x− µ)⊤v =
d∑

j=1
(xj − µj)vj

=
d∑

j=1
(xj − µj) 1

σ2
j
(xj − µj) =

d∑
j=1

1
σ2

j
(xj − µj)2.

Therefore, this term corresponds to a weighted sum of squared differences to the mean.
In fact, recall that the squared ℓ2 norm is ∥v∥22 =

∑d
j=1 v

2
j . We can see that ∥x−µ∥22 =∑d

j=1(xj − µj)2. Therefore, this term corresponds to an ℓ2 norm, but weighted by the
magnitude of the variance in each dimension. If the variance is small in one direction, this
amplifies the difference; if it is large, it downweights it. This makes sense for a Gaussian. A
big variance implies that outcomes further from the mean still have reasonably high density.
A small variance means that the Gaussian is peaked, and moving even a small amount away
from the mean significantly decreases the density.

Exercise 4: Use the formula for matrix-vector multiplication to show the step for the
equality in Equation (2.2). □

Example 1: Let us look at an example with 2-dimensions, d = 2. Let

µ =
[
µ1
µ2

]
=
[
−1
0.3

]
Σ =

[
σ2

1 0
0 σ2

2

]
=
[

10 0
0 1

]

This Gaussian has no covariance between the two variables. The first variable has much
higher variance (10) than the second, which has a variance of 1. This means the Gaussian
is wider in the first dimension—and flatter—and narrower and more peaked in the second
dimension. Further, it is shifted in the first dimension x1 to be more negative—centered
around µ1 = −1—and shifted to be slightly positive in the second dimension x2. □

Now let us consider what the Gaussian looks like with covariance between the variables,
namely non-zeros on the off-diagonal. This causes the distribution to become more skewed,
as shown in Figure 2.1. Further, the determinant and inverse become a bit more involved
to compute, since Σ is no longer a diagonal matrix.

The covariance matrix is symmetric and positive definite; i.e., Σ ≻ 0. This means
that the eigenvalues are positive. Recall that the eigenvalue decomposition for a symmetric
matrix is Σ = UΛU⊤ for orthonormal matrix U ∈ Rd×d and diagonal matrix Λ ∈ Rd×d.
Every symmetric matrix has an eigenvalue decomposition, and so Σ has an eigenvalue
decomposition. Now the determinant is

|Σ| = Πd
i=1λj (2.3)

where the λj ∈ R are the eigenvalues on the diagonal of Λ. The determinant reflects the
volume spanned by the matrix. If the eigenvalues are large, then a larger volume is occupied.
You can think of the eigenvalues Λ as the diagonal variances in the rotated space, where
rotation does not affect the width or variability in each (rotated) dimension.

CHAPTER 2. MULTIVARIATE PROBABILITY CONCEPTS 25

2.2 Properties of Expectations

Expectations for multivariate variables are the same as in the univariate case.

E [X] def=

∑

x∈X xp(x) if X is discrete

´
X xp(x)dx if X is continuous

(2.4)

Notice further that this expectation is actually element-wise

E [X] =

E [X1]
E [X2]
. . .

E [Xd]

 (2.5)

where each expectation E [Xj] uses the marginal p(xj). Recall that a marginal is the dis-
tribution over a single variable, computed from the larger joint distribution. For example,
if all the variables are discrete, for a given xj ∈ Xj ,

p(xj) =
∑

x1∈X1

. . .
∑

xj−1∈Xj−1

∑
xj+1∈Xj+1

. . .
∑

xd∈Xd

p(x1, x2, . . . , xj−1, xj , xj+1, . . . , xd)

This means it is straightforward to define the expectation, even for X composed of both
discrete and continuous variables. For example, if X1 is discrete and X2 is continuous, then
for X = [X1, X2], the expectation for the first element uses sums and for the second element
uses integrals.

The marginals themselves can also be mixed. Imagine we have three variables, where
X2 is discrete and X3 is continuous. Then, regardless of the type for X1, we can get the
marginal

p(x1) =
∑

x2∈X2

ˆ
X3

p(x1, x2, x3)dx3 =
ˆ

X3

 ∑
x2∈X2

p(x1, x2, x3)

 dx3

where the order of the sum and integral is not relevant. The definition of the marginal only
relies on the types for the variables we marginalize over, namely X2 and X3. The resulting
marginal is a pmf if X1 is discrete and is a pdf if X1 is continuous.

Exercise 5: Show that we get the elementwise expectation in Equation (2.5), using the
definition of expectation in Equation (2.4). □

Here we review, without proofs, some useful properties of expectations. We can gener-
ically consider multivariate random variables, X ∈ Rd and Y ∈ Rd, for d ∈ N, with
univariate random variables as a special case (for d = 1). For a constant c ∈ R, it holds
that:

1. E [cX] = cE [X]

2. E [X + Y] = E [X] + E [Y]

3. Var [c] = 0 ▷ the variance of a constant is zero

CHAPTER 2. MULTIVARIATE PROBABILITY CONCEPTS 26

4. Var [X] ⪰ 0 (i.e., is positive semi-definite), where for d = 1, Var [X] ≥ 0 is a scalar.
Note that Var [X] is shorthand for Cov[X,X].

5. Var [cX] = c2Var [X].

6. Cov[X,Y] = E[(X − E[X])(Y − E[Y])⊤] = E[XY ⊤]− E[X]E[Y]⊤

7. Var [X + Y] = Var [X] + Var [Y] + 2Cov[X,Y]

8. Var [X1 + X2 + . . .+ Xm] =
m∑

i=1

m∑
j=1

Cov[Xi,Xj] =
m∑

i=1
Var [Xi]+2

∑
1≤i<j≤m

Cov[Xi,Xj]

In addition, if X and Y are independent random variables of the same dimension, it holds
that:

1. E [XiYj] = E [Xi]E [Yj] for all i, j

2. Var [X + Y] = Var [X] + Var [Y]

3. Cov[X,Y] = 0.

2.3 Mixtures of Distributions

In previous sections we saw that random variables are often described using particular fam-
ilies of probability distributions. This approach can be generalized by considering mixtures
of distributions: convex combinations of other probability distributions. This allows us to
take relatively simply distributions, like Gaussians, and produce much more complex dis-
tributions. An example is given in Figure 2.2, where even with just two Gaussians, we can
already see that we can model many more densities.

Formally, a mixture model p(x) is defined on a set of m probability distributions,
{pi(x)}mi=1

p(x) =
m∑

i=1
wipi(x), (2.6)

where w = (w1, w2, . . . , wm) is a set of non-negative real numbers such that
∑m

i=1wi = 1.
We refer to w as mixing coefficients. A linear combination with such coefficients is called a
convex combination.1 For discrete random variables X, the pi : X → [0, 1] must be pmfs,
and the resulting p : X → [0, 1] is also a pmf. For continuous random variables X, the
pi : X → [0,∞) must be pdfs, and the resulting p : X → [0,∞) is also a pdf.

Exercise 6: Assume X is discrete and verify that p satisfies the rules for pmfs, namely
that p(x) ≥ 0 for all x and

∑
x∈X p(x) = 1. Use the fact that we know each pi is a valid

pmf, and the constraints on the coefficients wi. □

1Whenever we use non-negative weights that sum to 1, we are interpolating between the set of items.
This interpolation results in a convex set, which is why this is called a convex combination. A set C is
convex if for any two x, y ∈ C we have λx+ (1 − λ)y ∈ C for any λ ∈ [0, 1].

CHAPTER 2. MULTIVARIATE PROBABILITY CONCEPTS 27

MIXTURES OF GAUSSIANS

Figure 2.2: A Gaussian Mixture Model, where the two Gaussians are mixed with coefficients
w1 = 0.25 on the red Gaussian (leftmost) and w2 = 0.75 on the blue Gaussian (rightmost).
Namely, if we label the red Gaussian as p1 and the blue as p2, then the yellow line is
p(x) = w1p1(x) + w2p2(x) = 0.25N (−2, 0.75) + 0.75N (1, 1).

Here we will briefly look into expectations for mixture distributions. Let Xi be the
(implicit) random variable described by the distribution pi. Note it is implicit, since we are
not modeling Xi; rather we are modeling X. For any function f on X,

E [f(X)] =
ˆ

X
f(x)p(x)dx

=
ˆ

X
f(x)

m∑
i=1

wipi(x)dx

=
m∑

i=1
wi

ˆ
X
f(x)pi(x)dx

=
m∑

i=1
wiE[f(Xi)].

We get the same outcome for discrete X.
Consider the simpler univariate setting, where d = 1. We can apply this formula to

obtain the mean, when f(x) = x and the variance, when f(x) = (x−E[X])2, of the random
variable X as

E[X] =
m∑

i=1
wiE[Xi],

and

Var[X] =
m∑

i=1
wiVar[Xi] +

m∑
i=1

wi (E[Xi]− E[X])2 .

The variance corresponds to the weighted sum of the variances of the individual mixture
components, as well as the weighted sum of the distances between the means of the com-
ponents and the mean of the mixture. Intuitively, this makes sense. Consider when we mix
two Gaussians, as in Figure 2.2. If the means of the two Gaussians are far apart, then the

CHAPTER 2. MULTIVARIATE PROBABILITY CONCEPTS 28

mean of the mixture likely lies somewhere between them and these distances in the second
term will be quite large. The samples x from this mixture can vary widely, either centered
around the mode of the first Gaussian or much further away at the mode of the second
Gaussian.

Notice that it is very different to take a convex combination of random variables versus
a convex combination of their distributions. Mixture models use convex combinations of
distributions. For the above example, consider if we instead use Y =

∑m
i=1wiXi. Then the

expectation of this Y is actually the same as the mixture X, but the variances are different

Var[Y] = Var
[

m∑
i=1

wiXi

]
=

m∑
i=1

wiVar[Xi] +
m∑

i=1

m∑
j=1

Cov[Xi, Xj]

For example, if the Xi are independent, then the covariance terms disappear and the vari-
ance is simply

∑m
i=1wiVar[Xi]. In general, the distributions can be very different. For

example, if Y is the convex combination of two Gaussian random variables Xi, then Y is
itself again Gaussian (a unimodal density). The mixture model of these two Gaussians,
however, has the bimodal structure we see in Figure 2.2.

Example 2: We use a signal communications example to give another example that the
distribution for a convex combination of two random variables X and Y does not correspond
to a combination of their distributions. Consider transmission of a single binary digital
signal (bit) over a noisy communication channel. The magnitude of the signal X emitted
by the source is equally likely to be 0 or 1 Volt. The signal is sent over a transmission
line (e.g., radio communication, optical fiber, magnetic tape) in which a Gaussian noise
component Y is added to X, and receive Z = X + Y .

We can model this as follows. We have X : Bernoulli(α) and Y : Gaussian(µ, σ2). It
can be shown that

p(z) = α · 1√
2πσ2

e− 1
2σ2 (z−µ−1)2

+ (1− α) · 1√
2πσ2

e− 1
2σ2 (z−µ)2

.

(We omit the steps to obtain this, because that is not the point of this example.) We see
that p(z) is a mixture of two normal distributionsN (µ+1, σ2) andN (µ, σ2) with coefficients
w1 = α and w2 = 1 − α. But the underlying variables producing Z involve the sum of a
Gaussian and a Bernoulli random variable. □

2.4 Revisiting MLE with Multivariate Gaussians

A good way to refresh your maximum likelihood estimation (MLE) knowledge is to apply
it to a new distribution: multivariate Gaussians. Assume you would like to find parameters
µ,Σ for a multivariate Gaussian N (µ,Σ) where Σ is positive definite and symmetric. (We
write Σ ≻ 0 to indicate that this matrix is positive definite.) Recall that the pdf, introduced
in Equation 2.1, is

p(x) = (2π)−d/2|Σ|−1/2 exp
(
−1

2(x− µ)⊤Σ−1(x− µ)
)
.

CHAPTER 2. MULTIVARIATE PROBABILITY CONCEPTS 29

The negative log likelihood for a given x for a Gaussian is

− ln p(x) = − ln(2π)−d/2 − ln |Σ|−1/2 − ln exp
(
−1

2(x− µ)⊤Σ−1(x− µ)
)

= − ln(2π)−d/2 + 1
2 ln |Σ|+ 1

2(x− µ)⊤Σ−1(x− µ)

Now we can compute the gradient with respect to both of our parameters µ,Σ, for the full
objective and find a stationary point. The objective for θ = (µ,Σ) is

c(θ) =
n∑

i=1
ci(θ) where ci(θ) def= − ln p(xi) = − ln(2π)−d/2 + 1

2 ln |Σ|+ 1
2(xi − µ)⊤Σ−1(xi − µ)

Notice that we can still consider our set of parameters to be a vector θ ∈ Rd+d2 , where the
d elements correspond to µ and θd+1 = Σ11, θd+2 = Σ21, . . . , θ2d = Σd1, θ2d+1 = Σ12, . . . ,
θd+d2 = Σdd. When we compute the stationary point, we are computing partial derivatives
for each θj and setting them to zero. This corresponds to computing partial derivatives for
each element of µ and Σ and finding the point where those partial derivatives are zero. We
can use gradient descent, but in this case we can actually obtain a closed form solution by
solving for µ,Σ such that both ∇µc(θ) = 0 and ∇Σc(θ) = 0.

To get these partial derivatives, we will compute them for each ci.

∇µ− ln p(x) = ∇µ− ln(2π)−d/2 +∇µ
1
2 ln |Σ|+∇µ

1
2(x− µ)⊤Σ−1(x− µ)

= 0 + 0 + Σ−1(µ− x)

where the last follows from the fact that ∇µ
1
2(x − µ)⊤Σ−1(x − µ) = Σ−1(µ − x). You

can check this as an exercise, either using the rules for derivatives with vectors, discussed
in Section 1.5.3, or by computing the partial derivatives for each µj . We can therefore see
that, for any full rank (invertible) Σ, we have

∇µ−
n∑

i=1
ln p(xi) = Σ−1

n∑
i=1

(µ− xi) = 0

=⇒
n∑

i=1
(µ− xi) = 0 ▷multiply both sides by Σ =⇒ nµ =

n∑
i=1

xi

=⇒ µ∗ = 1
n

n∑
i=1

xi

We know that this stationary point is a global minimum because the objective is convex: it
is a weighted quadratic objective, with positive definite weighting Σ−1.

Similarly, we can compute the gradient w.r.t. Σ and solve for a stationary point. This
answer is again intuitive: it is the sample covariance. We leave this as an exercise.

Exercise 7: Show the stationary point w.r.t. Σ is the sample covariance 1
n

∑n
i=1 xix⊤

i . □

This stationary point satisfies the conditions on Σ, namely that it is symmetric and positive
definite, if n > d. This is because an outer product aia⊤

i is always symmetric, and the sum
of symmetric matrices is symmetric. Further, the sum of outer products

∑n
i=1 aia⊤

i has at
most rank n. Therefore, if n < d, the rank will be less than d and Σ will not be full rank.

CHAPTER 2. MULTIVARIATE PROBABILITY CONCEPTS 30

Because we usually assume n > d, we will usually get a full rank Σ and we can conclude
that we have a global minimum.

Exercise 8: Typically, once n > d, we expect Σ to be full rank and so positive definite.
However it is possible that n > d and we get a Σ that is not full rank. When might this
happen and why? Hint: start by considering a case where you have two repeated samples
x3 = x5 and n = d. □

Exercise 9: The above is the MLE solution. We could instead consider a MAP solution,
where we incorporate a prior on our variables. What prior information might we want to
incorporate on Σ? □

2.5 Entropy and KL Divergence

We have so far mainly discussed statistics on distributions. Another set of metrics reflects
their information content, which can be seen as the level of stochasticity or randomness in
the random variables. The entropy of a random variable is defined as

H(X) =
{
−
∑

x∈X p(x) log p(x) if X is discrete
−
´

X p(x) log p(x)dx if X is continuous

For continuous RVs it is called the differential entropy. The uniform distribution has the
highest entropy, and a perfectly peaked (deterministic) distribution has the lowest entropy.
The entropy, for us, is primarily useful to define the Kullback-Leibler (KL) divergence.

The KL divergence between probability distributions p(x) and q(x) on X = R is

DKL(p||q) =
ˆ ∞

−∞
p(x) log p(x)

q(x)dx.

In information theory, KL divergence has a natural interpretation of the inefficiency of signal
compression when the code is constructed using a suboptimal distribution q(x) instead of
the correct (but unknown) distribution p(x) according to which the data has been generated.
However, the KL divergence is often used as a measure of divergence between two probability
distributions. Although this divergence is not a metric (it is not symmetric and does not
satisfy the triangle inequality) it has important theoretical properties in that (i) it is always
non-negative and (ii) it is equal to zero if and only if p(x) = q(x).

One interesting note is the relationship between maximum likelihood estimation and KL
divergence. Let p(x|θ) be the estimated probability distribution and p(x|θ0) the underlying
(true) distribution according to which the data set D = {xi}ni=1 was generated. The KL
divergence between p = p(·|θ0) and q = p(·|θ) is2

DKL(p(·|θ0)||p(·|θ)) =
ˆ

X
p(x|θ0) log p(x|θ0)

p(x|θ) dx

=
ˆ

X
p(x|θ0) log 1

p(x|θ)dx+
ˆ

X
p(x|θ0) log p(x|θ0)dx.

2Note that if functions have two variables f(x, y), when we want to talk about the function on one
variable, with the other variable y fixed, then we write function g = f(·, y). Here, we write p(·|θ) to indicate
that we have the density over x for a given θ. If we wrote p(x|θ), that is the density for a specific x. Our
goal is to specify the KL between the two densities, across all x, so we write p(·|θ0) and p(·|θ).

CHAPTER 2. MULTIVARIATE PROBABILITY CONCEPTS 31

=
ˆ

X
p(x|θ0) log 1

p(x|θ)dx− (−
ˆ

X
p(x|θ0) log p(x|θ0)dx.)

=
ˆ

X
p(x|θ0) log 1

p(x|θ)dx−
ˆ

X
p(x|θ0) log 1

p(x|θ0)dx.

The second term in the above equation is the (differential) entropy of the true distribution
and is not influenced by our choice of the model θ. The first term, on the other hand, can
be expressed as

ˆ
X
p(x|θ0) log 1

p(x|θ)dx = −
ˆ

X
p(x|θ0) log p(x|θ)dx = −E[log p(X|θ)].

where the expectation is taken with respect to p(x|θ0). To see why, define f(x) def= log p(x|θ).
Then E[f(X)] =

´
X p(x|θ0)f(x)dx =

´
X p(x|θ0) log p(x|θ)dx.

Therefore, minimizing the expected negative log-likelihood −E[log p(X|θ)] minimizes the
KL divergence between p(x|θ) and p(x|θ0):

argmin
θ

DKL(p(·|θ0)||p(·|θ)) = argmin
θ

−E[log p(X|θ)].

Using the strong law of large numbers, we know

1
n

n∑
i=1

log p(xi|θ)
a.s.→ E[log p(X|θ)]

when n → ∞. Thus, when the data set is sufficiently large, minimizing the negative log
likelihood is very nearly like minimizing this KL divergence.

Exercise 10: The KL divergence is not symmetric: using DKL(p(·|θ0)||p(·|θ)) is different
from DKL(p(·|θ)||p(·|θ0)). The key difference is which distribution is used to compute the
expected value. Imagine we instead tried to use DKL(p(·|θ)||p(·|θ0)) as our objective. What
issues arise? □

Chapter 3

Revisiting Linear Regression

Given a data set D = {(xi, yi)}ni=1 the objective is to learn the relationship between features
and the target. We also wrote this as data matrix X ∈ Rn×d and y ∈ Rn, where X(i, :) = xi

and y(i) = yi. In linear regression, we assumed the function f is a linear function

f(x) =
d∑

j=1
wjxj = ⟨x,w⟩ = xw

where we assume x1 = 1 so that w0 corresponds to an intercept term. Note also that we
assume that x ∈ R1×d is a row vector, since it is a row of the data matrix X, and so xw
corresponds to the dot product between these two vectors. Throughout these notes, we will
treat a row of X, that is x, as a row vector. We derived updates to obtain the maximum
likelihood solution—the ordinary least squares solution—and the ℓ2 regularized solution,
sometimes called the ridge regression solution. The SGD update for linear regression is

wt+1 = wt − ηt (xiwt − yi) x⊤
i

For ℓ2 regularization, with regularization parameter λ > 0, we have update

wt+1 = wt − ηt

[
(xiwt − yi) x⊤

i + λwt

]
In this chapter, we revisit the properties of this solution. We first look at the closed

form solution for OLS and ridge regression, and then analyze the stability of this solution.

3.1 Ordinary Least-Squares (OLS) Regression

Recall that when we wrote down the maximum likelihood formulation for linear regression,
it corresponded to solving the following minimization problem

wMLE = argmin
w∈Rd

n∑
i=1

(xiw− yi)2.

We found that the gradient of this objective was

∇
n∑

i=1
(xiw− yi)2 = 2

(
n∑

i=1
x⊤

i xi

)
w− 2

n∑
i=1

x⊤
i yi

where x⊤
i xi ∈ Rd×d is an outer product because x is a row vector. We use this gradient to

solve for ∇
∑n

i=1(xiw− yi)2 = 0 to get

w =
(

n∑
i=1

x⊤
i xi

)−1 n∑
i=1

x⊤
i yi

32

CHAPTER 3. REVISITING LINEAR REGRESSION 33

Let us now rewrite this a bit more compactly using matrices. Notice first that when we
multiply matrices, we are essentially summing over the inner dimension, with outer products
for rows and columns of the matrices: for A ∈ Rm×n,B ∈ Rn×p,

AB =
n∑

i=1
A(:, i)B(i, :)

where A(:, i) is the ith column of A and B(i, :) is the ith row of B. We can see this by
noticing that if we index into a specific element C(j, k) for C = AB, then it is the dot
product between the jth row in A and kth column in B:

C(j, k) = A(j, :)B(:, k) =
n∑

i=1
A(j, i)B(i, k).

We can similarly rewrite the sum of the outer products of xi above using

X⊤X =
n∑

i=1
X(i, :)⊤X(i, :) =

n∑
i=1

x⊤
i xi.

Additionally, we can write
∑n

i=1 x⊤
i yi = X⊤y where again the dot product plays the role of

the sum. Then we can write the OLS solution as

w =
(
X⊤X

)−1
X⊤y

We could also have started by writing the objective using these matrices and vectors

wMLE = argmin
w∈Rd

∥Xw− y∥22

where the ℓ2 norm is defined as ∥a∥22 = a⊤a =
∑n

i=1 a
2
i . Notice that ŷ def= Xw is the vector of

predictions, where we dot product w with each row of X (each sample), giving each element
of the vector ŷ as ŷi = xiw. Given this form, we could use the simple rules for computing
gradients for vectors, in Table 1.1.

Exercise 11: Use the rules from Table 1.1 to compute the gradient of ∥Xw− y∥22 wrt w.
□

In either case, when we set the derivative to zero, and rearrange, we get

X⊤Xw = X⊤y =⇒ wMLE = (X⊤X)−1X⊤y (3.1)

We can see that the predictions on the training set from this OLS solution are

ŷ = XwMLE = X(X⊤X)−1X⊤y.

The matrix X(X⊤X)−1X⊤ is called the projection matrix, because it projects y to the
column space of X. In machine learning, we might say that it projects y to the space
representable by a linear combination of our features: ŷ is the best linear approximation to
y for the given features.

CHAPTER 3. REVISITING LINEAR REGRESSION 34

Example 3: Consider the data set D = {(1, 1.2) , (2, 2.3) , (3, 2.3) , (4, 3.3)}. We want to
find the optimal coefficients of the least-squares fit for f(x) = w0 +w1x and then calculate
the sum of squared errors on D after the fit. The OLS solution can be obtained using

X =

1 1
1 2
1 3
1 4

 , w =
[
w0
w1

]
, y =

1.2
2.3
2.3
3.3

 ,
where a column of ones was added to x to allow for a non-zero intercept. Substituting
X and y into Eq. (3.1) results in w = (0.7, 0.63) and the sum of square errors is 0.223.
This solution is obtained by using a numerical library, which involves computing the matrix
products and inverses. □

3.1.1 Extension to a Weighted Error Function

In some applications it is useful to consider minimizing the weighted error function

c(w) =
n∑

i=1
bi (xiw− yi)2 ,

where bi > 0 is a weighting for data point i. Expressing this in a matrix form, the goal is to
minimize (Xw− y)⊤ B (Xw− y), where B = diag (b1, b2, . . . , bn). Using a similar approach
as above, it can be shown that the weighted least-squares solution wb can be expressed as

wb =
(
X⊤BX

)−1
X⊤By.

In addition, it can be derived that

wb = wMLE +
(
X⊤BX

)−1
X⊤ (I−B) (XwMLE − y) ,

where wMLE is provided by Eq. (3.1). We can see the solutions are identical when B = I,
but also when XwMLE = y. In other words, if we can perfectly fit to y, then the weighting
does not influence the solution. This makes sense, since the weighting is trading off the
error for different samples. If there is zero error for every sample, then there is no trade-off.

Exercise 12: Derive the above weighted solution, similarly to how we derived the closed
form solution for linear regression. □

Exercise 13: We assumed bi > 0. What if we set bi = 0 for one sample i? How does it
change the solution? What about if we set bi = −1? □

3.1.2 Predicting Multiple Outputs Simultaneously

The extension to multiple outputs is straightforward, where now the target is an m-
dimensional vector, y ∈ Rm, rather than a scalar, giving target matrix Y ∈ Rn×m. Corre-
spondingly, the weights are also a matrix W ∈ Rd×m, giving prediction x⊤W ∈ Rm, with
error

c(W) = ∥XW−Y∥2F =
n∑

i=1
∥Xi,:W−Yi,:∥22 ▷ Frobenius norm

CHAPTER 3. REVISITING LINEAR REGRESSION 35

where the Frobenius norm is defined as ∥A∥2F =
∑

ij A
2
ij . The resulting solution is

WMLE = (X⊤X)−1X⊤Y.

We leave this derivation as an exercise, using partial derivatives or matrix derivative rules.

Exercise 14: Derive this linear regression solution for multiple outputs. □

Looking at this solution, we can see that it is actually equivalent to computing a separate
linear regression solution for each output separately. Namely, for yk ∈ Rn the k-th target
for each sample, with Y = [y1,y2, . . . ,ym] ∈ Rn×m,

WMLE = (X⊤X)−1X⊤[y1,y2, . . . ,ym] = [(X⊤X)−1X⊤y1, (X⊤X)−1X⊤y2, . . . , (X⊤X)−1X⊤ym]
= [w1,w2, . . . ,wm]

where wk = (X⊤X)−1X⊤yk the linear regression solution for scalar target yk in the target
vector y = [y1, y2, . . . , ym].

This result is almost disappointing: shouldn’t learning all of the targets at once be more
useful than simply learning than separately? The reason is that we do not constrain the
models to consider relationships between the targets. In the absence of such constraints, the
best way to minimize the squared error is to get the best linear fit for each scalar target. We
can impose constraints on W so that some of the weights must be shared between targets.
For linear regression, one way to do this is called reduced rank regression. When we move
to learning features in Chapter 9, we will see another way to encourage solutions to jointly
consider the targets.

3.2 Stability and the Bias-Variance of the OLS Solution

The OLS solution can be unstable. In this section, we show why this is the case, and
discuss how regularization can be used to mitigate this problem. We will then revisit the
bias-variance trade-off, and discuss the bias and variance of the OLS solution.

3.2.1 Sensitivity of the OLS solution

The OLS solution is unstable if X⊤X is not invertible. This can occur for two main reasons:
linearly dependent features and small datasets. Data sets often include large numbers of
features, which are sometimes linearly dependent or highly correlated (linear dependence
except for noise). If the dataset is small, it is feasible that some features are the same across
samples, again resulting in low-rank X. When X⊤X is not invertible—or ill-conditioned—
the OLS solution is highly sensitive to small perturbations in y and X.

To see why, we will look at the singular value decomposition (SVD) of X. As with
the previous linear algebra constructs, it allows us to easily examine properties of X. We
overviewed the SVD in Section 1.5.2. Let’s consider the common case, where n > d: the
number of samples is greater than the input dimension. The singular value decomposition of
X = UΣV⊤ for orthonormal matrices U ∈ Rn×n,V ∈ Rd×d and non-negative (rectangular)
diagonal matrix Σ ∈ Rn×d. The diagonal entries in Σ are the singular values, which we

CHAPTER 3. REVISITING LINEAR REGRESSION 36

typically order in descending order σ1, σ2, . . . , σd, giving

Σ def=

σ1 0 0 . . . 0
0 σ2 0 . . . 0

...
0 0 . . . 0 σd

0 0 . . . 0 0
... (n− d) rows of zeros

0 0 . . . 0 0

=
[
Σd

0

]
where Σd

def=

σ1 0 . . . 0
0 σ2 . . . 0

...
0 0 . . . σd

 .

The matrix U = [u1, . . . ,un] ∈ Rn×n is the orthonormal matrix composed of the left singular
vectors, and V = [v1, . . . ,vd] ∈ Rd×d is the orthonormal matrix composed of the right
singular vectors. Recall that we can equivalently write this with the thin SVD, assuming
n > d, using Ud = [u1, . . . ,ud] ∈ Rn×d the first d left singular vectors: X = UdΣdV⊤. This
is because the zeros in Σ multiply the columns in U at positions d+ 1, . . . , n. Nonetheless,
we still write the full SVD because it will be easier to deal with orthonormal U than the
non-square Ud, at least to start.

Now we can discuss the least-squares solution, in terms of the singular value decompo-
sition of X. Notice that

X⊤X = VΣ⊤U⊤UΣV⊤ = VΣ2
dV⊤

because U is orthonormal and so U⊤U = I the identity matrix (I is a diagonal matrix with
ones on the diagonal) and because

Σ⊤Σ =
[
Σd 0

] [Σd

0

]
= ΣdΣd + 00 = Σ2

d.

The inverse of X⊤X exists if X is full rank, i.e., Σd has no zeros on the diagonal, because
(X⊤X)−1 = VΣ−2

d V⊤. The resulting solution for w looks like1

w = (X⊤X)−1X⊤y = VΣ−1
d U⊤

d y =
d∑

j=1

u⊤
j y
σj

vj (3.2)

The solution in Equation (3.3) makes it clear why the linear regression solution can be
sensitive to perturbations. For small singular values, σ−1

j is large and amplifies any changes
in y. For example, for slightly different noise component ϵi for the ith sample, the solution
vector w could be very different. A common strategy to deal with this instability is to drop
or truncate small singular values. This is a form of regularization.

Remark: In the general case, where X is not full rank, we can still obtain a least-squares
solution to X⊤Xw = X⊤y. Now, there are potentially infinitely many solutions. The
common choice is to select the minimum variance solution, which corresponds to dropping
the components (singular vectors) for the zero singular values:

w =
rank of X∑

j=1

u⊤
j y
σj

vj . (3.3)

1The last step in the below equation, writing the matrix product as a sum, is not immediately obvious.
But it is not hard to find by simply multiplying out each matrix-vector product: first a = U⊤

d y, then
b = Σ−1

d a and finally Vb. As an exercise, see if you can derive this last equality.

CHAPTER 3. REVISITING LINEAR REGRESSION 37

Example 4: [Dependent or correlated features] Let’s look at a simple example of why
X ∈ Rn×d might have small singular values. First, assume d = 2 and x2 = x1, i.e., that
the second features is a copy of the first and simply redundant. Then X = U2Σ2V⊤ is the
thin SVD of X, where U2 only has the first two columns of the full SVD. We can write this
thin SVD because X = U2Σ2V⊤ = UΣV⊤, where the zero singular values zero out the
remaining columns of U.

The SVD of just the first column a1 ∈ Rn×1 is straightforward: a1 = u1σ1v1, where
u1 = a1/∥a1∥, σ1 = ∥a1∥ and v1 = 1. The SVD of X = [a1 a2] is therefore, for any n-
dimensional unit vector u2 that is orthogonal to u1, and right singular vectors v1,v2 ∈ R2,

X = [u1 u2]Σ[v1 v2]⊤ = [u1 u2]
[

1.414σ1 0
0 0

] [√
0.5

√
0.5

−
√

0.5
√

0.5

]
= u1σ1[1.0 1.0]

where we extended v1 to two-dimensions (since d = 2), and defined v2 to be orthogonal to
that vector, and had to rescale σ1 by 1/

√
0.5 ≈ 1.414 to maintain unit singular vectors. So

because a2 is dependent on a1, the rank does not increase when we add it as a column and
the singular value σ2 = 0.

If instead a2 = a1 + ϵ for a small noise vector ϵ ∈ Rn (linearly correlated), then instead
we would find that σ2 would no longer be zero, but would be very close to zero, because u1
and the first singular value σ1 would largely be able to recreate a2. □

This example highlights that the rank of X might be lower if there is redundancy in the
features. Similarly, we can have an X with nearly zero singular values if there is redundancy
in the training samples. Even with n > d, for n close to d, two input feature vectors could
accidentally be similar; they are randomly sampled, after all. This is why in linear regression
overfitting can manifest in large weights. It is actually fitting to the noise, such as the ϵ
in the above example, instead of to actual patterns. This noise is recognizable by the fact
that the singular values are very small, resulting in large weights.

3.2.2 Improving Stability with ℓ2 Regularization

The OLS solution is the maximum likelihood solution. But, we can instead use a MAP
objective. Here we discuss ℓ2 regularization—which corresponds to a Gaussian prior—which
helps improve the stability of the solution.

Let’s use the zero-mean Gaussian prior, N (0, σ2λ−1I), where we pick regularization
parameter λ > 0. The choice of variance σ2λ−1I will be made clear below, but intuitively
we scale the regularization to be higher if the variance in targets is higher. To write down
the log of the posterior, we need the log of the likelihood and the log of the prior. We have
already taken the log for the MLE solution, so lets focus on the log of the prior. Then

− ln p(w) = 1
2 ln(2π|σ2λ−1I|) + w⊤w

2σ2λ−1 = 1
2 ln(2π)− d ln(λ/σ2) + λ

2σ2 w⊤w

because |σ2λ−1I| = (σ2/λ)d, where |A| is the determinant of the matrix A. We can drop
the first constant which does not affect the selection of w.

Now we can combine the negative log-likelihood and the negative log prior. Then ignor-

CHAPTER 3. REVISITING LINEAR REGRESSION 38

ing constants, we can add up the negative log-likelihood and negative log prior to get

argmin
w

− ln(p(y|X,w))− ln p(w) = argmin
w

1
2σ2 ∥Xw− y∥22 + λ

2σ2 w⊤w

= argmin
w

1
2∥Xw− y∥22 + σ2 λ

2σ2 w⊤w

where the second line follows from multiplying both the first and second term by σ2. There-
fore if we assume that the weights have a zero-mean Gaussian prior N (0, λ−1σ2I), then we
get the following ridge regression problem:

c(w) = 1
2∥Xw− y∥22 + λ

2 ∥w∥
2
2.

The idea is to penalize weight coefficients that are too large. The larger the λ, the more
large weights are penalized. Correspondingly, larger λ corresponds to a smaller covariance
in the prior, pushing the weights to stay near zero. The MAP estimate, therefore, has to
balance between this prior on the weights, and fitting the observed data.

If we solve this equation in a similar manner as before, we obtain

wMAP = (X⊤X + λI)−1X⊤y.

This has the nice effect of shifting the squared singular values in Σ2
d by λ, removing stability

issues with dividing by small singular values, as long as λ is itself large enough. In particular,

wMAP =
d∑

j=1

σj

σ2
j + λ

u⊤
j yvj . (3.4)

Notice that when λ = 0, then we have σj/σ
2
j = σ−1

j , which is the solution we found for
MLE. With λ > 0, we ensure that we do not divide by very small singular values σ2

j , and
so improve stability. In the next section, we discuss how this can reduce the variance of the
solution significantly, albeit with some introduction of bias.

3.2.3 The Bias-Variance Trade-off

A natural question to ask is how this regularization parameter can be selected, and the
impact on the final solution vector. The selection of this regularization parameter leads
to a bias-variance trade-off. To understand this trade-off, we need to understand what it
means for the solution to be biased, and how to characterize the variance of the solution,
across possible datasets.

Let us begin by presuming that the distributional assumptions behind linear regression
are true. This means that there exists a true parameter ω such that for each of the data
points Yi =

∑d
j=1 ωjXij + εi, where the εj are i.i.d. random variables drawn according to

N (0, σ2). We can characterize the solution vector (estimator) wMLE as a random variable,
where the randomness is across possible datasets that could have been observed. In this
sense, we are considering the dataset D to be a random variable, and the solution wMLE(D)
from that dataset as a function of this random variable.

CHAPTER 3. REVISITING LINEAR REGRESSION 39

The reason we care about the bias and variance of wMLE is because the expected mean-
squared error to the true weights can be decomposed into the bias and variance.

E
[
∥w(D)− ω∥22

]
= E

 d∑
j=1

(wj(D)− ωj)2

 =
d∑

j=1
E
[
(wj(D)− ωj)2

]
where we can then further simplify

E
[
(wj(D)− ωj)2

]
= (E [wj(D)]− ωj︸ ︷︷ ︸

Bias

)2 + Var [wj(D)]

(For all these steps, see Appendix A.1.1).
The bias-variance trade-off reflects the fact that we could potentially reduce the mean-

squared error by incurring some bias, as long as the variance is decreased more than the
squared bias. Note that we do not directly optimize the bias-variance trade-off. We can-
not actually measure the bias, so we do not directly minimize these terms. Rather, this
decomposition guides how we select model classes.

We can use this formula to contrast the bias and variance for the OLS and ℓ2-regularized
solutions. What we find (again, see Appendix A.1.1 for the derivations) is that

E[wMLE(D)] = ω

d∑
j=1

Var [wMLE,j(D)] = σ2E

 d∑
j=1

σ−2
j

An estimator whose expected value is the true value of the parameter is called an unbiased
estimator. So wMLE(D) is an unbiased estimator, but unfortunately it can have high vari-
ance. This formula makes it clear that the variance of the weights is tied to the magnitudes
of the inverse of the singular values. If we have very small singular values, then this sum
is much larger. The singular values will not be small for all datasets that could have been
observed, but in cases where overfitting is possible (small n), we expect it to happen for a
large proportion of datasets.

The regularized solution, on the other hand, is much less likely to have high covariance,
but will no longer be unbiased. Let wMAP(D) be the MAP estimate for the ℓ2 regularized
problem with λ > 0. The expected value of wMAP(D) is

E[wMAP(D)] = E
[(

X⊤X + λI
)−1

(X⊤X)ω
]
̸= ω.

As λ → 0, the MAP solution gets closer and closer to being unbiased. But, the variance
also decreases with larger λ. Specifically, we have

d∑
j=1

Var [wMAP,j(D)] = σ2E

 d∑
j=1

σ2
j

(σj + λ)2

We now have σ2

d + λ in the denominator, which is not that small if λ is not that small.
Consequently, we expect wMAP to have lower variance across different datasets. This cor-
respondingly implies that we are less likely to overfit to any one dataset. Notice that as

CHAPTER 3. REVISITING LINEAR REGRESSION 40

λ → ∞, the variance decreases to zero, but the bias increases to its maximal value (i.e.,
the norm of the true weights). There is an optimal choice of λ—not too big and not too
small—that minimizes this bias-variance trade-off—if we could find it.

Exercise 15: Derive the covariance formula for wMAP(D). □

Exercise 16: Recall that for polynomial regression we first transformed the inputs into
new polynomial features. Then, we simply treated this new transformed dataset as a linear
regression problem, though we know now that we are learning a nonlinear predictor in
the original space. Let us think of Φ as the transformed space, namely consisting of the
polynomial features. This new matrix has a much larger d—many more columns—since we
expanded the number of features. Do you think this Φ is more or less likely to suffer from
having small singular values, than the original one X before the transformation? □

The above discussion assumes realizability, namely that the true model is linear. In
practice, we not only have bias from ℓ2 regularization but also due to the fact that we
likely do not have the true model in our model class. For example, we might be using
linear functions, when the true model is from a 9th order polynomial or a neural network
or even some function it is hard for us to represent. We will revisit this non-realizable
case, and generalization error, when we move to more complex models that learn data
representations.

Chapter 4

Multivariate Optimization Principles

You have learned the basics of gradient descent and stochastic gradient descent. Reread
the short Chapter 6 in those previous notes as a quick refresher. In this chapter, we will
discuss the second-order gradient descent update for the multivariate case. We start by re-
deriving the second-order gradient descent update rule, now for the multivariate setting, and
introduce the Hessian matrix. We will provide new stepsize selection algorithms, expanding
on the basic heuristics you have already seen.

4.1 Second-order Multivariate Gradient Descent

We can generalize the discussion on obtaining the gradient descent update from the univari-
ate case to the multivariate case using the multivariate Taylor series approximation. The
second-order Taylor approximation for a real-valued function of multiple variables can be
written as

c(w) ≈ ĉ(w) = c(w0) +∇c(w0)⊤(w−w0) + 1
2 (w−w0)⊤ Hc(w0) (w−w0) ,

where
∇c(w0) =

(
∂c

∂w1
(w0), ∂c

∂w2
(w0), ..., ∂c

∂wd
(w0)

)⊤

∈ Rd

is the gradient of function c evaluated at w0 and

Hc(w0) =

∂2c
∂w2

1
(w0) ∂2c

∂w1∂w2
(w0) · · · ∂2c

∂w1∂wd
(w0)

∂2c
∂w2∂w1

(w0) ∂2c
∂w2

2
(w0)

...
... . . .

∂2c
∂wd∂w1

(w0) . . . ∂2c
∂w2

d
(w0)

 ∈ Rd×d

is the Hessian matrix of function c evaluated at w0.

Example 5:
Let us consider a two-dimensional example, for the surface depicted in Figure 4.2. This

example corresponds to a squared linear regression objective with one sample (x, y), c(w) =
1
2(w1 + xw2 − y)2 for x = 0.1 and y = 2.0. The gradient at some point w is

∇c(w) =
[

∂c
∂w1

(w)
∂c

∂w2
(w)

]
=
[

(w1 + xw2 − y)
(w1 + xw2 − y)x

]

41

https://marthawhite.github.io/mlbasics/notes.pdf

CHAPTER 4. MULTIVARIATE OPTIMIZATION PRINCIPLES 42

<latexit sha1_base64="/hx1kaS+REUjPWa9U71Y0iO/VbY=">AAACGXicbVDLSgMxFM3UV62vUZdugkVoEctkKOpGKLpxWcE+oK1DJs20oZkHScZShvkNN/6KGxeKuNSVf2Om7UKrBwKHc+7l5hw34kwqy/oyckvLK6tr+fXCxubW9o65u9eUYSwIbZCQh6LtYkk5C2hDMcVpOxIU+y6nLXd0lfmteyokC4NbNYloz8eDgHmMYKUlx7RIqetjNXS9ZJyW4QXsegKTBKWJncLS2EHwGFoVNHZseALt8p3tmEWrYk0B/xI0J0UwR90xP7r9kMQ+DRThWMoOsiLVS7BQjHCaFrqxpBEmIzygHU0D7FPZS6bJUniklT70QqFfoOBU/bmRYF/Kie/qySyFXPQy8T+vEyvvvJewIIoVDcjskBdzqEKY1QT7TFCi+EQTTATTf4VkiHU1SpdZ0CWgxch/SdOuoNNK9aZarF3O68iDA3AISgCBM1AD16AOGoCAB/AEXsCr8Wg8G2/G+2w0Z8x39sEvGJ/fxDWc9g==</latexit>

c(w) =
1

2
(w1 + 0.1w2 � 2)2

<latexit sha1_base64="67zubY/zRYXPtGD09zOTgpCYIlM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbTbt0swm7E6WE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuTaiFg94DjhfkQHSoSCUbTS/VPP65UrbtWdgSwTLycVyFHvlb+6/ZilEVfIJDWm47kJ+hnVKJjkk1I3NTyhbEQHvGOpohE3fjY7dUJOrNInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tOyYbgLb68TJpnVe+ien53Xqld53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OdF6cd+dj3lpw8plD+APn8wcNGI2o</latexit>w1

<latexit sha1_base64="OruMTjXosJIyrrN44UfuYidNs40=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY9ELx4xyiOBDZkdemHC7OxmZlZDCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzcxvPaLSPJYPZpygH9GB5CFn1Fjp/qlX6RVLbtmdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE175Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNStm7KFfvqqXadRZHHk7gFM7Bg0uowS3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8ADpyNqQ==</latexit>w2

Figure 4.1: The loss landscape for w ∈ R2, with one dimension being very flat and the
other very curved. This example corresponds to a squared linear regression objective with
one sample (x, y), c(w) = 1

2(w1 + xw2 − y)2 for x = 0.1 and y = 2.0.

and the Hessian is

Hc(w) =

 ∂2c
∂w2

1
(w) ∂2c

∂w1∂w2
(w)

∂2c
∂w2∂w1

(w) ∂2c
∂w2

2
(w)

 =
[

∂
∂w1

(w1 + xw2 − y) ∂
∂w1

(w1 + xw2 − y)x
∂

∂w2
(w1 + xw2 − y) ∂

∂w2
(w1 + xw2 − y)x

]

=
[

1 x
x x2

]

For the given sample x = 0.1 and y = 2.0, we have that

∇c(w) =
[

(w1 + 0.1w2 − 2.0)
0.1(w1 + 0.1w2 − 2.0)

]
Hc(w) =

[
1 0.1

0.1 0.01

]

The gradient is local, around a specific point w0. If we have w0 = (0, 0), then

∇c(w0) =
[

(0 + 0.1× 0− 2.0)
0.1(0 + 0.1× 0− 2.0)

]
=
[
−2
−0.2

]

This gradient points in an ascent direction. For this example, the Hessian is the same for
every w, but this is not always the case. Usually, it changes depending on where we are on
the loss landscape. □

We provide some intuition for the Hessian in the next section, but here it can be intu-
itively considered analogous to the second derivative. Like the second derivative, it provides
information about the curvature of the function, and so provides useful information about
how much to step in the direction of the gradient for each wi.

As a reminder about matrix-vector multiplication, the product of a d× d matrix H and
d×1 vector w is a d×1 vector Hw. Then, taking w⊤Hw is the dot product between a 1×d

CHAPTER 4. MULTIVARIATE OPTIMIZATION PRINCIPLES 43

vector w⊤ and d× 1 vector Hw, resulting in a scalar. For matrix-vector multiplication,

Hw =

H1:
H2:

...
Hd:

w =

H1:w
H2:w

...
Hd:w

 =

⟨H1:,w⟩
⟨H2:,w⟩

...
⟨Hd:,w⟩

When performing matrix-vector multiplication, you can just imagine the vector w turning
sideways and multiplying each row of H. For matrix-matrix multiplication, AB, you have to
ensure that the second dimension of A equals the first dimension of B. The matrix-matrix
multiplication decomposes into matrix-vector multiplication, for each column of B.

As before, to get the incremental update, we can take the gradient of this approximation
and obtain the (local) stationary point. Using the basic rules summarized in Section 1.5.3,
the gradient of ĉ(w) is

∇ĉ(w) = ∇c(w0) + Hc(w0) (w−w0) .

Again, we want to find w1 such that this gradient is zero. To solve for Hc(w0) (w−w0) =
−∇c(w0), one can compute the inverse H−1

c(w0) and multiply both sides of the equation by
this inverse. This is again analogous to the inverse of a scalar: h−1h = 1. The corresponding
multivariate update is

wt+1 = wt −
(
Hc(wt)

)−1
∇c(wt). (4.1)

In Equation 4.1, both gradient and Hessian are evaluated at point wt.

4.2 Visualizing the Hessian

Like the second-derivative, the Hessian reflects the curvature of the function at the point
w0. Each entry reflects how the partial derivative for wj changes when wi is changed.
For additional intuition, consider the directional derivative. The directional derivative re-
flects how a (multivariate) function changes when stepping a small amount τ in some fixed
direction u

lim
τ→0

c(w + τu)− c(w)
τ

.

Once we restrict ourselves to how the function changes in this one direction, it is easier to
imagine and it allows us to use the familiar second derivative test for the univariate setting.

Assume that w is a stationary point, namely that ∇c(w) = 0. We would like to
understand if we have a local minima, local maxima or saddlepoint. Let

w(τ) = w + τu
g(τ) = c(w(τ)).

We can use the chain rule on g(τ) to compute the derivative w.r.t. τ .

g′(τ) = ∇c(w(τ))⊤∂(w(τ))
∂τ

= ∇c(w(τ))⊤u

CHAPTER 4. MULTIVARIATE OPTIMIZATION PRINCIPLES 44

<latexit sha1_base64="V23gRJ4KcPTQavceUXTVszW1cxI=">AAACPnicbVC7SgNBFJ31GeMramlzMQiRkLCzitoIQRvLCCYKSVxmJ7M6OPtgZtYQlv0yG7/BztLGQhFbSyePQhMPDBzOOZc793ix4Erb9os1Mzs3v7CYW8ovr6yurRc2NpsqSiRlDRqJSF57RDHBQ9bQXAt2HUtGAk+wK+/+bOBfPTCpeBRe6n7MOgG5DbnPKdFGcgsNWmoHRN95ftrL9uAE2r4kNMVZ6mRQ6rkYymBXMfRcByrg7N04RpjKVExmf5gpAzYZt1C0q/YQME3wmBTRGHW38NzuRjQJWKipIEq1sB3rTkqk5lSwLN9OFIsJvSe3rGVoSAKmOunw/Ax2jdIFP5LmhRqG6u+JlARK9QPPJAenqklvIP7ntRLtH3dSHsaJZiEdLfITATqCQZfQ5ZJRLfqGECq5+SvQO2K60abxvCkBT548TZpOFR9WDy4OirXTcR05tI12UAlhdIRq6BzVUQNR9Ihe0Tv6sJ6sN+vT+hpFZ6zxzBb6A+v7B5TJqAg=</latexit>

c(w) =
1

2
(w1 + 0.1w2 � 2)2 +

1

2
(w1 � 0.3w2 + 1)2

<latexit sha1_base64="67zubY/zRYXPtGD09zOTgpCYIlM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbTbt0swm7E6WE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuTaiFg94DjhfkQHSoSCUbTS/VPP65UrbtWdgSwTLycVyFHvlb+6/ZilEVfIJDWm47kJ+hnVKJjkk1I3NTyhbEQHvGOpohE3fjY7dUJOrNInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tOyYbgLb68TJpnVe+ien53Xqld53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OdF6cd+dj3lpw8plD+APn8wcNGI2o</latexit>w1

<latexit sha1_base64="OruMTjXosJIyrrN44UfuYidNs40=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY9ELx4xyiOBDZkdemHC7OxmZlZDCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzcxvPaLSPJYPZpygH9GB5CFn1Fjp/qlX6RVLbtmdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE175Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNStm7KFfvqqXadRZHHk7gFM7Bg0uowS3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8ADpyNqQ==</latexit>w2

Figure 4.2: The loss landscape for w ∈ R2, with one dimension being quite flat and the
other quite curved. This example corresponds to a squared linear regression objective with
two samples (x1, y1) = (0.1, 2) and (x2, y2) = (−0.3,−1), giving c(w) = 1

2(w1 + 0.1w2 −
2)2 + 1

2(w1 − 0.3w2 + 1)2.

Therefore, we can use this generic gradient, and evaluate at τ = 0

g′(0) = ∇c(w(0))⊤u = ∇c(w)⊤u = 0

where the last equality occurs because w is a stationary point and so ∇c(w) = 0. The
second derivative is

g′′(τ) = ∂(w(τ))
∂τ

⊤
Hc(w(τ))

∂(w(τ))
∂τ

= u⊤Hc(w(τ))u

g′′(0) = u⊤Hc(w)u

For this stationary point w (corresponding to τ = 0) to be a local minimum, g′′(0) has to
satisfy the second derivative test: g′′(0) > 0. This test is only satisfied if Hc(w) is positive
definite, by definition of a positive definite matrix. Recall that a positive-definite matrix
H is one for which, given any u ̸= 0, u⊤Hu > 0, or equivalently, has all eigenvalues
greater than zero. Since u was an arbitrary direction away from w, the Hessian must be
positive-definite to ensure that g′′(0) > 0 for all u ̸= 0.

The eigenvalues of the Hessian, therefore, reflect the curvature of the function locally.
If Hc(w) has a very small eigenvalue λj , then the corresponding eigenvector uj—satisfying
Hc(w)uj = λjuj—is a direction away from w where the function is almost flat. This is
because g′′(0) = u⊤

j Hc(w)uj = λj∥uj∥22 = λj is very small.

Example 6: Let us consider a similar example to the one above, but now with two samples.
In addition to (x1, y1) = (0.1, 2), we also see (x2, y2) = (−0.3,−1). The objective is

c(w) = 1
2(w1 + x1w2 − y1︸ ︷︷ ︸

δ1

)2 + 1
2(w1 + x2w2 − y2︸ ︷︷ ︸

δ2

)2

The gradient is

∇c(w) = δ1

[
1
x1

]
+ δ2

[
1
x2

]

CHAPTER 4. MULTIVARIATE OPTIMIZATION PRINCIPLES 45

and the Hessian is

Hc(w) =
[

1 x1
x1 x2

1

]
+
[

1 x2
x2 x2

2

]
=
[

2 −0.2
−0.2 0.1

]

The eigenvalue decomposition of the Hessian will let us see how it impacts the update. Using
a numerical library, we can find that Hc(w) = UΛU⊤ for U = [u1,u2] with eigenvectors
u1,u2 as the columns

u1 ≈
[
−1
0.1

]
u2 ≈

[
0.1
0.95

]
and eigenvalues λ1 ≈ 6.5 and λ2 ≈ 0.08. The inverse of the Hessian is

H−1
c(w) = U

[
1/λ1 0

0 1/λ2

]
U⊤ =

[
0.625 1.25
1.25 12.5

]

The Hessian shows that we have one direction with steep curvature (λ1 ≈ 6.5) and the other
being very flat (λ2 ≈ 0.08). We can see this visually, but in higher dimensions the easier
way to see it is through these eigenvalues. □

Exercise 17: If we had taken the eigenvalue decomposition from Example 5, then we
would have found that the eigenvalues are λ1 = 101/100 and λ2 = 0. An eigenvalue that is
zero indicates a perfectly flat function in one direction. Why did this happen? Also notice
that in this situation, we cannot take the inverse of the Hessian, since it is not invertible!

□

Example 7: The Hessian for linear regression is

Hc(w) = 2X⊤X.

This matrix is the same regardless of which point w we query the Hessian for. Recall that the
matrix X⊤X ∈ Rd×d reflects the (sample) covariance of inputs, because X⊤X =

∑n
i=1 xix⊤

i .
To determine if the stationary point for linear regression is a (local) minimum, we have the
check if the Hessian is positive definite. Consider that for any vector w ̸= 0,

w⊤X⊤Xw = (Xw)⊤Xw = ∥Xw∥22 ≥ 0

where equality with zero can only happen—for some w—if the columns of X are linearly
dependent. Since the Hessian is positive semi-definite for every w, this verifies the convexity
of c(w). Furthermore, if the columns of x are linearly independent, the Hessian is positive
definite, which implies that the global minimum is unique. □

Exercise 18: What is the computational complexity of computing X⊤X? □

Exercise 19: In Section 2.4, we found the MLE solution µ∗ for a multivariate Gaussian.
We claimed the objective was convex, so we knew that the solution was a global minimum.
Alternatively, we could haved check that it is a local minimum using the second derivative
test, by checking if the Hessian is positive definite. If it is, then because we have a single
stationary point, we know that we have a global minimum.

CHAPTER 4. MULTIVARIATE OPTIMIZATION PRINCIPLES 46

Show that the Hessian for µ∗ is positive definite. Let c̃(µ) = c(µ,Σ) for any positive
definite Σ and note that the Hessian is Hc̃(µ∗) = Σ−1. Hint: recall that we can write
Σ = UΛU⊤ using it’s eigenvalue decomposition and Σ−1 = UΛ−1U⊤. Since Σ is positive
definite, we know that the eigenvalues on the diagonal in Λ are positive. □

4.3 Contrasting Convergence Rates

The size of the Hessian makes the choice between first-order and second-order gradient
descent less obvious in the multivariate case than in the univariate case. In the univariate
(scalar) setting, as long as we have a formula for the second derivative, then it is likely
efficient to compute and provides a good choice for the stepsize. In the multivariate setting,
computing the Hessian itself is expensive (quadratic in the size of w) and it is further
even more expensive to compute the inverse of the Hessian. For example, if computing the
Hessian costs O(d2n) as it does for the linear regression objective, then the computational
complexity of the second-order gradient descent is O(d3 + d2n) in each iteration, assuming
O(d3) time for finding matrix inverses. On the other hand, again for linear regression, the
computational complexity for first-order gradient descent is only O(dn) per iteration.

The first order update for the multivariate case is an even greater approximation, because
the whole Hessian is approximated with a scalar 1

ηt
(making the Hessian approximation a

diagonal matrix with 1
ηt

on the diagonal). The gradient of the first-order approximation is

∇ĉ(w) = ∇c(w0) + 1
ηt

(w−w0)

and the resulting first-order update is

wt+1 = wt − ηt∇c(wt). (4.2)

We can do a little better by approximating the Hessian with a diagonal matrix with different
elements on the diagonal. In other words, we have a vector ηt where diag(ηt) ≈

(
Hc(wt)

)−1
.

The resulting update is one that uses a vector of stepsizes, resulting in a slightly better
approximation

wt+1 = wt − ηt · ∇c(wt) (4.3)

where · indicates elementwise multiplication.
The selection of this step-size is an important consideration. We discuss a few basic

strategies to select the step-size in Section 4.4. Usually we assume the stepsize changes
with each iteration t. It is likely that the Hessian is different at different points of the
surface, since it reflects the local curvature. Just like a single scalar would be a poor
approximation to

(
Hc(wt)

)−1
, it is a coarse approximation to assume the Hessian does not

change for different wt. Most stepsize selection approaches attempt to approximate the
local curvature, to some extent, and so use a vector stepsize that changes with time.

We can also reason about the role of a first-order versus second-order update once we use
stochastic gradient descent (SGD). Recall that in SGD we use an (unbiased) sample estimate
of the gradient ∇c(wt) with a mini-batch Bt of b indices subsampled from {1, 2, . . . , n}

wt+1 = wt − 1
b ηt ·

∑
i∈Bt

∇ci(wt) (4.4)

CHAPTER 4. MULTIVARIATE OPTIMIZATION PRINCIPLES 47

where c(w) = 1
n

∑n
i=1∇ci(w). We can interpret this update as a noisy variant of the batch

GD update, because ∑
i∈Bt

∇ci(wt) = ∇c(wt) + (
∑
i∈Bt

∇ci(wt)−∇c(wt))︸ ︷︷ ︸
ϵ

(4.5)

where ϵ is a zero-mean random variable. On average, it is zero, so SGD on average behaves
like GD. As long as we control the variance of the noise, then we still get nice convergence
properties but with significantly less computation per step.

In fact, we can theoretically characterize the convergence rates for second-order GD,
first-order GD and (first-order) SGD. We go into greater depth about this in Appendix B,
and provide only a summary of the outcomes here. To discuss convergence rates, we need
to decide on our convergence condition. Let us assume we have converged when the norm
of the gradient is small: ∥∇c(wt)∥ ≤ ϵ for some ϵ > 0. Further, assume that our function
is smooth, characterized by some constant L that reflects how quickly the gradient can
change. Larger L imply that the function can change more quickly. Then we can show that
GD converges with

gradient norm ≤ 2L1
t

(c(w0)− c(w∗))︸ ︷︷ ︸
distance of objective value at initialization to optimal

If we want the right-hand side to be less than ϵ, then we need t ≥ 2L1
ϵ (c(w0) − c(w∗)).

We write that the convergence rate is t = O(1/ϵ) since the other terms are problem-specific
constants. Therefore, since each update costs O(nd) and we have O(1/ϵ) iterations, then
GD converges with O(nd/ϵ) computation. This result is true even for nonconvex functions,
since the result is about converging to a stationary point, rather than to a global minima.

Now we can ask if this convergence rate is good. Notice that converging with ϵ = 0.1
only requires t = 10, whereas getting higher and higher precision costs a lot: ϵ = 0.01
requires t = 100, ϵ = 0.001 requires t = 1000 and ϵ = 0.0001 requires t = 10000. This
is an exponential growth for increased precision. We can also write that this convergence
rate corresponds to having c(wt)− c(w∞) = O(1/t), where w∞ is the stationary point we
eventually converge to. This rate is called sublinear because it slows down: the longer you
run the algorithm, the less progress is makes.

Second-order gradient descent can obtain a linear convergence rate. It takes only t =
O(log(1/ϵ)) iterations to converge. If we want ϵ = 0.1 then we have t = 1, for ϵ = 0.01
we have t = 2, for ϵ = 0.001 we have t = 3 and ϵ = 0.0001 requires t = 4. That is a
massive difference to first-order GD. But, each update is much more expensive. Recall each
update cost O(nd2). Using these formulas, we could decide whether to use second-order or
first-order based on the number of samples, input dimensionality and desired precision.

Exercise 20: Consider a variety of choices for n, d and ϵ for n > d. We know GD needs
O(nd/ϵ) to converge and second-order GD needs O(nd2 log(1/ϵ)) to converge. Which cases
would you prefer one or the other? You can also consider cases when n < d, but then
second-order GD uses O(d3 log(1/ϵ)). □

For SGD, the convergence rate depends on how we select the stepsize. If we use a
constant stepsize, then we can actually get just as fast convergence as GD! But, with a

CHAPTER 4. MULTIVARIATE OPTIMIZATION PRINCIPLES 48

small catch. We will converge quickly to a neighborhood around the stationary point, but
then oscillate with error proportional to the variance of the noise and the size of the stepsize.
So our convergence is sublinear to this base level of error: O(1/t)+error-term. If we want to
converge to the stationary point, then we can reduce the stepsize over time. For example, if
we reduce the stepsize as 1/

√
t, then we get a convergence rate of O(1/

√
t). This is already

unfortunately slower. If we are too aggressive in the decrease, say decreasing as 1/t, then
the rate is O(1/ log(t)), which is very slow.

But, the convergence rates for SGD are mostly a good-news story. We can get conver-
gence rates as fast as GD as long as we are careful about controlling the error due to noise.
For example, we could use a non-decreasing stepsize to converge quickly to a ball around
the stationary point, and then start decaying the stepsize. Or, we could increase the size
of the mini-batch after an initial phase to start reducing this residual error term, which is
zero if the variance of the mini-batch is zero. In practice, we can largely get this reasonably
fast O(1/t) convergence but with much less compute per step.

You might also be wondering if we can improve the convergence rate of SGD using a
second-order update. The answer unfortunately seems to be negative. However, the vector-
stepsize algorithms we discuss in the next section, inspired by approximating a second-order
update, do end up being useful for SGD as well.

4.4 Stepsize Selection and Momentum

Because selecting the step-size is such an important part of an effective descent algorithm,
there are many ways to do so. In addition to line search, one of the most popular methods is
to use quasi-second-order (or quasi-Newton) methods. As we saw, the inverse of the Hessian
provides a good way to select the stepsize, but is typically too expensive to compute let
alone invert. Quasi-second-order methods approximate the Hessian, with as little storage
and computation as possible. One of the simplest such approximations is to approximate
only the diagonal of the Hessian, and then invert it, which only costs O(d) computation and
space. Such an approximation is typically quite poor for even the diagonal of the inverse
Hessian, and so is not commonly used. Instead, the heuristic algorithms below seem to
provide a better alternative.1.

Our key question is how to get an effective vector stepsize. The idea is that you might
need to take a bigger step in one dimension and a smaller in another dimension, due to
curvature differences. For example, if in one direction, the optimization surface is flatter,
you might need a bigger stepsize, and if another it is steep, then you need a small stepsize.
One theoretically-motivated algorithm that implements this idea is Adagrad, which obtains
vector ηt ∈ Rd+1 with

ηt = (1 + ḡt)−1/2 (4.6)

where ḡt = ḡt−1 + g2
t using elementwise addition and powers. In other words, for each

entry ηt,j in the vector ηt and entry ḡt,j in the vector ḡt, we update ḡt,j = ḡt−1,j + g2
t,j and

ηt,j = (1+ ḡt,j)−1/2. Then each entry in the weights is updated using wt+1,j = wt,j−ηt,jgt,j .
This is the stepsize approach we use in Algorithm 1.

1Note that one of the most popular methods for GD has been LBFGS [17], which attempts to find a low
rank approximation to the Hessian that is efficient to compute with reasonable storage. But, this algorithm
is not easy to extend to SGD and has largely lost favor

CHAPTER 4. MULTIVARIATE OPTIMIZATION PRINCIPLES 49

Algorithm 1: SGD for objective c(w) = 1
nci(w) with AdaGrad

1: Fix iteration parameters: number of epochs = 104 and mini-batch size b = 32
2: w← random vector in Rd

3: ḡ← zero vector in Rd

4: for p = 1, . . . number of epochs do
5: Shuffle ordering of data points from 1, . . . , n
6: for k = 0, . . . , ⌊n

b ⌋ do
7: g← 0
8: c← 0
9: for i = kb, . . . ,min((k + 1)b− 1, n) do

10: g← g +∇ci(w) ▷ for linear regression, ∇ci(w) = (x⊤
i w− yi)xi

11: c← c+ 1
12: g← g/c ▷ element-wise division
13: for j = 0, . . . , d− 1 do
14: ḡ[j]← ḡ[j] + g[j]2
15: η ← 1/(

√
ḡ[j] + 1)

16: w[j]← w[j]− ηg[j]
17: return w

In addition to Adagrad, there are a variety of other stepsize selection strategies. A few
examples include Adadelta [32] and RMSProp, with a more comprehensive list given in a
recent empirical study comparing methods [24]. As yet it is not clear that any one method
has clear dominance over any others.

A common default is the Adam algorithm [14]. This algorithm essentially combines
RMSProp and momentum. The idea behind momentum is to take bigger steps when the
gradient direction has been the same recently, and take smaller steps if the direction changes.
For this reason, it is also called the heavy ball method, since it prefers to keep rolling if it
has been pushed multiple times in the same direction, and dampens movement if the two
directions are different.2

The update equations remain simple. SGD with a fixed stepsize and momentum has
update equations

wt+1 ← wt − ηgt + β(wt −wt−1)

We can rewrite this to maintain an explicit momentum vector ηmt = wt − wt−1. To see
why, let us start by unrolling the recursion

β(wt −wt−1) = −βηgt−1 + β2(wt−1 −wt−2)
= −βηgt−1 − β2ηgt−2 + β3(wt−2 −wt−3))

= ... = −η
(
βgt−1 + β2gt−2 + . . .+ βtg0

)
Therefore, we can update recursively update the momentum vector to be the sum of these

2Looking back at convergence rates, it has been shown that using the heavy ball method improves the
convergence rate of GD from O(1/t) to O(1/t2).

CHAPTER 4. MULTIVARIATE OPTIMIZATION PRINCIPLES 50

gradient vectors, exponentially scaled by β < 1, to rewrite the SGD update with momentum

wt+1 ← wt − ηmt+1

mt+1 ← gt + βmt.

Adam combines an RMSProp-like vector stepsize with momentum, with some modifica-
tions. First, it explicitly uses an exponential average for the momentum, by incorporating
normalization by 1− β. In other words, it uses (1− β)mt instead of mt. Second, it uses a
bias-correction to account for the fact that, early in the optimization, the sum of gradients
in the momentum term would be skewed by the initialization of m0 = 0. Finally, it uses a
vector of stepsizes that use a normalization by an exponential average of the squared values
of the gradients. It maintains another vector, vt for this exponential average with its own
exponential weighting βv. The resulting update equations are

mt+1 ← (1− β)gt + βmt

vt+1 ← (1− βv)g2
t + βvvt

m̃t+1 ←mt+1/(1− βt) ▷ bias correction
ṽt+1 ← vt+1/(1− βt

v) ▷ bias correction

wt+1 ← wt − η
m̃t+1√
ṽt+1 + ϵ

for a small ϵ to avoid dividing by zero. Typical default values are β = 0.9, βv = 0.999 and
ϵ = 10−8. The stepsize likely needs to be tuned for the problem, but a common starting
point is quite small, around η = 0.001.

Chapter 5

Generalized Linear Models

For prediction, you have seen linear regression and logistic regression. These are both actu-
ally instances of a more general class of predictors called generalized linear models (GLMs).
Intuitively, GLMs extend ordinary least-squares regression beyond Gaussian probability dis-
tributions and beyond linear dependencies between the features and the target. Formally,
they allow for p(y|x) to be any natural exponential family model, of which the Gaussian
(linear regression) and Bernoulli (logistic regression) are special cases.

We shall first revisit the formalization for ordinary least-squares regression. There, we
assumed that a set of i.i.d. data points with their targets D = {(xi, yi)}ni=1 were drawn
according to some distribution p(x, y). We also assumed that an underlying relationship
between the features and the target was linear, i.e.

Y =
d∑

j=1
Xjωj + ε,

where ω was a set of unknown weights and ε was a zero-mean normally distributed random
variable with variance σ2. We will now slightly reformulate this model. In particular, it
will be useful to separate the underlying linear relationship between the features and the
target from the fact that Y was normally distributed. That is, we write that

1. p(y|x) = N (µ(x), σ2) (i.e., where the mean is a function of x and the variance is
constant across x)

2. E[Y |x] = xω

This way of formulating linear regression allows us (i) to generalize the framework to non-
linear relationships between the features and the target as well as (ii) to use distributions
other than the Gaussian.

We start first with an example for the Poisson distribution, and then introduce GLMs
more generally. Finally, we use this general class to derive multinomial logistic regression,
which generalizes logistic regression from binary classification to multi-class classification.
The goal of this chapter is both to introduce you to GLMs and multinomial logistic regres-
sion, as well as revisit MLE for prediction now for a broader set of models.

5.1 A First Example: The Poisson Distribution

We will start first with an example of a GLM, before moving on to the general class and
general definition. Assume that data points correspond to cities in the world—described
by some numerical features—and that the target variable is the number of sunny days

51

CHAPTER 5. GENERALIZED LINEAR MODELS 52

observed in a particular year. The target variable y may look like a Poisson distribution,
given features x. It would be more natural, therefore, to model

p(y|x) = Poisson(λ) = λy exp(−λ)
y!

where λ > 0 is the parameter (mean) of the Poisson distribution: E[Y |x] = λ. However,
because λ ∈ R+, it would not be appropriate to model λ with xω ∈ R. Rather, we would
like to transfer our linear prediction with some function g to adjusts the range of the linear
combination of features to the domain of the parameters of the probability distribution.

We can do so by introducing an exponential transfer for this Poisson distribution, and
more generically, later any invertible transfer function g. If we can instead estimate ω
such that λ = exp(xω), then we can guarantee our estimates are in the correct range.
Alternatively, one can consider that we are learning a linear weighting of features to learn
a transformed parameter, log(λ) = xω. This simple modification is why these models
are called generalized linear models, because the key component is still a linear weighting.
We formalize the types of distributions and transfers that can be considered in the below
sections, but first finish off this example with Poisson regression to provide a concrete
example.

To establish the GLM model for Poisson regression, we assume (1) an exponential trans-
fer between the expectation of the target and linear combination of features, and (2) the
Poisson distribution for the target variable.

1. p(y|x) = Poisson(λ(x)), where λ(x) = E[Y |x]

2. E[Y |x] = exp (xω) or log(E[Y |x]) = xω

The resulting probability distribution, for y ∈ N, is

p(y|x,ω) = exp(xωy) exp (− exp(xω))
y!

where λy = exp(xω)y = exp(xωy) because exp(a)b = exp(ab).
We can use maximum likelihood estimation to find the parameters of this regression

model. Our objective c(w) corresponds to the negative log-likelihood

c(w) = 1
n

n∑
i=1

ci(w) = 1
n

n∑
i=1
− ln p(yi|xi,w)

where ci(w) def= − ln p(yi|xi,w) = −xiwyi + exp(xiw) + ln yi!

To minimize c(w), we want to find a stationary point, namely find w0 such that ∇c(w0) =
0. This formula, however, does not have a closed-form solution. Therefore, unlike linear
regression, we will have to use gradient descent. We could choose to use first-order or
second-order gradient descent, and batch or stochastic gradient descent.

The key step in any of these is to first compute the gradient for one sample. We start
by deriving the partial derivative of the negative log-likelihood for one sample

∂ci(w)
∂wj

= exp(xiw)xij − xijyi

= xij (exp(xiw)− yi)
= xij · (pi − yi) .

CHAPTER 5. GENERALIZED LINEAR MODELS 53

where pi
def= exp(xiw) is the prediction and pi − yi corresponds to a prediction error for

sample i. The batch gradient is

∇c(w) = 1
n

n∑
i=1
∇ci(w) = 1

n

n∑
i=1

x⊤
i (pi − yi) (5.1)

= 1
nX⊤ (p− y)

where p is a vector with elements pi = exp(xiw), and p−y is an error vector. For stochastic
gradient descent, each step consists of using the gradient for one sample (i.e., ∇ci(wt)) and
for batch gradient descent, each step consists of using the gradient for all samples (i.e.,
∇c(wt)).

We can additionally consider the Hessian matrix, both to evaluate the properties of the
stationary points as well as to allow for second-order gradient descent—though it is likely
too expensive if d is large. The second partial derivative of the negative log likelihood
function for one sample is

∂2ci(w)
∂wj∂wk

= xijexp(xiw)xik

= xijpixik

with ∂2c(w)
∂wj∂wk

=
n∑

i=1

∂2ci(w)
∂wj∂wk

=
n∑

i=1
xijpixik.

For P an n× n diagonal matrix with pi on the diagonal, the Hessian matrix is therefore

Hc(w) = 1
nX⊤PX. (5.2)

This matrix is positive definite if X is not low-rank, which would mean there is only one
stationary point and that it is the global minimum. In fact, we know that the objective for
Poisson regression is convex, even if X is not full rank, and so all stationary points are global
minima. If X is not full rank, then there is a space of many equivalent solutions (infinitely
many). This is because many w produce the same Xw, and so the same predictions. If
Hc(w) is in-fact semi-definite, reflecting that we have a flat part in the curve of equal loss
for all of these solutions.

Exercise 21: What is the second-order update for Poisson regression? □

5.2 Exponential Family Distributions

In the previous section, we used a specific example to illustrate how to generalize beyond
Gaussian distributions. The approach more generally extends to any exponential family
distribution. We focus on the natural exponential family, which is sufficient for most gener-
alized linear models. The natural exponential family is a class of probability distributions
with the following form

p(y|θ) = exp (θy − a(θ) + b(y))

where θ ∈ R is the parameter to the distribution, a : R → R is a log-normalizer function
and b : R → R is a function of only y that will typically be ignored in our optimization

CHAPTER 5. GENERALIZED LINEAR MODELS 54

because it is not a function of θ. Many of the often encountered (families of) distributions
are members of the exponential family; e.g. exponential, Gaussian, Gamma, Poisson, or the
binomial distributions. Therefore, it is useful to generically study the exponential family to
obtain algorithms for each these distributions.

Example 8: The Poisson distribution can be expressed as

p(y|λ) = exp (y log λ− λ− log y!) ,

where λ ∈ R+ and Y = N0. Thus, θ = log λ, a(θ) = exp(θ), and b(y) = − log y!. □

Now let us get some further insight into the properties of the exponential family param-
eters and why this class is convenient for estimation. The function a(θ) is typically called
the log-partitioning function or simply a log-normalizer. It is called this because

a(θ) = log
ˆ

Y
exp (θy + b(y)) dy

and so plays the role of ensuring that we have a valid density:
´

Y p(y)dy = 1. (For discrete
Y , this integral is a sum.) Importantly, for many common GLMs, the derivative of a
corresponds to the transfer function. For example, for Poisson regression, the transfer
function is g(θ) = exp(θ), and the derivative of a is exp(θ). Therefore, the log-normalizer
for an exponential family informs what transfer g should be used. This result is not too
surprising, given the fact that we can show that

∂a(θ)
∂θ

= E [Y] and ∂2a(θ)
∂θ2 = Var [Y]

and g(θ) is exactly modelling E [Y].

5.3 Formalizing Generalized Linear Models

We shall now formalize GLMs. The two key components of GLMs can be expressed as

1. p(y|x) is an Exponential Family distribution with log-normalizer a.

2. E[Y |x] = g(xω) or g−1(E[y|x]) = xω where g(θ) = ∂a(θ)
∂θ .

The function g is called the transfer function.1 For Poisson regression, g is the exponential
function, and as we shall see for logistic regression, g is the sigmoid function. The transfer
function adjusts the range of xω to the domain of Y ; because of this relationship, transfer
functions are usually not selected independently of the distribution for Y . The generaliza-
tion to the exponential family from the Gaussian distribution allows us to model a much
wider range of target functions.

To relate these more clearly to exponential family distributions, we have to consider
conditional distributions. Each p(y|x) is an exponential family distribution, with parameter

1The inverse of g is called the link function, but, really, we don’t need to name everything. For simplicity
in terminology, we only ever refer to the transfer or the inverse of the transfer.

CHAPTER 5. GENERALIZED LINEAR MODELS 55

θ = xw. When learning w—by maximizing likelihood—we are learning the parameter θi

for each sample (xi, yi). The negative log-likelihood for one sample is

ci(w) = − ln exp(θiyi − a(θi) + b(yi))
= −θiyi + a(θi)− b(yi)
= −(xiw)yi + a(xiw)− b(yi)
= a(xiw)− (xiw)yi − b(yi)

with gradients

∂ci(w)
∂wj

= ∂a(θi)
∂wj

− ∂θi

∂wj
yi

= ∂a(θi)
∂θi

∂θi

∂wj
− ∂θi

∂wj
yi

=
(
∂a(θi)
∂θi

− yi

)
∂θi

∂wj

=
(
∂a(θi)
∂θi

− yi

)
xij

= (g(θi)− yi)xij

where the last step follows from the fact that above we mentioned that the transfer function
is chosen such that g(θ) = a′(θ), the derivative of a. Therefore, for every natural exponen-
tial family distribution, we have a clear likelihood objective and gradient to estimate the
parameters for the conditional distribution p(y|x).

Let us now consider what the gradient updates look like. Given the appropriate transfer
g for the desired exponential family distribution, the stochastic gradient descent update is

wt+1 = wt − ηt (g(xiwt)− yi) x⊤
i

and the batch gradient descent update is

wt+1 = wt −
ηt

n

n∑
i=1

(g(xiwt)− yi) x⊤
i

= wt −
ηt

n
X⊤ (p− y)

where p def= [p1, . . . , pn] ∈ Rn×1 is a column vector for pi
def= g(xiwt). The second par-

tial derivative of the negative log likelihood function for one sample and across samples,
respectively, is

∂2ci(w)
∂wj∂wk

= xij
∂g(θi)
∂θi

xik = xijg
′(x⊤

i w)xik

∂2c(w)
∂wj∂wk

= 1
n

n∑
i=1

∂2ci(w)
∂wj∂wk

= 1
nX⊤

:jDX:k

for D an n× n diagonal matrix with ∂g(θi)
∂θi

on the diagonal. This last line follows from the
fact that this diagonal matrix weights each product xijxik with the corresponding diagonal

CHAPTER 5. GENERALIZED LINEAR MODELS 56

entry. The term X⊤
:jDX:k gives a weighted dot product, where the vectors are size n and

the dot product provides a sum over samples: X⊤
:jDX:k =

∑n
i=1 Diixijxik. The Hessian

matrix is therefore

Hc(w) =

∂2c
∂w2

1
(w0) ∂2c

∂w1∂w2
(w0) · · · ∂2c

∂w1∂wd
(w0)

∂2c
∂w2∂w1

(w0) ∂2c
∂w2

2
(w0)

...
... . . .

∂2c
∂wd∂w1

(w0) . . . ∂2c
∂w2

d
(w0)

 = 1
nX⊤DX. (5.3)

As in Poisson regression, this matrix is guaranteed to be positive semi-definite, and further
positive definite if X is not low-rank. The second-order gradient descent update is

wt+1 = wt − (X⊤DX)−1X⊤ (p− y)

Note that the chosen transfer does not necessarily have to correspond to the derivative
of a. Rather, this provides a mechanism for ensuring a nice loss function (see Appendix
A.3 for more on why). However, this does not mean that any other transfer will necessarily
result in an undesirable loss function. Without any reason to prefer a different transfer,
however, it is definitely sensible to stick with g = a′.

5.4 Revisiting Logistic Regression

One of the most popular uses of GLMs is a combination of a Bernoulli distribution with a
sigmoid transfer function: logistic regression. We summarize the logistic regression model
as follows

1. p(y|x) = Bernoulli(α(x)) with α(x) = E[Y |x]

2. E[Y |x] = σ(xω) or logit(E[Y |x]) = xω

where logit(x) = ln x
1−x , y ∈ {0, 1}, and α ∈ (0, 1) is the parameter (mean) of the Bernoulli

distribution. Recall that the sigmoid function σ : R→ [0, 1] is defined as

σ(θ) def= 1
1 + e−θ

where here we apply the sigmoid to θ = xω. Using the generic formula above, the SGD
update is

wt+1 = wt − ηt (σ(xiwt)− yi) x⊤
i

Exercise 22: Derive the second-order gradient descent update for logistic regression. □

5.5 Multinomial Logistic Regression

Now let us consider discriminative multiclass classification, where X = Rd and Y =
{1, 2, . . . ,m}. This setting arises naturally in machine learning, where there is often more

CHAPTER 5. GENERALIZED LINEAR MODELS 57

than two categories. For example, if we want to predict the blood type (A, B, AB and O)
of an individual, then we have four classes. Here we discuss multiclass classification where
we only want to label a datapoint with one class out of m. In other settings, one might
want to label a datapoint with multiple classes or labels; this is briefly discussed at the end
of this section.

We can nicely generalize to this setting using the idea of multinomials and the cor-
responding transfer function, as with the other generalized linear models. To use this
distribution, we will assume that the target class is an indicator vector. For example, if
m = 4, and the class for an input xi is 2, then yi = [0 1 0 0]. This is equivalent to writing
yi = 2, but using an indicator vector makes it more straightforward to use the multinomial
distribution. The multinomial distribution is a member of the exponential family, and so
we can leverage the same update rules for GLMs. We can write

p(y|x) = 1
y1! . . . ym!p(y1 = 1|x)y1 . . . , p(ym = 1|x)ym (5.4)

= p(y1 = 1|x)y1 . . . , p(ym = 1|x)ym ▷ 0! = 1! = 1, each yk = 0 or 1

where the usual numerator n! = 1 because n =
∑m

j=1 yj = 1 since we can only have one
class value.

As with logistic regression, we can parametrize p(yj = 1|x) using σ(xwj). However, we
must also ensure that

∑m
j=1 p(yj = 1|x) = 1, which we do by normalizing each σ(xwj) by

this sum. The softmax transfer for multinomial logistic regression does just that. The pa-
rameters can be represented as a matrix W ∈ Rd×m where W = [w1, . . . ,wm] is composed
of m weight vectors. The transfer for this setting is the softmax transfer

softmax(x⊤W) =
[

exp(xw1)∑m
j=1 exp(xwj) , . . . ,

exp(xwm)∑m
j=1 exp(xwj)

]

=
[exp(xw1)

exp(xW)1 , . . . ,
exp(xwm)
exp(xW)1

]
and the prediction is softmax(x) = ŷ ∈ [0, 1]m, which gives the probability in each entry of
being labeled as that class, where ŷ⊤1 = 1 signifying that the probabilities sum to 1.

With the parameters of the model parameterized by W and the softmax transfer, we
can determine the maximum likelihood formulation. By plugging in the parameterization
into Equation (5.4), taking the negative log of that likelihood and dropping constants, we
arrive at the following loss for samples (x1,y1), . . . , (xn,yn)

min
W∈Rd×m

n∑
i=1

log (exp(xiW)1)− xiWy⊤
i

where yi is a row vector (1×m), so multiplying Wy⊤
i results in a vector. The gradient is

∇
n∑

i=1

(
log (exp(xiW)1)− xiWy⊤

i

)
=

n∑
i=1

x⊤
i exp(xiW)
exp(xiW)1 − x⊤

i yi

=
n∑

i=1
x⊤

i

[exp(xiW)
exp(xiW)1 − yi

]

=
n∑

i=1
x⊤

i [pi − yi] .

CHAPTER 5. GENERALIZED LINEAR MODELS 58

where the prediction vector pi
def= exp(xiW)⊤

exp(xiW)1 ∈ Rm is a row vector of predicted probabilities
for each class for sample i. Notice that this means that x⊤

i [pi − yi] is an outer product,
between a d× 1 vector and 1×m vector, resulting in a d×m matrix. As before, we do not
have a closed form solution for this gradient, and will use iterative methods to solve for W.
For example, the stochastic gradient descent update is

Wt+1 ←Wt − ηtx⊤
i [softmax(xiWt)− yi] .

We maintain our parameters as a matrix to make the update more interpretable. To better
match it to our regular SGD updates, though, we want to think of Wt as a vector. We
can always do so simply by linearizing it: we imagine we stack all the columns of W. Then
if we want to use a vector step-size, for example, it corresponds to a vector of size dm.
Alternatively, we can also have η be of the same shape as W—namely a matrix of size
d × m—and we still use an element-wise product with the gradient which is also of size
d × m. Either interpretation is equivalent, and it is simply a matter of which is simpler
to implement in the language of your choice. Note that the weights for each class are
not learned independently, because they each impact the other classes due to being in the
normalization in the softmax.

The final prediction softmax(xW) ∈ [0, 1]m gives the probabilities of being in a class.
As with logistic regression, to pick one class, the highest probability value is chosen. For
example, with m = 4, we might predict [0.1 0.2 0.6 0.1] and so decide to classify the point
into class 3. Formally, we predict class

argmax
y∈{1,...,m}

p(y|x) = argmax
k∈{1,...,m}

exp(xwk)∑m
j=1 exp(xwj) = argmax

k∈{1,...,m}
xwk

Pivoting around one of the classes There is one other nuance for multinomial logistic
regression, which is often ignored in practice but important to know. The above updates
every vector wk for k ∈ {1, . . . ,m}. However, this is not actually necessary. In fact, we
only need to learn wk for k ∈ {1, . . . ,m− 1}, because the probability for the final class can
be inferred using the first m − 1: p(ym = 1|x) = 1 −

∑m−1
j=1 p(yj = 1|x). Learning wm is

unnecessary, and instead we can fix wm = 0. The remaining variables will “pivot" around
this final class, and be able to represent the same probabilities as if we allowed wm to be
learned.

In fact, we did just this in logistic regression, namely when we had only two classes.
Recall the binary setting for logistic regression, where we learned one weight vector w ∈ Rd

and we had σ(xw) = (1+exp(−xw))−1 = exp(xw)
1+exp(xw) . We can contrast this with multinomial

logistic regression, with pivoting. The weights for multinomial logistic regression with two
classes are W = [0,w] giving

p(y = 1|x) = exp(xw)
exp(xW)1 = exp(xw)

exp(x⊤0) + exp(xw) = exp(xw)
1 + exp(xw) = σ(xw).

Similarly, for m > 2, by fixing one of the classes weights to zero, say wm = 0, the other
weights w1, . . . ,wm−1 are learned to ensure that p(y = m|x) = exp(xwm)

exp(xW)1 = 1
1+
∑m−1

j=1 exp(xwj)

and that
∑m

j=1 p(y = j|x) = 1.

CHAPTER 5. GENERALIZED LINEAR MODELS 59

The optimization itself can be written slightly differently now.

min
W∈Rd×m:W:m=0

n∑
i=1

log (exp(xiW)1)− xiWy⊤
i

We now have a constraint on part of the variable. However, this was solely written this
way for convenience. We do not optimize W:m, as it is fixed at zero; one can rewrite this
minimization and gradient to only apply to the W:(1:m−1). This corresponds to initializing
W:m = 0, and then only using the first m − 1 columns of the gradient in the update to
W:(1:m−1). Alternatively, you can also update all of W and then set the last weights to
zero after every update:

Wt+1 ←Wt − ηtx⊤
i [softmax(xiWt)− yi]

Wt+1,m ← 0

This optimization that is only over W:(1:m−1) is over fewer variables, and is likely to have
a unique solution. This is in contrast to the update without the pivot, which has too many
free variables and infinitely many equivalent solutions.

There are multiple benefits to pivoting. First, as just discussed, without the pivot, the
solution to our optimization is not unique. There is an infinite space of equivalent solutions.
When possible, forcing our solution to be unique is preferable. A related point is that to be
a valid GLM, the transfer function must be invertible. Here, the softmax is only guaranteed
to be invertible if we constrain (fix) the final variable, say to be 0. For example, imagine we
compute the softmax of [θ1, θ2, . . . , θm−1, 0] to get output [y1, y2, . . . , ym]. Then we can infer
θ1, θ2, . . . , θm−1 from [y1, y2, . . . , ym]. However, if we used [θ1, θ2, . . . , θm−1, θm] to compute
y = [y1, y2, . . . , ym], then there are infinitely many vectors [θ1, θ2, . . . , θm−1, θm] that could
have produced the same y. Therefore, we cannot undo this operation—the application of
the softmax—to figure out what these variables were.

Second, when possible, it is better to learn fewer parameters. The ramifications of
learning this additional vector are not actually clear—no such studies are available. But,
erring on the side of simplicity and reducing the number of free variables is typically a good
choice. Finally, as mentioned above, if we do pivot, then we can ensure that a special case of
multinomial logistic regression for two classes reduces to same algorithm that we designed
for the two class case: logistic regression.

Contrast to Multi-label Classification: In multi-label classification, the goal is to
assign one or more labels to an item. Multinomial logistic regression is for multi-class
classification, where each item is assigned to exactly one label. If you want to predict
multiple labels for a datapoint x, then a common strategy is to learn separate binary
predictors for each label. Each predictor is queried separately, and a datapoint will label
each class as 0 or 1, with potentially more than one class having a 1. Above, we examined
the case where the datapoint was exclusively in one of the provided classes, by setting n = 1
in the multinomial.

Chapter 6

Constrained Optimization with Proximal Methods

In many cases, we will have constraints on our optimization. For example, when we con-
sidered parameter estimation for the Poisson distribution, we needed to ensure we found a
parameter λ > 0. Our strategy involved simply finding the single stationary point, ensuring
it was a local minimum and satisfied the constraint. Since the single stationary point is a
local minimum, we know it is actually a global minimum and that the solution is not on
the boundary of the constraint set, namely at 0.

More generally, however, this strategy may fail to find a valid solution in the constraint
set. In this chapter, we discuss a general strategy to handle constraints using proximal
methods, and then go through a use-case: ℓ1 regularization for feature selection. This case
study is for the case when we have a closed-form proximal operator, but that is not always
the case. We then discuss what to do when we do not have a closed form.

6.1 Proximal Methods

We can generalize gradient descent using proximal methods that break up the optimization
into two steps: a gradient descent step followed by a projection step. For example, imagine
we wanted to do linear regression under the constraint that the weight wj ∈ [−1, 1]. Recall
that the gradient for linear regression at weights wt was gt

def=
∑n

i=1(x⊤
i wt − yt)xi. Then

the two steps include

w̃t+1 = wt − ηtgt

wt+1,j =

−1 if w̃t+1,j < −1
w̃t+1,j if w̃t+1,j ∈ [−1, 1]
1 if w̃t+1,j > 1

If the gradient descent step takes you outside the constraint set, the second step projects
back to that set. For the constraint wj ∈ [−1, 1], the projection is simply: any elements less
than -1 are projected to -1, and any elements greater than 1 are projected to 1.

Proximal methods allow us to formalize this simple idea.1 To write this generically,
assume we have an optimization problem of the form

min
w∈Rd

c(w) + r(w)

where we assume c is differentiable everywhere and r can be any nonsmooth function. We
can encode our constraints using r. The smooth function c might be the least-squares loss

1For a much more thorough treatment of this topic, see [19].

60

CHAPTER 6. CONSTRAINED OPTIMIZATION WITH PROXIMAL METHODS 61

and, for constraint set F = [−1, 1]d, we can set

r(w) =
{

0 if w ∈ F
∞ otherwise

To obtain the minimum of c(w) + r(w), we must find w ∈ F as otherwise the objective is
∞ (which is clearly not minimal).

The proximal update is derived similarly to gradient descent, by using the Taylor series
expansion. Recall that we found the first-order gradient descent update using

wt+1 = argmin
w∈Rd

c(wt) +∇c(wt)⊤(w−wt) + 1
2ηt
∥w−wt∥22

where the last term was the first-order approximation using a scalar stepsize, rather than
the Hessian. Finding this minimum results in the update

wt+1 = wt − ηt∇c(wt)

Similarly, we can write the proximal update using the same expansion on c, in addition to
including r

wt+1 = argmin
w∈Rd

c(wt) +∇c(wt)⊤(w−wt) + 1
2ηt
∥w−wt∥22 + r(w)

= argmin
w∈Rd

∇c(wt)⊤(w−wt) + 1
2ηt
∥w−wt∥22 + r(w) ▷ dropped constant

= argmin
w∈Rd

ηt∇c(wt)⊤(w−wt) + 1
2∥w−wt∥22 + ηtr(w) ▷ multiply by ηt

= argmin
w∈Rd

1
2∥w− (wt − ηt∇c(wt))∥22 + ηtr(w) ▷ dropped constant

where the last equality follows because the two equations are the same up to a constant:
the term η2

t g⊤
t gt for gt

def= ∇c(wt) (see Appendix A.4.1 if you would like to see the steps).
We can rewrite this final form in two steps to more easily see the descent and project

components. The proximal gradient updates take the form

w̃t+1 = wt − ηtgt

wt+1 = argmin
w∈Rd

1
2∥w− w̃t+1∥22 + ηtr(w)

where the second step can be seen as a (generalized) projection that satisfies nonsmooth
function r. This argmin is called the proximal operator, written as

proxηtr(w̃t+1) def= argmin
w∈Rd

1
2∥w− w̃t+1∥22 + ηtr(w)

The final step is to understand when it is feasible to solve for this argmin. It is not easy for
just any r. We either need a closed-form solution for this proximal operator or an efficient
algorithm to solve for it. We will provide an example where a closed-form solution exists in
Example 9 and an example where an iterative algorithm is needed in Appendix A.4.2.

CHAPTER 6. CONSTRAINED OPTIMIZATION WITH PROXIMAL METHODS 62

Example 9: You have already seen one such r, for the interval constraint set [−1, 1]d.
Labeling the r for this constraint set as rbox, we get

proxηtrbox(w̃t+1) =

proxηtrbox(w̃t+1,1)
proxηtrbox(w̃t+1,2)

proxηtrbox(w̃t+1,d)

 where proxηtrbox(v)

−1 if v < −1
v if v ∈ [−1, 1]
1 if v > 1

□

Others simple constraints that have closed-form proximal operators included non-negativity
constraints, where proxηtrpos(v) = max(v, 0), or constraining 1

2∥w∥
2
2 ≤ C for some constant

C.
In the following two subsections, we will provide examples of two other closed-form

proximal operators: one for ℓ1 regularization and one for simplex constraints that ensure∑m
j=1wj = 1 and wj ≥ 0 for mixture models.

6.2 Case Study: ℓ1 Regularization for Feature Selection

Recall that ℓ2 regularization corresponded to putting a prior on the weights. We mainly
discussed using it with linear regression, but also discussed how it can be added to any GLM.
This is similarly true for the ℓ1 regularizer we discuss in this section. Again for simplicity,
we primarily discuss these concepts for linear regression and leave it as an exercise to show
how to use this regularization approach more generally for GLMs.

Let us revisit the linear regression objective, ∥Xw− y∥22. If we choose a Laplace distri-
bution for the prior on the weights, we get an ℓ1 penalized objective

c(w) = ∥Xw− y∥22 + λ∥w∥1

which is often called the Lasso. This objective can be obtained similarly to the ℓ2 regularized
objective, but instead using a Laplace distribution with parameter λ for the prior. As with
the ℓ2 regularizer for ridge regression, this regularizer penalizes large values in w. However,
it also produces more sparse solutions, where entries in w are zero. This preference can
be seen in Figure 6.1, where the Laplace distribution is more concentrated around zero. In
practice, however, this preference is even stronger than implied by the distribution, due to
how the spherical least-squares loss and the ℓ1 regularizer interact.

Forcing entries in w to zero has the effect of feature selection, because zeroing entries
in w is equivalent to removing the corresponding feature. Consider the dot product each
time a prediction is made,

x⊤w =
d∑

j=0
xjwj =

∑
j:wj ̸=0

xjwj .

This is equivalent to simply dropping entries in x and w where wj = 0.
For the Lasso, we no longer have a closed-form solution. We do not have a closed form

solution, because we cannot solve for w in closed-form that provides a stationary point.
Instead, we use gradient descent to compute a solution to w.

CHAPTER 6. CONSTRAINED OPTIMIZATION WITH PROXIMAL METHODS 63
2/26/22, 8:53 AM Desmos | Graphing Calculator

https://www.desmos.com/calculator 1/2

Figure 6.1: A comparison between Gaussian (blue) and Laplace (red) priors. The blue curve
is (2π)−1/2 exp(−x2/2), which is the pdf for a N (0, 1). The red curve is (1/2) exp(−|x|),
which is the pdf for a Laplace with mean zero and b = 1. Both prefer values to be near zero,
but the Laplace prior more strongly prefers the values to equal zero.

The ℓ1 regularizer, however, is non-differentiable at 0. We assume throughout these notes
that our objectives are continuous. However, this need not mean that they are smooth: in
some cases, these continuous objectives may have non-differentiable points. For example,
the ℓ1 regularizer is non-differentiable at 0, making ∥Xw− y∥22 + λ∥w∥1 non-differentiable.
One strategy is to use sub-gradient descent; loosely, this amounts to selecting a reasonable
choice for the gradient at the non-differentiable point. Here, for example, we could take
the partial derivative of ℓ1 for wj to be zero at zero, -1 for wj < 0 and 1 for wj > 0.
Unfortunately, this descent is slow because there is a tendency to jump around zero. Unlike
ℓ2, the gradient does not gradually decrease near zero, slowly decreasing wj , but rather
jumps between two large values −1 and 1. With such large gradient, it is difficult to
gradually decrease wj to zero, even if that is the optimal solution.

One alternative for such non-smooth objectives is to use proximal methods. The idea
is simple: use gradient descent for the smooth component of the optimization (the error
term ∥Xw − y∥22), and then for values in w that are close to zero, set them to zero. This
thresholding idea, though simple, is a theoretically sound approach for optimizing with the
non-smooth ℓ1. This thresholding operator is called the proximal operator, and can be
seen as a projection operator. Each time w is updated with the gradient, it moves it away
from a sparse solution; the proximal operator then projects w back onto the space of sparse
solutions. The proximal operator for ℓ1 is applied element-wise to w, and so is defined on
each wi as, with stepsize η and regularization parameter λ,

proxηλℓ1(wj) =

wj − ηλ if wj > ηλ
0 if |wj | ≤ ηλ
wj + ηλ if wj < −ηλ.

The proximal operator on the entire vector w is defined element-wise: proxηλℓ1(w) =
[proxηλℓ1(w1), . . . ,proxηλℓ1(wd)]. Nicely, the theory states that the stepsize should be no
larger than the inverse of the Lipschitz constant for the smooth part of the objective, where
intuitively the Lipschitz constants reflects how quickly the function changes. In Algorithm
2, we provide a gradient descent algorithm for the incremental update with the ℓ1 regu-
larizer, introduced as an algorithm called ISTA [5]. More generally, proximal methods are
used for other non-smooth objectives, though in these notes we only consider Lasso.

CHAPTER 6. CONSTRAINED OPTIMIZATION WITH PROXIMAL METHODS 64

Algorithm 2: Batch gradient descent for ℓ1 regularized linear regression (X,y, λ)
1: w← 0 ∈ Rd

2: err←∞
3: tolerance← 10e−4

4: // Precomputing these matrices, to avoid recomputing them in the loop
5: XX ← 1

nX⊤X
6: Xy ← 1

nX⊤y
7: // This stepsize is specific to the least-squares loss for linear regression
8: η ← 1/(2∥XX∥F)
9: while |c(w)− err| > tolerance and have not reached max iterations do

10: err← c(w)
11: // Proximal operator projects back into the space of sparse solutions given by ℓ1
12: w← proxηλℓ1(w− ηXXw + ηXy)
13: return w

Feature selection is particularly pertinent when we have many features. You have already
seen one setting where it is sensible: polynomial regression with a high-order polynomial.
In Chapter 8 we will discuss other such fixed feature expansions for which feature selection
can be useful.

6.3 Case Study: Simplex Constraints for Mixture Models

Another common constraint is the simplex constraint: F = {w ∈ [0, 1]m |
∑m

k=1wk = 1}.
We have seen this constraint already for mixture models, where we need the compo-
nents weights wk to be a convex combinations to ensure we have a valid pdf: p(x|w) =∑m

k=1wkpk(x). In other words, we have a simplex constraints on the weights: w ∈ F .
We can similarly consider how to do a proximal update under these constraints. Again,

we get a descent direction w̃t+1 and then project (apply a proximal operator) to ensure these
constraints are satisfied. This update is actually a bit complicated, so instead in the main
notes we will show how we solve this constrained optimization for a different objective. Once
you see this derivation, it is easier to understand the proximal update derivation, which we
include in Appendix A.4.2. However, it is not key to specifically understand the proximal
update, just to see how these tools are used. So the simpler derivation in this section serves
our purpose and, when possible, it is useful to see ideas in their simplest form.

The simpler problem we consider is actually a useful one: it is the optimization we need
to solve for mixture models in Chapter 11. In this section, we will look at how to solve
for these weights, assuming given (fixed) components. Later, in Chapter 11, you will see
how to also learn the parameters for the components. Our goal is to solve the following
optimization problem

w∗ = argmin
w∈[0,1]m,

∑m

k=1 wk=1
−

m∑
k=1

probs[k] lnwk

where probs[k] def=
∑n

i=1 pk(xi) is a fixed array of likelihoods. We compute these likelihoods
once, using the component pdfs, as in this section we are not learning parameters for those

CHAPTER 6. CONSTRAINED OPTIMIZATION WITH PROXIMAL METHODS 65

components. We will later derive this objective when we talk about the MLE problem for
mixture models, but here we will simply take it as a given.

To start we shall first form the Lagrangian function as

L(w, a,b) = −
m∑

k=1
pt[k] lnwk + a

(
m∑

k=1
wk − 1

)
−

m∑
k=1

bkwk

where a ∈ R and b ≥ 0 are called the KKT multipliers. Our goal now is to solve the new
objective that no longer has constraints on w:

min
w∈Rm

max
a∈R,b≥0

L(w, a,b)

We can find a closed form solution, by reasoning about the feasible solutions. We know that
any optimal solution w must satisfy w ∈ F (the simplex); otherwise, the loss L(w, a,b)
can be made arbitrarily big by (the adversaries) a and b. So, any optimal solution will
have w ∈ F . Moreover, for such w, we know that a ∈ R has no impact on the loss, since
it multiples zero; therefore, it is a free variable and can be anything and still result in an
optimal solution—namely result in the same value for L(w, a,b). Finally, we know that
b ≥ 0 will be chosen such that bkwk = 0 for all k, since that is the choice that makes the
sum involving b maximal. And, of course, we need to be at a stationary point for w. In
other words, to satisfy the KKT conditions and know we have an optimal solution, we need

0 = ∂

∂wk
L(w, a,b) = −pt[k]

wk
+ a− bk ∀k ∈ Y

wkbk = 0

with b ≥ 0 and w ∈ F . The stationarity conditions gives us wk = pt[k]
a−bk

. We know that
bk = 0 unless wk = 0. If pt[k] > 0, we know wk > 0, giving wk = pt[k]

a . If pt[k] = 0,
then wk = 0 and similarly we can write wk = pt[k]

a . Therefore, to ensure we are at an
optimal solution—and satisfy the KKT conditions—we know we need to set a such that∑m

k=1wk = 1. We can do so by setting a = n, giving

m∑
k=1

wk =
m∑

k=1

pt[k]
n

= 1
n

m∑
k=1

pt[k] = 1
n
n = 1

because by definition
∑m

k=1 pt[k] = n. Therefore,

w
(t+1)
k = 1

n
pt[k] where pt[k] def=

n∑
i=1

pt[i, k] (6.1)

It may feel weird that we had to do so much reasoning to find the solution. Usually, we
just do gradient descent and declare success. We actually could have used iterative methods
like gradient descent to solve this Lagrangian optimization over w, a and b ≥ 0. But, why
use an iterative method when we can get a closed-form solution. Here, we were actually
able to reason our way to a closed-form solution, which is as good a way as any. In the end,
what matters is that we got our closed-form solution.

Chapter 7

Evaluating Generalization Performance

Before deploying a learned model f , we want to obtain an estimate of its generalization
performance: its expected error. Ideally, we would train f on all the available data, to
facilitate identifying as good a model as possible. However, performance on the training
set is highly biased: it is likely to be much lower than the true generalization error, since
the model was trained to minimize it. In many cases, with complex models like neural
networks, it is common to get zero error on the training set. We had previously discussed
using a hold-out test set, to obtain an unbiased estimate of the generalization error. This
remains a relatively common approach, but as we discuss in this chapter, it might be worth
introducing some bias to obtain a more accurate estimate of the generalization error.

7.1 Defining Generalization Error

Machine learning is all about generalization. We learn a model on a sample (subset) of
possible outcomes, with the goal for it to be accurate across all possible outcomes. Accuracy
here is defined based on the chosen cost function cost : Y ×Y → [0,∞). We want to find a
function f so that the generalization error GE (expected cost) is minimal

GE(f) = E[cost(f(X), Y)]

For example, for regression with a squared error, cost(ŷ, y) = (ŷ − y)2 and GE(f) =
E[(f(X)− Y)2]. We may obtain such an f by minimizing the squared errors on a training
set 1

n

∑n
i=1(f(xi) − yi)2 or by minimizing a regularized objective like one with an ℓ2 or ℓ1

regularizer.
As another example, for classification, we may want to minimize the 0-1 cost, namely

GE(f) = E[I (f(X) ̸= Y)].

We may do so by learning p(y|x) with logistic regression and specifying f(x) = 1 if p(y|x) >
0.5 and f(x) = 0 otherwise. Or, in other words, if p(y|x) = σ(ϕ(x)⊤w) for some features
ϕ and weightings w, then f(x) = sign(ϕ(x)⊤w). For this cost, we use a surrogate—the
cross-entropy loss—rather than directly optimizing the 0-1 cost. We motivated this when
considering ideal predictors: the best predictor for the 0-1 cost is to use the most likely class
under the true model ptrue(y|x). A reasonable choice is to approximate this ideal predictor,
by approximating ptrue(y|x).

Exercise 23: Consider instead trying to directly optimize the 0-1 cost on a training set:
1
n

∑n
i=1 I (f(xi) ̸= yi). What is the issue? What does this loss look like and what are the

derivatives? □

66

CHAPTER 7. EVALUATING GENERALIZATION PERFORMANCE 67

7.2 Estimating Generalization Error using Cross Validation

Assume you are given a dataset D and you learn a predictor fD : X → Y using your
favourite regression algorithm. You’d like to know what the true generalization error is for
your model, in terms of squared errors

GE(fD) = E[(fD(X)− Y)2|D]

where we explicitly write that the data is given to emphasize it is not random in this
definition. Naturally, if we had another batch of data with m samples—let’s call it test
data Dtest—then we could use a sample average to get an unbiased estimate of GE(fD)

GE(fD) ≈ 1
m

∑
(xi,yi)∈Dtest

(fD(xi)− yi)2

The larger Dtest is, the closer the approximation. In fact, using concentration inequalities,
we know this should get closer at a rate of m−1/2 for m = |Dtest|.

The dilemma is that you would like to use this test data to learn a better model. Even
in this age of huge datasets, we still typically want to learn on as much (quality) data
as possible. Our goal is to get a good estimate of performance, without having to put
aside too much test data or even none at all. In this section, we talk about how cross
validation provides one approach to get a biased but nonetheless reasonable estimate of the
performance of the model trained on the whole dataset. We will talk about two variants of
cross-validation, which only differ in how they generate subsamples: k-fold cross validation
and repeated random subsampling.

To be precise, we assume that we train fD on the whole dataset of n samples. We do
not split the dataset into train and test. We will then use the same dataset to estimate
GE(fD), by actually measuring the errors for several different f learned on different subsets
of the D. But how can we do this amazing thing, you ask? Let me tell you.

The general idea is the same for k-fold cross-validation and repeated random subsam-
pling. The only difference is in how we obtain these subsets. For now, let us assume we
use repeated random subsampling; we will describe k-fold cross validation later. Either of
these two approaches produces k different subsets of the data, (D(1)

tr ,D
(1)
te), . . . , (D(k)

tr ,D
(k)
te),

where D(j)
tr ∪D

(j)
te = D and D(j)

tr ∩D
(j)
te = ∅. In other words, each train-test split has disjoint

training and test data and together consists of all the data. Repeated random subsampling
generates a train-test split by randomly sampling (without replacement) a subset of the
data for training and then using the remaining samples for test.

The estimate of generalization error is obtained as follows. Let (f (1), err(1)), . . . , (f (k), err(k))
be the corresponding learned functions and test errors, where f (j) is trained on D(j)

tr and
err(j) is the error of f (j) on D(j)

te . This procedure mimics training fD and then testing it, in
deployment, on new unseen data. The primary difference is that each training set is a bit
smaller than the actual training set used by fD, since each D(j)

tr uses only a subset of D.
The corresponding errors are reasonably reflective of the error we might expect to see for
fD, at least on average. The estimator we use is

GE(fD) ≈ Ḡ def= 1
k

k∑
j=1

err(j)

This entire procedure is depicted in Figure 7.1.

CHAPTER 7. EVALUATING GENERALIZATION PERFORMANCE 68

Dataset
Cross Validation

k=4

Alg(D)

f

f1

…
fk

e1 ek…

average e1 to ek

error estimate for f

Figure 7.1: A depiction of cross validation. The dataset is colored in blue, with each of the
1 to k partitions shown as a smaller cube to indicate they are a subset. The algorithm is
labeled in red, where it is called on different subsets of the data (k−1 of the partitions). We
assume here that the algorithm just needs to input the dataset, and has its own mechanism
to pick any hyperparameters. The errors for each of the learned f1, . . . , fk are computed on
the held-out partition, resulting in errors e1, . . . , ek. The average of these provides our CV
estimate of the error for the function f , which is learned on the entire dataset.

7.3 Bias and Variance of the Cross Validation Estimator

How reliable is our cross-validation (CV) estimator? And how do we select parameters
like the number of folds k for this estimator? In this section, we reason about the bias
and variance of the CV estimator, to better understand how accurately it estimates the
generalization error.

The CV estimator has two sources of stochasticity: the randomness when sampling the
dataset D and then randomness from creating the partitioning. First we sample a random
dataset D from the true joint model p. Then we randomly partition the data, and get
samples of error obtain a partitioning j, to get sample err(1), err(2), . . . , err(k). We can reason
about the bias and variance of the CV estimator over these two sources of randomness.

The CV estimator is biased because err(j) is likely a pessimistically biased estimate of
the true error of fD. This bias arises because err(j) is the error for a function learned using
the same algorithm on a smaller dataset. More data typically means we can learn a more
accurate function, and so we expect the error, in expectation, to be higher for each f (j)

than fD.
The amount of bias depends on (1) the size of the training sets in the partitioning and

(2) the size of the dataset. If most of the data is used in the training set, then f (j) is similar
to fD and so there is little bias. In the most extreme case, all but one sample can be used
for D(j)

tr and D(j)
te consists of only one point (called leave-one out). On the other hand, if

most of the data is used in the test set, then the bias is bigger. Most of this is not an issue
as the size of the dataset n gets big. The bias disappears as n becomes very big because
the functions should become very similar to each other even if data is evenly partitioned

CHAPTER 7. EVALUATING GENERALIZATION PERFORMANCE 69

between training and test.
We can also reason about the variance of this estimator.

Var
[
Ḡ
]

= 1
k2

 k∑
j=1

Var
[
err(j)

]
+
∑
i,j

Cov[err(i), err(j)]

The variance decreases if (1) k is larger and (2) Var

[
err(j)

]
is smaller, which occurs when

n is larger. Notice that (2), however, is also dependent on how many samples are used
for training and for test. The relationship is nuanced, as the variance of the errors might
be higher for a small test set, but the variance of the learned function might be higher
with a smaller training set. Further, if k becomes larger, typically there is more correlation
between each (f (i), err(i)) and (f (j), err(j)), making the covariance term larger. Overall, due
to these nuanced relationships,1 there is not a clear answer for how to choose k and the
partitioning. There are, however, some rules of thumb, which we discuss after Exercise 24.

Exercise 24: We previously discussed that once a hold-out test set has been used for
evaluation, we cannot use it again because it will not provide an unbiased estimate of
the expected error. For example, after getting performance of your models on that test
set, one could go back and adjust hyperparameters such as the regularization parameters.
However, once you have done this, the test-set has influenced the learned models and is
likely to produce an optimistic estimate of performance on new data. Is this also true for
cross validation? Namely, if you realized you should have tested a model with different
hyperparameters, and reran the cross validation procedure for the new model, would your
estimate using cross validation suffer from similar bias as in the hold-out test set case? □

Now let us revisit the strategies to generate these sub-datasets. In k-fold cross-validation
the data is partitioned into k disjoint sets, called folds. The training set is composed of
k − 1 of the folds, and test set is the remaining fold. We use all possible combinations—
namely each fold is used once as a test set—resulting in k train-test splits. This partitioning
approach has the advantage that the resulting k performance estimates are mostly inde-
pendent, with some dependency introduced due to dependencies between the training sets.
As mentioned above, there is also the bias from the fact that we do not run the model on
the entire training set, but rather get an estimate of the error for the algorithm trained on
n− (n/k). The disadvantage of this approach is that the number k both dictates how many
train-test splits we consider as well as the size of the training and test sets.

Repeated random subsampling (RRS) does not suffer from that same issue, but has its
own disadvantages. In RRS, because we create splits using random sampling rather than
a disjoint partitioning, we can decouple k and the size of the training and test sets. For
example, we might want to have at least k = 10 different train-test splits, but we might
want to use more than n − (n/k) for train; RRS allows this. You could take a dataset of
size 1000, set k = 10 and pick the training set size to be 950 and 50 for test. In k-fold CV,
once you pick k = 10, the size of the training set is set to 900 and test is set to 100.

There are common rules of thumb to pick these sizes. A common choice for k-fold CV is
to use k = 10. For RRS, it is generally reasonable to pick k a bit higher, though a limiting
factor is always computation, since you need to train the model k times to get the error
estimate. For slow deployment settings—where the predictor in deployment is changed

1See Appendix A.2 for a just alittle bit more discussion on some of these nuances

CHAPTER 7. EVALUATING GENERALIZATION PERFORMANCE 70

LearnerDataset

Internal CV

k=4

Alg(D, h)

f

for every hyper h in H

f1 e1

…
fkek…

average

err[h]

Best h*
(err[h*] lowest)

f

Figure 7.2: A depiction of internal cross validation. The dataset is colored in blue, with each
of the 1 to k partitions shown as a smaller cube to indicate they are a subset. The algorithm
is labeled in red, where it is called on different subsets of the data (k − 1 of the partitions)
for a given hyperparameter h. The errors for each of the learned f1, . . . , fk are computed on
the held-out partition, resulting in errors e1, . . . , ek. The average of these provides our CV
estimate of the error for the function that would be learned using that hyperparameter h on
the entire dataset. Internal CV then picks the h∗ that has the lowest error. The output of
internal CV is that h∗. Then the learner takes the h∗ and the entire dataset and output the
final learned function f .

infrequently or we need to be very careful about deploying any predictor—the cost of this
offline evaluation is not too limiting of a factor. For faster turnaround times—say repeated
testing and deployment—a large k may become prohibitive.

To better understand the properties of these two approaches, see the thorough and
accessible explanation in [12, Chapter 5].

7.4 Using Cross Validation to Select Hyperparameters

You have seen how to gauge the generalization performance of a model, using validation
sets. We can leverage the exact same idea to select hyperparameters. Why? Because our
criteria is exactly the same: we want to select hyperparameters that result in the best
generalization performance. The idea is simple: if there are m possible hyperparameter
settings, then evaluate m models each corresponding to a hyperparameter setting, and
select the hyperparameter setting that has the best evaluation performance.

This procedure is called internal cross-validation, because it is internal to the algorithm.
It is part of the algorithm, because it is the way that the algorithm sets its hyperparameters.
For example, we can consider ridge regression with internal CV to set the regularization
parameter as one complete algorithm, that returns a model when run on a given dataset.

CHAPTER 7. EVALUATING GENERALIZATION PERFORMANCE 71

EvaluatorDataset

External CV
k=4

Learner(D)

f

f1

…
fk

e1 ek…

average

error estimate of f
If error acceptable, then f

else
cannot
deploy

function

Figure 7.3: A depiction of external cross validation. The dataset is colored in blue, with
each of the 1 to k partitions shown as a smaller cube to indicate they are a subset. The
learner is labeled in orange, just as in Figure 7.2, where it is called on different subsets of
the data (k − 1 of the partitions) for a given hyperparameter h. This is a key difference
from internal CV. The errors for each of the learned f1, . . . , fk are computed on the held-out
partition, resulting in errors e1, . . . , ek. The average of these provides our CV estimate of
the error for the function that is learned by our Learner on the entire dataset. (The learner
itself may use internal CV). Then the Evaluator decides, based on the error estimate of f
given by external CV, whether it is happy to deploy f .

This is visualized in Figure 7.2.
We can then take this model and evaluate it using the techniques described earlier in

this chapter. If we use cross-validation to evaluate this model, then we call this external
cross-validation to disambiguate. To separate the two roles, we can think of this settings as
having an evaluator and a learner. The learner’s job is to return a model when it is given a
dataset. The evaluator’s job is to obtain a model for deployment, and so needs to provide
an estimate of the performance of that model.

The full procedure is as follows, depicted also in Figure 7.3.

1. The evaluator is given a dataset D.

2. The evaluator obtains a model θD by running the learner on the dataset D.

3. Before deploying that model θD, the evaluator obtains an estimate of the performance
of θD using (external) cross-validation. For example, the evaluator might use k-fold
CV with k = 5, calling the learner fives times on each subset of data.

4. Each time the learner is called on a dataset D′—labeled differently than D to indicate
that this dataset is a subset from external CV—it needs to return a model θD′ . To do
so, it needs to decide on its own hyperparameters, like the regularization parameter

CHAPTER 7. EVALUATING GENERALIZATION PERFORMANCE 72

Algorithm 3: Nested cross-validation on a dataset D
1: Partition the dataset D into kexternal folds
2: Initialize err-f = 0
3: for i = 1 to kexternal do
4: Set D(i)

te to the data in fold i

5: Set D(i)
tr = D −D(i)

te
6: fi ← Learner(D(i)

tr)
7: err-f = err-f+ error of fi on D(i)

te
8: err-f = err-f/kexternal
9: fi ← Learner(D(i)

tr)
10: return f and err-f

Algorithm 4: Learner using cross-validation on a dataset D′

1: Partition the dataset D′ into kinternal folds
2: for h in the set of hyperparameters H do
3: Initialize err[h] = 0
4: for j = 1 to kinternal do
5: Set D′(j)

te to the data in fold j for dataset D(i)
tr

6: Set D′(j)
tr = D′ −D′(j)

te
7: Train f = Alg(D′(j)

tr , h)
8: err[h] = err[h]+ error for f on D′(j)

te
9: err[h] = err[h]/kinternal

10: Pick h∗ = argminh∈H err[h]
11: // Learner done picking its hyperparameter, can now return the learned function
12: Train f = Alg(D, h∗)
13: return f

λ. It uses internal CV on D′. For example, it might use k-fold CV on D′ to evaluate
each possible hyperparameter.

In Algorithm 3, in pseudocode, we more explicitly write what is called nested cross-
validation, where the evaluator use k-fold cross-validation and the learner also uses k-fold
cross-validation. The evaluator is said to use external CV, because it is in the outer loop,
and the learner is said to use internal CV because it is in the inner loop. We have separated
out the Learner pseudocode in Algorithm 4 because it is used both inside the for loop and
again at the end of the algorithm to learn the final function.

This pseudocode helps us reason about the computational complexity. If we copied in
the Learner function into our for loop in Algorithm 3, then we would see three for loops:
external loop over folds, a loop over hyperparameters and then an internal loop over folds.
In total, this means we can the algorithm kexternalkinternal|H| times, where |H| is the number
of hyperparameters. This can be very expensive. For example, if we use 10 folds for external
CV, with 8 hyperparameter choices and 10 internal folds, we call the algorithm 800 times!

The criteria for making choices may differ between internal and external CV. For ex-
ternal CV, the evaluator wants to have a high confidence estimate of performance, and

CHAPTER 7. EVALUATING GENERALIZATION PERFORMANCE 73

will likely use confidence intervals obtained from the CV. The evaluator might prefer to
use Monte Carlo CV, because the repeated resampling allows for more estimates of per-
formance without training on too small of datasets. For internal CV, on the other hand,
the agent does not need high confidence estimates. Rather, it simply needs to obtain a
reasonable hyperparameter. If computation is an issue—we may not want our algorithm
to be too slow—then we might pick a smaller k. The learner may want to ensure that it
systematically covers the data points and might be worried that random resampling with a
small k might not do so. It might therefore opt for k-fold CV for internal CV.

Exercise 25: Imagine you use k = 2 CV for internal CV, when selecting λ for ridge
regression. What issue might there be with selecting such a small k? □

Exercise 26: Notice that at the end of nested CV we call the Learner on all of the data,
D. This step also produces the best hyperparameters h∗ on D, though the Learner does
not return this h∗, it only returns the corresponding function. But it seems like we can
avoid nested CV altogether by simply using this h∗. In other words, we use CV on D to
find hyperparameters h∗. Then we fix these hyperparameters, and do CV on Alg(·, h∗).
This procedure only costs kinternal|H| + kexternal, rather than kexternalkinternal|H|. In our
above example, this reduces the number of times we call the algorithm to 10× 8 + 10 = 90,
as opposed to 800. Though this is in fact a relatively common approach, because of this
significant computational savings, it is likely more biased that nested CV. Explain why. □

Nested cross-validation can be expensive, so do we have to do it? It seems like we should
be able to do a two-staged approach instead, where we first select hyperparameters using
CV, and then we do CV again for the model with these hyperparameters. But, this is likely
to produce a biased result, one that makes our model appear better than it is. It is a little
bit like picking hyperparameters using a test set, selecting the best ones, and then using the
test set again to evaluate the model with those hyperparameters. Because we picked the
hyperparameters that are best for the test set, we effectively used the test set for training
and we have slightly fit to it. In CV, we at least use different randomizations of the data
when we do CV in the first phase to pick hyperparameters and in the second phase when
we evaluate the model with those hyperparameters. This two stage approach even with
the randomization in CV is likely more biased optimistically, because we used CV to select
hyperparameters and so the second stage of CV will also likely report higher performance
for those same hyperparameters. There is some work showing that this seemingly benign
modification, of moving from nested cross-validation to this two stage approach, can result
in significant bias [9]. If you choose to do it, use it with caution!

Remark: Note that CV is not the only way to select hyperparameters; it is simply a
commonly used, relatively generic approach. For certain hyperparameters, there are spe-
cialized strategies or rules of thumb. In other cases, the goal of algorithm development is
to provide approaches that adapt the hyperparameter, where the newly introduced hyper-
parameters for the algorithm are less sensitive and easier to set. One such example is the
stepsize selection rules you have seen.

Part II

Data Representations

74

75

At first, it might seem that the applicability of linear regression and logistic regression to
real-life problems is greatly limited. After all, it is not clear whether it is realistic (most of
the time) to assume that the target variable is a linear combination of features. Fortunately,
the applicability of linear regression—and generalized linear models— is broader than it
seems at first glance. The main idea is to apply a non-linear transformation to the data
matrix x prior to the fitting step, which then enables a non-linear fit. Obtaining such a
useful data representation is a central problem in machine learning.

We have already seen one instance of such a transformation, that allowed for nonlinear
functions: polynomials, in polynomial linear regression. More generally, there are many
other fixed representations for regression. Two common ones are radial basis function
(RBF) networks and prototype representations. Even more common, however, is to learn
the data representation, rather than simply specifying a fixed one. We first discuss fixed
data representations and what they provide. Then we discuss learning data representations,
primarily with factor analysis and neural networks.

Chapter 8

Fixed Representations

In this chapter we discuss two fixed representations, and why we might want to use them.
First, however, we start by discussing why projecting into a higher dimension can allow
us to learn more complex functions for regression and more easily separate classes for
classification.

8.1 The Utility of Projecting to Higher Dimensions

Let us motivate the utility of projecting to higher dimensions using classification. In partic-
ular, we will see that it will allow us to get linear separability. Recall that linear separability
means that we can perfectly separate the two classes using a linear hyperplane. An example
of this is given in Figure 8.1.

(,)x1 1y

(,)xi yi(,)x2 2y

w w w x0 1 2 2+ +x1 0=

x1

x2

+
+

+

+

+

+

+

+ +

Figure 8.1: An example of a linearly separable dataset, with positive points labeled at +
and negative as circles. The learned linear classifier (using logistic regression) can perfectly
classify the points in this dataset. The decision boundary is given by the equation of the line
xw + w0 = 0. These are all the points x = (x1, x2) that are orthogonal to w = (w1, w2).
Here picture a unit vector w pointing orthogonally to this line, towards the positive points,
with w0 giving the offset of this line away from zero. Any point x below the line is no longer
orthogonal, and in fact has an angle to w that is less than 90 degrees (starting to point more
in the direction of w). This tells us this x is labelled as positive. The opposite is true for x
above the line, which have more than a 90 degree angle to w; some are even pointing in the
opposite direction to w (i.e., x = −w would be classified as negative). This relationship is
easy to see with the following cosine formula: xw = ∥x∥∥w∥ cos θ for the angle θ between the
two vectors. The term cos θ is positive for θ ∈ [0, 90) degrees and negative for θ ∈ (90, 180].

Usually, however, we will not be able to linearly separate the data. Instead, we might
have something like the nonlinear relationship in Figure 8.2. But, we can see that it should

76

CHAPTER 8. FIXED REPRESENTATIONS 77

Projecting to Higher Dimensions
Allows for Separability

• Consider this simple example where increasing from 2 to 3 dimensions (in a
careful way) allows us to obtain linear separability

Figure 8.2: An example of a dataset that is not linearly separable. The function that sepa-
rates these points is f(x) = x2

1 + x2
2 − 1. For example, f([0, 0]) = −1 < 0, which is correct

as the red points in the inner ring are negative). And f([2,−1]) = 4 + 1− 1 = 4 > 0, which
lies within the positive blue points in the outer ring.

be easy to classify these points. In fact, we can make this dataset linearly separable by
changing the features. We started with a two-dimensional input x1, x2. We want a function
f(x) where when f(x) < 0 we classify the point as negative and when f(x) ≥ 0, we classify
the point as positive. The function that works for this example is f(x) = x2

1 + x2
2 − 1.

We could have easily learned a linear function that produced this f if we had first created
a new set of three-dimensional features ϕ(x) = [x2

1, x
2
2, 1] and learned a linear function in

this new space. In other words, in a space one-dimension higher, this dataset is again
linearly separable. By projecting to a higher-dimension, we can linearly separate the data.

More generally, moving up one dimension is not enough. But intuitively once you give
yourself enough dimensions you get a lot more flexibility to place a line that properly
separates points. There is even a formal statement for this, called Cover’s Theorem, that
says that a dataset that is not linearly separable is highly likely to be separable by projecting
to a higher-dimensional space with a nonlinear transformation. One such example is given
in Figure 8.3 showing how binning can be one such way to obtain this separation.

A key question is how to pick this projection to higher dimensions: how to pick this data
representation. That is the focus of both fixed representations, discussed in this chapter,
as well as learned representations discussed in the next chapter. We typically have at
least two criteria for the choice. One is about sufficient complexity: did we expand the
function space enough to get close to representing the true function (reduce bias). And
another is compactness (a minimal representation), to make learning more sample efficient
and computationally efficient. We may also care about properties of the features themselves
and how they interact with the learning algorithm. For example, orthogonal features might
make learning more effective when using stochastic gradient descent, whereas this might
not matter as much for second-order gradient descent.

8.2 Radial Basis Function Networks

Radial basis functions (RBF) provide nonlinearity, just like polynomial transformations.
We first explain what they are and then explain the types of functions they allow us to

CHAPTER 8. FIXED REPRESENTATIONS 78

I
& S

#
&
-

&

I
O

5
&

0
0
X
X

4
0
0
0
X

0
X
X

IJ
I

-
-
-
-
-

ji
-
y

!I

-
-
-
-
-

G

·
I &
& & S
Il

& 0
0
0
0
0
0
0
4
0
-

Figure 8.3: This 2d space is project up into a 7d space, by binning. The blue x’s and red o’s
are not separable in the 2d space, and actually even in 7d they are not yet separable either
(though there may be a smarter transformation to 7d that would give separability). But in
the 7d space the accuracy of the classifier is now much better. Every point in a bin has to
be classified the same, so the top middle bin will be classified as blue x’s even though we
have one red o in that bin. But every other bin has perfect accuracy. Trivially, we could
have added another bin—or even one bin for every point—and got separability.

represent.
As usual, assume we are given data set D = {(xi, yi)}ni=1. We start by picking p points

in X to serve as the centers. We denote those centers as c1, c2, . . . , cp ∈ X . These can be
selected in a variety of ways, with some of the most common including

1. to uniformly cover X

2. selected as a subset from D or

3. computed using some clustering technique on the data, such as k-means clustering.

The resulting basis functions—giving a fixed representation—consist of p new features
ϕ1(x), ϕ2(x), . . . , ϕp(x) with ϕj(x) ∈ R where

ϕj(x) def= exp
(
− 1

2σ2 ∥x− cj∥22
)
,

where σ gives the width of the Gaussians. The resulting features are between 0 and 1. A
feature ϕj(x) is close to one if x is similar to cj , and close to zero if its dissimilar. The
size of σ determines how many features are non-negligibly large. If σ is very small, then
most features are near zero; if σ is very large, then an input x has a non-negligible value
for many centers. This collection of features is often called an RBF network, because we
can view it as a network where the first layer transforms the input and then weights are
learned on these new features, as in Figure 8.4.

As with polynomial features, for this new fixed set of features, we can simply apply
any generalized linear model to obtain a nonlinear predictor. The feature transformation

CHAPTER 8. FIXED REPRESENTATIONS 79

Á1()x Á2()x Áp()x

1

f()x

x1

w0 w1 w2 wp

x2 x3 xk

�

...

...

Figure 8.4: Radial basis function network.

provides nonlinearity, and we can exploit the simplicity of the linear methods to find the
weights on the given dataset.

Φ =

ϕ0(x1) ϕ1(x1) · · · ϕp(x1)
ϕ0(x2) ϕ1(x2) · · · ϕp(x2)

... . . .

ϕ0(xn) ϕp(xn)

is now used as a new data matrix. For a given input x, the prediction of the target y will
be calculated as

f(x) = w0 +
p∑

j=1
wjϕj (x) =

p∑
j=0

wjϕj (x) = ϕ(x)w

where ϕ0 (x) = 1 and w is found using linear regression. More generally, for any GLM with
associated transfer g, we use g(ϕ(x)w) for the prediction.

Now we can ask why we would use this transformation. First, it provides complexity or
capacity. It can be proved that with a sufficiently large number of radial basis functions we
can accurately approximate any function [20]. In other words, it allows us to increase the
hypothesis space that we consider for learning, such that we can include the true function
underlying the data. In this way, we can learn a broader set of functions, while still exploiting
the simplicity of our linear algorithms.

The additional nuance for using RBFs is appropriately selecting hyperparameters, like
the variance σ and the centers. We had this problem too with polynomial features, where
we needed to decide on the degree of the polynomial. A typical solution is to select σ using
cross-validation, which we discussed in Section 7.4, though there are a variety of rules of
thumb based on the number of centers and distances between each center. For example,
one choice is: for each center, find the closest center and select the width σ to be twice that
distance.

CHAPTER 8. FIXED REPRESENTATIONS 80

The update for linear regression using these new features is

wt+1 = wt − ηt (ϕiwt − yi) ϕi

where ϕi
def= ϕ(xi) = [ϕ1(xi), ϕ2(xi), . . . , ϕp(xi)]. More generally, for any GLM with transfer

g, the update is

wt+1 = wt − ηt (g(ϕiwt)− yi) ϕi.

These models are no longer linear in the original inputs, but rather only in the new features.
The implicit assumption now is that we learn a model such that

1. E[Y |x] = g(ϕ(x)ω)

2. p(y|x) is an Exponential Family distribution, with parameter θ(x) = ϕ(x)ω.

8.3 Prototype Representations

RBF networks and prototype representations are highly related. The main distinction is
that prototype representations use any similarity measure k : X × X → R to produce the
feature

ϕj(x) def= k(x, cj).

Radial basis functions are one example of such a similarity k. In addition, for prototype
representations the points cj are typically subselected from the training dataset; these cj

are prototypical instances, thus the name prototype representations. More formally, we pick
p points c1, c2, . . . , cp from our dataset, without replacement. If n is sufficiently small, it is
common to simply use p = n; otherwise, these prototypes are chosen to be a diverse set.
For RBF networks, the selection of the centers is left as an open step, where they can be
selected from the training set but can also be selected in other ways.

Example 10: Let us consider an example where we measure the similarity of images.
It is unlikely to be very effective take the squared differences per pixel, and most images
are likely to be dissimilar at the pixel level. Imagine our goal is to predict the sentiment
for the image—positive, neutral or negative—as a three class classification problem. To do
this well, it might be useful to know which objects are in the image, from a large collection
of possible objects. Our measure of similarity could add up the number of similar objects
between the two images, subtract the number of dissimilar objects and then normalize
by the maximum number of objects in either image. Note that this is not a widely-used
measure, it is just being used here to see that similarity can be defined in many different
ways. □

Though we can use many different similarity functions, prototype representations of-
ten use kernel functions and so are also often called kernel representations. The func-
tion we used for RBF networks is actually a kernel, called the RBF kernel, k(x, cj) =
exp

(
− 1

2σ2 ∥x− cj∥22
)
. More generally, there are a variety of different kernels including

linear kernels k(x1,x2) = ⟨x1,x2⟩ and polynomial kernels k(x1,x2) = (⟨x1,x2⟩ + a)b for
polynomial degree b. The defining characteristic of a kernel is that it can be written as a

CHAPTER 8. FIXED REPRESENTATIONS 81

dot-product in a transformed space: k(x1,x2) = ⟨ψ(x1), ψ(x2)⟩ where ψ(x1) is a (typically)
nonlinear function that transforms x1 to the new space.

You may wonder why we use these kernel functions to measure similarities, rather than
just any arbitrary function. The reason is that this dot product form allows us to make
strong theoretical claims about the properties of these functions. We discuss this briefly in
the following advanced remark below, and also briefly revisit the utility of kernel functions
in Section 15.3 when talking about Gaussian processes. This remark is labeled an advanced
remark, because it goes to a level of theoretical knowledge not needed for this course,
but is included to provide some justification for why these data representations have been
considered worthwhile.

Advanced Remark 1: The key result that motivates the use of prototype representations
with kernel similarities is the representer theorem. This theorem says the following. Assume
our hypothesis space consists of functions f : X → R from a reproducing kernel Hilbert
space (RKHS) Hk with associated kernel k. This means that the functions in this space
have the form:

f(x) =
p∑

j=1
wjk(x, cj)

for any c1, . . . , cp ∈ X , any d ≥ 1 and weights w1, . . . , wp ∈ R. In other words, there
are linear functions of these similarity features. Such functions may seem like a restricted
space, but it actually encompasses many function classes. For example, we know it can
represent certain classes of neural networks with ReLU activations, that we will discuss
later. The representer theorem states that the function f∗ ∈ Hk that minimizes error for a
given dataset {(xi, yi)}ni=1, plus some regularization, is

f∗(x) =
n∑

j=1
w∗

jk(x,xj)

for some weights w∗
1, . . . , w

∗
n. In other words, it is a function that linearly weights features

created by selecting the entire training dataset as the prototypes. This is true for any error,
including all the errors we used for generalized linear models such as the squared error for
linear regression and cross entropy for logistic regression. □

In practice, we will likely do not want to use the entire dataset, as n is likely very large.
Instead, motivated by this result, we still use a function based on similarities to observed
data, but only for a subset. Even with only a smaller set of prototypes, we still obtain a
function fromHk and we can still obtain a function that is reasonably close to f∗. Of course,
the quality of the approximation depends on how we select prototypes. This question has
been thoroughly explored under the area of active set selection, but is beyond the scope of
these notes. For a thorough set of references on the topic, see [23]. In the next section, we
discuss one simple approach to subselect prototypes.

Example 11: One of the big advantages of prototype representations is that we can
naturally handle a wider variety of input types. That is, we no longer require x ∈ Rd.
Instead, as long as we can compute a similarity between the input vectors x1 and x2, then
we can compute the prototype representation. Further, the resulting features given by the
prototype representation are real-valued, making it easy to use our favorite method like
linear regression or logistic regression.

CHAPTER 8. FIXED REPRESENTATIONS 82

For example, imagine the inputs consist of x1 = full-time or part-time; x2 = job type,
out of possibilities { teacher, geologist, dancer }; and x3 = age. Then we could use a
matching similarity for the first two inputs—a similarity of 1 if it perfectly matches and 0
otherwise—and an RBF for age, since 32 is more similar to 31 than to 10. The resulting
similarity between two instances x1,x2 would be

k(x1,x2) = 1 (x11 = x21)1 (x12 = x22) RBF(x13, x23)

= 1 (x11 = x21)1 (x12 = x22)
(
− 1

2σ2 (x13 − x23)2
)
∈ [0, 1]

To obtain the prototype representation, we would select p samples from the training set,
either intelligently or randomly, for the prototypes c1, . . . , cp ∈ D. For any input x, the
prototype representation would consist of ϕ(x) ∈ Rp the p similarities to these prototypical
individuals selected from the training set. If we want to predict whether they are likely to get
a disease, for example, then we would use logistic regression with this new representation, on
a training set where we have recorded previous individuals and whether they contracted the
disease. The learned weights outputted from logistic regression would be of size w ∈ Rp+1,
because as usual we would add an intercept term. □

8.4 Feature Selection and Subselecting Prototypes

Once we used expand into a higher dimension, say with polynomial regression or prototype
representations, it may be sensible to do feature selection. We likely overgenerate when
we do this expansion, and we might want to remove low-utility features. We have already
seen one mechanism to do so: adding ℓ1 regularization to do feature selection discussed in
Section 6.2. The ℓ1 regularizer tries to find set weights to zero; for any weights that are
zero, this is likely removing the feature.

For prototype representations, it has an additional interpretation: feature selection cor-
responds to prototype selection. Consider the following procedure. We create a prototype
representation by using the entire training dataset as the prototypes, getting Φ ∈ Rn×p

with p = n. We then solve the ℓ1 regularized optimization

c(w) = ∥Φw− y∥22 + λ∥w∥1.

The ℓ1 regularizer encourages elements in w to be zero. If wj = 0, for example, then features
ϕj(x) is removed. Equivalently, it is like removing the j prototype. This optimization,
therefore, should keep only the most important prototypes to accurately predict the targets
on the training set.

The number of prototypes that are removed depends heavily on λ. If λ = 0, then the
optimization has no incentive to remove any prototypes—no incentive to make any entries
of w zero. It is always easier to fit the training data with more features. If λ is very big,
it encourages using a very small number of prototypes; at the extreme, λ can be increased
until the optimal choice is to set w = 0. In between this extreme and 0, it is hard to predict
how many prototypes will be selected.

Exercise 27: This objective is convex, and so we know we can obtain the global solution
using our proximal method from Section 6.2. Imagine our optimization kept 10 prototypes.
Does this mean we selected the best possible set of 10 prototypes for our training dataset?

CHAPTER 8. FIXED REPRESENTATIONS 83

To answer this, consider the objective we really want to optimize: ∥Φw − y∥22 + λ∥w∥0
where the ℓ0 regularizer simply counts non-zero entries: ℓ0(w) =

∑p
j=1 1 (wj ̸= 0). If we

want to rewrite this to only select 10 prototypes, this would correspond to

min
w∈Rp,∥w∥0=10

∥Φw− y∥22.

Do you think our ℓ1 regularized solution will find the same prototypes? □

We can select λ either based on the desired number of prototypes or based on general-
ization performance. For example, if we know that we want to keep only 100 prototypes out
of the n = 10k possible prototypes, then we might test a few values for λ until obtaining
approximately 100 prototypes. Often, though, we are subselecting prototypes to improve
generalization performance. In that case, we can leverage the internal cross-validation
approach described in Section 7.4 to select a λ the reduces overfitting and improves gener-
alization error.

Using ℓ1 regularization for prototype selection can be seen as a simple form of repre-
sentation learning. We allow prediction accuracy to inform which prototypes produces the
most useful features. This approach incorporates a small amount of representation learning
into otherwise fixed representations. In the next chapter, we talk about more flexible ways
to learn representations.

Chapter 9

Learned Representations

In this chapter we discuss two common strategies to learn representations. We conclude
the chapter showing that these two approaches have a common underlying theme, and are
equivalent in one specific case. But, in general, they are otherwise quite distinct in that the
algorithms and resulting representations are different.

9.1 Latent Factors and Factor Analysis

Imagine you are running a hospital and have information about your patients. You would
like to get better at predicting whether you should use Strategy 1 or Strategy 2 to help ensure
they follow the recommended treatment for a disease. You decide you will try to categorize
patients according to the Big-Five personality test. This test identifies the level to which
you are Open, Conscientious, Extraverted, Agreeable and Neurotic. You cannot directly
measure these traits; rather, they are latent and have to be inferred based on the observed
information you do have, such as past treatment behavior, self-identified preferences and
health metrics.

This is the goal behind the broad class of methods that attempt to identify latent factors.
Assume as usual that the input vector is a row vector x ∈ R1×d. In the simplest form, the
idea is to find factors h ∈ R1×p so that a linear weighting approximately produces the
observed inputs

x ≈ hD =
p∑

k=1
hkDk,:

where D ∈ Rp×d is called the dictionary, and also sometimes called the factor loading or
coefficients. We use the term dictionary because each row Dk,: ∈ Rd can be seen as a
representative instance of an input that maximally has factor hk. For example, if h =
[0, 0, 1, 0, 0, . . . , 0] with only h3 = 1, then the resulting approximation of an input is exactly

hD =
p∑
k

hkDk,: = D3,:.

Instead, if h = [0, 0.5, 0.5, 0, 0, . . . , 0], then the approximation is 50% like dictionary item 2
and 50% like dictionary item 3.

Once you are given a dictionary, it is relatively straightforward to find the latent factors.
For example, if our goal is to minimize the squared error when approximating the input x̃,
we can infer latent factors using

h̃ = argmin
h∈R1×p

∥x̃− hD∥22.

84

CHAPTER 9. LEARNED REPRESENTATIONS 85

The h̃ will weight the dictionary elements to best recreate x̃.

Example 12: Consider again the example with the Big Five personality test. We assume
we have p = 5 latent factors, one factor per personality component. Imagine we have 30
attributes per patient, so our inputs have dimension d = 30. Further imagine someone has
already kindly found the dictionary for you. Now a new patient comes in, and fortunately
you have the information about them that you need, namely you have the vector x of 30
attributes. Before you make any decisions about their care, you’d like to have a good idea
where they stand on the Big Five.

To do so, you need to find h that is the optimal solution for ∥x− hD∥22. In fact, there
is a closed-form solution for this

∇h∥x− hD∥22 = (x− hD)D⊤ = 0
=⇒ xD⊤ − hDD⊤ = 0
=⇒ hDD⊤ = xD⊤

=⇒ h = xD⊤(DD⊤)−1.

This solution can have both positive and negative values in h. For example, if h =
[−0.6, 0.7, 0, 0.3,−0.1], then the patient is not very Open, is quite Conscientious, is nei-
ther Extraverted nor introverted, is somewhat agreeable and not really Neurotic.

We can similarly imagine what each dictionary element might mean. D1,: ∈ R30 might
be key components of patient info for a patient that is very Open, D2,: ∈ R30 might be key
components of patient info for a patient that is very Conscientious, and so on. When we
reconstruct x = hD we get x = −0.6D1,: + 0.7D2,: + 0.3D4,: − 0.1D5,:. □

All of this assumes that we can actually find a D such that the factors corresponds
to these five personality traits. In general, it is technically impossible to be sure that we
have found an h and D that correspond perfectly to these five traits. This information is
latent after all, and we can only do our best to infer it. If we had some ground-truth data,
say from a psychologist measuring these properties for some number of patients, then we
might have some hope to be confident that we found such a dictionary D. But usually we
do not have this extra labelling. The issue of extracting interpretable latent factors is an
age-old problem in factor analysis. Fortunately for us in machine learning, our goal with
data representations is usually to improve prediction accuracy, rather than answer scientific
questions, and so we do not need to ensure latent factors match our interpretation. Our
goal will simply be to find useful latent factors.

In the next two subsections we turn to the question of how we find this dictionary, so
that we can identify these latent factors.

9.1.1 Matrix Factorization Approaches

Our goal is to find D such that xi ≈ hiD for i ∈ {1, . . . , n}. We can equivalently write this
as X ≈ HD where H ∈ Rn×p has the ith row corresponding to hi and X has xi in the ith
row. In other words, the data matrix X is factorized into a dictionary D and a basis or
new representation H (see Figure 9.1).

In fact, many unsupervised learning algorithms (e.g., dimensionality reduction, sparse
coding) and semi-supervised learning algorithms (e.g., supervised dictionary learning) can

CHAPTER 9. LEARNED REPRESENTATIONS 86

Xn

d

≈ Hn

p

×
Dp

d

Figure 9.1: Matrix factorization of data matrix X ∈ Rn×d. This factorization is a low-rank
factorization, reducing the dimension from d to p, as would be given by PCA.

actually be formulated as matrix factorizations.1 Unsupervised learning is about extracting
underlying patterns, which is precisely what we are doing when we extract latent factors.
The primary difference is that unsupervised learning can sometimes have a different goal,
which is to visualize the data; for this goal, dimensionality reduction is key. This goal is still
about data re-representation, but does not have a focus on predictive models or generative
models. For visualization, for example, it might be worth considering only one or two factors
to make it feasible to view the data. For prediction, we are unlikely to so severely restrict
the model capacity.

Reducing the dimension with principal components analysis(PCA). PCA is a
standard dimensionality reduction technique, where the input data x ∈ R1×d is projected
into a lower dimensional h ∈ R1×p spanned by the space of principal components. These
principal components are the directions of maximal variance in the data. To obtain these
p principal components D ∈ Rp×d, the common solution technique is to obtain the singular
value decomposition of the data matrix X = UΣV⊤ ∈ Rn×d, giving

D = V⊤
p ∈ Rp×d

H = UpΣp ∈ Rn×p

where Σp ∈ Rp×p consists of the top largest p singular values (in descending order) and
Up ∈ Rn×p and Vp ∈ Rp×d are the corresponding singular vectors, i.e., Up = U:,1:p and
Vp = V:,1:p. The new representation for X (using PCA) is this H. Note that PCA does
not subselect features, but rather creates new features: the generated h is not a subset of
the original x.

This dimensionality reduction technique can also be formulated as a matrix factorization.
The corresponding optimization has been shown to be

min
D∈Rp×d,H∈Rn×p

∥X−HD∥2F

The rank p matrix X̂ that best approximates X, in terms of minimal Frobenius norm, is
X̂ = UpΣpV⊤

p . You do not need to be able to solve this optimization problem, but this
result is actually quite simply to derive2, and we can give the intuition here. The Frobenius
norm is invariant to orthonormal matrices and so we can write it as just the sum of the

1For a thorough overview of these connections, see [30].
2If you are interested in the formal proof, see the Eckart-Young-Mirsky theorem.

CHAPTER 9. LEARNED REPRESENTATIONS 87

Xn

d

≈ H
(sparse)n

p

× Dp

d

Figure 9.2: Matrix factorization of data matrix X ∈ Rn×d for sparse coding. The matrix H
is constrained to be sparse, using ℓ1 regularization. If it was not constrained to be sparse,
then this factorization would result in a trivial solution. In other words, we could set H =
[X 0] and D = I and perfectly recover X.

squared singular values, ∥X∥2F =
∑d

j=1 σ
2
j . This means that the rank p matrix X̂ that

minimizes ∥X − X̂∥2F is the one that matches the largest singular values, incurring the
smallest error that is possible for a p rank matrix: ∥X − X̂∥2F =

∑d
j=p+1 σ

2
j . The sum of

squared errors for the smallest singular values gives us the lowest error. Once we know
X̂ = UpΣpV⊤

p is the minimizer, then we can simply assign H = UpΣp to first part of this
decomposition and D = V⊤

p to the second part, to get X̂ = HD.
The primary reason that h generated by PCA could be useful as a representation is to

prevent overfitting. The projection to lower dimensions has the property that it removes
noise and maintains only the most meaningful directions. This projection reduces the
number of features and promotes generalization, by preventing overfitting to the noise. This
is beneficial if there are a large number of inputs, either because of high-dimensional data
or because the data was first augmented using polynomials or a prototype representation.

Exercise 28: PCA is also often described by talking about the eigenvalue decomposition
of X⊤X rather than the singular value decomposition of X. Further, for PCA, we often say
that the principal components project our input data to the lower-dimensional space. Verify
that the top p eigenvalues λ1, λ2, . . . , λp correspond to the squared values of the top singular
values σ2

1, σ
2
2, . . . , σ

2
p. Further verify that the principal components D = V⊤

p are the top
p eigenvectors of X⊤X. Finally, show that multiplying by these top eigenvector (principal
components) projects X to our new representation H, i.e., show XD⊤ = H. Hint: Some of
this derivation is given to you in Section 9.3. □

Increasing the dimension with sparse coding. Sparse coding is biologically motivated
[18], based on sparse activations for memory in the mammalian brain. In this case, p >> d
and the idea is that only a small set of dictionary items are used per input. We have a
very large dictionary of representative attributes from which to select: D ∈ Rp×d is large
and dense, with many rows. A small number of these are linearly combined to produce
the input: for an input x the h ∈ Rp is sparse with only a few non-zero entries, to create
x ≈ hD. This factorization is visualized in Figure 9.2.

Example 13: Let us first consider an example of how using a higher-dimensional sparse
representation might be more suitable than a low-dimensional representation. Sparse coding
has been used for image representations, shown in Figure 9.3, for vision. Each dictionary
item might corresponds to a basic edge type, for example, or typical shapes found in image

CHAPTER 9. LEARNED REPRESENTATIONS 88

Figure 9.3: The dictionary found with sparse coding, for recreating small patches in an
image. Image from Andrew Ng and his lab, in 2015.

patches. Linearly combining each of these produces more complex image patches. Sparse
coding allows for a large collection of such types to be found, and only a very small subset
to be used per each patch in the image. Together, the new representation for the entire
image is a stacking of the encodings for each patch, which itself still only uses a very small
subset of possible dictionary elements and is a sparse representation of the image.

This re-representation has been used for denoising or even sharpening an image. By
reconstructing the image using the dictionary, we can replace each image patch using de-
noised, canonical shapes. If a patch was blurry or noisy, it can be reconstructed using the
closest collection of (sharp, non-blurry) dictionary elements.

Once we have this representation, it should also be useful for classification. Sparse
coding extracts the key shapes per image patch, giving us a lot of information about the
image. It abstracts from the pixel level to a shape or object level. Classification is ultimately
about grouping similar inputs into classes. These features are a should allow us to identify
that two images have similar sets of shapes/objects, and so should be classified similarly.

□

To get the sparse representation in sparse coding, we again leverage a regularizer that
sets values to zero: the ℓ1. Specifically, for a given x, we find a new h with the optimization
minh∈Rp ∥x − hD∥22 + λ∥h∥1. This objective encourages as many values of h to be zero as
possible, with the level of sparsity dictated by λ and the size of the new dimension p. Solving
jointly for the H and D for sparse coding is a bit more complicated than PCA, so we do not
go into the algorithm more deeply here. Our primary goal here is to understand the types
of representations we can learn using a matrix factorization, and why their properties might
be beneficial. If you are interested in the algorithms to learn these sparse representations
with sparse coding, then see Appendix A.5.1.

9.1.2 Probabilistic Approaches

Now let us do this all again, but this time be explicit about our probabilistic assumptions.
We assume first that there is some distribution over latent variables, p(h). Specifically,

CHAPTER 9. LEARNED REPRESENTATIONS 89

we make a Gaussian assumption p(h) = N (µ = 0, I), reflecting that most latent variables
will be around zero, with decreasing probability that they are very large values far away
from zero. Additionally, we model that there is not perfect certainty which latent variables
produced x, or equivalently, that each h could produce different x. We model this by
assuming p(x|h,D) = N (µ = hD, σ2I) for some σ > 0. This assumption looks a lot like our
regression assumption, where we model the expectation as a linear function, E[X|h] = hD,
with some noise around that mean to account for the fact that we do not have a deterministic
relationship between hD and x. We know that there will be some error in reconstructing
x with hD, and this noise reflects that error.

Our learning goal is to find D under these assumptions, where

p(x|D) =
ˆ
p(x|h,D)p(h)dh

As usual, we want to maximum the likelihood of the data, so find the dictionary that makes
the data the most likely under the above Gaussian assumptions. Though we skip the steps
here, if we plug in the Gaussian assumptions above, we can get a closed-form solution to
this integral

p(x|D) =
ˆ
p(x|h,D)p(h)dh = N (µ = 0,D⊤D + σ2I)

We can see that our assumptions imply that x is centered—mean zero. The formalism can
easily be extended to allow a non-zero mean (see [2, Section 21.1]), but to understand the
idea more simply here, we assume x is centered. Further, we can see that it assumes x
primarily lies in a lower-dimensional space. The term D⊤D ∈ Rd×d is low-rank, because
p < d. The covariance D⊤D +σ2I, therefore, implies x is primarily in this low-dimensional
space with only small noise from σ2 making it minorly deviate from this plane.

The maximum likelihood estimator for D and σ can be obtained using the SVD of X
with singular values σj . Again, we skip the steps, since the outcome is what we are after
here; see [2, Section 21] for these details.

σ2
MLE = 1

d− p

d∑
j=p+1

σ2
j

DMLE = (Σ2
p − σ2

MLEI)1/2V⊤
p

Notice the similarity to the PCA solution. The primary difference is that the singular values
are shifted downwards by σMLE. The other difference is superficial, which relates to whether
we put the singular values in H or D. By convention, D for PCA is set to just the singular
vectors, resulting in solution D = V⊤

p and H = UpΣp. However, a perfectly equivalent
solution is D = Σ1/2

p V⊤
p and UpΣ1/2

p because the product HD is exactly the same in both
cases. This convention is the one used in probabilistic PCA.

The other difference is in how we might extract a representation h for input x. If we opt
to find the h that makes the input the most likely, then we actually get the same solution
as for matrix factorization

argmin
h∈Rp

− ln p(x|h,D) = argmin
h∈Rp

∥x− hD∥22

CHAPTER 9. LEARNED REPRESENTATIONS 90

If, on the other hand, we would like to get the most likely h for a given input, we optimize

argmin
h∈Rp

− ln p(h|x,D) = argmin
h∈Rp

− ln p(x|h,D)− ln p(h)

= argmin
h∈Rp

∥x− hD∥22 + σ2
MLE∥h∥22

where the last line follows from the unit variance assumption on h and the fact that the
variance of x given h is σ2

MLEI. This objective is somewhat more sensible, since it matches
our assumptions when training h.

When we move beyond Gaussian assumptions with diagonal variance, we rarely obtain
these nice closed-form solutions. Even for non-diagonal variances with Gaussian assump-
tions, an iterative algorithm is required, called Factor Analysis. The same concepts about
identifying latent factors, and how to think about h and D, continue to apply, even though
the algorithms can become a bit more complex. We will discuss this further, in Chapter ??.

9.2 Learning Representations with Neural Networks

Neural networks allows us to obtain nonlinear transformations of the data. The addition of
hidden layers, with non-linear activation functions, enables learning of nonlinear functions f
of inputs to produce predictions of targets. In this section, we first explain how this nonlinear
function is constructed, then how we pick the loss function and finally the algorithm to find
the parameters for this function.

9.2.1 Functions Produced by a Neural Network

Let us start with an intuitive example of the types of function obtained with neural networks.
Figure 9.4 shows the graphical model for the generalized linear models we discussed in the
previous chapters, where the weights and corresponding transfer can be thought of as being
on the arrows (as they are not random variables). Figure 9.5 shows a neural network with
one hidden-layer; this is called a two-layer neural network, as there are two layers of weights.
In the figure, the neural network inputs a 4-dimensional feature vector x = [x1, x2, x3, x4]
(i.e., d = 4) and outputs a 2-dimensional prediction y = [y1, y2] (i.e., m = 2). The
hidden layer consists of a mapping from x to a new representation that is 5-dimensional
(i.e., p1 = 5 as per the notation below). For the neural network, let each node in this
hidden representation be indexed by k ∈ {1, . . . , 5}. Each hk consists of a transformation
of a linear weighting of x, such as a sigmoid activation: hk = σ

(∑d
j=1 xjwkj

)
= σ (xwk)

where wk ∈ Rd is the weights on the first layer used to produce the kth node in the hidden
representation.

Example 14: Let us continue this example, but make it even simpler by considering
d = 1 (i.e., one input observation), m = 1 (i.e., one output), p1 = 2 (i.e., 2-dimensional
hidden layer) and a sigmoid activation to get the first hidden layer. Assume we are given
one instance (x, y). Then input observation x is transformed into

h = [h1, h2], with h1 = σ(xw(2)
1) and h2 = σ(xw(2)

2) for w(2)
1 , w

(2)
2 ∈ R.

We use the superscript notation to distinguish between the weights in the first and last
layer. It may seem backwards that we label w(2) for the input layer and w(1) for the output

CHAPTER 9. LEARNED REPRESENTATIONS 91

x1

x2

x3

x4

y1

y2

Input
layer

Output
layer

Figure 9.4: Generalized linear model, such
as logistic regression.

x1

x2

x3

x4

y1

y2

Hidden
layer

Input
layer

Output
layer

Figure 9.5: Standard two-layer neural network.

layer, but you will see below that it makes notation simpler to start indexing from the
output layer.

Once we have h, we can pretend that h is the new input representation and go ahead
and learn a (generalized) linear model on this last layer. Let’s consider two cases: y ∈ R
and y ∈ {0, 1}. If y ∈ R, we use linear regression for this last layer and so learn weights
w(1) ∈ R2 such that hw(1) approximates the true output y. If y ∈ {0, 1}, we use logistic
regression for this last layer and so learn weights w(1) ∈ R2 such that σ(hw(1)) approximates
the true output y. □

Now we consider the more general case with any d, p1,m. Let’s assume we are doing
regression for simplicity. For linear regression we estimated W ∈ Rd×m to get function
f(x) = xW ≈ y. When we add a hidden layer, we have two parameter matrices W(2) ∈
Rd×p1 and W(1) ∈ Rp1×m, where p1 is the dimension of the hidden layer

h = σ(xW(2)) =

σ(xW(2)

:1)
σ(xW(2)

:2)
...

σ(xW(2)
:p1)

⊤

∈ R1×p1

where the sigmoid function is applied to each entry in xW(2). This hidden layer is the
new set of features and again you will do the regular linear regression optimization to learn
weights on h:

E[Y |x] ≈ hW(1) = σ(xW(2))W(1).

Intuitively, σ(xW(2)) is our new representation of the inputs: it is a nonlinear transforma-
tion. We then learn a linear function on this new representation, meaning that we learn a
nonlinear function in terms of the original inputs x.

We can apply this linear+activation transformation for multiple layers, resulting in a
nested (deep) transformation. Denote each differentiable activation function f1, . . . , fH ,
ordered with f1 as the output activation, and p1, . . . , pH−1 as the hidden dimensions with

CHAPTER 9. LEARNED REPRESENTATIONS 92

H − 1 hidden layers. Then the output from the neural network is

f1
(
f2
(
. . . fH−1

(
fH

(
xW(H)

)
W(H−1)

)
. . .
)

W(1)
)

where W(1) ∈ Rp1×m, W(2) ∈ Rp2×p1 , . . . ,W(H) ∈ Rd×pH−1 .

9.2.2 Activations and Loss Functions

The next question is how we select the loss functions for the prediction and activations for
our network. There is at least a relatively straightforward answer to how we specify the loss
and output activation f1: the same choice as we made for (generalized) linear models. If we
are doing logistic regression, then we use the cross-entropy loss with f1 = σ. If we are doing
multinomial logistic regression, then we use the corresponding loss with f1 = softmax. If we
are doing regression, then we use the squared-error with f1 = identity. We first decide the
distribution for p(y|x), and the resulting maximum likelihood problem gives us the choice
of f1 and loss based on the GLM formulation.

The primary difference to GLMs is that now the parameters for the GLM are a nonlinear
function of x. Previously in GLMs we had that E[Y |x] ≈ g(xW). Now, once we first
use a transformation with neural networks, we have that E[Y |x] ≈ g(hW(1)) where h =
f2
(
. . . fH−1

(
fH

(
xW(H)

)
W(H−1)

)
. . .
)

and the output activation f1 is the transfer g. For
example, previously in linear regression we assumed that p(y|x) = N (xW, σ2). Now we
assume that the mean can be a nonlinear function of x, specifically hW(1).

The transfer at the end of the network is determined by the loss, but the activations
within the network are not as clear-cut. This choice simply produces different nonlinear
functions. Typical options include the rectified linear unit (ReLU), tanh and sigmoid.
ReLU is a common default, explained more below. Note though that many functions
could be used, and the key criteria are that it is (a) differentiable and (b) does not make
optimization too difficult. Ultimately, we will take the gradients of these functions, and so
we want the activations to be differentiable. And some activations seem to result in a more
complex optimization surface, causing practitioners to gravitate towards activations that
make gradient descent perform better. It is a ripe area for exploration to better understand
activations inside a network, and I have no doubt that we will find better choices in the
next few year. Today, though, ReLU remains a typical default.

ReLU is a simple thresholding function: for a given scalar θ, it returns max(0, θ). If
we use ReLU for a network with two hidden layers (f2 = f3 = ReLU) and a prediction for
regression (f1 = identity), then we would have

f(x) = f1
(
f2
(
f3
(
xW(3)

)
W(2)

)
W(1)

)
= max

(
0,max

(
0,xW(3)

)
W(2)

)
W(1).

The innermost term is a vector θ(3) def= xW(3) ∈ Rp2 . The ReLU is applied elementwise to
each entry in θ(3), to produce the hidden layer

h(2) def= f3(θ(3)) = max(0,θ(3)).

Similarly, we have θ(2) def= h(2)W(2) ∈ Rp1 and h(1) def= f2(θ(2)) = max(0,θ(2)). Finally the

CHAPTER 9. LEARNED REPRESENTATIONS 93

! h
" '

w
" '

h
'? f-
, ()

h
" '

☐¥
e.g hj.

"
-
- maxloj :o)

for fz = Re LU

Figure 9.6: The terms in one layer of a neural network.

output is θ(1) def= h(1)W(1) ∈ Rm.

f(x) = max
(
0,max

(
0,xW(3)

)
W(2)

)
W(1)

= max
(
0,max

(
0,θ(3)

)
W(2)

)
W(1)

= max
(
0,h(2)W(2)

)
W(1)

= max
(
0,θ(2)

)
W(1)

= h(1)W(1)

We visualize each of these terms in Figure 9.6.

9.2.3 The Backpropagation Algorithm

The backpropagation algorithm is simply gradient descent on the loss for the neural network,
with a careful ordering of computation to avoid repeating computation. In particular, one
first propagates forward and computes variable h = f2(xW(2)) ∈ R1×p and then ŷ =
f1(f2(xW(2))W(1)) = f1(hW(1)). We then compute the error between our prediction ŷ
and the true label. We take the gradient of this error (loss) w.r.t. to our parameters.
For efficient computation, the best ordering is to compute the gradient w.r.t. to the last
parameter W(1) first, and then W(2). This is the reason for the term backpropagation,
since the error is propagated backward from the last layer first.

Let us first go through an example with the cross-entropy loss and sigmoid activation
within the network, for a two-layer network. We compute this gradient assuming we only
have one sample (x,y), since that automatically gives us the gradient for a mini-batch (or
even the full batch). That is, we sum these gradients for each individual sample over the
mini-batch. Our goal is to compute the partial derivative for each weight w.r.t. the loss
c(W(1),W(2)) = ℓ(y, ŷ) = −y ln ŷ − (1 − y) ln(1 − ŷ) where ŷ is produced using the neural
network with weights W(1),W(2).

First, we take the partial derivative w.r.t. the parameters W(1) ∈ Rp1 . Notice that the

CHAPTER 9. LEARNED REPRESENTATIONS 94

output of the network is ŷ = σ(θ(1)) = σ(h(1)W(1)).

∂c(W(1),W(2))
∂W(1)

j

= ∂ℓ(ŷ, y)
∂W(1)

j

= ∂ℓ(ŷ, y)
∂θ(1)

∂θ(1)

∂W(1)
j

= (σ(h(1)W(1))− y) ∂θ(1)

∂W(1)
j

= (σ(h(1)W(1))− y)h(1)
j

where the last line follows from the fact that ∂θ(1)

∂W(1)
j

= ∂h(1)W(1)

∂W(1)
j

= ∂
∑p1

i=1 h(1)
i W(1)

i

∂W(1)
j

= h(1)
j .

This derivation comes from noticing that the last layer of the network can be thought of
as a GLM with inputs h(1). Therefore, we can simply re-use the derivation we used for
the logistic regression update, with input h(1). In particular, we re-use the fact that for
ŷ = σ(θ), we have ∂ℓ(ŷ,y)

∂θ = (σ(θ)− y).

Exercise 29: Verify the above update by deriving the partial derivative ∂ℓ(ŷ,y)
∂W(1)

j

, by doing

it yourself from scratch without using the GLM update. □

Next, we compute the partial derivative with respect to W(2) ∈ Rd×p1 . We will use the
chain rule to reuse part of the above update, by defining

δ(1) def= (σ(h(1)W(1))− y)

and consider how the objective changes when we change the entry W(2)
ij at the ith row and

jth column of W(2).

∂c(W(1),W(2))
∂W(2)

ij

= ∂ℓ(ŷ, y)
∂W(2)

ij

= ∂ℓ(ŷ, y)
∂θ(1)

∂θ(1)

∂W(2)
ij

= δ(1)∂
∑p1

k=1 h(1)
k W(1)

k

∂W(2)
ij

= δ(1)
p1∑

k=1
W(1)

k

∂h(1)
k

∂W(2)
ij

Recall that h(1)
k = f2(θ(2)

k) with θ
(2)
k = xW(2)

:k =
∑p1

i=1 xiW(2)
ik , and so

∂h(1)
k

∂W(2)
ij

= ∂f2(θ(2)
k)

∂W(2)
ij

= ∂f2(θ(2)
k)

∂θ
(2)
k

∂θ
(2)
k

∂W(2)
ij

where ∂θ
(2)
k

∂W(2)
ij

=
{

0 if k ̸= j

xi if k = j

The two cases arise from the fact that W(2)
ij only influences the jth hidden node: it connects

the ith input to the jth hidden node. Since it does not influence the kth hidden node when
k ̸= j, the partial derivative for θ

(2)
k for k ̸= j is zero.

CHAPTER 9. LEARNED REPRESENTATIONS 95

Putting this back together, we get that
p1∑

k=1
W(1)

k

∂h(1)
k

∂W(2)
ij

= W(1)
j

f2(θ(2)
k)

∂θ
(2)
k

xi

When f2 = σ, we can use the fact that
∂σ(θ)
∂θ

= (1− σ(θ))σ(θ).

We can define the new error (delta) that is propagating back to W(2)
ij as

δ
(2)
j

def= δ(1)W(1)
j (1− σ(θ(2)

j))σ(θ(2)
j)

and get partial derivative
∂c(W(1),W(2))

∂W(2)
ij

= δ
(2)
j xi.

Intuitively, δ(2)
j includes the error on the output (δ(1)), down-weighted by the strength of

the connection W(1)
j for the jth hidden node to the output. We can think of this as the

error travelling back from the output—or propagating backwards—along the connections.
Additionally, the error is modulated by how much changing W(2)

ij could have changed the
activation, namely by the derivative of σ(θ(2)

j).
We can generalize these update rules to more hidden layers and to multiple outputs. If

we have two hidden layers, and a vector of outputs m > 1, then we have weights W(1) ∈
Rp1×m,W(2) ∈ Rp2×p1 ,W(3) ∈ Rd×p2 and activations f3, f2. Let f ′

2 and f ′
3 be the derivatives

of these activations. For the sigmoid, we saw it was σ′(θ) = σ(θ)(1 − σ(θ)), for ReLu it is
ReLu′(θ) = 1 (θ > 0) (0 if θ ≤ 0 and 1 if θ > 0). We first do a forward pass for an input
x, to get variables

θ(3) = xW(3)

h(2) = f3(θ(3))
θ(2) = h(2)W(2)

h(1) = f2(θ(2))
θ(1) = h(1)W(1)

ŷ = f1(θ(1))

Then, to compute the gradient descent (aka backpropagation) updates, we use

δ(1) = ŷ− y

δ
(2)
j =

(
W(1)

j: δ(1)
)
f ′

2(θ(2)
j) for all j ∈ {1, . . . , p1}

W(1)
ij ←W(1)

ij − ηδ
(1)
j h(1)

i for all i ∈ {1, . . . , p1},j ∈ {1, . . . ,m}

δ
(3)
j =

(
W(2)

j: δ(2)
)
f ′

3(θ(3)
j)

W(2)
ij ←W(2)

ij − ηδ
(2)
j h(2)

i for all i ∈ {1, . . . , p2},j ∈ {1, . . . , p1}

W(3)
ij ←W(3)

ij − ηδ
(3)
j xi for all i ∈ {1, . . . , d},j ∈ {1, . . . , p2}

CHAPTER 9. LEARNED REPRESENTATIONS 96

There are a few useful points to highlight. First, notice that by starting at the output
layer of the network, we can reuse computation. The variable δ(2) can use δ(1) and δ(3)

can use δ(2), and so on if the network was deeper. Backpropagation is therefore gradient
descent with a careful ordering of the gradient computation, to avoid inadvertently (and
wastefully) recomputing terms. Second, we computed δ

(2)
j before updating W(1)

ij . This was
to ensure that we used the weights that produced the output in our update. If we updated
W(1)

ij first, then the gradient calculation for δ(2) would be incorrect.
You can see the pattern even just with a three layer neural network. In practice, we

typically use packages that actually do automatic differentiation for us, instead of having to
implement these particular formulas. But, it is important to understand the update rules
underlying our algorithms so that we use them appropriately and to be able to hypothesize
and debug why they might not be working.

9.3 Autoencoders and the Connection to PCA

At first glance, the latent factor approaches like PCA and neural networks seem quite
unrelated. But there is in fact a connection. Both are trying to identify important factors
or features. We can specify a neural network that actually has the same solution as PCA.
This neural network is called an autoencoder, specifically one with a linear activation and a
bottleneck layer—a lower dimensional hidden layer. We show this connection in this section,
and then discuss the importance of this connection for understanding how neural networks
learn data representations.

An autoencoder is a neural network where the targets are set to the inputs: for a given
x, we set y = x. For example, we might learn the NN using the loss ∥f2(xW(2))W(1)−x∥22.
The NN architecture is chosen so that information is discarded from x, and the resulting
output ŷ returns only the most significant signal in x. One reason this is useful is to remove
any noise that is in x, so as not to fit to that noise. Another reason is that sometimes these
targets are added as an additional auxiliary loss—in addition to a primary prediction—to
encourage the network to learn features that both make accurate predictions and retain as
much information in x as possible. This inductive bias reflects the hypothesis that such a
representation should be better for generalization.

Now let us consider a linear autoencoder with one hidden layer. Such an NN has weights
W(1),W(2) and both transfers are the identity, resulting in the loss per-sample

∥xiW(2)W(1) − xi∥22
The input dimension is d, the hidden dimension is p and the output dimension is d, giving
W(2) ∈ Rd×p and W(1) ∈ Rp×d. Notice that if p ≥ d, then we can simply set W(2)W(1) = I,
and we trivially get zero error. We have to restrict the hidden layer to be a bottleneck, with
p < d, to force the transformation to be lossy.3 The resulting network learns to maintain
only the most significant content in the inputs. To see why, notice that the optimization,
for all the data, is

min
W(2)∈Rd×p,W(1)∈Rp×d

∥XW(2)W(1) −X∥22

3This objective is also called Reduced Rank Regression, when the targets more generally are any m
targets where p < d and p < m. The matrix W = W(2)W(1) ∈ Rd×m is rank p, namely is a reduced rank
matrix, with the goal to learn such a reduced rank W to minimize ∥XW − Y∥2

2.

CHAPTER 9. LEARNED REPRESENTATIONS 97

Assume we have the SVD X = UΣV⊤ with singular values σ1, . . . , σd ≥ 0 and further
assume that σp > 0 (namely at least the first p singular values are non-zero). Then we
can select W(2) = Vp and W(1) = V⊤

p where Vp = [v1,v2, . . . ,vp] ∈ Rd×p These weight
matrices produce prediction X̂ where

X̂ = XW(2)W(1) = UΣV⊤VpV⊤
p ▷V⊤Vp = [Ip; 0] ∈ Rd×p

= U[Σp; 0]V⊤
p ▷Σ[Ip; 0] = [Σp; 0] ∈ Rd×p

= UpΣpV⊤
p

This solution is the best rank p approximation to X, since we took the top p singular values
and vectors, just as we did in PCA. Therefore, since these weights matrices give us the
closest approximation we can get to X if we are restricted to at most rank p, we know that
they are a solution to this optimization. This solution is the same as that returned by PCA:
the top p right singular vectors of X.

We can map this more directly to the matrix factorization view of PCA, where we
discussed the dictionary D and representation h. There we had D = V⊤

p and H = UpΣp

composed of representations hi as the rows. For this autoencoder, the new representation is
the hidden layer, namely h = xW(2). For all datapoints, this is H = XW(2) = U[Σp; 0] =
UpΣp for the representation given by the autoencoder, which is the same as PCA.

As in PCA, this solution is not unique without further constraints. We can shift weight
between W(1) and W(2) for the autoencoder, just as we can shift weight between D and
H. For PCA, if we opt for unit length dictionary elements—and so the features in H
indicate the magnitude each component is used—we get the unique solution above. For
autoencoders, if we enforce the constraint that the norm of W(1) and W(2) are equal, then
we get the solution above (up to a rotation matrix that does not change magnitudes).

Advanced Remark: Once we move beyond this linear setting and PCA, autoencoders
and matrix factorization approaches are different. For example, sparse coding as a way
to obtain a new representation H cannot obviously be written as a standard autoencoder
with the typical activations where we use a linear weighting followed by a nonlinearity like
sigmoid or ReLU. The reason for this is that these activations are quite restricted, and so
cannot represent the sparse coding operation. In fact, if we consider more general operations
in each layer, we can actually (somewhat trivially) recover sparse coding. Assuming we
are still learning parameters W(2) to produce the first hidden layer, we can define a new
transformation to get layer one as g(x) = argminh∈Rp ∥x − hW(2)∥22 + ∥h∥1. Recall that
this objective with an ℓ1 regularizer on h is what is used by sparse coding to get a sparse
representation h.

The question becomes (a) are such layers useful and (b) how do we optimize for W(2)

through this optimization over h? For the first question, one way they are useful is for the
same reason that sparse coding is useful: they give more direct control on the properties of
the representation. Further, this transformation is a nonlinear transformation that poten-
tially adds more flexibility than the standard NN approach of linear operations followed by
activations. For the second question, it is more complicated now to optimize through such
a weird activation. It is no longer differentiable, and that was one of our criteria to make
an activation easy-to-use. There are actually some nice ideas out there precisely on how to
optimize through this weird activation, but this is much beyond the scope of this course.

Chapter 10

Generalization Error in More Settings

In this chapter, we dive deeper into questions around evaluating the generalization error
of learning algorithms. We begin first with an overview of generalization error, and how
this relates to our goal when learning models in practice. We then discuss the role that the
optimizer can play in generalization error. Finally, we discuss the notion of generalization
when we move beyond the simpler i.i.d. setting. The focus is on understanding the issues,
and is light on solutions.

10.1 Bias, Variance and Generalization Error

Let us revisit bias and variance, and the connection to generalization error. When we
talked about the bias and variance for linear regression, we assumed that the true model
was linear, and so the only bias introduced was from the regularization. In reality, when
using linear regression with regularization, we are introducing bias both from selecting a
simpler function class and from the regularization. If the true function is not linear, then
we cannot compare the learned weights for a linear function directly to the true function.

If a powerful basis is used to first transform the data, then we can learn nonlinear
functions even though the solution uses linear regression. In this case, it is feasible that
this function class is sufficiently powerful and includes the true function, and that the bias
is mostly due to regularization. But, in general, it will be difficult to guarantee that we
have specified a function class that includes the true function, and it will be difficult to
directly compare our parameters to true parameters (which may not even be of the same
dimension).

We can more generally talk about bias and variance by considering instead the reducible
error. In fact, the bias-variance trade-off is all about reducing the reducible error. Recall
that the generalization error for the squared error decomposes into the reducible and irre-
ducible errors:

GE(f) = E[(f(X)− Y)2] = E[(f(X)− f∗(X))2]︸ ︷︷ ︸
reducible error

+E[(f∗(X)− Y)2]︸ ︷︷ ︸
irreducible error

(10.1)

where f∗(x) = E[Y |X = x]. This f∗ could be a highly nonlinear function, and may not be
in our function class. For example, if we are learning a neural network with three hidden
layers, each of size 1024, with ReLU activations, then f∗ may not be in this set of functions.

We can write this reducible error in terms of the bias and variance of our learned function.
We write fD to emphasize that it is a random variable that depends on the dataset. We
can first consider the bias for a given input x,

E
[
(fD(x)− f∗(x))2

]
= (E [fD(x)]− f∗(x))2 + Var [fD(x)] .

98

CHAPTER 10. GENERALIZATION ERROR IN MORE SETTINGS 99

Notice that in the second line, the expectation is now inside the squared distance; this
term corresponds to the squared bias. The bias here reflects the output of the estimated
function fD(x), in expectation across all datasets D. The variance term reflects how much
the prediction for x can vary, if we learn on different iid datasets. This decomposition of
the mean-squared error into a squared bias and variance is not obvious, but does follow
similar steps to above. It is left as an exercise. We can then write this more generally, in
expectation over X as well

E[(fD(X)− f∗(X))2] = EX

[
(ED[fD(X)]− f∗(X))2 + VarD[fD(X)]

]
(10.2)

where we subscript each expectation with the variable we are taking the expectation over,
to be clear about the two sources of stochasticity.

A complex function class is likely to have low bias, but may have high variance because
it can overfit to each dataset. This means across different datasets, we are likely to see very
different functions and so the variance in the predictions f(x) will also vary significantly.
For example, if we have 100 data points for d = 3 dimensional inputs, and use a neural
network with one million parameters, then likely we will have high variance. The bias is also
likely low, since the true function for a three-dimensional input can likely be represented
by such a complex neural network—though of course it is possible that it cannot and we
still have some bias.

On the flip side, if the function class if very simple, the bias may be high and variance
will be lower. Even though we saw that linear functions—or cubic functions which are still
very simple—can overfit, this was only in the extreme case with very small samples sizes.
With a reasonable number of samples, these functions will likely be relatively consistent.
As we start expanding the complexity by using new features, like higher-order polynomials
or kernels, then we start to get into much more complex function classes and may have high
variance.

But these are just rules of thumb. We can reason about a few specific cases where we
expect good performance. Let F be the class of function, ftrue be the true function, n the
number of samples, i.i.d. sampling and a reasonable optimization procedure to find f ∈ F .
Then we expect to have low variance and low bias in the following cases.

1. F is small (simple) and ftrue is simple such that there is an f ∈ F that is similar to ftrue.

2. F is big (complex) and n is very big.

The choice of F is exactly an inductive bias. Our goal is to constrain the function space so
that we can best reduce the reducible error, namely identify the best approximation to the
true function under data limitations.

Remark: The bias-variance analysis above considers the estimator in expectation across
datasets. However, we may want stronger results. For example, we may want to know with
high-probability that our learned function has certain properties. In other words, we want
to know that the lower percentile over all these functions is still guaranteed to behave
reasonably, not just the mean. Most generalization bounds are focused on exactly this. If
you are interested in learning more, see Appendix A.9.

CHAPTER 10. GENERALIZATION ERROR IN MORE SETTINGS 100

A B

Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the bias–variance trade-off. (B) The
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed behavior from using high-
capacity function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation
threshold have zero training risk.

networks and kernel machines trained to interpolate the training
data obtain near-optimal test results even when the training data
are corrupted with high levels of noise (5, 6).

The main finding of this work is a pattern in how perfor-
mance on unseen data depends on model capacity and the
mechanism underlying its emergence. This dependence, empir-
ically witnessed with important model classes including neural
networks and a range of datasets, is summarized in the “double-
descent” risk curve shown in Fig. 1B. The curve subsumes the
classical U-shaped risk curve from Fig. 1A by extending it beyond
the point of interpolation.

When function class capacity is below the “interpolation
threshold,” learned predictors exhibit the classical U-shaped
curve from Fig. 1A. (In this paper, function class capacity is iden-
tified with the number of parameters needed to specify a function
within the class.) The bottom of the U is achieved at the sweet
spot which balances the fit to the training data and the suscepti-
bility to overfitting: To the left of the sweet spot, predictors are
underfitted, and immediately to the right, predictors are overfit-
ted. When we increase the function class capacity high enough
(e.g., by increasing the number of features or the size of the neu-
ral network architecture), the learned predictors achieve (near)
perfect fits to the training data—i.e., interpolation. Although
the learned predictors obtained at the interpolation threshold
typically have high risk, we show that increasing the function
class capacity beyond this point leads to decreasing risk, typically
going below the risk achieved at the sweet spot in the “classical”
regime.

All of the learned predictors to the right of the interpolation
threshold fit the training data perfectly and have zero empiri-
cal risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer
is that the capacity of the function class does not necessarily
reflect how well the predictor matches the inductive bias appro-
priate for the problem at hand. For the learning problems we
consider (a range of real-world datasets as well as synthetic
data), the inductive bias that seems appropriate is the regular-
ity or smoothness of a function as measured by a certain function
space norm. Choosing the smoothest function that perfectly fits
observed data is a form of Occam’s razor: The simplest expla-
nation compatible with the observations should be preferred (cf.
refs. 7 and 8). By considering larger function classes, which con-
tain more candidate predictors compatible with the data, we
are able to find interpolating functions that have smaller norm
and are thus “simpler.” Thus, increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins
theory (7, 9, 10), where a larger function class H may permit
the discovery of a classifier with a larger margin. While the
margins theory can be used to study classification, it does not

apply to regression and also does not predict the second descent
beyond the interpolation threshold. Recently, there has been an
emerging recognition that certain interpolating predictors (not
based on ERM) can indeed be provably statistically optimal or
near optimal (11, 12), which is compatible with our empirical
observations in the interpolating regime.

In the remainder of this article, we discuss empirical evidence
for the double-descent curve and the mechanism for its emer-
gence and conclude with some final observations and parting
thoughts.

Neural Networks
In this section, we discuss the double-descent risk curve in the
context of neural networks.

Random Fourier Features. We first consider a popular class of non-
linear parametric models called random Fourier features (RFF)
(13), which can be viewed as a class of 2-layer neural networks
with fixed weights in the first layer. The RFF model family
HN with N (complex-valued) parameters consists of functions
h : Rd !C of the form

h(x) =

NX

k=1

ak�(x ; vk) where �(x ; v):=e
p�1hvk ,xi,

and the vectors v1, . . . , vN are sampled independently from the
standard normal distribution in Rd . (We consider HN as a class
of real-valued functions with 2N real-valued parameters by tak-
ing real and imaginary parts separately.) Note that HN is a
randomized function class, but as N !1, the function class
becomes a closer and closer approximation to the reproducing
kernel Hilbert space (RKHS) corresponding to the Gaussian
kernel, denoted by H1. While it is possible to directly use
H1 [e.g., as is done with kernel machines (14)], the random
classes HN are computationally attractive to use when the sam-
ple size n is large but the number of parameters N is small
compared with n .

Our learning procedure using HN is as follows. Given data
(x1, y1), . . . , (xn , yn) from Rd ⇥R, we find the predictor hn,N 2
HN via ERM with squared loss. That is, we minimize the empiri-
cal risk objective 1

n

Pn
i=1(h(xi)� yi)

2 over all functions h 2HN .
When the minimizer is not unique (as is always the case when
N >n), we choose the minimizer whose coefficients (a1, . . . , aN)
have the minimum `2 norm. This choice of norm is intended as
an approximation to the RKHS norm khkH1 , which is generally
difficult to compute for arbitrary functions in HN . For prob-
lems with multiple outputs (e.g., multiclass classification), we use
functions with vector-valued outputs and the sum of the squared
losses for each output.

15850 | www.pnas.org/cgi/doi/10.1073/pnas.1903070116 Belkin et al.

Test error

Training error Training error

Test error

Capacity of function class

Er
ro

r

Er
ro

r

Capacity of function class

Figure 10.1: The double descent phenomena. This picture is taken from [6] and lightly
edited to match our notation. The x-axis is the capacity of our function class (hypothesis
space) F , where increasing to the right means we have a growing function class and can
represent more functions. When we talk about underfitting and overfitting, we imagine
the image on the left. If we underfit we have both higher train and test error. When we
overfit, we have low train error and high test. In-between is a sweet spot where we have
appropriately fit (learned from) our training set to generalize reasonably well, still typically
with lower training error than test.
The image on the right shows a new phenomenon where we consider the underparameterized
regime (number of weights less than the number of samples) and the overparameterized
regime (number of weights larger than the number of samples). We see the classic behavior
in the underparameterized regime, but once we move to overparameterized regime, increasing
capacity actually starts to reduce test error once again. See also [16] for a nice historical
overview of this phenomenon.

10.2 Implicit Regularization with SGD & Large NNs

In Section 4.3, we saw that SGD can converge as quickly as batch GD with much less
computation, as long as we are willing to be stuck with some error around the stationary
point we reach. We discussed decaying the stepsize to get rid of this error. In practice,
though, it is often effective to use optimizers like Adam or RMSProp that do not decay
stepsizes to zero. So why isn’t this error affecting us?

Recent evidence suggests that SGD acts like an implicit regularizer [26]. Empirically, it
was found that SGD with larger learning rates improved generalization performance, even
at the cost of increasing training error slightly. This phenomenon was explained by showing
that SGD is actually optimizing a slightly different objective that includes a regularizer on
the norm of the mini-batch gradients. The strength of this regularizer is controlled by the
stepsize, and so a larger stepsize resulted in more implicit regularization.

Relatedly, this implies SGD prefers local minima in flatter rather than steep bowls. The
preference for flatter bowls makes sense: the noise in SGD makes it hard to stay in a very
steep bowl. Instead, it is likely to jump out of that bowl even with small perturbations
to the weights. A flat bowl is harder to jump out of, with just noise. Note that implicit
regularization could even improve performance for convex problems, but likely has a bigger
impact for nonconvex objectives where we have these different local minima.

Further, using very large neural networks actually seems to improve generalization be-
havior. This phenomenon has been described as double descent [6], shown in Figure 10.1.
This occurs in the overparameterized regime, where the number of weights is larger than

CHAPTER 10. GENERALIZATION ERROR IN MORE SETTINGS 101

the number of samples. Such a scenario may seem outrageous, but modern networks are
outrageously large. When we have smaller neural networks, then we can still underfit if it
is very small and start to overfit to noise when it gets larger (but still underparameterized).
As we start really increasing the number of parameters, we enter the overparameterized
regime. Here, the test error starts to drop as we further increase the number of parameters.

All these networks have zero training error—they can perfectly fit the training dataset—
so why does adding more parameters help? The answer is that the implicit regularization
of SGD can identify better solutions amongst a broader set of candidates. In the over-
parameterized regime, we have many solutions that get zero training error, including the
one that overfit right at switch from underparameterized to overparameterized. But with
more parameters we are not stuck with this overfit solution, we have the flexibility to pick
a better solution amongst the set of solutions. Intuitively, we want to pick the simplest
solution amongst this set, since that one is least likely to overfit and most likely to match
the true function and generalize well.

It is easier to understand this for fixed representations, where somewhat surprisingly this
phenomenon also occurs. Imagine we use RBF features, where we randomly sample centers.
We can increase the dimensionality by simply sampling more centers p, until p > n, and so
also get into the overparameterized regime. With linear regression, we have more degrees
of freedom than needed and we can directly solve for Φw = y for Φ ∈ Rn×p. In fact, there
are infinitely many solutions w that exactly get Φw = y. We know that larger weights
can indicate overfitting—recall our SVD analysis—and so amongst these we could select
the solution with the smallest ℓ2-norm on the weights. This solution is likely to generalize
better. This has actually been shown empirically (see [6]). In the underparameterized
regime (p < n), as overfitting starts to occur with growing p, we also see the norm of the
weights increasing. Once we reach the overparameterized regime (p > n), the norm actually
starts to decrease and we see test error start to improve. The overall conclusion is that we
can get better solution quality with a larger hypothesis space and (implicit) regularization.

An additional benefit beyond better solution quality is that optimization is easier with
very large neural networks. This result may again be counterintuitive at first, but actually
makes a lot of sense. Learning in a higher-dimensional space can make the optimization
easier because there are more dimensions to find error reduction. SGD is a local search,
and it needs to find a way to locally change its parameters to further reduce the loss. With
more dimensions, it is more likely that there is a path to further error reduction from it’s
current point. Additionally, in a very high-dimensional space, it is more likely for a random
initialization to start near a good solution, making it easier for SGD to get to that nearby
good solution. These optimization benefits help explain why it can be much simpler to train
very large models, and then prune or compress them afterwards (see [11] for an in-depth
discussion).

Once again, behavior in higher-dimensions defies our expectations and these outcomes
are an instance of the blessing of dimensionality. Learning in a higher-dimensional space
makes the optimization simpler—the local search by SGD is effective. The combination of
the SGD optimizer and overparameterized models, like large neural networks, finds simpler
solutions amongst the space of solutions that generalize well. There is much more work
here to understand these unexpected phenomena, but SGD with non-decaying stepsizes on
large neural networks currently seems like a promising approach to obtain fast convergence
and good generalization.

CHAPTER 10. GENERALIZATION ERROR IN MORE SETTINGS 102

10.3 Moving Beyond the iid Setting

We have so far assumed that we obtain an i.i.d. sample from the underlying distribution.
In practice, however, we know that there will be some violation of this assumption. We can
step back and ask what we really mean by generalization in this practical setting, rather
than what is convenient to analyze. Two properties that characterize data in the real-world
are that distributions change (slowly) over time (nonstationarity) and our data collection
is biased towards a particular subset of the data (covariate shift). These two issues are
related, but slightly different.

10.3.1 Generalization Issues under Covariate Shift

Let us open up this section with an example. Imagine you gather images of a room from
April to October, in Edmonton. A lot of the data will have quite a bit of light from the long
days, but you will still get to see many images in both dark and light conditions. Then you
test the predictions on images from January to March. The images will generally be darker,
and so the model trained on many images where the room has more light might not be
as effective. Because many of the images in the training data were taken under conditions
with more light, the predictor implicitly put more weight on getting such images correct,
potentially to the detriment of the accuracy for the images under lower light conditions.

This setting is typically called covariate shift, and it is reasonably feasible to address
with reweighting schemes. The term covariate shift implies only that there is a shift in
the distribution over x, but p(y|x) stays the same. This is exactly what occurs in our
image example. Predicting if an image contains a person or not, conditioned on the image,
remains the same regardless of it is April or January. In other words, p(y = Has Person|x =
Room Snapshot) does not change. But, the distribution over the room snapshots that we
see does change, namely over p(x = Room Snapshot).

To see why this can be corrected with reweighting, let the test distribution over images
be ptest and ptrain for the training data. The GE for this setting is

GE(f) = Eptest [(f(X)− Y)2] =
ˆ

X
ptest(x)E[(f(x)− Y)2|X = x]dx (10.3)

In other words, the generalization error is the error across all pairs under distribution
p(y|x)ptest(x). When we minimize the squared error on training data obtained using ptrain,
we are instead trying to minimize the error across all pairs under distribution p(y|x)ptrain(x).ˆ

X
ptrain(x)E[(f(x)− Y)2|X = x]dx

We simply need to reweight the importance of a sample (x, y) using1 ptest(x)/ptrain(x). We
saw how to incorporate weightings into regression, in Section 3.1.1.

Exercise 30: Consider the weighted squared error loss

c(w) = 1
n

n∑
i=1

bi (fw(xi)− yi)2 ,

1You may notice an additional complication here that we may not have access to either of these distribu-
tions, ptest nor ptrain. A large part of the literature on covariate shift is about estimating these reweightings,
without having these distributions explicitly. The goal here was to introduce you to the problem setting,
and so we do not cover these approaches here.

CHAPTER 10. GENERALIZATION ERROR IN MORE SETTINGS 103

where we use bi = ptest(xi)/ptrain(xi). Show that in expectation, across (X,Y) sampled
according to p(x, y) = p(y|x)ptrain(x), that this loss equals the true generalization error in
Equation (10.3). □

10.3.2 Issues of Data Coverage and Using Inductive Biases

More difficult is the setting when the distribution of the training data does not cover what
is observed in deployment. For this setting, we have x where ptest(x) > 0 but ptrain(x) = 0.
For example, let us imagine a setting where images were only collected during the day, when
taking Room Snapshots. But, now, we would like to recognize if there is a person in the
room under very low-light, in the evening. The training data does not contain any images
in the evening, and so we might wonder if such a generalization task is even possible.

The answer to this question depends heavily on what we build into our model. What
we build is in typically called an inductive bias. A prior is an inductive bias, as is the
optimization algorithm we use to find our parameters, as is the architecture we use for our
neural network. It is anything that defines the learning algorithm, before we feed data
into it. In the above example, we could design an architecture that focuses on edges in an
image, and attempts to remove information in the pixels that is due to different lighting
conditions. Under such an architecture, it is feasible that we could learn a model on data
that only has images in the daytime, and deploy on test data that includes images in the
evening. Our inductive bias makes it so that training datapoints are now representative of
testing datapoints. It allows us to say that two images are similar—even if their lighting
conditions are different—which means we can generalize our predictions between these two
images.

The way our model generalizes, therefore, depends on both the inductive biases and the
available data. If we want our model to generalize well, then we have to consider both. If
we know we will have lots and lots of data, covering many different scenarios, then we as
designers do not need to build in as much. More can be learned from data, and a good
hypothesis identified from a large class of hypotheses. If we know we will have limited
data, then we know that likely we need to build in more. The data does not allow us to
sufficiently narrow the class of hypotheses. Ideally, we build in just enough to allow the
learner to generalize faster, with a minimal amount of data (be sample efficient). But, we
do not want to build in too many biases, since they may be incorrect and so limit the ability
to learn a very good model as we get more and more data.

In summary, for all three of these settings—i.i.d. data, covariate shift with coverage
and covariate shift without coverage—we have a similar approach. We learn on training
data, with the goal to perform well on new unseen data. The difficulty of generalizing to
this unseen data is simply harder when moving from i.i.d. data, to covariate shift and to
settings where we only see a restricted subset of possible inputs (lack of coverage). In all
three settings, the unseen data is not the same as the training data, and inductive biases
allow us to overcome this gap. The bigger the mismatch between training and test, the more
we have to consider what assumptions to build in to facilitate generalization. But, in all
three cases, it is key to consider the inductive biases, since they are crucial to generalization.

Remark: The other terms typically used for understanding generalization are interpo-
lation and extrapolation. Intuitively, interpolation means that we make predictions between
datapoints, and extrapolation is outside our datapoints. Such definitions require a notion

CHAPTER 10. GENERALIZATION ERROR IN MORE SETTINGS 104

of what is considered to be between our datapoints and what is considered to be outside our
datapoints. Instead, it is more direct to reason about inductive biases and how they relate
to the available data. If we really want to map to these terms, we can say that our learning
algorithms are interpolating across the provided data and our inductive biases allow us to
extrapolate beyond the data.

10.3.3 Nonstationarity and Generalization

The relationship between x and y may itself be nonstationary. This means that p(y|x)
may change between training and test—ptrain(y|x) ̸= ptest(y|x). Consider the stock market.
We may have data from the last 20 years. However, the world and economy is constantly
changing, and this data is not perfectly predictive of what will occur in the next year. For
one, we always have an increasing trend in the total value of stocks. But, more importantly,
sudden technological or societal changes can have unexpected consequences that are simply
not in the data, because they have never been observed.

Many of our datasets have some level of nonstationarity, because they are actually
measured across time. The level of nonstationarity can be small. For example, we can
consider predictions for the required pump speed in a home heating system, conditioned
on readings in the current system (e.g., desired temperature, temperature outside, etc.).
This system is relatively self-contained, with consistent predictions conditioned on all of
the readings in the system. However, slowly over time a pipe might start to get dirty,
making it necessary for the pump speed to slowly increase to account for this change. This
change occurs very slowly over a long window of time, but nonetheless is not visible to the
model and so the data appears nonstationary. If we consider y to be the pump speed and
x the readings in the system, then this means that p(y|x) is slowly changing over time.

We can overcome some of this nonstationarity by attempting to model the trend in
that nonstationarity. For example, in addition to x, we can input the average pump speed
over a recent history. If it has recently increased, the prediction for the pump speed for
this current x could also be increased in the prediction. Augmenting with history can help
overcome the partial observability in the system, that makes it appear nonstationary; we
will discuss this more in Chapter 16.

However, we will not be able to overcome all nonstationarity in this way, for the same
reasons as above: a lack of data coverage. For example, when training the system to predict
pump speeds, we may never have observed the system under any degradation, such as having
accumulated dirt in the pipes. We cannot learn from the training data that a short history
of pump speeds allows us to account for this change. Instead, it is key to allow the model
to continue to update with new data. This approach is called tracking.

This last setting leads us to one other important distinction in generalization: static and
dynamic generalization. (This distinction is sometimes called zero-shot and few-shot gener-
alization). In the static setting, we want our function—say our learned neural network—to
directly generalize to the test deployment setting. In the dynamic setting, we want our
learned data representation to facilitate further learning. In other words, we want it to
allow the function to update with as few samples as possible.

Example 15: [The role of representations in sample efficiency] Let us consider a simple
example where the features can help us learn more efficiently. This example emphasizes
the utility in having a compact set of features that are used for many inputs, to promote

CHAPTER 10. GENERALIZATION ERROR IN MORE SETTINGS 105

generalization. Assume our data is actually generated by a linear function Y = xw + ϵ, for
a scalar input x and ϵ ∼ N (0, 1). But, we didn’t know the true function would be so simple.
We created features that we hoped would let us fit more complex nonlinear functions: a fine-
grained binning. The features are ϕj(x) = 1 is x is in bin j, and zero otherwise. Assuming
x ∈ [−1, 1], and we use 200 bins, then we have that ϕ1(x) = 1 if x ∈ [−1,−0.99), ϕ2(x) = 1
if x ∈ [0.99,−0.98), and so on. This feature vector ϕ(x) ∈ R200 is an indicator vector for
which bin x is in.

These features allow us to learn a different E[Y |x] for each bin, which is a highly
nonlinear—and even discontinuous—function. However, these features make learning very
slow. If we had used the original x as features, then we would have learned very quickly.
Likely, we would find w with very few samples; even after 10 samples, we’d likely have a
reasonable estimate. For these binning features, however, we need at least one sample per
bin to even obtain an estimate of E[Y |x] for x in that range. That means we need at least
200 samples, but likely more. □

Understanding how data representations impact the update, and generally how we can
learn representations that tackle some of these generalization goals, is still in its infancy.
The goal here is just for you to understand and appreciate the different generalization goals.

Part III

Generative Models

106

107

Up until now, we have been focused on predictive models, ones that learn p(y|x) for a
relatively simple conditional distribution (exponential family). In this section, we discuss
generative models, that attempt to learn more complex distributions.

We have already seen very simple generative models, when first talking about MLE.
Recall that our goal was to model distribution p(x) with parameters θ, assuming we were
given a dataset D = {xi}ni=1. In MLE, the goal is to find the parameters that make the
data the most likely

MLE : θmle = argmax
θ

p(D|θ) = argmin
θ

n∑
i=1

− ln p(xi|θ) (10.4)

where we previously saw that this could be rewritten as the minimization of the negative
log likelihood. For the distributions we considered, like Gaussians and Poissons, the log
simplified the objective substantially and the resulting gradients were easy to compute. So,
we did not dwell too much on learning algorithms for these models.

Once we move to more complex distributions, however, learning is more complicated.
Further, we have an additional criterion: the distributions need to be efficient to sample
from. For our simple distributions, like Gaussians, it is straightforward to get samples of x,
so again we did not dwell on it. For generative models, our primary goal will be to sample
x ∼ pθ. Generative models are designed around these two criteria: facilitating sampling
and facilitating learning the model.

In this part, we start with one of the simplest generative models that already adds quite
a bit of complexity: mixture models. Then we talk about how to incorporate one of the
central tools in these notes: data representations.

Chapter 11

Simple Generative Models: Mixture Models

In this chapter we discuss how to use and learn mixture models. Let’s assume that each
mixture component has parameters θk, giving

p(x|θ) =
m∑

k=1
wkp(x|θk) where θ = (w1, w2, . . . , wm,θ1, . . . ,θm).

For example, each component might be a Gaussian distribution with parameters θk =
(µk,Σk). The mixture distribution corresponds to a convex combination of these Gaussians
with different means and covariances.

We already saw in Section 2.3 how this class of distributions can significantly increase
modeling power. They provide enough complexity to be used as generative models, to model
realistic distributions and make it useful to simulate/generate potential outcomes using
these learned distributions. We first discuss how mixture models are used as generative
models and then discuss how to learn them.

11.1 Using Mixture Models

For a generative model to be useful, we need to be able to efficiently obtain samples from
it. Using a generative model means getting a sample from a generative model. (Using a
prediction model meant getting a single, likely outcome given context). One advantage of
mixture models is that they are very easy to sample from, as long as it is easy to sample
from each component x ∼ pk.

The sampling procedure is summarized in Algorithm 5. First we sample k proportionally
to probabilities p[k] = wk, shown in Algorithm 6. The idea for this algorithm is simple.
We discretize the interval [0, 1] into m buckets, with the first bucket of size w1, the second
of size w2 and so on. Then we uniformly randomly pick a number in the range [0, 1], and
return the bucket that u falls into. In expectation, we will see k = 1 picked w1 percentage
of the time, and k = 2 picked w2 percentage of the time, and k = 3 picked w3 percentage
of the time, and so on.

Once we have a component k selected, then we sample x ∼ pk. This second step is
also simple, as long as each pk is easy to sample from. This is the case for many of the
simple distributions we considered. A common procedure, when the inverse CDF exists, is
to sample u ∼ [0, 1] uniformly and then transform it using the inverse CDF, as shown in
Algorithm 7. Recall that the CDF F for a random variable X is defined as F (x) = Pr(X ≤
x). Notice that U = F (X) is a uniform random variable on [0, 1]. Because the CDF is
invertible, we have that X = F−1(U). This means we can sample from a uniform U , and
apply the transformation F−1, so it is as if we sampled directly from X. In reality, you

108

CHAPTER 11. SIMPLE GENERATIVE MODELS: MIXTURE MODELS 109

Algorithm 5: Sample from Mixture Model
1: Input: w ∈ [0, 1]m and mixture components p1, . . . , pm

2: k ← Sample from Categorial Distribution(w) (see Algorithm 6)
3: x← Sample from Component Distribution pk with inverse CDF F−1

k (see Alg 7)
4: return x

Algorithm 6: Sample from Categorical Distribution
1: Input: categorical probabilities w ∈ [0, 1]m, such that

∑m
k=1wk = 1

2: Sample u uniformly from [0, 1]
3: Set s = 0
4: for k = 1 to m− 1 do
5: s← s+ wk

6: if s ≥ u, return k
7: return m

would not implement Algorithm 7, as such standard sampling approaches are available in
most code packages/libraries. For example, in Python in numpy, to sample from a Gaussian,
you would use numpy.random.normal.

Exercise 31: Show that Algorithm 6 always returns a valid k ∈ {1, . . . ,m}. □

Exercise 32: For a random variable X that has CDF F , show that U = F (X) is a uniform
random variable on [0, 1] □

Example 16: Let us consider one use case for using mixture models as generative models:
synthetic data for health care. To avoid sharing patient data, we can instead learn a
generative model on that data and only share synthetic samples from that generative model.1
Imagine the data consists of d = 10 attributes, including height, weight, and health metrics
like cholesterol levels and hemoglobin levels, for n = 1000 patients. Also imagine someone
has applied the learning procedure described in the next section, to get back a Gaussian
mixture model with m = 10 Gaussian components p1, . . . , pm each with parameters θ1 =
(µ1,Σ1), . . . ,θm = (µm,Σm).

We want to generate a new dataset of 100 plausible patients, to examine correlations
between health metrics and height. To do so, we call Algorithm 5 one hundred times,
and store the sampled x1,x2, . . . ,x100. These synthetic vectors should represent plausible
patients, and the correlations in the data used to create the mixture model. For example,
if height is often associated with higher hemogloblin, then we should see a pattern that
generated patients xi that are taller also tend to have higher hemoglobin. It is unlikely
that xi will correspond to any actual patient, but rather will look like the patients in the
underlying dataset. □

1Using synthetic data is actually one avenue currently being pursued to benefit from health data without
sharing patient data, albeit with also smarter strategies to ensure the synthetic samples do not compromise
privacy.

CHAPTER 11. SIMPLE GENERATIVE MODELS: MIXTURE MODELS 110

Algorithm 7: Sample using Inverse CDF
1: Input: inverse CDF F−1

2: Sample u uniformly from [0, 1]
3: return F−1(u)

11.2 Learning Mixture Models

Now let us turn to learning mixture models. This ends up being more complicated than
our typical maximum likelihood procedure. First, let’s try to simplify the log likelihood for
a single point.

− ln p(xi|θ) = − ln
m∑

k=1
wkp(x|θk)

Immediately we can notice that the log is not going to help as much as before. Previously
the log cancelled the exponential terms in the simpler distributions, like the single Gaussian,
making the resulting objective simple. For example, for a Gaussian, our objective became
a sum of squared errors. This may not seem like an issue: after all, we can still take the
gradient of this objective and do gradient descent. In fact, such an algorithm has been used.
But, the issue seems to be that this approach results in slow convergence.

Instead, we will take a different route and introduce auxiliary variables that corre-
spond to the mixing component. We jointly optimize over these auxiliary variables and the
original variables θ, to obtain simpler iterative updates that nonetheless still converges to
a stationary point of the above objective. This algorithm—rederived in many forms—is
called expectation-maximization. In this section, we will simply provide the algorithm, and
relegate the derivation to Appendix A.7. The reason for this is that we can actually more
simply obtain this algorithm once we see the more general ELBO loss that we also use for
variational auto-encoders in Chapter 12. Here, the primary goal is to get exposed to this
algorithm, before jumping into the hairy details.

The EM algorithm is based on iteratively applying the following two steps. The E-step
corresponds to updating the probability array pt[i, k] = probability that sample i came from
component k. Mathematically, this corresponds to

pt[i, k] def= Pr(k|xi) = Pr(xi|k)Pr(xi)
Pr(k) = w

(t)
k p(xi|θ(t)

k)∑m
j=1w

(t)
j p(xi|θ(t)

j)
(11.1)

where the probabilities Pr use the current parameters for our mixture model, θ(t). In other
words, Pr(xi|k) is actually Pr(xi|k,θ(t)), Pr(k) is actually Pr(k|θ(t)), etc. We leave the last
step as an exercise.

Exercise 33: Show the steps to get the last equality in Equation 11.1. □

The M-step corresponds to updating the model parameters, by solving the following

CHAPTER 11. SIMPLE GENERATIVE MODELS: MIXTURE MODELS 111

Algorithm 8: EM for Gaussian Mixture Models
1: Input: number of components m
2: Initialize µ

(0)
k , Σ(0)

k and w
(0)
k for all k ∈ 1 to m, t = 0

3: while not converged do
4: pt[i, k] = w

(t)
k

p(xi|θ
(t)
k

)∑m

j=1 w
(t)
j p(xi|θ

(t)
j)

for all i ∈ {1, 2, . . . , n}, k ∈ {1, 2, . . . ,m}

5: Compute pt[k] def= 1
n

∑n
i=1 pt[i, k]

6: for k ∈ {1, 2, . . . ,m} do
7: w

(t+1)
k = pt[k]

8: µ
(t+1)
k = 1

npt[k]
∑n

i=1 pt[i, k]xi

9: Σ(t+1)
k = 1

npt[k]
∑n

i=1 pt[i, k](x− µ
(t+1)
k)(x− µ

(t+1)
k)⊤

10: t← t+ 1
11: return wt

k,µ
(t)
k , Σ(t)

k for all k ∈ {1, 2, . . . ,m}

minimization problems, where F is the simplex.

argmin
w∈F

−
m∑

k=1
pt[k] lnwk (11.2)

argmin
θk

−
n∑

i=1
pt[i, k] ln p(xi|θk) (11.3)

where we slightly overload notation and define array pt[k] def= 1
n

∑n
i=1 pt[i, k]. Notice that

pt[k] is the average likelihood of each component across samples. The beauty of the EM
formulation is that the optimization for each component distribution is independent, for
the given probabilities pt[i, k] computed in the E-step. (Again, to understand why you
need to look at the derivation in Appendix A.7 or wait to see the VAE derivation and
Section 12.3). We are already pros at solving (weighted) log likelihood problems for simple
distributions, so solving for each θk is simple. We have also already seen how to solve for
w, with simplex constraints, in Section 6.3, where we found that intuitively wk = pt[k], the
average likelihood of each component across samples.

The above was all agnostic to the choice of component distributions. To be concrete,
we summarize the EM algorithm for a mixture of m Gaussian distributions in Algorithm 9.
A common convergence criteria is to check if

∑m
k=1 pt[k] lnwk barely changed between iter-

ations. This criteria checks that the component weighting have converged, and is sufficient
to indicate that the whole optimization has converged.

Exercise 34: Derive the updates to the Gaussian parameters in Algorithm 9. □

Exercise 35: A typical heuristic is to initialize the coefficients to be uniform, the covariance
matrices to be diagonal with a large number on the diagonal and to initialize the means to
random points in the dataset. What might happen if we initialized the covariance matrices
to be very small instead? □

Algorithm 9 can be modified to use other component distributions, simply by solving
Equation 8 for your chosen distribution. You can even have different distributions for

CHAPTER 11. SIMPLE GENERATIVE MODELS: MIXTURE MODELS 112

Algorithm 9: EM for any component distribution
1: Input: number of components m, with components distributions p(·|θ1), . . . , p(·|θm)
2: Initialize θ(0)

k and w
(0)
k for all k ∈ 1 to m, t = 0

3: while not converged do
4: pt[i, k] = w

(t)
k

p(xi|θ
(t)
k

)∑m

j=1 w
(t)
j p(xi|θ

(t)
j)

for all i ∈ {1, 2, . . . , n}, k ∈ {1, 2, . . . ,m}

5: Compute pt[k] def= 1
n

∑n
i=1 pt[i, k]

6: for k ∈ {1, 2, . . . ,m} do
7: w

(t+1)
k = pt[k]

8: θ
(t+1)
k = argminθk

−
∑n

i=1 pt[i, k] ln p(xi|θk)
9: t← t+ 1

10: return wt
k,θ

(t)
k for all k ∈ {1, 2, . . . ,m}

different components, since they are solved independently. To be concrete, we provided
the updates for Gaussian distributions, but the above can be generically done for other
distribution. Similar update rules can be obtained for different probability distributions,
where the derivatives for the mixture parameters will be slightly different but the solution
for the coefficients w is actually the same.

Exercise 36: Rewrite Algorithm 9 with component distributions corresponding to expo-
nential distributions. □

Exercise 37: Rewrite Algorithm 9 with two components distributions, one Gaussian and
one exponential. □

Exercise 38: We could also use a mixture model with component distributions that are
categorical. For example, for a discrete random variable with categories {1, 2, . . . , s} with
s = 25, we could define a mixture model with m = 3 and three categorical distributions.
Show that this does not provide additional modeling power beyond using a single categorical
distribution. □

Chapter 12

Generative Models using Data Representations

In this chapter we discuss how the data representation approaches allow us to learn more
complex generative models, not just more complex predictive models. We have already
seen how to learn generative models by making simple parametric assumptions on x, such
as assuming x is Gaussian or that it is a mixture model. Even with the generalization to
mixture models, however, these models can be quite limited, either requiring a large number
of mixtures, requiring a smarter distance than Euclidean distance or requiring careful tuning
of the number of mixture components.

We first discuss one simple way to improve the capacity of these models: mapping to a
new space with a data representation, and then using simpler parametric models. We then
discuss how to directly learn complex distributions, with neural networks, using the idea of
reparameterization.

12.1 Connections to Models We Have Already Discussed

We have two goals with generative models: learning a good approximation p̂(x) to a poten-
tially complex distribution p(x) and having an efficient approach to sample from p̂. When
selecting our approximation strategy, we have to keep both in mind. We have actually
already seen several models where generating samples is straightforward, including mixture
models and probabilistic PCA.

Let us revisit probabilistic PCA. Recall that we assumed a latent h ∈ Rp where p(x|D) =´
p(x|h,D)p(h)dh. In particular, we assumed that p(x|h,D) = N (µ = hD, σ2I) for some

σ > 0 and that p(h) = N (µ = 0, I). We discussed probabilistic PCA as a way to identify
these latent factors, but it is also a way to obtain a generative model, namely p(x|D). Like
mixture models, this model is easy to sample from, because it is broken up into sampling
the latent component—here a continuous vector rather than a discrete index—and then
sampling from the simpler distribution given this latent component—a Gaussian p(x|h,D).
The procedure is

1. For k = 1, 2, . . . , p, sample hk ∼ N (0, 1)

2. Let h = [h1, h2, . . . , hp]

3. Sample x ∼ N (hD, σ2I)

This generative model, however, is quite limited in terms of the distributions it can rep-
resent over x. This is particularly due to the simplistic assumption on p(x|h,D). However,
this is precisely the term we know how to generalize, using data representations like neural
networks! In particular, instead of assuming the mean is linear in h, we can assume it is

113

CHAPTER 12. GENERATIVE MODELS USING DATA REPRESENTATIONS 114

a more complex function f(h). Effectively, p(x|h,D) is a regression problem where h are
the inputs, D are the parameters of the learned function and x are the outputs. This is the
strategy taken by variational autoencoders, that we discuss next.

12.2 Variational Autoencoders

In this section, we see one of the simplest generative models that uses the power of neural
networks, namely as a simple extension of probabilistic PCA. These models, called Varia-
tional Autoencoders (VAEs), obtain stochasticity with simple normal random variables and
use complex mappings (neural networks) to transform those simple random variables into
complex distributions. For example, consider an f that is a higher-order polynomial. Then
x = f(h) map each normal h to a completely different vector and the resulting random
variable is no longer Gaussian and can be a highly complex distribution.

For VAEs, we assume p(x|W) =
´
p(x|h,W)p(h)dh with p(h) = N (µ = 0, I) and

p(x|h,W) = N (µ = fW(h), σ2I) for some σ > 0, where fW is a multi-layer neural network
input h and outputting a d-dimensional vector, the same size as x. The primary difficulty
is in learning W, but first let us consider how we use the VAE. The procedure is

1. For k = 1, 2, . . . , p, sample hk ∼ N (0, 1)

2. Let h = [h1, h2, . . . , hp]

3. µ = fW(h)

4. Sample x ∼ N (µ, σ2I)

It is almost exactly the same as the mode from probabilistic PCA, but the mean is a
multi-layer neural network rather than a linear function of h.

Our goal is to find W that maximizes the likelihood of an observed dataset D = {xi}ni=1.
As with mixture models, we will run into the same issue that the latent variable will make
estimation more complex. For mixture models, the log was stuck around the outside of a
sum; here, the log will be stuck around the outside of the integral over h. As in EM, directly
reasoning about the probabilities over these hidden variables conditioned on the inputs x,
will help us significantly simplify this optimization.

Similar to probabilistic PCA (PPCA), our density is

p(x|W) =
ˆ
p(x|h,W)p(h)dh = Eh∼p[p(x|h,W)]

where the integral takes the expectation over h, where we explicitly subscript the expecta-
tion to be clear from which distribution we are sampling h. The density is similar to PPCA,
but now it does not evaluate to a Gaussian, since p(x|h,W) is more complex. Our goal is
to maximize the likelihood of the data (minimize the negative log-likelihood)

argmin
W

−
n∑

i=1
ln p(xi|W)

We can attempt to estimate p(xi|W) by sampling many h1, . . . ,hm ∼ p(h), and using
1
m

∑m
k=1 p(xi|hk,W) ≈ Eh∼p[p(x|h,W)] = p(xi|W).

CHAPTER 12. GENERATIVE MODELS USING DATA REPRESENTATIONS 115

The issue with this approach is that many h play little to no role in the expectation.
Namely, p(xi|h,W) is likely very near zero for most h. Notice that the mean for p(x|h,W)
is fW(h). This mean will be close to some x, but most x will be far from fW(h) and so the
density at those points will be very small. We would have to sample many many h to get
an accurate estimate of this expectation, because only a small number of those sampled h
will be in the region where p(xi|h,W) is reasonably large.

Instead, we can try to direct the sampling, so that we sample exactly these h that are
pertinent to xi. To do so, we need a distribution q(h|x), so that we can sample h with high
likelihood for a given x. We do not have such a distribution, but we can attempt to learn
it. Note that this distribution q(h|x) is typically called the variational distribution, giving
us part of the name VAE. We will soon see why the term autoencoder is also in VAEs.

A natural choice to learn q(h|x) is to attempt to have it match the true distribution
p(h|x,W), defined as

p(h|x,W) = p(x|h,W)p(h)
p(x|W)

We will turn once again to the KL divergence, to provide an objective for this goal:
DKL(q(·|x) || p(·|x,W)). We would like to simultaneously minimize this KL, while also
minimizing the negative log-likelihood,

argmin
W

−
n∑

i=1
ln p(xi|W) +DKL(q(·|xi) || p(·|xi,W))

Let ci(W) = − ln p(xi|W) +DKL(q(·|xi) || p(·|xi,W)) and let us consider just one of these
terms ci in the objective. Notice first that

DKL(q(·|x) || p(·|x,W))= Eh∼q(·|x)[ln q(h|x)− ln p(h|x,W)]

= Eh∼q(·|x)

[
ln q(h|x)− ln p(x|h,W)p(h)

p(x|W)

]
= Eh∼q(·|x) [ln q(h|x)− ln p(x|h,W)− ln p(h) + ln p(x|W)]
= Eh∼q(·|x)[ln q(h|x)− ln p(h)]− Eh∼q(·|x)[ln p(x|h,W)] + ln p(x|W)

where Eh∼q(·|x)[ln p(x|W)] = ln p(x|W) because ln p(x|W) is a constant wrt h (and E[c] = c
for a constant c). Additionally, we have that Eh∼q(·|x)[ln q(h|x)− ln p(h)] = DKL(q(·|x) || p)
where p is the simple Gaussian over h. Putting this all together, we have that

− ln p(x|W) +DKL(q(·|x) || p(·|x,W)) = DKL(q(·|x) || p)− Eh∼q(·|x)[ln p(x|h,W)] (12.1)

Lo and behold! We now also have a log-likelihood term for x that is conditioned on h,
with the log inside the expectation: Eh∼q(·|x)[ln p(x|h,W)]. We did not start out by trying
to get this—we were simply trying to find a reasonable sampling distribution for h—but we
got this beautiful outcome anyway. Sometimes the universe is kind. This objective is called
the negative evidence lower bound (ELBO). This term comes from the fact that the ELBO is
equal to ln p(x|W)−DKL(q(·|x) || p(·|x,W)), and so is clearly a lower bound on the evidence
ln p(x|W). Note that we maximize the ELBO, −DKL(q(·|x) || p) + Eh∼q(·|x)[ln p(x|h,W)]
and minimize the negative ELBO. Because we opt to minimize in these notes, we talk about
the negative ELBO.

CHAPTER 12. GENERATIVE MODELS USING DATA REPRESENTATIONS 116

-
5
§

I
s
u
s

.

I

a
*

I
→

a

a
)

a
-

'
'

A

✗
s

f
'
'
✗ a

→
T

E
-

t
-

&
*

§

•

§
*

•

:

¥¥÷÷÷÷÷
÷¥÷¥¥ .

Figure 12.1: The left figure shows how to use the function f learned by the decoder in the
Variational Auto-encoder. The right figure shows how to learn q(h|x) (the encoder) that
helps focus sampling to optimize the decoder. Note that a VAE is not like a regular AE,
and this analogy can be confusing. Instead we have these two components that are jointly
optimized using the negative ELBO.

Remark: Learning q(h|x) has an additional benefit: simplifying computing the likeli-
hood of new points, when we test our generative model. Once we learn W, we want to be
able to compute the likelihood of new data x̃ under our model p(x̃|W). As we discussed
above, however, computing this term involves solving an integral. Approximating this in-
tegral by sampling h ∼ p requires many many h, since most p(x|h,W) is near zero for
most h. Instead, we can sample h from q(h|x), to more efficiently estimate p(x̃|W) when
measuring generalization performance.

Now let us move on to optimizing our negative ELBO objective in Equation (12.1). To do
so, we need to parameterize q(h|x). A typical choice is to use q(h|x,θ) = N (fµ,θ(x), fσ,θ(x))
where fµ,θ(x) is a neural network with parameters θ that outputs a mean estimate µ ∈ Rd

and fσ,θ(x) is a neural network with parameters θ that outputs a diagonal covariance
estimate Σ ∈ Rd×d, namely it outputs σ2

1, σ
2
2, . . . , σ

2
d. These two terms share parameters

θ, because usually they share most of the neural network, as in Figure 12.1. They each
have their own separate (private) parameters on the last layer of the neural network. The
parameters θ include all of these parameters, shared and private. Given this last layer—
let’s call it ϕ(x)—the mean is a linear function of ϕ(x) and the variances σ2

j (x) use a linear
function on ϕ(x) followed by a transform that ensures the output is positive, such as an
exponential. Alternatively, to maintain numerical stability, it is also common for the NN
to output the log of σ2

j (x), and use a linear function of ϕ(x) to produce this ln σ2
j (x).

Now we need a mechanism to compute gradients through this new network. The dif-
ficulty is that q(h|x) produces a distribution from which we can sample h; differentiating
through such stochastic nodes is not obvious.1 Fortunately, for our setting, we can take
advantage of what is called the reparameterization trick. The idea is that we can re-express

1Optimizing stochastic neural networks, and the related ideas in stochastic computation graphs, is a very
interesting topic, but much beyond what we can cover here.

CHAPTER 12. GENERATIVE MODELS USING DATA REPRESENTATIONS 117

this stochasticity independent of our parameters, and so compute gradients only on deter-
ministic quantities.

To see why consider what it means to sample h ∼ q(·|x) = N (µ(x),Σ(x)) for diagonal
Σ(x). We are independently sampling hj ∼ N (µj(x), σ2

j (x)). This is equivalent to sampling
ϵj ∼ N (0, 1) and writing hj = µj(x) + σj(x)ϵj . Therefore, if we let ϵ ∼ N (0, I), then we
can rewrite

Eh∼q(·|x)[ln p(x|h,W)] = Eϵ∼N (0,I)[ln p(x|h1 =µ1(x)+σ1(x)ϵ1, . . . , hp =µp(x)+σd(x)ϵp,W)]

Now when we compute the gradient for this sample, it can come inside this expectation.
For each stochastic gradient descent update, we can sample a point xi, then sample an
ϵ ∼ N (0, I) and easily compute the gradient of ln p(xi|h1 = µ1(xi) + σ1(xi)ϵ1, . . . , hp =
µp(xi)+σp(xi)ϵp,W) with respect to both W and θ (which parameterizes µj(xi) and σ2

j (xi)
for all j). We can then use these gradients to update W and θ.

Notice though that there is one other component in the negative ELBO

DKL(q(·|x,θ) || N (0, I))− Eh∼q(·|x,θ)[ln p(x|h,W)] (12.2)

for θ, which is the KL divergence to the standard normal distribution N (0, I). We can
think of this term as a regularizer, that prevents q(·|x,θ) from becoming too deterministic.
This KL term encourages q(·|x,θ) to stay more similar to a standard Gaussian. It is easy
to compute the gradient of this term wrt θ, and this gradient can simply be added to the
gradient computed above using reparameterization.

For a more in-depth discussion on VAEs, I highly encourage reading the relatively short
tutorial by Carl Doersch [10].

Exercise 39: Simplify the KL divergence between q(h|x,θ) = N (fµ,θ(x), fσ,θ(x)) and
N (0, I) and compute the gradient. □

12.3 Connection to Expectation-Maximization

The above approach resembles expectation-maximization (EM). In fact, the ELBO underlies
EM as well. The primary distinction is in how we specify q(·|x) and the ability to compute
the true expected value. In EM, we set the distribution q over the latent variable to be
p(h|x,θ(t)) in the E-step. In the maximization step, we can optimize the true expectation
Eh∼q(·|x)[ln p(x,h|W)] by summing over all the discrete latent h (which we called z).

In VAEs, we only perform each step approximately. On each update, we modify our
parameterized q(·|x) to be closer to

p(h|x,W(t)) = p(x|h,W(t))p(h)
p(x|W(t))

and then we only sample h to estimate the expectation term Eh∼q(·|x)[ln p(x|h,W)]. The
primary difference is that we do not fully compute the expectation, for the reasons described
above: it is expensive. We do not have a closed-form solution, so we resort to sampling.
Further, it is intractable to sample h from p(h|x,W(t)), so we approximate it with something
that we can easily sample.

CHAPTER 12. GENERATIVE MODELS USING DATA REPRESENTATIONS 118

To see why the ELBO underlies EM, we can consider again the above equality, in
Equation (12.1), but make it slightly more general. Above we simplified just a little bit
because p(h|W) = p(h) for VAEs. In general, this may not be true, and in fact for mixture
models it is not since the distribution over our latent variables depends on w1, . . . , wm. Let’s
use the notation θ to be all the parameters for our model, and allow h to be discrete or
continuous. Going through similar steps to above,

DKL(q(·|x) || p(·|x,θ))= Eh∼q(·|x)[ln q(h|x)− ln p(h|x,θ)]

= Eh∼q(·|x)

[
ln q(h|x)− ln p(x|h,θ)p(h|θ)

p(x|θ)

]
= Eh∼q(·|x) [ln q(h|x)− ln p(x|h,θ)− ln p(h|θ) + ln p(x|θ)]
= Eh∼q(·|x)[ln q(h|x)− ln p(h|θ)]− Eh∼q(·|x)[ln p(x|h,θ)] + ln p(x|θ)

The only difference to this same derivation above is that we now have p(h|θ) rather than
p(h). Like before, we can conclude that

− ln p(x|θ) +DKL(q(·|x) || p(·|x,θ)) = DKL(q(·|x) || p(·|θ))− Eh∼q(·|x)[ln p(x|h,θ)] (12.3)

which is the more general negative ELBO equation.
In EM, we alternate between optimizing q(·|x) (E-step) and optimizing θ (M-step). This

can be seen as coordinate descent on the above objective.2 On the E-step, we set q(·|x) =
p(·|x,θ), which minimizes the KL: the KL becomes zero. On the M-Step, we minimize
− ln p(x|θ) + DKL(q(·|x) || p(·|x,θ)) with a fixed q(·|x). To do so, we can equivalently
minimize DKL(q(·|x) || p(·|θ))−Eh∼q(·|x)[ln p(x|h,W)]. In VAEs, the first term is constant
wrt θ, because p(h|θ) = p(h), and so we minimized −Eh∼q(·|x)[ln p(x|h,W)]. For mixture
models, however, we cannot drop the first term because it includes θ. Instead, we get that

DKL(q(·|x) || p(·|θ))− Eh∼q(·|x)[ln p(x|h,W)]
= Eh∼q(·|x)[ln q(h|x)− ln p(h|θ)]− Eh∼q(·|x)[ln p(x|h,θ)]
= Eh∼q(·|x)[ln q(h|x)]− Eh∼q(·|x)[ln p(x|h,θ) + ln p(h|θ)]
= Eh∼q(·|x)[ln q(h|x)]− Eh∼q(·|x)[ln p(x,h|θ)]

The first term Eh∼q(·|x)[ln q(h|x)] is constant wrt θ, and so we only consider the second term
in our minimization. And this is precisely what we did for mixture models: we minimized
−Eh∼q(·|x)[ln p(x,h|θ)] on the M-step.

Therefore, EM can be seen as alternating coordinate descent on the negative ELBO
objective, with an unrestricted q(·|x) that can perfectly approximate p(·|x,θ) for all x and
θ.

12.4 Conditional Generative Models

We can extend both mixture models and VAEs to be conditional distributions: p(x|y) for
some inputs y. Let us start with mixture models. The idea is that the parameters for the

2Coordinate descent is an alternative to gradient descent. We can split up our parameters into blocks, say
w1 and w2 where w = [w1,w2]. Then we can alternate between computing w(t)

1 = argminw1 c(w1,w(t−1)
2)

and w(t)
2 = argminw2 c(w

(t)
1 ,w2), until convergence. This is useful in some problems where we can obtain

closed-form solutions for parts of the variables. We have exactly this property for EM.

CHAPTER 12. GENERATIVE MODELS USING DATA REPRESENTATIONS 119

mixture model are now functions of the inputs. For example, for a conditional mixture model
with two components modeling x ∈ R and conditioned on variables y, we have p(x|y) =
c1(y)N (µ1(y), σ2

1(y))+c2(y)N (µ2(y), σ2
2(y)). The coefficients c1(y), c2(y) are now not just

scalars, they depend on y. Similarly, the means and variances for the Gaussian components
depend on y. We can implement these use any function approximation technique we have
seen so far: RBFs, other fixed representations, neural networks, etc.

Let us consider how this looks with neural networks, resulting in what are called mixture
density networks. The network outputs six values: c1(y), µ1(y), σ2

1(y), c2(y), µ2(y), σ2
2(y).

They can share the same learned features ϕ(y) (last hidden layer) and have outputs

c1(y) = σ(ϕ(y)⊤wc)
c2(y) = 1− σ(ϕ(y)⊤wc)
µ1(y) = ϕ(x)⊤yµ,1

µ2(y) = ϕ(x)⊤yµ,2

σ2
1(y) = exp(ϕ(y)⊤wσ,1)
σ2

2(y) = exp(ϕ(y)⊤wσ,2).

Notice that ϕ(y) could be obtained using any of our data representations, including
fixed ones like RBFs. The decision to use fixed representations versus learning them with
neural networks is relies on similar reasoning as in the prediction setting. How much data
do we have? How much compute and can we use big networks? Do we know how to specify
good fixed features? It will be problem specific. And, as before, a common default will be
to turn to neural networks, unless there is a good reason to use fixed representations.

Mixture density networks use neural networks, but they do not learn a complex distri-
bution over x itself. To do so, we turn to conditional VAEs. For a conditional VAE, we
want to learn p(x|y). For example, we may want to generate images of faces x conditioned
on y ∈ {narrow,wide}, or we might want to generated images of digits x conditioned on
y ∈ {0, 1, 2, . . . , 9} or y the one-hot encoding of these digits. With p(x), we can only gen-
erate an image of any digit, but with p(x|y), we can generate an image of a specific digit.
For example, we can sample from p(x|y = 9) to generate images of 9s.

Fortunately, the modification to VAEs to get a conditional VAEs is quite simple. The
encoder needs to condition on y to learn q(h|x,y) and the decoder also needs to condition
on y to learn p(x|h,y). When we want to use the decoder, we input both y and a sampled
h ∼ N (0, I) to generate x. If we want to sample multiple x for a given y, then we input
the same y again with a newly sampled h.

For training, we use almost the same loss, the negative ELBO. For a given sample
(x,y), we input both x and y into the encoder and input that same y into the decoder.
The negative ELBO for the conditional VAE is

DKL(q(·|x,y,θ) || N (0, I))− Eh∼q(·|x,y,θ)[ln p(x|h,y,W)] (12.4)

We can use the same reparameterization trick to get the gradient of the second component
wrt both θ and W and get the gradient of the KL to the standard normal for θ.

Remark: Generative models are different than generative classifiers. We do not consider
generative classifiers (e.g., naive Bayes) in these notes, since they are not commonly used,
but explain the difference in Appendix A.8.1.

Chapter 13

Evaluating Generative Models

We can estimate generalization error for generative models, just like for predictors. The only
difference is in the definition of generalization error. Once we define our measure, and the
sample estimator, then we can use all the same strategies (test sets and cross-validation).

One natural choice is the KL divergence between the learned generative model p(x|θ)
and the true generative model ptrue(x):

DKL(ptrue||p(·|θ)) =
ˆ

X
ptrue(x) ln ptrue(x)

p(x|θ) dx

We discussed this divergence1 in Section 2.5 and showed that

DKL(ptrue(x)||p(x|θ)) = −E[ln p(X|θ)] + a term that depends only on ptrue.

Therefore, we can obtain estimates of the generalization error, up to a shift by a constant,
simply by estimating the expected log likelihood of data generated by ptrue(x), under model
p(x|θ). At this point, we are experts in estimating expectations, simply by using a sample
average. Namely, for a given test set Dtest of size m, we have the estimate

Perf(θ) def= 1
m

∑
x∈Dtest

ln p(x|θ)

We say parameters θ are better if they result in models that make the test data more likely,
i.e. with higher Perf(θ).

With mixture models, it is easy to compute the log likelihood on test data. For a
given x, we can compute the likelihood under each component density, by querying the
density function, and then weighting these densities with the coefficients. For example, for
a mixture models on x ∈ R with two Gaussians, N (µ1, σ

2
1) and N (µ2, σ

2
2) with coefficients

w1 = 0.2 and w2 = 0.8, we get likelihood for a point x as

p(x) = w1(2πσ2
1)− 1

2 exp
(
− 1

2σ2
1
(x− µ1)2

)
+ w2(2πσ2

2)− 1
2 exp

(
− 1

2σ2
2
(x− µ2)2

)
If µ1 = −1 and σ2

1 = 0.3 and µ2 = 0.4 and σ2
2 = 2, then

p(x) = 0.2(2π0.3)− 1
2 exp

(
− 1

2×0.3(x+ 1)2
)

+ 0.8(2π2)− 1
2 exp

(
− 1

2×2(x− 0.4)2
)

and the likelihood of a point x = −0.5 is

p(−0.5) = 0.2(2π0.3)− 1
2 exp

(
− 1

2×0.3(−0.5 + 1)2
)
+0.8(2π2)− 1

2 exp
(
− 1

2×2(−0.5− 0.4)2
)

= 0.4973

1The KL is not a valid metric (distance) because it is asymmetric and does not satisfy the triangle
inequality. It is instead called a divergence.

120

CHAPTER 13. EVALUATING GENERATIVE MODELS 121

and the likelihood of a point x = 0.1 is

p(0.1) = 0.2(2π0.3)− 1
2 exp

(
− 1

2×0.3(0.1 + 1)2
)
+0.8(2π2)− 1

2 exp
(
− 1

2×2(0.1− 0.4)2
)

= 1.3253

Unfortunately, for VAEs, it is straightforward to generate a sample but not straightfor-
ward to get its likelihood. Recall we went to a lot of effort to avoid computing p(x|W), which
is what we would need to get the likelihood. For evaluation, since we only have to do it after
training, we might be willing to estimate p(x|W) by sampling many h1, . . . ,hm ∼ p(h),
and using

1
m

m∑
k=1

p(xi|hk,W) ≈ Eh∼p[p(x|h,W)] = p(xi|W).

We need to do this for every xi in our test dataset of size n, with potentially a large number
m of samples hk, requiring mn queries of our decoder. The required number of m can be
very large, especially as the dimensionality of h increases.2

We can make this a bit more efficient with out encoder. Recall we used our encoder
to focus sampling h that are likely to have produced x. For evaluation, this could reduce
the required size of m. To use our encoder, though, we have to incorporate importance
sampling to correct for the fact that we are not sampling from the standard normal. To
understand why, notice that

p(xi|W) = Eh∼p[p(x|h,W)] =
ˆ
p(x|h,W)p(h)dh

=
ˆ
q(h|xi,θ)
q(h|xi,θ)p(x|h,W)p(h)dh

=
ˆ

p(h)
q(h|xi,θ)p(x|h,W)q(h|xi,θ)dh

Therefore, we can sample h ∼ q(·|xi,θ) to approximate this integral, but we have to correct
the distribution with importance sampling ratios p(h)

q(h|xi,θ) . Specifically, we sample many
h1, . . . ,hm ∼ q(·|xi,θ), compute importance sampling ratios ρk

def= p(hk)
q(hk|xi,θ) and get estimate

1
m

m∑
k=1

ρkp(xi|hk,W) ≈ p(xi|W).

It is also common to qualitatively assess a generative model. The likelihood is one
summary statistic that does not adequately represent the utility of a model. It is common
to visualize a variety of images generated by the model, to see how realistic and appropriate
the images are. There may be images that fail, or systematic oddities (e.g., inability to
generate hands). These types of qualitative issues are hard to see through measures like the
log likelihood on test data. There is no algorithmic procedure for such qualitative analyses,
and it is not necessarily useful for comparing two models rigorously. But, such qualitative
analyses are a critical part of assessing our models. Ultimately, you are responsible for what
you deploy, so you better understand it with whatever tools you can!

2Note that there is a large field of study called numerical integration, exactly geared towards efficiently
estimating these kinds of integrals.

Part IV

Advanced Topics

122

Chapter 14

Dealing with Missing Data

Missing data is ubiquitous in the real world. We say data is missing if for a sample we
are missing certain features. For example, one patient may not report their age, whereas
another does. If we have a total of d possible input attributes—attributes like age and blood
type–then the corresponding inputs x1 may only have a subset of those possible attributes
available, due to such data collection issues. Another setting where this might occur is that
older data was collected asking patients for less information, and newer patient records have
additional attributes.

In this chapter, we see how to leverage some of the ideas we have seen on representations,
particularly latent variable methods, to handle missing data. We focus on the case where
the data is missing from the conditioned variable—inputs—rather than the targets. For an
input xi, we assume mi ∈ {0, 1, . . . , d − 1} attributes are missing, where each data point
i may have a different number mi of attributes missing. We allow for mi = 0, since no
attributes may be missing, and do not allow mi = d, since then the input vector has no
information. We let Mi be the set of indices for the missing attributes, for the i-th input,
and Ai the set of available indices, namely with Ai = {1, 2, . . . , d}\Mi.

14.1 Imputation: Filling in Missing Values

Imputation means that we impute or fill in the missing values, given the observed variables.
We have already seen an instance of imputation: supervised learning. We can think of
the targets as the commonly unobserved variables that we need to infer, given the other
variables (features). This is a very specific missing data setting, in the sense that we have
assumed that these variables are not missing during training, and only that single variable
is missing in deployment.

Slightly more general is the semi-supervised learning setting, where in training we only
have label (targets) for a subset of the training set. We want to impute the missing labels
for the rest of the training set. A related idea is transductive learning, where we take both
the training and test datasets, and impute the missing labels for the test dataset, as shown
in Figure 14.1.

More generally, we can imagine that our input data is peppered with missing values,
rather than being concentrated on only one feature. Our goal, nonetheless, remains to fill
in those missing values. This problem setting is called matrix completion, and one standard
approach has been to use matrix factorization (methods like PCA). The idea is that if we
can identify the latent factors h for an input x, even if that input x has missing values, then
we can complete x by using the predicted x̂ from the latent factors: x̂ = hD. We replace
just the missing parts of x with the corresponding entries in x̂. Namely, x(Mi) = x̂(Mi).

Now the question is how it is that we obtain latent factors under missing data. The

123

CHAPTER 14. DEALING WITH MISSING DATA 124

✗ train Ytrain ✗ train
Ytrais
labelled

'

?✗test ?

Transdnctivee . Semi -supervised matrix completion

(Infer ? = Ytest) (Infer ?
-

- Ytraiñ) (missing
☐ throughout)

unlatched

Figure 14.1: Missing Data settings. Semi-supervised learning and transductive learning
just consider missing targets, and infer those targets during learning. Matrix completion is
about imputing any missing features, not just ones grouped in the last columns (the columns
corresponding to what we usually call targets).

matrix factorization optimization for PCA makes this relatively straightforward. Recall
that for complete data, for each input xi, we minimize

∥xi − hiD∥22 =
d∑

j=1
(xij − hiD:,j)2 =

d∑
j=1

(xij − x̂ij)2 ▷ for x̂i = hiD.

If parts of xi are missing, we can simply try to find the best hi based on the available
information at the indices Ai∑

j∈Ai

(xij − x̂ij)2 ▷ for x̂i = hiD.

The training objective, therefore, for our dataset D = {(xi,Ai)} with vectors xi with
available values at indices Ai (and other indices missing) is

min
h1,...,hn∈Rp,D∈Rp×d

n∑
i=1

∑
j∈Ai

(xij − hiD:,j)2 (14.1)

This optimization may seem underconstrained, because the loss is now a subset of the
squared error previously considered. But it is not underconstrained because D is shared
across all datapoints, hi is shared across features for xi and p < d. Every datapoint xi that
has feature j available has to share the same D:,j to reconstruct xij . Further, we have to
use the same hi for datapoint i, regardless of which feature j we are reconstructing. For
example, we can easily set hi to get x̂i1 = hiD:,1, but then we also have to use hi to get
xi2 = hiD:,2 and xi4 = hiD:,4. We have to pick an hi that works for all these available
indices. This sharing in D and hi sufficiently constrains the optimization that we can have
quite a bit of missing information and still get a unique reconstruction of the data matrix.

Example 17: A canonical example of matrix completion is for movie rankings. Each
user i ∈ {1, 2, . . . , n} has an associated list of movie rankings xi ∈ Rd for the total set of d

CHAPTER 14. DEALING WITH MISSING DATA 125

movies. Of course, no user has ranked every movie, and so naturally xi has (many) missing
entries. Or, in other words, user i only has rankings for a subset of movies with indices Ai.

When we solve for hi and D in Equation (14.1), we can think about what each of
these encodes. The hidden dimension of size p can be seen as latent factors that explain
why users like movies. For example, let us imagine that hidden dimension k corresponds
to Movies that are Happy. Dk,: ∈ Rd can be seen as a canonical list of moving ratings
based solely on how Happy they are: high rankings for Happy movies and low rankings
for Unhappy movies. The element hik for user i corresponds to how much they like Happy
movies. If they like Happy movies, then hik should be positive and the vector of rankings
hikDk,: helps explain why user i has higher ratings for happy movies in xi. Other dimensions
could correspond to factors like Long Movies or Cult Movies.1

For a given user with rankings xi, with the available movie rankings Ai, these available
rankings help us identify hi: the properties of the user, like if they like Happy movies and/or
Cult movies. Given these latent factors, we can then fill in the remaining movie rankings
for the missing set Mi using: xij = hiD:j for j ∈ Mi. Essentially, the optimization uses
knowledge about how other users have ranked movies, and relationships between movies
that we can infer solely based on how often they are ranked similarly (or oppositely). □

14.2 Imputation of Missing Data for Prediction

The above matrix completion example is an instance where inferring the features was useful
to make recommendations to a user. The goal was completing the matrix, without a separate
classification or regression goal. This contrasts methods that complete the input data, so
that they can then apply standard regression and classification algorithms. For example,
for predicting whether a patient has a disease, we might take a two stage process. Step 1:
Impute any missing attribute information about the patient (e.g., age), to obtain complete
data. Step 2: Use a standard classifier or regressor on this completed data.

We can use the imputation approach in the previous section for this two stage approach.
We are using PCA to infer missing values, by presuming there is a latent structure to exploit.
Once we have those missing values, then it is easy to apply any regression approach. It is
not uncommon to fill in missing values using a simple method like PCA, and then use that
completed data to learn a model with a neural network. With PCA, we can do a one-shot
approach to fill in missing values. For more complex models, like autoencoders and VAEs,
we need to take an iterated approach.

To understand why we need an iterated approach, we can consider what optimization
problem we are solving when we have missing variables. We treat the missing variables as
unknowns, and optimize over them as well. The typical negative log likehood minimization
minW

∑n
i=1 ln p(x|W) becomes instead

min
x1,M1 ,...,xn,Mn

min
W

n∑
i=1
− ln p(xi,Ai ,xi,Mi |W) (14.2)

1Of course, all of this is made up. It is hard to say exactly what the latent dimensions actually correspond
to. But, matrix completion really has been used for this problem, and it worked surprisingly well! Netflix
put out a competition years ago, and a winning entry used matrix completion to fill in rankings.

CHAPTER 14. DEALING WITH MISSING DATA 126

where xi,Ai ,xi,Mi gives us the complete x. For a given choice of xi,Mi in the outer optimiza-
tion, we have a complete x and we can use a standard update to the weights to minimize
the negative log likelihood.

Let us make this concrete by optimizing Equation (14.2) for an autoencoder. We have
to start by initializing our variables, as usual. A typical choice is to initialize xi,Mi to zero,
or the mean value of that feature computed in the training dataset. We can initialize W
using a standard initialization for neural networks, like He initialization. The loss for the
autoencoder for one sample is ∥xi − x̂i∥22, where x̂i is the output of the autoencoder given
input xi. Note here that xi consists of xi,Ai and the current estimate of the missing values
xi,Mi , so it is a completed datapoint without any missingness. We already know how to get
the gradient of the weights W for this loss: we simply use backprop with this loss ∥xi−x̂i∥22.
For the outer optimization over xi,Mi , we could use gradient descent, but here we have a
simple closed-form solution: setting xi,j = x̂i,j for each j ∈ Mi. This choice actually gives
us zero error.

Overall, the procedure involves iteratively doing gradient descent updates for W followed
by setting xi,Mi = x̂i,Mi , which will eventually converge to a stationary point. A specific
instance of this procedure could consist of steps

1. Initialize W use He initialization. Initialize xi,Mi to zero for all i, in other words we
are using zero imputation to create a completed dataset. Note that these xi,Mi will
be updated, in place, inside our data matrix.

2. Grab a mini-batch B and

(a) Compute the forward pass on B to get the output x̂i for each i ∈ B.
(b) Compute the gradients for the mini-batch using backprop and update W.
(c) Update xi,Mi = x̂i,Mi in our data matrix for each i ∈ B.

3. Repeat Step 2 until both W and x1,M1 , . . . ,xn,Mn have stopped changing, within
some tolerance, or once you hit a maximum number of iterations.

Once we converge, we both have the parameters for the model as well as estimates for the
missing values in the dataset.2

We can also use this idea to fill in missing values for a new data point x, after training.
In this case, W is fixed, and we can query our autoencoder fW(x) on (complete) inputs x
to produce output x̂. To get such a complete x, we solve

min
xM
∥x− fW(x)∥22 where x consists of xA and xM

The procedure for this is a subset of the above
2This iterative imputation is called multivariate iterative chained equations (MICE) or fully conditional

specification. This name comes from the fact that we predict the missing values by conditioning on the other
variables. MICE is often implemented a bit differently from above, as the typical strategy is to predict each
feature one at a time. The algorithms cycle through the features, predicting the values for that feature to
fill it in, and then using those as the new values. Predicting them all at once, however, is straightforward
with a neural network (an autoencoder), and reflects the same idea, so we opt for that approach here. And
it should actually be better to predict them all at once, because using this cyclic or chained strategy is like
using coordinate descent rather than jointly optimizing all variables at once. Coordinate descent is typically
slower, and if we can optimize all variables at once, we typically should.

CHAPTER 14. DEALING WITH MISSING DATA 127

1. Initialize xM to zero.

2. Compute the forward pass to get the output: x̂← fW(x).

3. Update xM = x̂M.

4. Repeat Steps 2 and 3 until xM stops changing, within some tolerance or once you hit
a maximum number of iterations (e.g., it is often enough to use 10 or 20).

This procedure hardly feels like an optimization, since we are just iteratively querying the
autoencoder for the new outputs and feeding in these as new inputs. But, implicitly, we are
solving the above optimization.

In summary, this approach involves first imputing missing data (e.g., using PCA or an
autoencoder) and then handing that complete data to your favorite regression or classifi-
cation algorithm. This two stage approach is conceptually simple, but has disadvantages.
One disadvantage of imputation for missing data, if we are just doing prediction, is that
we may be solving a harder problem than necessary. It is hard to know what the missing
values should have been, and for prediction we really only needed p(y|x), not x itself. Ad-
ditionally, this two stage approach fills in the missing values without considering how those
values improve prediction accuracy. In fact, in some cases, we can do a direct approach,
where we predict y without trying to get accurate estimates of missing values.

1. Two Stage Approach. Stage 1: Impute the missing values. Stage 2: Use the
complete data for prediction. This is what we did in this section, Section 14.2.

2. Direct Approach: Learn a classifier (or regressor) that naturally handles missing
data. We discuss this approach in the next section, Section 14.3.

Exercise 40: Consider how we could extend the above algorithm with autoencoders, to
supervised autoencoders, to jointly complete the data and a learn a predictor. Write down
the optimization and the procedure. □

Remark: We only considered a single imputation above, trying to find the best com-
pletion of the missing data. We could instead maintain a distribution over possible missing
values, and sample multiple imputations. This is similar to how in PCA we consider the
single best h and in PPCA (and VAEs), we reasoned about a distribution of h. Multiple
imputation involves producing different plausible completions, resulting in multiple possi-
ble dataset (e.g., 30), on which we then run regression. We get 30 different predictions
for each datapoint, and use these 30 different predictions to create an interval around our
predictions. We do not cover multiple imputation here, but for a bit more information see
Appendix A.10.1.

14.3 Direct Methods for Prediction Under Missing Data

In this section we discuss one simple approach to directly predict p(y|x), without first
imputing missing values in x. Our goal is to learn a function conditioned on all the available
data: the features that are available and information about which features are missing,
f(xA,M). We should be able to learn a more accurate function this way, compared to
first imputing and then learning as usual on the imputed data. The two stage approach

CHAPTER 14. DEALING WITH MISSING DATA 128

-

5 &
-

3
0
0
0
0
4
0
0
&

[
I
·

3

·
8
7

Figure 14.2: Direct prediction for a neural network on data with missingness. The missing
values in x are set to zero and an indicator vector for which features are missing also
inputted into the network. This network learns fW(x,m) = ŷ.

has bias, depending on the imputation, whereas f(xA,M) is conditioned only on the (true)
given data. The primary consideration now is what function class to use to effectively learn
f(xA,M).

If we want to learn a neural network f , then a simple but typically effective choice is
to set the elements xMi = 0 and additionally input M as an indicator vector. This vector
mi ∈ Rd corresponds to a binary vector where there is a 1 for position j if the feature is
missing and 0 if it is available. You can think of this almost like an if statement. If xj is
available, then use the weights on xj to produce the features in the first layer. If xj is not
available, then the weights on xj multiply by zero and do not add to the sum. Instead, the
weights on the indicator are used. This approach is depicted in Figure 14.2.

To see more precisely why, let’s consider a simpler linear setting for a target y ∈ R.
We have weights wx ∈ Rd×1 on x ∈ R1×d and wm ∈ Rd×1 on m ∈ R1×d, where jointly we

actually stack these all and use ŷ = [x,m]w for w =
[

wx

wm

]
∈ R2d×1.Then notice that

[x,m]w =
∑

j∈Ai

xjwx,j +
∑

j∈Mi

wm,j

We still have a linear function on the available xj and the missingness indicator just allows us
to shift the prediction by wm,j for any missing features. This seems quite limited. However,
once we add depth, recall that we can start to and input features. In the first layer, this shift
can be different for each hidden node, allowing us as before to learn different partitionings.
The next layer can start to and these partitionings, and effectively learn different predictors
for different parts of the input space. The neural network can input these two stacked
vectors and learn a complex function that conditions on both available features and the
missingness pattern.

CHAPTER 14. DEALING WITH MISSING DATA 129

Remark: You may be wondering how the terms MCAR, MAR and MNAR did not
come up in a chapter about missing data! I think these terms are focused on too much,
especially given we almost always have data that is missing not at random (MNAR). The
techniques in this chapter make no assumptions on whether data is missing at random, so
we do not need to reason about these cases. For the interested reader, you can see Appendix
A.10.1 for a little bit of information on why people care about these terms.

Chapter 15

Uncertainty Estimation and Bayesian Approaches

The goal of Bayesian methods is to maintain the posterior distribution, p(w|D). These
weights w can be the parameters for a prediction function, like the weights in linear
regression, or the weights for a generative model. In MAP, we use the point estimate
argmaxw p(w|D). Bayesian methods, therefore, estimate more information: they allow us
to reason about our certainty in our weights. If the distribution is wide—has high variance—
then we have low certainty. With more data, the posterior concentrates and in the limit we
again obtain a point estimate.

In this chapter we first review Bayesian linear regression, one of the simplest Bayesian
approaches. This involves maintaining the posterior assuming the prior p(w) is Gaussian
and p(y|x) is Gaussian with mean xw and unknown variance σy. The posterior is maintained
over both (w, σy), and corresponds to a normal-inverse Gamma distribution. The beauty of
Bayesian linear regression is that it has a nice closed form due to having a conjugate prior.
It is, however, restricted to these assumptions and linear regression.

Just like when we moved beyond linear regression to the nonlinear setting with data
representations, we can extend to more general Bayesian methods using data representa-
tions like kernels and neural networks. We examine one of the most widely used Bayesian
approaches, that rely on kernels: Gaussian Processes.

15.1 Bayesian Linear Regression

Bayesian estimation involves maintaining the entire posterior distribution, p(w|D). Once
we have looked at MAP, the extension to Bayesian estimation is not a big leap. For MAP,
we already had to specify a prior to obtain argmaxw∈F p(w|D). For Bayesian estimation,
we need to maintain the entire posterior p(w|D), not just the mode. We simplify the
explanation by only considering the univariate case: w ∈ R.

Assume that p(y|x) = N (µ = xw, σy
2) for some fixed σy ∈ R. This is the assumption we

made for linear regression, and then for MAP with a Gaussian prior on the weights. Again,
let’s assume a Gaussian prior on the weights p(w) = N (0, σy

2/λ) for some (regularization)
parameter λ > 0. Then we get

p(w|D) = p(D|w)p(w)
p(D) ▷ p(xi, yi|w) = p(yi|xi, w)p(xi|w) = p(yi|xi, w)p(xi)

= p(w)
∏n

i=1 p(yi|xi, w)p(xi)´
p(w)

∏n
i=1 p(yi|xi, w)p(xi)dw

▷
n∏

i=1
p(xi) cancels in numerator/denominator

= p(w)
∏n

i=1 p(yi|xi, w)´
p(w)

∏n
i=1 p(yi|xi, w)dw

130

CHAPTER 15. UNCERTAINTY ESTIMATION AND BAYESIAN APPROACHES 131

Computing the posterior is complicated by the integral in the denominator. In some cases,
though, this integral can be solved analytically, and the posterior has a simple known form.
This was the case with conjugate priors. For a given p(y|x,w), a conjugate prior p(w) is
one where the posterior p(w|D) is of the same form as the prior (example, both Gaussian).

For Bayesian linear regression, where p(y|x) = N (µ = xw, σy
2), the conjugate prior is in

fact the prior used for ℓ2 regularization: p(w) = N (0, σy
2/λ). Given this prior, with prior

mean µ0 = 0 and prior variance σ2
0 = σy

2/λ, it can be derived that

p(w|D) = N (µn, σ
2
n) where σ2

n = σy
2∑n

i=1 x
2
i + λ

µn =
∑n

i=1 xiyi + λµ0∑n
i=1 x

2
i + λ

=
∑n

i=1 xiyi∑n
i=1 x

2
i + λ

= σ2
n

σy
2

n∑
i=1

xiyi

The MAP solution corresponds to the mode of this distribution: µn. Additionally, we
can obtain a credible interval for which weights are plausible given the data, based on the
variance σn. If the variance is big, then even after seeing the data there are many plausible
values for w. As n gets larger, notice that σ2

n shrinks.
We can similarly obtain the posterior if we have multivariate inputs. Let us assume that

we take µ0 = 0, which is a typical choice. Then we have that

p(w|D) = N (µn,Σn) where Λ =
n∑

i=1
x⊤

i xi + λI (15.1)

Σn = σy
2Λ−1

µn = Λ−1
n∑

i=1
x⊤

i yi

For linear regression, though, we typically do not know the variance σy
2. Fortunately,

even when extending more generally to this setting, we have a conjugate prior. First consider
the univariate case. We need now a prior on weights w ∈ R and also the variance σy

2.
The conjugate prior is called the Normal-Inverse-Gamma (NIG) distribution, which has
four parameters: µn, λn, an, bn. For prior parameters µ0 ∈ R and λ0, a0, b0 > 0 (e.g.,
µ0 = 0, λ0 = 0.1, a0 = 3, b0 = 10), we get posterior

p(w, σy
2|D) = NIG(µn, λn, an, bn) where λn =

n∑
i=1

x2
i + λ0

µn =
∑n

i=1 xiyi + λ0µ0∑n
i=1 x

2
i + λ0

=
∑n

i=1 xiyi + λ0µ0
λn

an = a0 + 1
2n

bn = b0 + 1
2

(
n∑

i=1
y2

i + λ0µ
2
0 − λnµ

2
n

)

Notice that p(w, σy
2) = p(w|σy

2)p(σy
2). A key property of an NIG distribution p(w, σy

2)
with parameters µ, λ, a, b is that p(w|σy

2) is Gaussian N (µ, σy
2/λ) and p(σy

2) is an inverse
gamma distribution with parameters a, b. For the NIG, the mode of the distribution is
E[(w, σy

2)] = (µn,
bn

an−1). The solution for w is the same as for MAP above. And now we
also have an estimate for the most likely value for the variance of the noise bn

an−1 .

CHAPTER 15. UNCERTAINTY ESTIMATION AND BAYESIAN APPROACHES 132

We can use this distribution to reason about a plausible set of values for the weights,
called the credible interval. The variance of the weights, under the NIG, corresponds to

bn
(an−1)λn

for an > 1. If this term is large, then the set of plausible weights are large. We
can be more precise by computing p(w ∈ [a, b]|D) = 0.95 to get a 95% credible interval for
w. We can compute the marginal for w, of the NIG: it is a Student’s t-distribution, with
mean µn, scale parameter an

bnλn
and degrees of freedom 2an. Consequently, we can get a

95% credible interval using [µn − ϵ, µn + ϵ] for ϵ = t0.025,2an
an

bnλn
.

All the above updates can be extended to the multivariate case. We need now a prior
on the vector of weights w ∈ Rd and the variance σy

2, where the variance is still a scalar
since it is the variance for scalar y given x. The conjugate prior is still the Normal-Inverse-
Gamma (NIG) distribution, but now for the multivariate case, with four parameters: µn ∈
Rd,Λn ∈ Rd×d, an, bn. For prior parameters µ0 ∈ Rd, Λ0 ⪰ 0 and a0, b0 > 0 (e.g., µ0 =
0,Λ0 = I, a0 = 3, b0 = 10), we get posterior p(w, σy

2|D) = NIG(µn,Λn, an, bn) where

Λn =
n∑

i=1
x⊤

i xi + Λ0 = X⊤X + Λ0

µn = Λ−1
n

(
n∑

i=1
x⊤

i yi + Λ0µ0

)
= Λ−1

n

(
X⊤y + Λ0µ0

)
(15.2)

an = a0 + 1
2n

bn = b0 + 1
2

(
n∑

i=1
y2

i + µ⊤
0 Λ0µ0 − µ⊤

n Λnµn

)

We can again use this distribution to reason about the credible region over w. The covari-
ance of the weights, under the NIG, corresponds to bn

an−1Λ−1
n for an > 1. We can compute

p(w ∈ [a,b]|D) = 0.95 to get a 95% credible region for w. To do so, we need the marginal
for w, of the NIG: it is a Student’s t-distribution, with mean µn, scale parameter an

bn
Λ−1

n

and degrees of freedom 2an. Obtaining the credible region is a bit more complicated in this
multivariate space, and we will not explicitly need it. Instead, we will want to reason about
uncertainty in our predictions, as we discuss in the next section.

15.2 Using the Bayesian Posterior over Weights

Our goal is to obtain credible intervals around predictions, not just around the weights.
Namely, given p(w|D), we would like to reason about p(f(x)|D) where f(x) = xw for
any x. Notice this is not about the stochasticity in y: it is not about computing p(y|x).
Rather, it is about our uncertainty in the our prediction f(x) ≈ E[Y |x]. Before moving on
to obtaining this credible interval, let us reason a bit more about what uncertainty is being
characterized.

In Bayesian linear regression we are trying to identify the best linear function in our set
of linear functions F . We know that linear regression provides the global minimum of the
linear regression objective. Therefore, as we get more and more samples (n gets bigger), the
function obtained by linear regression gets closer to the best linear function in F , in terms
of minimizing the squared errors across the entire space. For any given point x for which
we make a prediction f(x), and then an actual outcome y is revealed, we can reason about
three sources of error. Let fbest ∈ F be the best linear function and f∗ the true E[Y |x],

CHAPTER 15. UNCERTAINTY ESTIMATION AND BAYESIAN APPROACHES 133

which may not be in F . Then

f(x)− y = f(x)− fbest(x)︸ ︷︷ ︸
due to insufficient data

+ fbest(x)− f∗(x)︸ ︷︷ ︸
bias

+ f∗(x)− y︸ ︷︷ ︸
irreducible error

Our credible interval is only reasoning about the uncertainty due to the first term:
f(x) − fbest(x). We can map this to the variance component of reducible error of the
generalization error. Recall that the GE decomposed into reducible error and irreducible
error, and reducible error further decomposed into bias and variance. The irreducible error
is due to the variance in Y given x: due to σy

2. When we make a prediction f(x), even if
it is the true function f∗(x), we will always have some uncertainty in the accuracy of the
prediction because the outcome is stochastic. This uncertainty is sometimes called aleatoric
uncertainty. The uncertainty estimates given by Bayesian linear regression are instead
about the reducible error, and more specifically about the variance component. As we get
more and more data, the variance term gets smaller, because the set of plausible functions
for the larger dataset becomes smaller. Across different large datasets, we will see relatively
consistent functions. This uncertainty estimate is often called epistemic uncertainty.

Now let us return to reasoning about our uncertainty in f(x), due to insufficient data.
We use the result that a linear weighting of Gaussian variables is again Gaussian. Let v be
a d-dimensional multivariate Gaussian vector v with mean µ ∈ Rd and covariance Σ ∈ Rd.
Let b ∈ Rd be any vector of coefficients. Then we know that the univariate random variable
z resulting from the linear weighting of v, z = b⊤v, is also a Gaussian random variable,
with mean µ = b⊤µ and variance σ2 = b⊤Σb.

We can exploit this result by noting that, if the variance σy
2 is known for p(y|x), then

p(w|D) is a multivariate Gaussian distribution. The random variable f(x) = x⊤w is a
linear weighting of the multivariate Gaussian RV w. If p(w|D) is a N (µn,Σn) then we
know that

p(f(x)|D) = N (f(x)|µx = xµn, σ
2
x = xΣnx⊤)

The 95% credible interval for our prediction f(x) is [µx − 1.96σx, µx + 1.96σx].
In reality, we do not have σy

2. Consequently, the distribution p(w|D) is actually a
Student-t distribution. An affine transformation of a multivariate Student-t does not have
the same nice properties as the Gaussian. Instead, when we want to use the Bayesian linear
regression model, it is typical to assume σy is the mode given by our NIG: σy

2 = bn
an−1 .

Given a specific σy, the distribution over w is Gaussian. This is a property of the NIG:
if p(w, σy) = p(w|σy)p(σy) is an NIG with parameters µ,Λ, a, n then p(w|σy) is Gaussian
N (µ, σy

2Λ−1).
The complete procedure is as follows.

1. Pick the hyperparameters λ > 0 for the prior over weights, and a0 and b0 for the
prior over σy

2. They have less restrictive priors, you pick smaller values for λ (e.g.,
λ = 0.01) and can set a0 = b0 = 1.

2. Estimate the NIG p(w, σy
2|D), using formulas in Equation (15.2).

3. Get Gaussian posterior p(w|σy
2,D) by selecting σy

2 = bn
an−1 and computing Σn =

σy
2Λ−1 for Λ =

∑n
i=1 x⊤

i xi + λI and µn = Λ−1∑n
i=1 x⊤

i yi to get N (µn,Σn).

4. For any input x, you can obtain p(f(x)|D) as a Gaussian with N (xµn,xΣnx⊤).

CHAPTER 15. UNCERTAINTY ESTIMATION AND BAYESIAN APPROACHES 134

We can constantly update the NIG posterior with new data, improving our estimates of
w and of σy

2. For example, imagine we get m new samples, for a dataset of size n+m. We
have already obtained µn,Λn, an, bn. We can update these with this new data by treating
µn,Λn, an, bn as the prior parameters, to get

Λn+m =
n+m∑

i=n+1
x⊤

i xi + Λn

µn+m = Λ−1
n+m

 n+m∑
i=n+1

x⊤
i yi + Λnµn

an+m = an + 1

2m

bn+m = bn + 1
2

 n+m∑
i=n+1

y2
i + µ⊤

n Λnµn − µ⊤
n+mΛn+mµn+m

This is perfectly equivalent to having started with all of the n+m samples and computing
the posterior from µ0,Λ0, a0, b0. Bayesian linear regression, therefore, elegantly facilitates
incorporating new data. Notice that this is one of the reasons we maintain Λn instead of
Σn, because we cannot easily update the inverted matrix with new data.

As we get more and more data, the variance of the NIG shrinks, as does the variance
of p(f(x)|D). Notice that the Σn shrinks because Λn =

∑n
i=1 x⊤

i xi + λI grows with n.
Consequently, xΣnx⊤ also shrinks as we get more samples n. This indicates a reduction in
uncertainty in our predictions as we get more data, in terms of identifying the best function
in our linear function class. If f∗ is in our linear function class, then eventually the mean
converges to f∗(x) and the interval shrinks to zero around this f∗(x).

To reason about this a bit more formally, let us define

Cn
.= 1
n

(X⊤X + λI) where X⊤X =
n∑

i=1
x⊤

i xi.

Notice that Cn → C def= E[XX⊤] as n → ∞ (as we get more and more data), where X is
the d-dimensional random variable for vector x ∈ Rd. Further, because we have λ > 0, we
know that Cn is invertible for each n. Therefore, assuming that C is invertible, we know
that xC−1

n x⊤ → cx as n→∞ for cx = xC−1x⊤. We can write Σn = n−1C−1
n , giving

xΣnx⊤ = x
(
n−1C−1

n

)
x⊤ = n−1

(
xC−1

n x⊤
)
→ 0.

Exercise 41: The above statement might need one more modifier: if f∗ is in our linear
function class, then eventually the mean converges to f∗(x) as long as the prior does not
put zero weight on the true weights w∗. Why is this the case? And is it possible in Bayesian
linear regression to pick a prior where p(w) = 0 for some w? □

15.3 The Nonlinear Setting & Gaussian Processes

Now we would like to get uncertainty estimates for nonlinear models. In other words, we
assume that Y = f∗(x)+ϵ where the true underlying function f∗ can be a nonlinear function

CHAPTER 15. UNCERTAINTY ESTIMATION AND BAYESIAN APPROACHES 135
An Intuitive Tutorial to Gaussian Processes Regression 2

(a) Data point observations (b) Five possible regression functions by GPR

Figure 1: A regression example: (a) The observed data points, (b) Five sample
functions that fit the observed data points.

Here, X represent random variables and x is the real argument. The normal distri-
bution of X is usually represented by PX(x) ⇠ N (µ, s2). The PDF of a uni-variate
normal (or Gaussian) distribution was plotted in Fig. 2. We randomly generated
1000 points from a uni-variate normal distribution and plotted them on the x axis.

Figure 2: One thousand normal distributed data points were plotted as red vertical
bars on the x axis. The PDF of these data points was plotted as a two-dimensional
bell curve.

These random generated data points can be expressed as a vector x1 = [x1
1, x2

1, . . . , xn
1].

By plotting the vector x1 on a new Y axis at Y = 0, we projected points [x1
1, x2

1, . . . , xn
1]

into another space shown in Fig. 3. We did nothing but vertically plot points of
the vector x1 in a new Y, x coordinates space. We can plot another independent

Figure 15.1: The distribution over plausible functions, given by Gaussian process regression.
The blue indicates the variability in the predictions given over this set of plausible functions,
with each colored line corresponding to one possible function. There is in fact a continuum
of possible functions, given by any lines within the blue region. This image is taken from
the nice tutorial by Jie Wang [29].

and we still assume we have zero-mean Gaussian noise ϵ ∼ N (0, σ2) for some (unknown)
σ2 > 0. As before, the simplest way to extend to the nonlinear setting is to first map x
to a new set of features ϕ(x) and then do Bayesian linear regression on ϕ(x). No further
changes are required. We can simply compute Σn = σy

2Λ−1 using Λ =
∑n

i=1 ϕ⊤
i ϕi + λI

and µn = Λ−1∑n
i=1 ϕ⊤

i yi where we define ϕi = ϕ(xi). Then we have that p(f(x)|D) is
N (ϕ(x)µn,ϕ(x)Σnϕ(x)⊤).

Exercise 42: Explicitly write the credible interval for the prediction f(x), assuming we
use these new features. □

Another direction is to use the kernel trick to extend to the nonlinear setting. We first
explain the kernel trick and then how to use it to get Gaussian Processes by kernelizing
Bayesian linear regression.

15.3.1 The Kernel Trick

In these notes we focus on the utility of kernels for representing functions. Our primary
goal is to allow for larger hypothesis spaces, and to understand representability. Kernels,
however, have also been popular in machine learning because of the property that they are
inner products. This property has allowed for reformulations of certain optimization with
a large number of features, with what is called the kernel trick.

Assume that you have features ψ(x) and would like to do linear regression. We formulate
the problem as

n∑
i=1

(ψ(xi)w− yi)2 = ∥Ψw− y∥22

where Ψ is composed of the vectors ψ(xi), one on each row. Consider an alternative set
of weights α ∈ Rn where we assume w = Ψ⊤α. Note that we can show that this does
not constrain the solution, because our solution is projected to the space spanned by Ψ;
therefore we know that w is in the span of Ψ, and so can be written as a linear combination

CHAPTER 15. UNCERTAINTY ESTIMATION AND BAYESIAN APPROACHES 136

of its rows. It is equivalent to directly optimize for α, and our predictions will simply be

ψ(x)w = ψ(x)Ψ⊤α

=
n∑

i=1
αi⟨ψ(x), ψ(xi)⟩

We can write this inner product as k(x,xi) = ⟨ψ(x), ψ(xi)⟩. For certain ψ, this inner
product has a simple closed-form solution, namely for the case where we have the kernel
function. For example, if the ψ are polynomial features, this dot-product evaluates to the
polynomial kernel. There are also underlying exponential features for the RBF kernel.1
Therefore, if we can efficiently compute this dot product—as we can for kernels and their
associated features spaces ψ—then it can actually be more efficient to instead solve the
equivalent optimization

∥Ψw− y∥22 = ∥ΨΨ⊤α− y∥22 = ∥Kα− y∥22

where K is the matrix composed of k(xi,xj) at the entry (i, j): Kij = k(xi,xj).

15.3.2 Kernelizing Bayesian Linear Regression

We expand up to a large number of features ϕ(x), and then reformulate so that we only
ever have ϕ(x)ϕ(x′)⊤. More precisely, we include the the prior parameter Λ0 into this
dot product to get a weighted dot product ϕ(x)Λ0ϕ(x′)⊤. This weighted dot product
corresponds to the kernel function k(x,x′). This is precisely what is done in Gaussian
Process Regression. We can visualize a GP in Figure 15.1, where there is a shaded region
of plausible function predictions, based on the dataset given by the red crosses.

The choice of Λ0 defines the width of the activation region for the kernel. For example, in
the standard radial basis function kernel, we typically use Λ0 = λI and have exp(−λ

2∥x −
x′∥22). We can think of λ−1 as the variance or the width. Smaller λ result in a wider
activation, so that x′ further from x still have non-negligible values k(x,x′). Bigger λ result
in a small width, and so only very nearby x′ have non-negligible activation. The choice of λ
for GPs ends up corresponding to the choice of width in the kernel, and is a hyperparameter
that needs to be tuned.

Now let us see how GPs maintain p(f(x)|D). We can start by examining the formula
and then discuss where it comes from. Let the dataset be composed of matrix X ∈ Rn×d

and targets y ∈ Rn. For any x, which need not be in the training set, let k(x,X) =
[k(x1,x), k(x2,x), . . . , k(xn,x)] be the vector of kernel (similarity) values between x and
each training datapoint xi. Let K = k(X,X) ∈ Rn×n be the kernel matrix for our training
dataset, where Kij = k(xi,xj). Then we have that

p(f(x)|D) = N
(
k(x,X)(K + σ2I)−1y, k(x,x)− k(x,X)(K + σ2I)−1k(x,X)⊤

)
(15.3)

1In fact, the ψ for the RBF kernel is actually infinite-dimensional. This is one of the motivations for
the kernel trick: the setting where the number of features is very large or even infinite. Such a large set of
features should be beneficial for modeling, but is expensive to use. The kernel trick allows us to implicitly
use such features, without paying the computational cost. Of course, we swap the cost of computing these
features with the cost of computing the kernel matrix for the whole dataset, which itself can be expensive.
As usual, nothing is free.

CHAPTER 15. UNCERTAINTY ESTIMATION AND BAYESIAN APPROACHES 137

ax_nn.set_xlabel('x')
ax_nn.set_ylabel('y')
ax_nn.set_ylim([ymin, ymax])

Plot the bootstrap samples
boot_ind = 0
axsboot[0,i].set_title(f'Resampled dataset (n={n})')
for xb, yb in nn_boots:

ax_boot = axsboot[boot_ind,i]
ax_boot.scatter(xb, yb, color='gray', alpha=0.4, zorder=2)
ax_boot.set_ylim([ymin, ymax])
boot_ind = boot_ind + 1
if boot_ind > 4:

break

plt.tight_layout()
plt.show()

4

Figure 15.2: An ensemble of 5 for a datasets of size 20 (left-hand side plot) and a dataset
of size 100 (right-hand side plot). The true data is generated from a neural network in the
same function class as the neural networks that are learned on the data.

This formula assumes we have σ2. Again, this is a hyperparameter that needs to be tuned
for the GP.

We can reason about why this formula makes sense by first considering the mean com-
ponent. Notice that w = (K + σ2I)−1y corresponds to the solution from kernel regression,
where σ2 is the regularization parameter for ℓ2 regularization. The term ϕ(x) = k(x,X)
is the new kernel features. Therefore, k(x,X,x)(K + σ2I)−1y = ϕ(x)w, which is precisely
the prediction given when we used the kernel trick in regression.

Obtaining the covariance term is a bit more complex. Conceptually, it is simple: we
simply need to do some algebra rearranging terms so that we always have ϕ(x) as a dot
product with another ϕ(x′). We do not go through these steps here; for these steps see
Equation 2.12 in [22].

15.4 Uncertainty Estimation for Neural Networks using En-
sembles

We use a different approach for uncertainty estimation with neural networks because obtain-
ing the posterior over parameters is much more difficult. If we could compute or easily sam-
ple from p(fw(x)|D) for our NN, then we could get intervals around our predictions fw(x).
However, it is computationally expensive to samples from this posterior, p(fw(x)|D). Re-
search around this is active, in a topic called Bayesian Neural Networks, but is insufficiently
mature to cover here.

Instead, we turn to ensembles, which is a generic idea that can be layered on top of any

CHAPTER 15. UNCERTAINTY ESTIMATION AND BAYESIAN APPROACHES 138

[]:

[]:

[]:

5

Figure 15.3: The resampled datasets used to train the functions in Figure 15.2.

learning algorithm. The idea is to simulate different weights that we could have learned,
if we had seen different data. Recall that our uncertainty stems from the fact that we
have only one (limited) dataset. Potentially, if we had seen a different dataset, we would
make a different prediction for x. In an ideal scenario, we could get m different datasets
of size n, estimate w1, . . . ,wm from those datasets D1, . . . ,Dm and observe the spread in
their predictions. For example, for a given point x, we would query the m neural networks
ŷ1

.= fw1(x), . . . , ŷm
.= fwm(x) and could observe the spread in predictions. We could

compute a mean µ = 1
m

∑m
k=1 ŷk and 95% confidence interval v over ŷ1, . . . , ŷm to get our

uncertainty [µ− v, µ+ v]. But, we do not get m datasets, so what do we do?
The idea behind ensembles is to treat your one dataset D as an empirical distribution

and resample from it. This is called bootstrap resampling in statistics. We sample n from D,
with replacement, to create D1, and repeat this process m times to get our m datasets. Then
we train m neural networks independently on each dataset. We could also have taken this
approach for the linear setting, instead of using Bayesian linear regression, and can use it
to get uncertainty estimates for our other generalized linear models (GLMs). With neural
networks, the diversity of the ensemble is both affected by the dataset and the random
initializations to the networks, which might result in different local minima. With linear
models, the diversity of the ensemble is strictly from seeing different datasets.2 The use

2Note that for neural networks it has been observed that the random initialization already provides
sufficient diversity, and it is not necessary (or even at times harmful) to resample different datasets [?]. This

CHAPTER 15. UNCERTAINTY ESTIMATION AND BAYESIAN APPROACHES 139

of ensembles for uncertainty estimation is depicted in Figure 15.2, with the corresponding
resampled datasets in Figure 15.3.

The primary benefits of using ensembles is the simplicity of the approach, but there are
some downsides. One is that a large ensemble may be needed to get effective uncertainty
estimates, which can be expensive. Training one neural network can be expensive, let alone
m of them. Another issue is that the ensemble can often be an underestimate of uncertainty,
primarily if our dataset D is small.

approach is unprincipled, and so we do not advocate for it here.

Chapter 16

Learning on Temporal Data

Most real world problems have data with temporal dependencies. We see a sequence of
observations x1,x2, . . . ,xt, such as the weather information for a city measured every 10
minutes or camera snapshots from a self-driving car. For the self-driving car, we may want
to predict the presence and locations of objects in the image (e.g., pedestrians) within the
next 10 seconds. For weather, we may want to predict (forecast) the weather in the next
10 minutes, next hour and next day, multiple steps into the future.

In this setting, we no longer have i.i.d. data, and need to consider new learning strate-
gies. Our goals will still be to learn accurate (nonlinear) predictors or generative models,
potentially in the presence of missing data. But now we will need to condition on histories
of observations, to make accurate predictions, as we will discuss in Section 16.1. Further,
when using mini-batch SGD updating, we need to ensure we preserve the temporal structure
when shuffling our updates.

This problem setting might seem more complicated, but actually in some ways is benefi-
cial. Once we have temporal data, we can actually overcome some of the partial observabil-
ity arising from our limited measurements and sensing. Consider for example having one
snapshot of a frisbee flying from your window. It would be difficult to make an accurate
prediction of which direction it is going or its speed. With a sequence of snapshots, it is
easy to predict its direction, its speed and where the frisbee will be next. Sequences give
us more context to make predictions, and in this chapter you will see algorithms that can
use such sequences.

16.1 Conditioning on History

Assume we have a sequence x1,x2, . . . ,xt. For example, xi could be a vector describing
the weather in Edmonton, consisting of the current temperature, humidity, precipitation
amount, and wind speed. These xi could be measured every ten minutes, with x1 the
information on July 1, 9 am, x2 the information on July 1, 9:10 am, and so on. Once we
observe xt, we may want to predict xt+1 (all four pieces of weather info in 10 minutes), or
xt+10 (all four pieces of weather info in 100 minutes) or just the temperature at some point(s)
in the future. We can set yt to be any of these targets, given context xt,xt−1, . . . ,x1.

There are two common scenarios: using a fixed-length window for the context and using
the whole history. For the first, we effectively turn our temporal problem into a standard
supervised problem. Assume we pick a context length back in time of length p. We create

140

CHAPTER 16. LEARNING ON TEMPORAL DATA 141

<latexit sha1_base64="zuHAGwio9h3kS1ozUi170azPhus=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lEqseiF48V7AekoWy2m3bpZjfsTsQS8jO8eFDEq7/Gm//GbZuDtj4YeLw3w8y8MBHcgOt+O6W19Y3NrfJ2ZWd3b/+genjUMSrVlLWpEkr3QmKY4JK1gYNgvUQzEoeCdcPJ7czvPjJtuJIPME1YEJOR5BGnBKzkZ/0wwk/5IIN8UK25dXcOvEq8gtRQgdag+tUfKprGTAIVxBjfcxMIMqKBU8HySj81LCF0QkbMt1SSmJkgm5+c4zOrDHGktC0JeK7+nshIbMw0Dm1nTGBslr2Z+J/npxBdBxmXSQpM0sWiKBUYFJ79j4dcMwpiagmhmttbMR0TTSjYlCo2BG/55VXSuah7jXrj/rLWvCniKKMTdIrOkYeuUBPdoRZqI4oUekav6M0B58V5dz4WrSWnmDlGf+B8/gCLmJFy</latexit>xt

<latexit sha1_base64="flwHT6PubwZrm0iKvC2Nel5iKEI=">AAAB8nicdVDLSsNAFJ3UV62vqks3g0VwVRIfte6KblxWsA9IQ5lMJ+3QSSbM3Agl5DPcuFDErV/jzr9xmkZQ0QMXDufcy733+LHgGmz7wyotLa+srpXXKxubW9s71d29rpaJoqxDpZCq7xPNBI9YBzgI1o8VI6EvWM+fXs/93j1TmsvoDmYx80IyjnjAKQEjuenAD7DOhilkw2rNrp/bzmXDxnbdzpGTpnPqYKdQaqhAe1h9H4wkTUIWARVEa9exY/BSooBTwbLKINEsJnRKxsw1NCIh016an5zhI6OMcCCVqQhwrn6fSEmo9Sz0TWdIYKJ/e3PxL89NIGh6KY/iBFhEF4uCRGCQeP4/HnHFKIiZIYQqbm7FdEIUoWBSqpgQvj7F/5PuSd1p1Bu3Z7XWVRFHGR2gQ3SMHHSBWugGtVEHUSTRA3pCzxZYj9aL9bpoLVnFzD76AevtE7VkkY8=</latexit>st

�
<latexit sha1_base64="GSbb3S4yzDl5YXQFsQHacLzkEkA=">AAAB8nicdVDLSsNAFJ3UV62vqks3g0VwVRLxuSu6cVnBPiAJZTKdtEMnM2HmRiihn+HGhSJu/Rp3/o3TNkIVPXDhcM693HtPlApuwHU/ndLS8srqWnm9srG5tb1T3d1rG5VpylpUCaW7ETFMcMlawEGwbqoZSSLBOtHoZup3Hpg2XMl7GKcsTMhA8phTAlby8yCKcRAxIJNetebW3RnwAjlzvatzD3uFUkMFmr3qR9BXNEuYBCqIMb7nphDmRAOngk0qQWZYSuiIDJhvqSQJM2E+O3mCj6zSx7HStiTgmbo4kZPEmHES2c6EwND89qbiX56fQXwZ5lymGTBJ54viTGBQePo/7nPNKIixJYRqbm/FdEg0oWBTqtgQvj/F/5P2Sd1z697daa1xXcRRRgfoEB0jD12gBrpFTdRCFCn0iJ7RiwPOk/PqvM1bS04xs49+wHn/AjRhkTI=</latexit><latexit sha1_base64="GSbb3S4yzDl5YXQFsQHacLzkEkA=">AAAB8nicdVDLSsNAFJ3UV62vqks3g0VwVRLxuSu6cVnBPiAJZTKdtEMnM2HmRiihn+HGhSJu/Rp3/o3TNkIVPXDhcM693HtPlApuwHU/ndLS8srqWnm9srG5tb1T3d1rG5VpylpUCaW7ETFMcMlawEGwbqoZSSLBOtHoZup3Hpg2XMl7GKcsTMhA8phTAlby8yCKcRAxIJNetebW3RnwAjlzvatzD3uFUkMFmr3qR9BXNEuYBCqIMb7nphDmRAOngk0qQWZYSuiIDJhvqSQJM2E+O3mCj6zSx7HStiTgmbo4kZPEmHES2c6EwND89qbiX56fQXwZ5lymGTBJ54viTGBQePo/7nPNKIixJYRqbm/FdEg0oWBTqtgQvj/F/5P2Sd1z697daa1xXcRRRgfoEB0jD12gBrpFTdRCFCn0iJ7RiwPOk/PqvM1bS04xs49+wHn/AjRhkTI=</latexit><latexit sha1_base64="GSbb3S4yzDl5YXQFsQHacLzkEkA=">AAAB8nicdVDLSsNAFJ3UV62vqks3g0VwVRLxuSu6cVnBPiAJZTKdtEMnM2HmRiihn+HGhSJu/Rp3/o3TNkIVPXDhcM693HtPlApuwHU/ndLS8srqWnm9srG5tb1T3d1rG5VpylpUCaW7ETFMcMlawEGwbqoZSSLBOtHoZup3Hpg2XMl7GKcsTMhA8phTAlby8yCKcRAxIJNetebW3RnwAjlzvatzD3uFUkMFmr3qR9BXNEuYBCqIMb7nphDmRAOngk0qQWZYSuiIDJhvqSQJM2E+O3mCj6zSx7HStiTgmbo4kZPEmHES2c6EwND89qbiX56fQXwZ5lymGTBJ54viTGBQePo/7nPNKIixJYRqbm/FdEg0oWBTqtgQvj/F/5P2Sd1z697daa1xXcRRRgfoEB0jD12gBrpFTdRCFCn0iJ7RiwPOk/PqvM1bS04xs49+wHn/AjRhkTI=</latexit><latexit sha1_base64="GSbb3S4yzDl5YXQFsQHacLzkEkA=">AAAB8nicdVDLSsNAFJ3UV62vqks3g0VwVRLxuSu6cVnBPiAJZTKdtEMnM2HmRiihn+HGhSJu/Rp3/o3TNkIVPXDhcM693HtPlApuwHU/ndLS8srqWnm9srG5tb1T3d1rG5VpylpUCaW7ETFMcMlawEGwbqoZSSLBOtHoZup3Hpg2XMl7GKcsTMhA8phTAlby8yCKcRAxIJNetebW3RnwAjlzvatzD3uFUkMFmr3qR9BXNEuYBCqIMb7nphDmRAOngk0qQWZYSuiIDJhvqSQJM2E+O3mCj6zSx7HStiTgmbo4kZPEmHES2c6EwND89qbiX56fQXwZ5lymGTBJ54viTGBQePo/7nPNKIixJYRqbm/FdEg0oWBTqtgQvj/F/5P2Sd1z697daa1xXcRRRgfoEB0jD12gBrpFTdRCFCn0iJ7RiwPOk/PqvM1bS04xs49+wHn/AjRhkTI=</latexit>

<latexit sha1_base64="Np9CSTYAtKAmNq4ADpPLGzYHSgw=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lEqseiF48V7AekoWy2m3bpZjfsToQQ8jO8eFDEq7/Gm//GbZuDVh8MPN6bYWZemAhuwHW/nMra+sbmVnW7trO7t39QPzzqGZVqyrpUCaUHITFMcMm6wEGwQaIZiUPB+uHsdu73H5k2XMkHyBIWxGQiecQpASv5wymBPCtGORSjesNtugvgv8QrSQOV6Izqn8OxomnMJFBBjPE9N4EgJxo4FayoDVPDEkJnZMJ8SyWJmQnyxckFPrPKGEdK25KAF+rPiZzExmRxaDtjAlOz6s3F/zw/heg6yLlMUmCSLhdFqcCg8Px/POaaURCZJYRqbm/FdEo0oWBTqtkQvNWX/5LeRdNrNVv3l432TRlHFZ2gU3SOPHSF2ugOdVAXUaTQE3pBrw44z86b875srTjlzDH6BefjGw+2kcg=</latexit>

ŷt

<latexit sha1_base64="zuHAGwio9h3kS1ozUi170azPhus=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lEqseiF48V7AekoWy2m3bpZjfsTsQS8jO8eFDEq7/Gm//GbZuDtj4YeLw3w8y8MBHcgOt+O6W19Y3NrfJ2ZWd3b/+genjUMSrVlLWpEkr3QmKY4JK1gYNgvUQzEoeCdcPJ7czvPjJtuJIPME1YEJOR5BGnBKzkZ/0wwk/5IIN8UK25dXcOvEq8gtRQgdag+tUfKprGTAIVxBjfcxMIMqKBU8HySj81LCF0QkbMt1SSmJkgm5+c4zOrDHGktC0JeK7+nshIbMw0Dm1nTGBslr2Z+J/npxBdBxmXSQpM0sWiKBUYFJ79j4dcMwpiagmhmttbMR0TTSjYlCo2BG/55VXSuah7jXrj/rLWvCniKKMTdIrOkYeuUBPdoRZqI4oUekav6M0B58V5dz4WrSWnmDlGf+B8/gCLmJFy</latexit>xt

<latexit sha1_base64="jpDhfZ2SAMX+1kC92cVY6lOe8xM=">AAAB7nicdVBNS8NAEN34WetX1aOXxSJ4CpvWpu2t6MVjBdsU2lA22027dLMJuxuhhP4ILx4U8erv8ea/cdNWUNEHA4/3ZpiZFyScKY3Qh7W2vrG5tV3YKe7u7R8clo6OuypOJaEdEvNY9gKsKGeCdjTTnPYSSXEUcOoF0+vc9+6pVCwWd3qWUD/CY8FCRrA2kpcNghB682GpjGzk1ppVBJFdQ0692TQEIbdRrUDHkBxlsEJ7WHofjGKSRlRowrFSfQcl2s+w1IxwOi8OUkUTTKZ4TPuGChxR5WeLc+fw3CgjGMbSlNBwoX6fyHCk1CwKTGeE9UT99nLxL6+f6rDhZ0wkqaaCLBeFKYc6hvnvcMQkJZrPDMFEMnMrJBMsMdEmoaIJ4etT+D/pVmzHtd3by3LrahVHAZyCM3ABHFAHLXAD2qADCJiCB/AEnq3EerRerNdl65q1mjkBP2C9fQJqH4+n</latexit>

W

<latexit sha1_base64="vTdZMoxYrmAK79dS8pIZ9o/8/04=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgxbArEj0GvXiMYB6QLGF2MpsMmX040xsIy36HFw+KePVjvPk3TpI9aGJBQ1HVTXeXF0uh0ba/rcLa+sbmVnG7tLO7t39QPjxq6ShRjDdZJCPV8ajmUoS8iQIl78SK08CTvO2N72Z+e8KVFlH4iNOYuwEdhsIXjKKR3LTn+URn/RQvnKxfrthVew6ySpycVCBHo1/+6g0ilgQ8RCap1l3HjtFNqULBJM9KvUTzmLIxHfKuoSENuHbT+dEZOTPKgPiRMhUimau/J1IaaD0NPNMZUBzpZW8m/ud1E/Rv3FSEcYI8ZItFfiIJRmSWABkIxRnKqSGUKWFuJWxEFWVociqZEJzll1dJ67Lq1Kq1h6tK/TaPowgncArn4MA11OEeGtAEBk/wDK/wZk2sF+vd+li0Fqx85hj+wPr8AWTpkd8=</latexit>st→1
<latexit sha1_base64="flwHT6PubwZrm0iKvC2Nel5iKEI=">AAAB8nicdVDLSsNAFJ3UV62vqks3g0VwVRIfte6KblxWsA9IQ5lMJ+3QSSbM3Agl5DPcuFDErV/jzr9xmkZQ0QMXDufcy733+LHgGmz7wyotLa+srpXXKxubW9s71d29rpaJoqxDpZCq7xPNBI9YBzgI1o8VI6EvWM+fXs/93j1TmsvoDmYx80IyjnjAKQEjuenAD7DOhilkw2rNrp/bzmXDxnbdzpGTpnPqYKdQaqhAe1h9H4wkTUIWARVEa9exY/BSooBTwbLKINEsJnRKxsw1NCIh016an5zhI6OMcCCVqQhwrn6fSEmo9Sz0TWdIYKJ/e3PxL89NIGh6KY/iBFhEF4uCRGCQeP4/HnHFKIiZIYQqbm7FdEIUoWBSqpgQvj7F/5PuSd1p1Bu3Z7XWVRFHGR2gQ3SMHHSBWugGtVEHUSTRA3pCzxZYj9aL9bpoLVnFzD76AevtE7VkkY8=</latexit>st

�
<latexit sha1_base64="GSbb3S4yzDl5YXQFsQHacLzkEkA=">AAAB8nicdVDLSsNAFJ3UV62vqks3g0VwVRLxuSu6cVnBPiAJZTKdtEMnM2HmRiihn+HGhSJu/Rp3/o3TNkIVPXDhcM693HtPlApuwHU/ndLS8srqWnm9srG5tb1T3d1rG5VpylpUCaW7ETFMcMlawEGwbqoZSSLBOtHoZup3Hpg2XMl7GKcsTMhA8phTAlby8yCKcRAxIJNetebW3RnwAjlzvatzD3uFUkMFmr3qR9BXNEuYBCqIMb7nphDmRAOngk0qQWZYSuiIDJhvqSQJM2E+O3mCj6zSx7HStiTgmbo4kZPEmHES2c6EwND89qbiX56fQXwZ5lymGTBJ54viTGBQePo/7nPNKIixJYRqbm/FdEg0oWBTqtgQvj/F/5P2Sd1z697daa1xXcRRRgfoEB0jD12gBrpFTdRCFCn0iJ7RiwPOk/PqvM1bS04xs49+wHn/AjRhkTI=</latexit><latexit sha1_base64="GSbb3S4yzDl5YXQFsQHacLzkEkA=">AAAB8nicdVDLSsNAFJ3UV62vqks3g0VwVRLxuSu6cVnBPiAJZTKdtEMnM2HmRiihn+HGhSJu/Rp3/o3TNkIVPXDhcM693HtPlApuwHU/ndLS8srqWnm9srG5tb1T3d1rG5VpylpUCaW7ETFMcMlawEGwbqoZSSLBOtHoZup3Hpg2XMl7GKcsTMhA8phTAlby8yCKcRAxIJNetebW3RnwAjlzvatzD3uFUkMFmr3qR9BXNEuYBCqIMb7nphDmRAOngk0qQWZYSuiIDJhvqSQJM2E+O3mCj6zSx7HStiTgmbo4kZPEmHES2c6EwND89qbiX56fQXwZ5lymGTBJ54viTGBQePo/7nPNKIixJYRqbm/FdEg0oWBTqtgQvj/F/5P2Sd1z697daa1xXcRRRgfoEB0jD12gBrpFTdRCFCn0iJ7RiwPOk/PqvM1bS04xs49+wHn/AjRhkTI=</latexit><latexit sha1_base64="GSbb3S4yzDl5YXQFsQHacLzkEkA=">AAAB8nicdVDLSsNAFJ3UV62vqks3g0VwVRLxuSu6cVnBPiAJZTKdtEMnM2HmRiihn+HGhSJu/Rp3/o3TNkIVPXDhcM693HtPlApuwHU/ndLS8srqWnm9srG5tb1T3d1rG5VpylpUCaW7ETFMcMlawEGwbqoZSSLBOtHoZup3Hpg2XMl7GKcsTMhA8phTAlby8yCKcRAxIJNetebW3RnwAjlzvatzD3uFUkMFmr3qR9BXNEuYBCqIMb7nphDmRAOngk0qQWZYSuiIDJhvqSQJM2E+O3mCj6zSx7HStiTgmbo4kZPEmHES2c6EwND89qbiX56fQXwZ5lymGTBJ54viTGBQePo/7nPNKIixJYRqbm/FdEg0oWBTqtgQvj/F/5P2Sd1z697daa1xXcRRRgfoEB0jD12gBrpFTdRCFCn0iJ7RiwPOk/PqvM1bS04xs49+wHn/AjRhkTI=</latexit><latexit sha1_base64="GSbb3S4yzDl5YXQFsQHacLzkEkA=">AAAB8nicdVDLSsNAFJ3UV62vqks3g0VwVRLxuSu6cVnBPiAJZTKdtEMnM2HmRiihn+HGhSJu/Rp3/o3TNkIVPXDhcM693HtPlApuwHU/ndLS8srqWnm9srG5tb1T3d1rG5VpylpUCaW7ETFMcMlawEGwbqoZSSLBOtHoZup3Hpg2XMl7GKcsTMhA8phTAlby8yCKcRAxIJNetebW3RnwAjlzvatzD3uFUkMFmr3qR9BXNEuYBCqIMb7nphDmRAOngk0qQWZYSuiIDJhvqSQJM2E+O3mCj6zSx7HStiTgmbo4kZPEmHES2c6EwND89qbiX56fQXwZ5lymGTBJ54viTGBQePo/7nPNKIixJYRqbm/FdEg0oWBTqtgQvj/F/5P2Sd1z697daa1xXcRRRgfoEB0jD12gBrpFTdRCFCn0iJ7RiwPOk/PqvM1bS04xs49+wHn/AjRhkTI=</latexit>

<latexit sha1_base64="Np9CSTYAtKAmNq4ADpPLGzYHSgw=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lEqseiF48V7AekoWy2m3bpZjfsToQQ8jO8eFDEq7/Gm//GbZuDVh8MPN6bYWZemAhuwHW/nMra+sbmVnW7trO7t39QPzzqGZVqyrpUCaUHITFMcMm6wEGwQaIZiUPB+uHsdu73H5k2XMkHyBIWxGQiecQpASv5wymBPCtGORSjesNtugvgv8QrSQOV6Izqn8OxomnMJFBBjPE9N4EgJxo4FayoDVPDEkJnZMJ8SyWJmQnyxckFPrPKGEdK25KAF+rPiZzExmRxaDtjAlOz6s3F/zw/heg6yLlMUmCSLhdFqcCg8Px/POaaURCZJYRqbm/FdEo0oWBTqtkQvNWX/5LeRdNrNVv3l432TRlHFZ2gU3SOPHSF2ugOdVAXUaTQE3pBrw44z86b875srTjlzDH6BefjGw+2kcg=</latexit>

ŷt

<latexit sha1_base64="4HKaWUjoi6PDdnIUZxazrFTXw8c=">AAAB8HicdVBNTwIxEO3iF+IX6tFLIzHxtOmCLHAjevGIiQgGNqRbutDQ7m7arpFs+BVePGiMV3+ON/+NXcBEjb5kkpf3ZjIzz485UxqhDyu3srq2vpHfLGxt7+zuFfcPblSUSELbJOKR7PpYUc5C2tZMc9qNJcXC57TjTy4yv3NHpWJReK2nMfUEHoUsYARrI92mfT+AndngflAsIRu51UYFQWRXkVNrNAxByK1XytAxJEMJLNEaFN/7w4gkgoaacKxUz0Gx9lIsNSOczgr9RNEYkwke0Z6hIRZUeen84Bk8McoQBpE0FWo4V79PpFgoNRW+6RRYj9VvLxP/8nqJDupeysI40TQki0VBwqGOYPY9HDJJieZTQzCRzNwKyRhLTLTJqGBC+PoU/k9uyrbj2u7VWal5vowjD47AMTgFDqiBJrgELdAGBAjwAJ7AsyWtR+vFel205qzlzCH4AevtE/9xkJI=</latexit>

Wx

<latexit sha1_base64="1v0pOK132uhXJJZzN+cjtsi+OTQ=">AAACG3icbZDLSgMxFIYzXmu9jbp0EyyCCymZ1k7bXdGNywr2Au1QMmmmDc1cSDJCGeY93Pgqblwo4kpw4duYabvQ1gOBj/8/Jzn53YgzqRD6NtbWNza3tnM7+d29/YND8+i4LcNYENoiIQ9F18WSchbQlmKK024kKPZdTjvu5CbzOw9USBYG92oaUcfHo4B5jGClpYFZSvqzS3pi5DoJKiK7Ui+jS1SsIKtar2tAyK6VS2nSdz3YSQcyHZiFTM0KroK1gAJYVHNgfvaHIYl9GijCsZQ9C0XKSbBQjHCa5vuxpBEmEzyiPY0B9ql0ktlaKTzXyhB6odAnUHCm/p5IsC/l1Hd1p4/VWC57mfif14uVV3MSFkSxogGZP+TFHKoQZkHBIROUKD7VgIlgeldIxlhgonSceR2CtfzlVWiXipZdtO+uCo3rRRw5cArOwAWwQBU0wC1oghYg4BE8g1fwZjwZL8a78TFvXTMWMyfgTxlfP8hUnYg=</latexit>

Ws

Figure 16.1: Two different ways to view a simple RNN, with st+1 = ReLU(stWs +xt+1Wx)
and ŷt = stβ. The first image unrolls one step, showing the previous state and the most
recent observation being input into the neural network. The second shows this recurrent
relationship with a self-arrow.

a new dataset consisting of samples

(x̃1 = [x1,x2, . . . ,xp], ỹ1 = yp)
(x̃2 = [x2,x2, . . . ,xp+1], ỹ2 = yp+1)
. . .

(x̃n−p+1 = [xn−p+1,xn−p+2, . . . ,xn], ỹn−p+1 = yn)

We then use this new dataset with any learning algorithm, for example we can train a
multilayer neural network.

The key issue with this approach is that we are limited to fixed length histories p. But,
dependencies might go further back-in-time. For example, if we are generating the next
word for a paragraph, we may want to have dependencies back to the very beginning of the
paragraph or even document. We would have to pick a very large p. Further, in some cases,
we need to look further back-in-time, and for others recent information is enough. With a
fixed p, we likely need to pick a very large p to cover both cases. Instead, we want to be
able to handle variable-length dependencies back-in-time, which is exactly what recurrent
neural networks do, described in the next section.

16.2 Recurrent Neural Networks

A recurrent neural network (RNN) builds a fixed-size, compact summary s of the history.
It does so by updating s recursively

st+1 = f(st,xt+1)

We sometimes call f the state-update function, because the st can be seen as a hidden state
that the RNN is inferring from the history of observations xi. A typical, simple variant of

CHAPTER 16. LEARNING ON TEMPORAL DATA 142

<latexit sha1_base64="ogju7IV40yAE7IO60lTsJzH6WDE=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEQSxJkeqy6MZlhb6gDWEynbRDJw9mJmIN+RI3LhRx66e482+ctllo64ELh3Pu5d57vJgzqSzr2yisrW9sbhW3Szu7e/tl8+CwI6NEENomEY9Ez8OSchbStmKK014sKA48Trve5Hbmdx+okCwKW2oaUyfAo5D5jGClJdcspwPPR4+Zm6qL1nktc82KVbXmQKvEzkkFcjRd82swjEgS0FARjqXs21asnBQLxQinWWmQSBpjMsEj2tc0xAGVTjo/PEOnWhkiPxK6QoXm6u+JFAdSTgNPdwZYjeWyNxP/8/qJ8q+dlIVxomhIFov8hCMVoVkKaMgEJYpPNcFEMH0rImMsMFE6q5IOwV5+eZV0alW7Xq3fX1YaN3kcRTiGEzgDG66gAXfQhDYQSOAZXuHNeDJejHfjY9FaMPKZI/gD4/MH+g+SqQ==</latexit>xt→T+2
<latexit sha1_base64="KYqkPzGP0IBObCnGtCZk8r7mKqI=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEQSyJSnVZdOOyQl/QhjCZTtqhkwczE7GGfIkbF4q49VPc+TdO2yy09cCFwzn3cu89XsyZVJb1bRRWVtfWN4qbpa3tnd2yubffllEiCG2RiEei62FJOQtpSzHFaTcWFAcepx1vfDv1Ow9USBaFTTWJqRPgYch8RrDSkmuW077no8fMTdVZ8/Qic82KVbVmQMvEzkkFcjRc86s/iEgS0FARjqXs2VasnBQLxQinWamfSBpjMsZD2tM0xAGVTjo7PEPHWhkgPxK6QoVm6u+JFAdSTgJPdwZYjeSiNxX/83qJ8q+dlIVxomhI5ov8hCMVoWkKaMAEJYpPNMFEMH0rIiMsMFE6q5IOwV58eZm0z6t2rVq7v6zUb/I4inAIR3ACNlxBHe6gAS0gkMAzvMKb8WS8GO/Gx7y1YOQzB/AHxucP+5SSqg==</latexit>xt→T+3

<latexit sha1_base64="zuHAGwio9h3kS1ozUi170azPhus=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lEqseiF48V7AekoWy2m3bpZjfsTsQS8jO8eFDEq7/Gm//GbZuDtj4YeLw3w8y8MBHcgOt+O6W19Y3NrfJ2ZWd3b/+genjUMSrVlLWpEkr3QmKY4JK1gYNgvUQzEoeCdcPJ7czvPjJtuJIPME1YEJOR5BGnBKzkZ/0wwk/5IIN8UK25dXcOvEq8gtRQgdag+tUfKprGTAIVxBjfcxMIMqKBU8HySj81LCF0QkbMt1SSmJkgm5+c4zOrDHGktC0JeK7+nshIbMw0Dm1nTGBslr2Z+J/npxBdBxmXSQpM0sWiKBUYFJ79j4dcMwpiagmhmttbMR0TTSjYlCo2BG/55VXSuah7jXrj/rLWvCniKKMTdIrOkYeuUBPdoRZqI4oUekav6M0B58V5dz4WrSWnmDlGf+B8/gCLmJFy</latexit>xt

W
<latexit sha1_base64="z1C4KsFeDu+lbljZ7O0z021Qn+U=">AAAB7nicdVDLSgNBEOz1GeMr6tHLYBA8hdnEvG5BLx4jmGwgWcLsZDYZMvtgZlYISz7CiwdFvPo93vwbZ5MIKlrQUFR1093lxYIrjfGHtba+sbm1ndvJ7+7tHxwWjo67KkokZR0aiUj2PKKY4CHraK4F68WSkcATzPGm15nv3DOpeBTe6VnM3ICMQ+5zSrSRnHTg+ciZDwtFXMK1arOCES5VsV1vNg3BuNaolJFtSIYirNAeFt4Ho4gmAQs1FUSpvo1j7aZEak4Fm+cHiWIxoVMyZn1DQxIw5aaLc+fo3Cgj5EfSVKjRQv0+kZJAqVngmc6A6In67WXiX14/0X7DTXkYJ5qFdLnITwTSEcp+RyMuGdViZgihkptbEZ0QSag2CeVNCF+fov9Jt1yyccm+vSy2rlZx5OAUzuACbKhDC26gDR2gMIUHeIJnK7YerRfrddm6Zq1mTuAHrLdPZo2PnA==</latexit><latexit sha1_base64="z1C4KsFeDu+lbljZ7O0z021Qn+U=">AAAB7nicdVDLSgNBEOz1GeMr6tHLYBA8hdnEvG5BLx4jmGwgWcLsZDYZMvtgZlYISz7CiwdFvPo93vwbZ5MIKlrQUFR1093lxYIrjfGHtba+sbm1ndvJ7+7tHxwWjo67KkokZR0aiUj2PKKY4CHraK4F68WSkcATzPGm15nv3DOpeBTe6VnM3ICMQ+5zSrSRnHTg+ciZDwtFXMK1arOCES5VsV1vNg3BuNaolJFtSIYirNAeFt4Ho4gmAQs1FUSpvo1j7aZEak4Fm+cHiWIxoVMyZn1DQxIw5aaLc+fo3Cgj5EfSVKjRQv0+kZJAqVngmc6A6In67WXiX14/0X7DTXkYJ5qFdLnITwTSEcp+RyMuGdViZgihkptbEZ0QSag2CeVNCF+fov9Jt1yyccm+vSy2rlZx5OAUzuACbKhDC26gDR2gMIUHeIJnK7YerRfrddm6Zq1mTuAHrLdPZo2PnA==</latexit><latexit sha1_base64="z1C4KsFeDu+lbljZ7O0z021Qn+U=">AAAB7nicdVDLSgNBEOz1GeMr6tHLYBA8hdnEvG5BLx4jmGwgWcLsZDYZMvtgZlYISz7CiwdFvPo93vwbZ5MIKlrQUFR1093lxYIrjfGHtba+sbm1ndvJ7+7tHxwWjo67KkokZR0aiUj2PKKY4CHraK4F68WSkcATzPGm15nv3DOpeBTe6VnM3ICMQ+5zSrSRnHTg+ciZDwtFXMK1arOCES5VsV1vNg3BuNaolJFtSIYirNAeFt4Ho4gmAQs1FUSpvo1j7aZEak4Fm+cHiWIxoVMyZn1DQxIw5aaLc+fo3Cgj5EfSVKjRQv0+kZJAqVngmc6A6In67WXiX14/0X7DTXkYJ5qFdLnITwTSEcp+RyMuGdViZgihkptbEZ0QSag2CeVNCF+fov9Jt1yyccm+vSy2rlZx5OAUzuACbKhDC26gDR2gMIUHeIJnK7YerRfrddm6Zq1mTuAHrLdPZo2PnA==</latexit><latexit sha1_base64="z1C4KsFeDu+lbljZ7O0z021Qn+U=">AAAB7nicdVDLSgNBEOz1GeMr6tHLYBA8hdnEvG5BLx4jmGwgWcLsZDYZMvtgZlYISz7CiwdFvPo93vwbZ5MIKlrQUFR1093lxYIrjfGHtba+sbm1ndvJ7+7tHxwWjo67KkokZR0aiUj2PKKY4CHraK4F68WSkcATzPGm15nv3DOpeBTe6VnM3ICMQ+5zSrSRnHTg+ciZDwtFXMK1arOCES5VsV1vNg3BuNaolJFtSIYirNAeFt4Ho4gmAQs1FUSpvo1j7aZEak4Fm+cHiWIxoVMyZn1DQxIw5aaLc+fo3Cgj5EfSVKjRQv0+kZJAqVngmc6A6In67WXiX14/0X7DTXkYJ5qFdLnITwTSEcp+RyMuGdViZgihkptbEZ0QSag2CeVNCF+fov9Jt1yyccm+vSy2rlZx5OAUzuACbKhDC26gDR2gMIUHeIJnK7YerRfrddm6Zq1mTuAHrLdPZo2PnA==</latexit>

W
<latexit sha1_base64="z1C4KsFeDu+lbljZ7O0z021Qn+U=">AAAB7nicdVDLSgNBEOz1GeMr6tHLYBA8hdnEvG5BLx4jmGwgWcLsZDYZMvtgZlYISz7CiwdFvPo93vwbZ5MIKlrQUFR1093lxYIrjfGHtba+sbm1ndvJ7+7tHxwWjo67KkokZR0aiUj2PKKY4CHraK4F68WSkcATzPGm15nv3DOpeBTe6VnM3ICMQ+5zSrSRnHTg+ciZDwtFXMK1arOCES5VsV1vNg3BuNaolJFtSIYirNAeFt4Ho4gmAQs1FUSpvo1j7aZEak4Fm+cHiWIxoVMyZn1DQxIw5aaLc+fo3Cgj5EfSVKjRQv0+kZJAqVngmc6A6In67WXiX14/0X7DTXkYJ5qFdLnITwTSEcp+RyMuGdViZgihkptbEZ0QSag2CeVNCF+fov9Jt1yyccm+vSy2rlZx5OAUzuACbKhDC26gDR2gMIUHeIJnK7YerRfrddm6Zq1mTuAHrLdPZo2PnA==</latexit><latexit sha1_base64="z1C4KsFeDu+lbljZ7O0z021Qn+U=">AAAB7nicdVDLSgNBEOz1GeMr6tHLYBA8hdnEvG5BLx4jmGwgWcLsZDYZMvtgZlYISz7CiwdFvPo93vwbZ5MIKlrQUFR1093lxYIrjfGHtba+sbm1ndvJ7+7tHxwWjo67KkokZR0aiUj2PKKY4CHraK4F68WSkcATzPGm15nv3DOpeBTe6VnM3ICMQ+5zSrSRnHTg+ciZDwtFXMK1arOCES5VsV1vNg3BuNaolJFtSIYirNAeFt4Ho4gmAQs1FUSpvo1j7aZEak4Fm+cHiWIxoVMyZn1DQxIw5aaLc+fo3Cgj5EfSVKjRQv0+kZJAqVngmc6A6In67WXiX14/0X7DTXkYJ5qFdLnITwTSEcp+RyMuGdViZgihkptbEZ0QSag2CeVNCF+fov9Jt1yyccm+vSy2rlZx5OAUzuACbKhDC26gDR2gMIUHeIJnK7YerRfrddm6Zq1mTuAHrLdPZo2PnA==</latexit><latexit sha1_base64="z1C4KsFeDu+lbljZ7O0z021Qn+U=">AAAB7nicdVDLSgNBEOz1GeMr6tHLYBA8hdnEvG5BLx4jmGwgWcLsZDYZMvtgZlYISz7CiwdFvPo93vwbZ5MIKlrQUFR1093lxYIrjfGHtba+sbm1ndvJ7+7tHxwWjo67KkokZR0aiUj2PKKY4CHraK4F68WSkcATzPGm15nv3DOpeBTe6VnM3ICMQ+5zSrSRnHTg+ciZDwtFXMK1arOCES5VsV1vNg3BuNaolJFtSIYirNAeFt4Ho4gmAQs1FUSpvo1j7aZEak4Fm+cHiWIxoVMyZn1DQxIw5aaLc+fo3Cgj5EfSVKjRQv0+kZJAqVngmc6A6In67WXiX14/0X7DTXkYJ5qFdLnITwTSEcp+RyMuGdViZgihkptbEZ0QSag2CeVNCF+fov9Jt1yyccm+vSy2rlZx5OAUzuACbKhDC26gDR2gMIUHeIJnK7YerRfrddm6Zq1mTuAHrLdPZo2PnA==</latexit><latexit sha1_base64="z1C4KsFeDu+lbljZ7O0z021Qn+U=">AAAB7nicdVDLSgNBEOz1GeMr6tHLYBA8hdnEvG5BLx4jmGwgWcLsZDYZMvtgZlYISz7CiwdFvPo93vwbZ5MIKlrQUFR1093lxYIrjfGHtba+sbm1ndvJ7+7tHxwWjo67KkokZR0aiUj2PKKY4CHraK4F68WSkcATzPGm15nv3DOpeBTe6VnM3ICMQ+5zSrSRnHTg+ciZDwtFXMK1arOCES5VsV1vNg3BuNaolJFtSIYirNAeFt4Ho4gmAQs1FUSpvo1j7aZEak4Fm+cHiWIxoVMyZn1DQxIw5aaLc+fo3Cgj5EfSVKjRQv0+kZJAqVngmc6A6In67WXiX14/0X7DTXkYJ5qFdLnITwTSEcp+RyMuGdViZgihkptbEZ0QSag2CeVNCF+fov9Jt1yyccm+vSy2rlZx5OAUzuACbKhDC26gDR2gMIUHeIJnK7YerRfrddm6Zq1mTuAHrLdPZo2PnA==</latexit>

W
<latexit sha1_base64="z1C4KsFeDu+lbljZ7O0z021Qn+U=">AAAB7nicdVDLSgNBEOz1GeMr6tHLYBA8hdnEvG5BLx4jmGwgWcLsZDYZMvtgZlYISz7CiwdFvPo93vwbZ5MIKlrQUFR1093lxYIrjfGHtba+sbm1ndvJ7+7tHxwWjo67KkokZR0aiUj2PKKY4CHraK4F68WSkcATzPGm15nv3DOpeBTe6VnM3ICMQ+5zSrSRnHTg+ciZDwtFXMK1arOCES5VsV1vNg3BuNaolJFtSIYirNAeFt4Ho4gmAQs1FUSpvo1j7aZEak4Fm+cHiWIxoVMyZn1DQxIw5aaLc+fo3Cgj5EfSVKjRQv0+kZJAqVngmc6A6In67WXiX14/0X7DTXkYJ5qFdLnITwTSEcp+RyMuGdViZgihkptbEZ0QSag2CeVNCF+fov9Jt1yyccm+vSy2rlZx5OAUzuACbKhDC26gDR2gMIUHeIJnK7YerRfrddm6Zq1mTuAHrLdPZo2PnA==</latexit><latexit sha1_base64="z1C4KsFeDu+lbljZ7O0z021Qn+U=">AAAB7nicdVDLSgNBEOz1GeMr6tHLYBA8hdnEvG5BLx4jmGwgWcLsZDYZMvtgZlYISz7CiwdFvPo93vwbZ5MIKlrQUFR1093lxYIrjfGHtba+sbm1ndvJ7+7tHxwWjo67KkokZR0aiUj2PKKY4CHraK4F68WSkcATzPGm15nv3DOpeBTe6VnM3ICMQ+5zSrSRnHTg+ciZDwtFXMK1arOCES5VsV1vNg3BuNaolJFtSIYirNAeFt4Ho4gmAQs1FUSpvo1j7aZEak4Fm+cHiWIxoVMyZn1DQxIw5aaLc+fo3Cgj5EfSVKjRQv0+kZJAqVngmc6A6In67WXiX14/0X7DTXkYJ5qFdLnITwTSEcp+RyMuGdViZgihkptbEZ0QSag2CeVNCF+fov9Jt1yyccm+vSy2rlZx5OAUzuACbKhDC26gDR2gMIUHeIJnK7YerRfrddm6Zq1mTuAHrLdPZo2PnA==</latexit><latexit sha1_base64="z1C4KsFeDu+lbljZ7O0z021Qn+U=">AAAB7nicdVDLSgNBEOz1GeMr6tHLYBA8hdnEvG5BLx4jmGwgWcLsZDYZMvtgZlYISz7CiwdFvPo93vwbZ5MIKlrQUFR1093lxYIrjfGHtba+sbm1ndvJ7+7tHxwWjo67KkokZR0aiUj2PKKY4CHraK4F68WSkcATzPGm15nv3DOpeBTe6VnM3ICMQ+5zSrSRnHTg+ciZDwtFXMK1arOCES5VsV1vNg3BuNaolJFtSIYirNAeFt4Ho4gmAQs1FUSpvo1j7aZEak4Fm+cHiWIxoVMyZn1DQxIw5aaLc+fo3Cgj5EfSVKjRQv0+kZJAqVngmc6A6In67WXiX14/0X7DTXkYJ5qFdLnITwTSEcp+RyMuGdViZgihkptbEZ0QSag2CeVNCF+fov9Jt1yyccm+vSy2rlZx5OAUzuACbKhDC26gDR2gMIUHeIJnK7YerRfrddm6Zq1mTuAHrLdPZo2PnA==</latexit><latexit sha1_base64="z1C4KsFeDu+lbljZ7O0z021Qn+U=">AAAB7nicdVDLSgNBEOz1GeMr6tHLYBA8hdnEvG5BLx4jmGwgWcLsZDYZMvtgZlYISz7CiwdFvPo93vwbZ5MIKlrQUFR1093lxYIrjfGHtba+sbm1ndvJ7+7tHxwWjo67KkokZR0aiUj2PKKY4CHraK4F68WSkcATzPGm15nv3DOpeBTe6VnM3ICMQ+5zSrSRnHTg+ciZDwtFXMK1arOCES5VsV1vNg3BuNaolJFtSIYirNAeFt4Ho4gmAQs1FUSpvo1j7aZEak4Fm+cHiWIxoVMyZn1DQxIw5aaLc+fo3Cgj5EfSVKjRQv0+kZJAqVngmc6A6In67WXiX14/0X7DTXkYJ5qFdLnITwTSEcp+RyMuGdViZgihkptbEZ0QSag2CeVNCF+fov9Jt1yyccm+vSy2rlZx5OAUzuACbKhDC26gDR2gMIUHeIJnK7YerRfrddm6Zq1mTuAHrLdPZo2PnA==</latexit>

W
<latexit sha1_base64="z1C4KsFeDu+lbljZ7O0z021Qn+U=">AAAB7nicdVDLSgNBEOz1GeMr6tHLYBA8hdnEvG5BLx4jmGwgWcLsZDYZMvtgZlYISz7CiwdFvPo93vwbZ5MIKlrQUFR1093lxYIrjfGHtba+sbm1ndvJ7+7tHxwWjo67KkokZR0aiUj2PKKY4CHraK4F68WSkcATzPGm15nv3DOpeBTe6VnM3ICMQ+5zSrSRnHTg+ciZDwtFXMK1arOCES5VsV1vNg3BuNaolJFtSIYirNAeFt4Ho4gmAQs1FUSpvo1j7aZEak4Fm+cHiWIxoVMyZn1DQxIw5aaLc+fo3Cgj5EfSVKjRQv0+kZJAqVngmc6A6In67WXiX14/0X7DTXkYJ5qFdLnITwTSEcp+RyMuGdViZgihkptbEZ0QSag2CeVNCF+fov9Jt1yyccm+vSy2rlZx5OAUzuACbKhDC26gDR2gMIUHeIJnK7YerRfrddm6Zq1mTuAHrLdPZo2PnA==</latexit><latexit sha1_base64="z1C4KsFeDu+lbljZ7O0z021Qn+U=">AAAB7nicdVDLSgNBEOz1GeMr6tHLYBA8hdnEvG5BLx4jmGwgWcLsZDYZMvtgZlYISz7CiwdFvPo93vwbZ5MIKlrQUFR1093lxYIrjfGHtba+sbm1ndvJ7+7tHxwWjo67KkokZR0aiUj2PKKY4CHraK4F68WSkcATzPGm15nv3DOpeBTe6VnM3ICMQ+5zSrSRnHTg+ciZDwtFXMK1arOCES5VsV1vNg3BuNaolJFtSIYirNAeFt4Ho4gmAQs1FUSpvo1j7aZEak4Fm+cHiWIxoVMyZn1DQxIw5aaLc+fo3Cgj5EfSVKjRQv0+kZJAqVngmc6A6In67WXiX14/0X7DTXkYJ5qFdLnITwTSEcp+RyMuGdViZgihkptbEZ0QSag2CeVNCF+fov9Jt1yyccm+vSy2rlZx5OAUzuACbKhDC26gDR2gMIUHeIJnK7YerRfrddm6Zq1mTuAHrLdPZo2PnA==</latexit><latexit sha1_base64="z1C4KsFeDu+lbljZ7O0z021Qn+U=">AAAB7nicdVDLSgNBEOz1GeMr6tHLYBA8hdnEvG5BLx4jmGwgWcLsZDYZMvtgZlYISz7CiwdFvPo93vwbZ5MIKlrQUFR1093lxYIrjfGHtba+sbm1ndvJ7+7tHxwWjo67KkokZR0aiUj2PKKY4CHraK4F68WSkcATzPGm15nv3DOpeBTe6VnM3ICMQ+5zSrSRnHTg+ciZDwtFXMK1arOCES5VsV1vNg3BuNaolJFtSIYirNAeFt4Ho4gmAQs1FUSpvo1j7aZEak4Fm+cHiWIxoVMyZn1DQxIw5aaLc+fo3Cgj5EfSVKjRQv0+kZJAqVngmc6A6In67WXiX14/0X7DTXkYJ5qFdLnITwTSEcp+RyMuGdViZgihkptbEZ0QSag2CeVNCF+fov9Jt1yyccm+vSy2rlZx5OAUzuACbKhDC26gDR2gMIUHeIJnK7YerRfrddm6Zq1mTuAHrLdPZo2PnA==</latexit><latexit sha1_base64="z1C4KsFeDu+lbljZ7O0z021Qn+U=">AAAB7nicdVDLSgNBEOz1GeMr6tHLYBA8hdnEvG5BLx4jmGwgWcLsZDYZMvtgZlYISz7CiwdFvPo93vwbZ5MIKlrQUFR1093lxYIrjfGHtba+sbm1ndvJ7+7tHxwWjo67KkokZR0aiUj2PKKY4CHraK4F68WSkcATzPGm15nv3DOpeBTe6VnM3ICMQ+5zSrSRnHTg+ciZDwtFXMK1arOCES5VsV1vNg3BuNaolJFtSIYirNAeFt4Ho4gmAQs1FUSpvo1j7aZEak4Fm+cHiWIxoVMyZn1DQxIw5aaLc+fo3Cgj5EfSVKjRQv0+kZJAqVngmc6A6In67WXiX14/0X7DTXkYJ5qFdLnITwTSEcp+RyMuGdViZgihkptbEZ0QSag2CeVNCF+fov9Jt1yyccm+vSy2rlZx5OAUzuACbKhDC26gDR2gMIUHeIJnK7YerRfrddm6Zq1mTuAHrLdPZo2PnA==</latexit>

<latexit sha1_base64="ptp1skuAckcqZP2Xd/LztaH2Tvk=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEIglgSkeqx6MVjhX5BG8pmu2mXbjZhdyPUkF/ixYMiXv0p3vw3btsctPXBwOO9GWbm+TFnSjvOt1VYW9/Y3Cpul3Z29/bL9sFhW0WJJLRFIh7Jro8V5UzQlmaa024sKQ59Tjv+5G7mdx6pVCwSTT2NqRfikWABI1gbaWCX074fIJUNUn3RPHezgV1xqs4caJW4OalAjsbA/uoPI5KEVGjCsVI914m1l2KpGeE0K/UTRWNMJnhEe4YKHFLlpfPDM3RqlCEKImlKaDRXf0+kOFRqGvqmM8R6rJa9mfif10t0cOOlTMSJpoIsFgUJRzpCsxTQkElKNJ8agolk5lZExlhiok1WJROCu/zyKmlfVt1atfZwVanf5nEU4RhO4AxcuIY63EMDWkAggWd4hTfryXqx3q2PRWvBymeO4A+szx/wyZKj</latexit>st→T+1
<latexit sha1_base64="E19T6DbXzCpXjlpbnZGq7mNGQOw=">AAAB+HicbVBNS8NAEN34WetHox69LBZBEEtSpHosevFYoV/QhrLZbtqlm03YnQg15Jd48aCIV3+KN/+N2zYHbX0w8Hhvhpl5fiy4Bsf5ttbWNza3tgs7xd29/YOSfXjU1lGiKGvRSESq6xPNBJesBRwE68aKkdAXrONP7mZ+55EpzSPZhGnMvJCMJA84JWCkgV1K+36AdTZI4bJ5Uc0GdtmpOHPgVeLmpIxyNAb2V38Y0SRkEqggWvdcJwYvJQo4FSwr9hPNYkInZMR6hkoSMu2l88MzfGaUIQ4iZUoCnqu/J1ISaj0NfdMZEhjrZW8m/uf1EghuvJTLOAEm6WJRkAgMEZ6lgIdcMQpiagihiptbMR0TRSiYrIomBHf55VXSrlbcWqX2cFWu3+ZxFNAJOkXnyEXXqI7uUQO1EEUJekav6M16sl6sd+tj0bpm5TPH6A+szx/yTpKk</latexit>st→T+2

�
<latexit sha1_base64="GSbb3S4yzDl5YXQFsQHacLzkEkA=">AAAB8nicdVDLSsNAFJ3UV62vqks3g0VwVRLxuSu6cVnBPiAJZTKdtEMnM2HmRiihn+HGhSJu/Rp3/o3TNkIVPXDhcM693HtPlApuwHU/ndLS8srqWnm9srG5tb1T3d1rG5VpylpUCaW7ETFMcMlawEGwbqoZSSLBOtHoZup3Hpg2XMl7GKcsTMhA8phTAlby8yCKcRAxIJNetebW3RnwAjlzvatzD3uFUkMFmr3qR9BXNEuYBCqIMb7nphDmRAOngk0qQWZYSuiIDJhvqSQJM2E+O3mCj6zSx7HStiTgmbo4kZPEmHES2c6EwND89qbiX56fQXwZ5lymGTBJ54viTGBQePo/7nPNKIixJYRqbm/FdEg0oWBTqtgQvj/F/5P2Sd1z697daa1xXcRRRgfoEB0jD12gBrpFTdRCFCn0iJ7RiwPOk/PqvM1bS04xs49+wHn/AjRhkTI=</latexit><latexit sha1_base64="GSbb3S4yzDl5YXQFsQHacLzkEkA=">AAAB8nicdVDLSsNAFJ3UV62vqks3g0VwVRLxuSu6cVnBPiAJZTKdtEMnM2HmRiihn+HGhSJu/Rp3/o3TNkIVPXDhcM693HtPlApuwHU/ndLS8srqWnm9srG5tb1T3d1rG5VpylpUCaW7ETFMcMlawEGwbqoZSSLBOtHoZup3Hpg2XMl7GKcsTMhA8phTAlby8yCKcRAxIJNetebW3RnwAjlzvatzD3uFUkMFmr3qR9BXNEuYBCqIMb7nphDmRAOngk0qQWZYSuiIDJhvqSQJM2E+O3mCj6zSx7HStiTgmbo4kZPEmHES2c6EwND89qbiX56fQXwZ5lymGTBJ54viTGBQePo/7nPNKIixJYRqbm/FdEg0oWBTqtgQvj/F/5P2Sd1z697daa1xXcRRRgfoEB0jD12gBrpFTdRCFCn0iJ7RiwPOk/PqvM1bS04xs49+wHn/AjRhkTI=</latexit><latexit sha1_base64="GSbb3S4yzDl5YXQFsQHacLzkEkA=">AAAB8nicdVDLSsNAFJ3UV62vqks3g0VwVRLxuSu6cVnBPiAJZTKdtEMnM2HmRiihn+HGhSJu/Rp3/o3TNkIVPXDhcM693HtPlApuwHU/ndLS8srqWnm9srG5tb1T3d1rG5VpylpUCaW7ETFMcMlawEGwbqoZSSLBOtHoZup3Hpg2XMl7GKcsTMhA8phTAlby8yCKcRAxIJNetebW3RnwAjlzvatzD3uFUkMFmr3qR9BXNEuYBCqIMb7nphDmRAOngk0qQWZYSuiIDJhvqSQJM2E+O3mCj6zSx7HStiTgmbo4kZPEmHES2c6EwND89qbiX56fQXwZ5lymGTBJ54viTGBQePo/7nPNKIixJYRqbm/FdEg0oWBTqtgQvj/F/5P2Sd1z697daa1xXcRRRgfoEB0jD12gBrpFTdRCFCn0iJ7RiwPOk/PqvM1bS04xs49+wHn/AjRhkTI=</latexit><latexit sha1_base64="GSbb3S4yzDl5YXQFsQHacLzkEkA=">AAAB8nicdVDLSsNAFJ3UV62vqks3g0VwVRLxuSu6cVnBPiAJZTKdtEMnM2HmRiihn+HGhSJu/Rp3/o3TNkIVPXDhcM693HtPlApuwHU/ndLS8srqWnm9srG5tb1T3d1rG5VpylpUCaW7ETFMcMlawEGwbqoZSSLBOtHoZup3Hpg2XMl7GKcsTMhA8phTAlby8yCKcRAxIJNetebW3RnwAjlzvatzD3uFUkMFmr3qR9BXNEuYBCqIMb7nphDmRAOngk0qQWZYSuiIDJhvqSQJM2E+O3mCj6zSx7HStiTgmbo4kZPEmHES2c6EwND89qbiX56fQXwZ5lymGTBJ54viTGBQePo/7nPNKIixJYRqbm/FdEg0oWBTqtgQvj/F/5P2Sd1z697daa1xXcRRRgfoEB0jD12gBrpFTdRCFCn0iJ7RiwPOk/PqvM1bS04xs49+wHn/AjRhkTI=</latexit>

<latexit sha1_base64="QYsha+DAPI5iioCuBf6qAsosAe4=">AAACAHicdZDLSgMxFIYz9VbrbdSFCzfBIrixzEit7a7oxmUFe4FOKZk004ZmLiRnhGE6G1/FjQtF3PoY7nwb04ugogdCfr7/HJLzu5HgCizrw8gtLa+sruXXCxubW9s75u5eS4WxpKxJQxHKjksUEzxgTeAgWCeSjPiuYG13fDX123dMKh4Gt5BErOeTYcA9Tglo1DcPnIkzIpAmWT+F7HRxO5O+WbRK55Zdq1SwVbIsu1y1tajVqhpiW5NpFdGiGn3z3RmENPZZAFQQpbq2FUEvJRI4FSwrOLFiEaFjMmRdLQPiM9VLZwtk+FiTAfZCqU8AeEa/T6TEVyrxXd3pExip394U/uV1Y/CqvZQHUQwsoPOHvFhgCPE0DTzgklEQiRaESq7/iumISEJBZ1bQIXxtiv8XrbOSXSlVbsrF+uUijjw6REfoBNnoAtXRNWqgJqIoQw/oCT0b98aj8WK8zltzxmJmH/0o4+0TvQeX0w==</latexit>→ŷt ↑ yt→

<latexit sha1_base64="Np9CSTYAtKAmNq4ADpPLGzYHSgw=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lEqseiF48V7AekoWy2m3bpZjfsToQQ8jO8eFDEq7/Gm//GbZuDVh8MPN6bYWZemAhuwHW/nMra+sbmVnW7trO7t39QPzzqGZVqyrpUCaUHITFMcMm6wEGwQaIZiUPB+uHsdu73H5k2XMkHyBIWxGQiecQpASv5wymBPCtGORSjesNtugvgv8QrSQOV6Izqn8OxomnMJFBBjPE9N4EgJxo4FayoDVPDEkJnZMJ8SyWJmQnyxckFPrPKGEdK25KAF+rPiZzExmRxaDtjAlOz6s3F/zw/heg6yLlMUmCSLhdFqcCg8Px/POaaURCZJYRqbm/FdEo0oWBTqtkQvNWX/5LeRdNrNVv3l432TRlHFZ2gU3SOPHSF2ugOdVAXUaTQE3pBrw44z86b875srTjlzDH6BefjGw+2kcg=</latexit>

ŷt

<latexit sha1_base64="bClGyAdOD/ZwITQhj8NvPX/S5CY=">AAAB/3icbVDLSsNAFL2pr1pfUcGNm8EiCGJJRKrLohuXFfqCNoTJdNIOnTyYmYglZuGvuHGhiFt/w51/46TtQlsPDBzOuZd75ngxZ1JZ1rdRWFpeWV0rrpc2Nre2d8zdvZaMEkFok0Q8Eh0PS8pZSJuKKU47saA48Dhte6Ob3G/fUyFZFDbUOKZOgAch8xnBSkuuedALsBp6fvqQualCZ6iBTpGduWbZqlgToEViz0gZZqi75levH5EkoKEiHEvZta1YOSkWihFOs1IvkTTGZIQHtKtpiAMqnXSSP0PHWukjPxL6hQpN1N8bKQ6kHAeenszTynkvF//zuonyr5yUhXGiaEimh/yEIxWhvAzUZ4ISxceaYCKYzorIEAtMlK6spEuw57+8SFrnFbtaqd5dlGvXszqKcAhHcAI2XEINbqEOTSDwCM/wCm/Gk/FivBsf09GCMdvZhz8wPn8ARG2U+A==</latexit>xt→T+1
<latexit sha1_base64="una7PtJxnk7tA5ZB7MEqC4YWqRE=">AAAB8nicdVDLSsNAFJ3UV62vqks3g0VwFSYxre2u4MZlBfuANJTJdNIOnWTCzEQsoZ/hxoUibv0ad/6N04egogcuHM65l3vvCVPOlEbowyqsrW9sbhW3Szu7e/sH5cOjjhKZJLRNBBeyF2JFOUtoWzPNaS+VFMchp91wcjX3u3dUKiaSWz1NaRDjUcIiRrA2kp/3wwjezwa5MxuUK8huNJDnVSGyq8h13boh6MKtNxzo2GiBClihNSi/94eCZDFNNOFYKd9BqQ5yLDUjnM5K/UzRFJMJHlHf0ATHVAX54uQZPDPKEEZCmko0XKjfJ3IcKzWNQ9MZYz1Wv725+JfnZzqqBzlL0kzThCwXRRmHWsD5/3DIJCWaTw3BRDJzKyRjLDHRJqWSCeHrU/g/6bi2U7NrN16l6a3iKIITcArOgQMuQRNcgxZoAwIEeABP4NnS1qP1Yr0uWwvWauYY/ID19gmLeJFq</latexit>x1

<latexit sha1_base64="TDKa3dg3OFl2AkSaXiNvxDhc0Yw=">AAAB8nicdVDLSgMxFM3UV62vqks3wSK4GjJDW9tdwY3LCvYB06Fk0kwbmkmGJCOUoZ/hxoUibv0ad/6N6UNQ0QMXDufcy733RCln2iD04RQ2Nre2d4q7pb39g8Oj8vFJV8tMEdohkkvVj7CmnAnaMcxw2k8VxUnEaS+aXi/83j1VmklxZ2YpDRM8FixmBBsrBfkgiqGeD3M0H5YryEV+o1b1IXL9Gmp6TUtqyGvWq9Bz0RIVsEZ7WH4fjCTJEioM4VjrwEOpCXOsDCOczkuDTNMUkyke08BSgROqw3x58hxeWGUEY6lsCQOX6veJHCdaz5LIdibYTPRvbyH+5QWZiRthzkSaGSrIalGccWgkXPwPR0xRYvjMEkwUs7dCMsEKE2NTKtkQvj6F/5Ou73p1t35brbQa6ziK4Aycg0vggSvQAjegDTqAAAkewBN4dozz6Lw4r6vWgrOeOQU/4Lx9AoGEkWc=</latexit>s0
<latexit sha1_base64="igM66wqqvBSwkF18CwSrbDTiSvU=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgxpKI1C4LblxW6AvaECbTSTt0Mgkzk0IJ+RM3LhRx65+482+ctllo64GBwzn3cs+cIOFMacf5tkpb2zu7e+X9ysHh0fGJfXrWVXEqCe2QmMeyH2BFORO0o5nmtJ9IiqOA014wfVj4vRmVisWirecJ9SI8FixkBGsj+bY9jLCeBGGmcj/TN+3ct6tOzVkCbRK3IFUo0PLtr+EoJmlEhSYcKzVwnUR7GZaaEU7zyjBVNMFkisd0YKjAEVVetkyeoyujjFAYS/OERkv190aGI6XmUWAmFznVurcQ//MGqQ4bXsZEkmoqyOpQmHKkY7SoAY2YpETzuSGYSGayIjLBEhNtyqqYEtz1L2+S7m3NrdfqT3fVZqOoowwXcAnX4MI9NOERWtABAjN4hld4szLrxXq3PlajJavYOYc/sD5/AOaIk9E=</latexit>st→T

<latexit sha1_base64="FeQlrmPmP/2vSfAbsWCCmRqf7Ek=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgxbArEnMMePEYwTwgWcLsZDYZMvtwpjcQlv0OLx4U8erHePNvnCR70MSChqKqm+4uL5ZCo21/W4WNza3tneJuaW//4PCofHzS1lGiGG+xSEaq61HNpQh5CwVK3o0Vp4Eneceb3M39zpQrLaLwEWcxdwM6CoUvGEUjuWnf84nOBileOdmgXLGr9gJknTg5qUCO5qD81R9GLAl4iExSrXuOHaObUoWCSZ6V+onmMWUTOuI9Q0MacO2mi6MzcmGUIfEjZSpEslB/T6Q00HoWeKYzoDjWq95c/M/rJejX3VSEcYI8ZMtFfiIJRmSeABkKxRnKmSGUKWFuJWxMFWVociqZEJzVl9dJ+7rq1Kq1h5tKo57HUYQzOIdLcOAWGnAPTWgBgyd4hld4s6bWi/VufSxbC1Y+cwp/YH3+AGHnkdU=</latexit>st→1
<latexit sha1_base64="7lKpLWui+liiWr4/gll4OQ+/L8U=">AAAB8nicdVDLSsNAFJ34rPVVdelmsAiuQuKj1l3BjcsK9gFpKJPppB06mYSZG6GEfIYbF4q49Wvc+TdO0wgqeuDC4Zx7ufeeIBFcg+N8WEvLK6tr65WN6ubW9s5ubW+/q+NUUdahsYhVPyCaCS5ZBzgI1k8UI1EgWC+YXs/93j1TmsfyDmYJ8yMyljzklICRvGwQhFjnwwzyYa3u2BeOe9VwsGM7BQrSdM9c7JZKHZVoD2vvg1FM04hJoIJo7blOAn5GFHAqWF4dpJolhE7JmHmGShIx7WfFyTk+NsoIh7EyJQEX6veJjERaz6LAdEYEJvq3Nxf/8rwUwqafcZmkwCRdLApTgSHG8//xiCtGQcwMIVRxcyumE6IIBZNS1YTw9Sn+n3RPbbdhN27P661mGUcFHaIjdIJcdIla6Aa1UQdRFKMH9ISeLbAerRfrddG6ZJUzB+gHrLdPsmKRhQ==</latexit>st

Figure 16.2: Backpropagation through time (BPTT) for getting the gradient for an RNN.

this state-update function is to use a linear transformation and some nonlinear activation,
like a ReLU

st+1 = ReLU(stWs + xt+1Wx)

Just as before, though, much more complex neural network architectures can be used. This
st corresponds to a hidden layer in the RNN, as shown in Figure 16.1.

Because we maintain the same differentiability properties, it is reasonably straightfor-
ward to compute the gradient. The recurrence, however, causes dependence all the way
back in-time. This is made clear by unrolling the RNN. To see why, assume we get the
prediction for our targets yt using the current state st created by the RNN, with a learned
NN ŷt

.= gβ(st). If we want to compute the gradient for time t, with target yt, we have
error

∥ŷt − yt∥22 = ∥gβ(st)− yt∥22
= ∥gβ(fW (st−1,xt)− yt∥22
= ∥gβ(fW (fW (st−2,xt−1),xt)− yt∥22
. . .

= ∥gβ(fW (fW (. . . (fW (s0,x1) . . .),xt−1),xt)− yt∥22

The gradient with respect to W for this loss has to consider how small changes to W would
have effected all the states s1, . . . , st created until this point. This is called backpropagation
through time (BPTT), depicted in Figure 16.2.

16.3 Transformers

Read these very clear notes by John Thickstun [27]. More details for this section in the
future.

Bibliography

[1] A Banerjee, S Merugu, I S Dhillon, and J Ghosh. Clustering with bregman divergences.
Journal of Machine Learning Research, 2005.

[2] David Barber. Bayesian Reasoning and Machine Learning. Cambridge University
Press, 2012.

[3] Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk
bounds and structural results. Journal of Machine Learning Research, 2002.

[4] Stephen Bates, Trevor Hastie, and Robert Tibshirani. Cross-validation: What does it
estimate and how well does it do it? arXiv:2104.00673, 2021.

[5] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for
linear inverse problems. SIAM J. Imaging Sciences, 2009.

[6] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern
machine-learning practice and the classical bias?variance trade-off. Proceedings of the
National Academy of Sciences of the United States of America, 2019.

[7] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. When Is
Nearest Neighbor Meaningful? In Database Theory, volume 1540. Springer Berlin
Heidelberg, 1999.

[8] Olivier Bousquet, Stephane Boucheron, and Gabor Lugosi. Introduction to Statis-
tical Learning Theory. In Advanced Lectures on Machine Learning. Springer Berlin
Heidelberg, 2004.

[9] Gavin C Cawley and Nicola LC Talbot. On over-fitting in model selection and sub-
sequent selection bias in performance evaluation. The Journal of Machine Learning
Research, 2010.

[10] Carl Doersch. Tutorial on Variational Autoencoders. arXiv:1606.05908 [cs, stat], 2021.

[11] Torsten Hoe?er, Dan Alistarh, Tal Ben-Nun, and Nikoli Dryden. Sparsity in Deep
Learning: Pruning and growth for e?cient inference and training in neural networks.
The Journal of Machine Learning Research, 2021.

[12] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Introduction
to Statistical Learning. Springer New York, 2013.

[13] Sham M Kakade, Karthik Sridharan, and Ambuj Tewari. On the complexity of linear
prediction: Risk bounds, margin bounds, and regularization. In Advances in Neural
Information Processing Systems, 2008.

[14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
International Conference on Learning Representations, 2015.

143

BIBLIOGRAPHY 144

[15] Frederik Kunstner, Raunak Kumar, and Mark Schmidt. Homeomorphic-Invariance
of EM: Non-Asymptotic Convergence in KL Divergence for Exponential Families via
Mirror Descent. In International Conference on AI and Statistics, 2021.

[16] Ilja Kuzborskij, Csaba Szepesvári, Omar Rivasplata, Amal Rannen-Triki, and Razvan
Pascanu. On the Role of Optimization in Double Descent: A Least Squares Study. In
Advances in Neural Information Processing Systems, 2021.

[17] Jorge Nocedal. Updating quasi-Newton matrices with limited storage. Mathematics of
Computation, 1980.

[18] Bruno A Olshausen and David J Field. Sparse coding with an overcomplete basis set:
A strategy employed by V1? Vision Research, 1997.

[19] Neal Parikh and Stephen Boyd. Proximal Algorithms. Foundations and Trends in
Optimization, 1(3), 2014.

[20] J. Park and I. W. Sandberg. Universal Approximation Using Radial-Basis-Function
Networks. Neural Computation, 3(2), 1991.

[21] K B Petersen. The matrix cookbook. Technical University of Denmark, 2004.

[22] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Ma-
chine Learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge,
Mass, 2006.

[23] Matthew Schlegel, Yangchen Pan, Jiecao Chen, and Martha White. Adapting Kernel
Representations Online Using Submodular Maximization. In International Conference
on Machine Learning, 2017.

[24] Robin M. Schmidt, Frank Schneider, and Philipp Hennig. Descending through a
Crowded Valley - Benchmarking Deep Learning Optimizers, 2021.

[25] Christopher J Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy
Frostig, and George E Dahl. Measuring the Effects of Data Parallelism on Neural
Network Training. Journal of Machine Learning Research, 2019.

[26] Samuel L. Smith, Benoit Dherin, David G. T. Barrett, and Soham De. On the Origin
of Implicit Regularization in Stochastic Gradient Descent. In International Conference
on Learning Representations, 2021.

[27] John Thickstun. The transformer model in equations. In Course Notes, 2024.

[28] Gitte Vanwinckelen and Hendrik Blockeel. On estimating model accuracy with repeated
cross-validation. In BeneLearn 2012: Proceedings of the 21st Belgian-Dutch Conference
on Machine Learning, 2012.

[29] Jie Wang. An Intuitive Tutorial to Gaussian Processes Regression. arXiv:2009.10862
[cs, stat], 2021.

[30] Martha White. Regularized Factor Models. PhD thesis, University of Alberta, 2014.

BIBLIOGRAPHY 145

[31] Martha White. Basics of Machine Learning. 2020.

[32] Matthew D Zeiler. ADADELTA: An adaptive learning rate method. arXiv.org, 2012.

Appendix A

Extra Information

You will not be tested on anything in the appendix. It is simply here for your interest.

A.1 More on Linear Regression

The following section is an expanded version of Section 3.2.3, with derivation steps included.

A.1.1 The Bias-Variance Trade-off

A natural question to ask is how this regularization parameter can be selected, and the
impact on the final solution vector. The selection of this regularization parameter leads
to a bias-variance trade-off. To understand this trade-off, we need to understand what it
means for the solution to be biased, and how to characterize the variance of the solution,
across possible datasets.

Let us begin by presuming that the distributional assumptions behind linear regression
are true. This means that there exists a true parameter ω such that for each of the data
points Yi =

∑d
j=0 ωjXij + εi, where the εj are i.i.d. random variables drawn according to

N (0, σ2). We can characterize the solution vector (estimator) wMLE as a random variable,
where the randomness is across possible datasets that could have been observed. In this
sense, we are considering the dataset D to be a random variable, and the solution wMLE(D)
from that dataset as a function of this random variable.

The reason we care about the bias and variance of wMLE because the expected mean-
squared error to the true weights can be decomposed into the bias and variance.

E
[
∥w(D)− ω∥22

]
= E

 d∑
j=1

(wj(D)− ωj)2

 =
d∑

j=1
E
[
(wj(D)− ωj)2

]
where we can then further simplify this inner term

E
[
(wj(D)− ωj)2

]
= E

[
(wj(D)− E [wj(D)] + E [wj(D)]− ωj)2

]
= E

[
(wj(D)− E [wj(D)])2

]
+ E

[
(E [wj(D)]− ωj)2

]
where the second step follows from the fact that

−2E [(wj(D)− E [wj(D)])(E [wj(D)]− ωj)] = (E [wj(D)]− ωj)E [wj(D)− E [wj(D)]]
= 0.

146

APPENDIX A. EXTRA INFORMATION 147

The first term above in E
[
(wj(D)− E [wj(D)])2] is the variance of the jth weight and the

second term is the bias of the jth weight, where E
[
(E [wj(D)]− ωj)2] = (E [wj(D)]− ωj)2

because nothing is random in this term so the outer expectation is dropped. This gives

E
[
∥w(D)− ω∥22

]
=

d∑
j=1

E
[
(wj(D)− ωj)2

]

=
d∑

j=1
(E [wj(D)]− ωj)2 + Var [wj(D)] (A.1)

showing that the expected mean-squared error to the true weight vector ω decomposes into
the squared bias—where the bias is E [wj(D)]− ωj—and the variance.

The bias-variance trade-off reflects the fact that we could potentially reduce the mean-
squared error by incurring some bias, as long as the variance is decreased more than the
squared bias. Note that we do not directly optimize the bias-variance trade-off. We can-
not actually measure the bias, so we do not directly minimize these terms. Rather, this
decomposition guides how we select model classes.

Let us now look at the expected value (with respect to training data set D) for the
weight vector wMLE, with ε = (ε1, ε2, . . . , εn):

E[wMLE(D)] = E
[(

X⊤X
)−1

X⊤ (Xω + ε)
]

= E
[(

X⊤X
)−1

(X⊤X)ω
]

+ E
[(

X⊤X
)−1

X⊤ε

]
= E [ω] + E

[(
X⊤X

)−1
X⊤
]
E [ε]

= ω,

where the third equality follows from the fact that the noise terms ε are independent of the
features and the last equality because ω is a constant vector (non-random) and E[ε] = 0.
An estimator whose expected value is the true value of the parameter is called an unbiased
estimator.

The covariance matrix for the optimal set of parameters can be expressed as

Cov[wMLE(D)] = E
[
(wMLE(D)− ω) (wMLE(D)− ω)⊤

]
= E

[
wMLE(D)wMLE(D)⊤

]
− ωω⊤

Taking1 X† =
(
X⊤X

)−1 X⊤, we have wMLE(D) = ω + X†ε, so

Cov[wMLE(D)] = E
[(

ω + X†ε
) (

ω + X†ε
)⊤
]
− ωω⊤

= ωω⊤ + E
[
X†εε⊤X†⊤

]
− ωω⊤

1This matrix is called the pseudo-inverse of X. The idea of a pseudo-inverse generalizes the concept of
inverses to non-invertible matrices, including rectangular matrices. This includes low-rank X, where the
pseudoinverse uses the inverse of non-zero singular values and otherwise sets the entry to zero. It is a useful
concept, but not one we will need to use again and so is not explained in-depth here.

APPENDIX A. EXTRA INFORMATION 148

because E
[
X†εω⊤] = E

[
X†]E [ε] ω⊤ = 0. Now because the noise terms are independent

of the inputs, i.e., E
[
εε⊤|X

]
= E

[
εε⊤] = σ2I, we can use the law of total probability (also

called the tower rule), to get

E
[
X†εε⊤X†⊤

]
= E

[
E
[
X†εε⊤X†⊤|X

]]
= E

[
X†E

[
εε⊤|X

]
X†⊤

]
= σ2E

[
X†X†⊤

]
.

Thus, we have
Cov[wMLE(D)] = σ2E

[
(X⊤X)−1

]
= σ2E

[
VΣ−2

d V⊤
]

where σ2 is the variance of y given x. Naturally, the covariance of the weights across datasets
is higher if the variance of the targets is higher.

As discussed above, the matrix X⊤X = VΣV⊤ can be poorly conditioned, with some
zero or near-zero singular values. Consequently, this covariance matrix can be poorly con-
ditioned, with high magnitude co-variance values. This implies that, across datasets, the
solution wMLE(D) can vary widely. This type of behavior is suggestive of overfitting, and is
not desirable. If our solution could be very different across several different random subsets
of data, we cannot be confident in any one of these solutions.

We can also reason about how this variance suggests high MSE. To characterize the
MSE, we only need the diagonal of this covariance matrix, as shown in Equation (A.1). We
need

∑d
j=1 Var [wj(D)], which is the sum of the diagonals of this covariance matrix, also

called the trace of the matrix. Fortunately for us, the trace of a square matrix corresponds
to the sum of the eigenvalues of the matrix, which for the above are Σ−2

d . Therefore we
have that

d∑
j=1

Var [wMLE,j(D)] = trace(Cov[wMLE(D)])

= σ2E
[
trace

(
VΣ−2

d V⊤
)]

▷ linearity of trace

= σ2E

 d∑
j=1

σ−2
j

 .
This formula makes it clear that the variance of the weights is tied to the magnitudes of
the inverse of the singular values. If we have very small singular values, then this sum is
much larger. The singular values will not be small for all datasets that could have been
observed, but in cases where overfitting is possible (small n), we expect it to happen for a
large proportion of datasets.

The regularized solution, on the other hand, is much less likely to have high covariance,
but will no longer be unbiased. Let wMAP(D) be the MAP estimate for the ℓ2 regularized
problem with λ > 0. Using a similar analysis to above, the expected value of wMAP(D) is

E[wMAP(D)] = E
[(

X⊤X + λI
)−1

X⊤ (Xω + ε)
]

= E
[(

X⊤X + λI
)−1

(X⊤X)ω
]
̸= ω.

APPENDIX A. EXTRA INFORMATION 149

As λ → 0, the MAP solution gets closer and closer to being unbiased. If we let Λd be a
diagonal matrix with values σ2

j /(σ2
j + λ)2 on the diagonal, then the covariance is

Cov[wMAP(D)] = σ2E
[
(X⊤X + λI)−1(X⊤X)(X⊤X + λI)−1

]
= σ2E

[
VΛdV⊤

]
.

because X⊤X = VΣ2
dV⊤ and X⊤X + λI = VΣ2

dV⊤ + λI = V(Σ2
d + λI)V⊤ giving

(X⊤X + λI)−1(X⊤X)(X⊤X + λI)−1 = V(Σ2
d + λI)−1V⊤VΣ2

dV⊤V(Σ2
d + λI)−1V⊤

= V(Σ2
d + λI)−1Σ2

d(Σ2
d + λI)−1V⊤ ▷ V⊤V = I

= VΛdV⊤ ▷ Λd
.= Σ2

d(Σ2
d + λI)−2.

This covariance is much less susceptible to ill-conditioned X⊤X, because the shift by λ
improves the condition. The covariance is now dictated instead by the eigenvalues Λd,
which only have σ2

d + λ on the denominator. Consequently, we expect wMAP to have lower
variance across different datasets. This correspondingly implies that we are less likely to
overfit to any one dataset. Notice that as λ → ∞, the variance decreases to zero, but the
bias increases to its maximal value (i.e., the norm of the true weights). There is an optimal
choice of λ that minimizes this bias-variance trade-off—if we could find it.

A.2 More on Cross-Validation

Here we note a few additional interesting nuances for cross-validation, for the interested
reader. The main text already had a lot, and so this additional reasoning on bias and
variance is relegated here.

First, you may be wondering why the bias of our estimator was not impacted by the
fact that we have correlated error estimates. Usually, we take the sample average of i.i.d.
samples, but here we take the sample average of correlated samples. Each err(j) may be
correlated with another err(i) because they share data. However, this correlation does not
affect the bias because E[Ḡ] = 1

k

∑k
j=1 E[err(j)].

We discussed ways to reduce the variance of the CV estimator, but it is important
to keep in mind that reducing the variance alone is insufficient, because the estimator is
biased. For example, imagine our goal is to estimate E[Ḡ|D]. Namely, we want to remove
all stochasticity due to the resampling procedure. We can do so by significantly increasing
k, where this sample average will reasonably quickly approach E[Ḡ|D]. Even if we reduce
the variance due to resampling to zero, we obtain E[Ḡ|D] which is not equal to GE(fD).
In addition to being expensive, one recommendation is to avoid setting k too large because
the confidence intervals for an interim k are more likely to include GE(fD) [28].

As one other nuanced point, notice that Ḡ can also be used as an estimator for a
different quantity: the expected GE(fD) across datasets, i.e., E[(fD(X) − Y)2] instead of
E[(fD(X) − Y)2|D]. We usually care about how our model, learned on our dataset, will
perform in deployment, and so care about E[(fD(X)− Y)2|D]. However, in other cases, we
might be interested in understanding how the algorithm performs, regardless of the specific
dataset, if we are interested in understanding which algorithms are more effective for the
problem or related problems. There is some evidence that Ḡ is actually a better estimator

APPENDIX A. EXTRA INFORMATION 150

of E[(fD(X)−Y)2], rather than of E[(fD(X)−Y)2|D] [4]. Nonetheless, this does not mean
that Ḡ is a poor estimator for GE(fD), and cross validation remains a common approach
for this goal.

A.3 More on GLMs

In the main text we motivated using g = a′ results in nice loss functions. We explain
in this section. The common setting of g = a′ for GLMs has a connection to widely
used objectives called Bregman divergences. These divergences are written as Da(ŷ||y),
indicating the difference between ŷ and y, where the divergence is parametrized by a. The
minimization of this Bregman divergence corresponds to the minimization of the negative
log-likelihood of the corresponding natural exponential family:

argmin
θ

Da(x||g−1(θ)) = argmin
θ
− ln p(x|θ).

See [30, Section 2.2] and [1] for more details about this relationship.
Bregman divergences have nice properties, including being convex in the first argument.

By selecting g = a′, we inherit these properties. Other choices are possible, but the resulting
loss functions are likely nonconvex and will not be as well understood.

A.4 More on Constrained Optimization

A.4.1 Detailed Steps for the Proximal Update

Here we write the explicit steps we omitted in the main text. We can write the proximal
update using the same expansion on c, in addition to including r

wt+1 = argmin
w∈Rd

c(wt) +∇c(wt)⊤(w−wt) + 1
2ηt
∥w−wt∥22 + r(w)

= argmin
w∈Rd

∇c(wt)⊤(w−wt) + 1
2ηt
∥w−wt∥22 + r(w) ▷ dropped constant

= argmin
w∈Rd

ηt∇c(wt)⊤(w−wt) + 1
2∥w−wt∥22 + ηtr(w) ▷ multiply by ηt

= argmin
w∈Rd

1
2∥w− (wt − ηt∇c(wt))∥22 + ηtr(w)

where the last equality follows using the following facts. Let a = w−wt and b = ηt∇c(wt)⊤.
Then we can write 1

2∥w − (wt − ηt∇c(wt))∥22 = 1
2∥(w − wt) + ηt∇c(wt))∥22 = 1

2∥a + b∥22.
Now we can also see that 1

2∥a + b∥22 = 1
2a⊤a + a⊤b + 1

2b⊤b. Here b does not depend on
w, and so the minimization can drop 1

2b⊤b.

A.4.2 Beyond Closed-form Proximal Operators

To handle one useful constraint, namely the simplex constraint, we will have to move beyond
the restriction that r allows for a closed form proximal operator. The simplex constraints
are those on probabilities: F = {w ∈ Rd :

∑d
j=1wj = 1 and wj ≥ 0}. To compute the

second step—the projection step—we need to solve a simple optimization. To do so, we are

APPENDIX A. EXTRA INFORMATION 151

going to convert this constrained optimization into an unconstrained optimization on w, by
introducing additional variables. The variables are called KKT multipliers; the reason for
this name will become clear after introducing the optimization.

Let a ∈ R be the KKT multiplier for the equality constraint
∑d

j=1wj = 1 and bj ≥ 0
the KKT multiplier for the inequality constraint wj ≥ 0, with vector b composed of bj for
j = 1, . . . , d. Let l(w) def= 1

2∥w − v∥22 be the loss used in the proximal operator, where the
goal is to find the closest point to a given input v under the constraints given by r (which
here are simplex constraints). The augmented optimization problem with these additional
variables is

min
w∈Rd

max
a∈R,b≥0

L(w, a,b) where L(w, a,b) def= l(w) + a

 d∑
j=1

wj − 1

− d∑
j=1

bjwj .

For any w that satisfy the constraints, we have l(w) = maxa∈R,b≥0 L(w, a,b), and so
optimizing for w as well as these additional variables results in the same optimal w while
enforcing the constraints. To understand why, consider the possible optimal choices for a
and b. If w does not satisfy

∑d
j=1wj − 1 = 0, then a can be selected to make the loss

arbitrarily big. For example, if
∑d

j=1wj = 0.8 and so
∑d

j=1wj − 1 = −0.2, a can be made
a very large negative number, say −106, to add 0.2 · 106 to the loss. Consequently, this w
is unlikely to result in a minimal value. Instead, for any w that do satisfy

∑d
j=1wj − 1 = 0,

a is multiplied by zero and so cannot cause the loss to become very big; therefore, w will
be chosen to satisfy this constraint.

This is similarly the case for b. For any wj < 0, the maximization will choose a very
large bj , producing a very high magnitude −bjwj and resulting in the addition of a very
large positive number. Again, wj will be chosen to be ≥ 0 to avoid this situation, and the
best bj can do is to have bjwk = 0.

Now let us use this to derive an algorithm to find w that satisfies the constraints, for
loss l(w) def= 1

2∥w− v∥22. As usual, we need to find w that is a stationary point

0 = ∇wL(w, a,b) where ∇wL(w, a,b) = ∇wl(w) + a∇w

 d∑
j=1

wj − 1

−∇w

d∑
j=1

bjwj

= ∇wl(w) + a∇w
(
1⊤w− 1

)
−∇wb⊤w

= (w− v) + a1− b
=⇒ w = v− a1 + b (A.2)

This formula for w depends on the values of a and b. We know that for a valid solution
w in the constraint set, the best that b can do is to satisfy bjwj = 0 with bj ≥ 0. Further,
we know that if w satisfies the constraints, a multiples by zero and cannot impact the L.
For the below, we can assume a is essentially a free variable that lets us produce a valid
solution for w.

To satisfy bjwj = 0 with bj ≥ 0, we have to have either (a) bj = 0 or (b) wj = 0 with
bj ≥ 0. We can use this to reason about the entries of the solution in Equation (A.2). For
the case where wj ̸= 0, we must have bj = 0; plugging this into Equation (A.2), we therefore
have that wj = vj−a. For the second case where wj = 0, bj can be any nonnegative number.
To infer what it is, we can use wj = vj − a + bj = 0 and so bj = a − vj . For this to be

APPENDIX A. EXTRA INFORMATION 152

viable, this means that a − vj ≥ 0 and so vj − a < 0. We can equivalently write that for
this second case wj = max(vj − a, 0) because this will evaluate to zero. Similarly, for the
first case, we must select an a such that vj − a ≥ 0. Therefore, for both cases, we have
wj = max(vj − a, 0), assuming that we chose a appropriately.

Now we simply have to find a such that we satisfy the constraint 1⊤w = 1. We actually
cannot get a closed form solution for this. Instead, we have to solve an optimization to find
this a, namely solve for a such that 1⊤ max(v− a1, 0)− 1 = 0. This is a relatively simple
root finding problem, with available implementations in most packages. Note that we know
there exists a feasible solution for this problem. We can start a at the maximal entry in v
and slowly decrease it. This makes the sum smoothly increase until it equals 1.

A.5 More on Latent Factors

A.5.1 More on Sparse Coding

One strategy to obtain sparse representations is to use a sparse regularizer on the learned
representation h. This corresponds to the optimization

min
D∈Rp×d,H∈Rn×p

∥X−HD∥2F + λ
p∑

i=1
∥H:i∥1 + λ

p∑
i=1
∥Di:∥22

As discussed in Section 3.2.2, the ℓ1 regularizer promotes zeroed entries, and so prefers H
with as many zeros as possible. A regularizer is also added to D, to ensure that D does not
become too large; otherwise, all the weight in DH would be shifted to D.

Exercise 43: Explain why all the weight in DH would be shifted to D, if we did not use
a regularizer on D as well as H. Consider what this means for identifiability, namely for
uniqueness of the solution, without any regularizers. □

A.6 More on Backpropagation

First, we take the partial derivative w.r.t. the parameters W(1).

∂c(W(1),W(2))
∂W(1)

jk

= ∂L(f1(f2(xW(2))W(1)),y)
∂W(1)

jk

=
(
∂L(ŷk,yk)

∂ŷk

)
∂ŷk

∂W(1)
jk

▷ ŷk = f1(hW(1)
:k)

where only ŷk is affected by W(1)
jk in the loss, and so the gradient for the others is zero.

Continuing,

∂Err(W(1),W(2))
∂W(1)

jk

=
(
∂L(ŷk,yk)

∂ŷk

)
∂f1(θ(1)

k)
∂θ

(1)
k

∂θ
(1)
k

∂W(1)
jk

▷ θ
(1)
k = hW(1)

:k

=
(
∂L(ŷk,yk)

∂ŷk

)
∂f1(θ(1)

k)
∂θ

(1)
k

hj

APPENDIX A. EXTRA INFORMATION 153

At this point these equations are abstract; but they are simple to compute for the losses
and transfers we have examined. For example, for L(ŷk,yk) = 1

2(ŷk − yk)2, and f1 the
identity, we get

∂L(ŷk,yk)
∂ŷk

= (ŷk − yk) and ∂f1(θ(1)
k)

∂θ
(1)
k

= 1

giving

∂Err(W(1),W(2))
∂W(1)

jk

=
(
∂L(ŷk,yk)

∂ŷk

)
∂f1(θ(1)

k)
∂θ

(1)
k

hj = (ŷk − yk)hj .

The gradient update is as usual with W(1) = W(1) − α(ŷ− y)h⊤ for some step-size α.
Next, we compute the partial gradient with respect to W(2). Now, however, the entire

output variable y ∈ R1×m is affected by the choice of W(2)
ij for all i ∈ {1, . . . , p2}, j ∈

{1, . . . , p1}, where for this exam. Therefore, we need to take the partial derivative w.r.t. all
of y.

∂Err(W(1),W(2))
∂W(2)

ij

= ∂
∑m

k=1 L(f1(f2(xW(2))W(1)
:k),yk)

∂W(2)
ij

=
m∑

k=1

∂L(ŷk,yk)
∂ŷk

∂ŷk

∂W(2)
ij

▷ ŷk = f1(hW(1)
:k) = f1(θ(1)

k)

=
m∑

k=1

∂L(ŷk,yk)
∂ŷk

∂f1(θ(1)
k)

∂θ
(1)
k

∂θ
(1)
k

∂W(2)
ij

.

Continuing,

∂θ
(1)
k

∂W(2)
ij

= ∂hW(1)
:k

∂W(2)
ij

= ∂
∑p

l=1 hlW
(1)
lk

∂W(2)
ij

= ∂
∑p

l=1 f2(xW(2)
:l)W(1)

lk

∂W(2)
ij

=
p∑

l=1
W(1)

lk

∂f2(xW(2)
:l)

∂W(2)
ij

= W(1)
jk

∂f2(xW(2)
:j)

∂W(2)
ij

because ∂f2(xW(2)
:l)

∂W(2)
ij

= 0 for l ̸= j. Now continuing the chain rule

∂f2(xW(2)
:j)

∂W(2)
ij

=
∂f2(θ(2)

j)

∂θ
(2)
j

∂θ
(2)
j

∂W(2)
ij

▷ θ
(2)
j = xW(2)

:j

=
∂f2(θ(2)

j)

∂θ
(2)
j

xi.

APPENDIX A. EXTRA INFORMATION 154

Putting this back together, we get

∂Err(W(1),W(2))
∂W(2)

ij

=
m∑

k=1

∂L(ŷk,yk)
∂ŷk

∂f1(θ(1)
k)

∂θ
(1)
k

∂θ
(1)
k

∂W(2)
ij

=
m∑

k=1

∂L(ŷk,yk)
∂ŷk

∂f1(θ(1)
k)

∂θ
(1)
k

W(1)
jk

∂f2(θ(2)
j)

∂θ
(2)
j

xi.

Notice that some of the gradient is the same as for W(1), i.e.

δ
(1)
k = ∂L(ŷk,yk)

∂ŷk

∂f1(θ(1)
k)

∂θ
(1)
k

Computing these components only needs to be done once for W(1), and this information
propagated back to get the gradient for W(2). The difference is in the gradient ∂θ(1)

∂W(2) ,
because h relies on W(2). For W(1), h = f2(xiW(2)) is a constant, and so does not affect
the gradient for W(1). The final gradient is

∂Err(W(1),W(2))
∂W(2)

ij

=
(

m∑
k=1

δ
(1)
k W(1)

jk

)
∂f2(θ(2)

j)

∂θ
(2)
j

xi

=
(
W(1)

j: δ(1)
) ∂f2(θ(2)

j)

∂θ
(2)
j

xi

If another layer is added before W(2), then the information propagated backward is

δ
(2)
j =

(
W(1)

j: δ(1)
) ∂f2(θ(2)

j)

∂θ
(2)
j

and xi is replaced with h(2)
i . The gradient for W(3)

ij is

(
W(2)

j: δ(2)
) ∂f3(θ(3)

j)

∂θ
(3)
j

xi

Example 18: Let p(y = 1|x) be a Bernoulli distribution, with f1 and f2 both sigmoid
functions. The loss is the cross-entropy. We can derive the two-layer update rule with these

APPENDIX A. EXTRA INFORMATION 155

settings, by plugging-in above.

L(ŷ, y) = −y log(ŷ)− (1− y) log(1− ŷ) ▷ cross-entropy
∂L(ŷ, y)
∂ŷ

= −y
ŷ

+ 1− y
1− ŷ

f2(xW(2)
:j) = σ(xW(2)

:j) = 1
1 + exp(−xW(2)

:j)

f1(hW(1)
:k) = σ(hW(1)

:k) = 1
1 + exp(−hW(1)

:k)
∂σ(θ) = σ(θ)(1− σ(θ))

We can compute the backpropagation update by first propagating forward and computing

h = σ(xW(2)) and ŷ = σ(hW(1))

and then propagating the gradient back

δ
(1)
k = ∂L(ŷk,yk)

∂ŷk

∂f1(θ(1)
k)

∂θ
(1)
k

=
(
−yk

ŷk
+ 1− yk

1− ŷk

)
ŷk(1− ŷk) = −yk(1− ŷk) + (1− yk)ŷk

= ŷk − yk

∂L(ŷk,yk)
∂W(1)

jk

= δ
(1)
k hj

δ
(2)
j =

(
W(1)

j: δ(1)
)

hj(1− hj)
∂L(ŷk,yk)
∂W(2)

ij

= δ
(2)
j xi

The update simply consists of stepping in the direction of these gradients, as is usual for
gradient descent. We start with some initial W(1) and W(2) (say filled with random values),
and then apply the gradient descent rules with these gradients. □

A.7 More on Mixture Models and EM

A.7.1 Setting Up for the EM Algorithm

The key part of the EM algorithm is to explicitly reason about the latent variable z that
corresponds to which mixture component generated the datapoint. To understand this,
consider how data is generated from a mixture model p(x) =

∑m
k=1wkp(x|θk).

1. Sample a component z ∈ {1, . . . ,m} proportionally to weights w1, . . . , wm.

2. Sample x from the z-th component p(x|θz).

APPENDIX A. EXTRA INFORMATION 156

In other words, we can think of wk as p(Z = k) and p(x|θk) as p(x|Z = k). When we
sample x, we can think of this as jointly sampling (x, z) from p(x, z) = p(x|z)p(z) =
p(x|Z = z)p(Z = z), and then only observing x. In fact, to be very explicit about this, we
will now index with z instead of k and write:

p(x) =
m∑

z=1
wzp(x|θz).

This is equivalent to using k, since it is just a variable name, but it forces us to think of
this index as a latent variable z.

If we knew the mixture component z for x, then estimation would be simpler. Intuitively,
we can see why this is the case. We can partition the dataset into D1,D2, . . . ,Dm where
Dz consists of the xi that have label z. Then we just need to estimate the multivariate
Gaussian parameters θz = (µz,Σz) for each dataset Dz separately, to get the m Gaussians
in the mixture. We saw how to use MLE to get these in the last section. It is a bit more
work to get the coefficients wz, especially because this is a constrained optimization, but
the update ends up being simple (as we will see).

The EM algorithm is build on this insight. It iteratively predicts which component
is likely for each x using its current parameters θ(t) (current belief about how the world
works), and then uses this prediction to improve the parameter estimates
θ(t+1) = (w(t+1)

1 , w
(t+1)
2 , . . . , w

(t+1)
m ,θ

(t+1)
1 , . . . ,θ

(t+1)
m). The EM algorithm performs the fol-

lowing steps:

1. E-step: Compute p(z|D,θ(t)) where z def= (z1, . . . , zn)

2. M-step: Compute θ(t+1)

Let us now reason about the objective we are optimizing using this procedure. We know
we want to minimize the negative log-likelihood, which we can rewrite

ln p(D|θ) = ln(p(D, z|θ)/p(z|D,θ)) = ln p(D, z|θ)− ln p(z|D,θ)

We can define

pt(zi)
def= pt(zi|xi,θ

(t)) and pt(z) def=
n∏

i=1
pt(zi)

and take the expectation over both sides, according to the distribution pt, giving∑
z
pt(z) ln p(D|θ) = ln p(D|θ) and

∑
z
pt(z) ln p(D, z|θ)−

∑
z
pt(z) ln p(z|D,θ)

=⇒ ln p(D|θ) =
∑

z
pt(z) ln p(D, z|θ)−

∑
z
pt(z) ln p(z|D,θ)

In the maximization step of EM, we only focus on optimizing the first term, and omit∑
z pt(z) ln p(z|D,θ). This is better justified in Section 12.3. For now, we will move forward

and derive the EM algorithm accepting that this choice still helps us minimize − ln p(D|θ).
Therefore, to get the new parameters θ(t+1), we find

θ(t+1) = argmin
θ

−
∑

z
pt(z) ln p(D, z|θ). (A.3)

APPENDIX A. EXTRA INFORMATION 157

A.7.2 The Expectation-Maximization Algorithm

Given this set-up, we can now derive the E-step and the M-step. We will do this specifically
for Gaussian mixture components to start. We start with the M-step, then the E-step and
finally put it all together.

M-step

Let us rewrite the objective in Equation A.3.

∑
z
pt(z) ln p(D, z|θ) =

∑
z
pt(z)

n∑
i=1

ln p(xi, zi|θ) ▷ p(D, z|θ) = Πn
i=1p(xi, zi|θ)

=
n∑

i=1

∑
z
pt(z) ln p(xi, zi|θ) ▷ swap sums

=
n∑

i=1

m∑
zi=1

∑
z\i

pt(zi)pt(z\i) ln p(xi, zi|θ) ▷ pt(z) =
n∏

i=1
pt(zi) = pt(zi)pt(z\i)

=
n∑

i=1

m∑
zi=1

pt(zi) ln p(xi, zi|θ) ▷
∑
z\i

pt(z\i) = 1 factors out

=
n∑

i=1

m∑
zi=1

pt(zi) ln[wzip(xi|θzi)] ▷ p(xi, zi|θ) = p(xi|zi,θ)p(zi|θ).

Notice that
ln[wzip(xi|θzi)] = lnwzi + ln p(xi|θzi)

and so we can optimize for w and {θk}mj=1 separately because they do not interact. The
weights w are in the first sum and the Gaussian parameters {θk}mj=1 are in the second sum.

∑
z
pt(z) ln p(D, z|θ) =

n∑
i=1

m∑
zi=1

pt(zi) lnwzi +
n∑

i=1

m∑
zi=1

pt(zi) ln p(xi|θzi)

=⇒ argmin
w∈F

−
∑

z
pt(z) ln p(D, z|θ) = argmin

w∈F
−

n∑
i=1

m∑
zi=1

pt(zi) lnwzi

argmin
θk

−
∑

z
pt(z) ln p(D, z|θ) = argmin

θk

−
n∑

i=1

m∑
zi=1

pt(zi) ln p(xi|θzi)

Notice that pt(zi) is simply stored as a multi-dimensional array pt[i, k] where at time step
t we have the probabilities for z for each sample i. To derive the updates for these opti-
mizations, we will go back to indexing by k, now that we understand the objective and that
each k is a latent component.

Finding Gaussian parameters θk Let us start with optimizing for the Gaussian pa-
rameters. Because

n∑
i=1

m∑
k=1

pt[i, k] ln p(xi|θk) =
m∑

k=1

(
n∑

i=1
pt[i, k] ln p(xi|θk)

)

APPENDIX A. EXTRA INFORMATION 158

again we can see that each θk can be optimized independently

θ
(t+1)
k = argmin

θk

−
n∑

i=1
pt[i, k] ln p(xi|θk).

This optimization is just a weighted log likelihood. For a Gaussian, where θk = (µk,Σk),
we can show that this corresponds to finding

∇µ−
n∑

i=1
pt[i, k] ln p(xi|θk) = Σ−1

k

n∑
i=1

pt[i, k](µ− xi) = 0 =⇒
n∑

i=1
pt[i, k](µ− xi) = 0

=⇒ µ = 1∑n

i=1 pt[i,k]

n∑
i=1

pt[i, k]xi

The normalization takes into account how much probability is associated with component
k across the samples. We can further simplify this by using a normalized weighting

p̃t[i, k] = pt[i,k]∑n

j=1 pt[j,k]

to get µk =
∑n

i=1 p̃t[i, k]xi. Similarly, for the variance, we find that

Σk =
n∑

i=1
p̃t[i, k](xi − µk)(xi − µk)⊤.

Finding component probabilities w Now let us turn to finding w. (Note: we already
solved this in Section 6.3, but repeat here to match the above terminology). This opti-
mization is a bit more complex, because we have to ensure that we satisfy the simplex
constraints. In other words, we need to find

w(t+1) = argmin
w∈[0,1]m,

∑m

k=1 wk=1
−

n∑
i=1

m∑
k=1

pt[i, k] lnwk

Overloading terminology, if we let pt[k] =
∑n

i=1 pt[i, k], and notice
∑n

i=1
∑m

k=1 pt[i, k] lnwk =∑m
k=1 lnwk

∑n
i=1 pt[i, k] =

∑m
k=1 lnwkpt[k], then we can equivalently write

w(t+1) = argmin
w∈[0,1]m,

∑m

k=1 wk=1
−

m∑
k=1

pt[k] lnwk

We can use our new-found knowledge about constrained optimization and KKT multipliers,
for this problem. To start we shall first form the Lagrangian function as

L(w, a,b) = −
m∑

k=1
pt[k] lnwk + a

(
m∑

k=1
wk − 1

)
−

m∑
k=1

bkwk

where a ∈ R and b ≥ 0 are KKT multipliers. Our goal now is to solve the new objective
that no longer has constraints on w:

min
w∈Rm

max
a∈R,b≥0

L(w, a,b)

APPENDIX A. EXTRA INFORMATION 159

We can find a closed form solution, by reasoning about the feasible solutions. We know that
any optimal solution w must satisfy w ∈ F (the simplex); otherwise, the loss L(w, a,b)
can be made arbitrarily big by (the adversaries) a and b. So, any optimal solution will
have w ∈ F . Moreover, for such w, we know that a ∈ R has no impact on the loss, since
it multiples zero; therefore, it is a free variable and can be anything and still result in an
optimal solution—namely result in the same value for L(w, a,b). Finally, we know that
b ≥ 0 will be chosen such that bkwk = 0 for all k, since that is the choice that makes the
sum involving b maximal. And, of course, we need to be at a stationary point for w. In
other words, to satisfy the KKT conditions and know we have an optimal solution, we need

0 = ∂

∂wk
L(w, a,b) = −pt[k]

wk
+ a− bk ∀k ∈ Y

wkbk = 0

with b ≥ 0 and w ∈ F . The stationarity conditions gives us wk = pt[k]
a−bk

. As in Section ??,
we know that bk = 0 unless wk = 0. If pt[k] > 0, we know wk > 0, giving wk = pt[k]

a . If
pt[k] = 0, then wk = 0 and similarly we can write wk = pt[k]

a . Therefore, to ensure we are
at an optimal solution—and satisfy the KKT conditions—we know we need to set a such
that

∑m
k=1wk = 1. We can do so by setting a = n, giving

m∑
k=1

wk =
m∑

k=1

pt[k]
n

= 1
n

m∑
k=1

pt[k] = 1
n
n = 1

because by definition
∑m

k=1 pt[k] = n. Therefore,

w
(t+1)
k = 1

n
pt[k] where pt[k] def=

n∑
i=1

pt[i, k] (A.4)

E-step

Once we have the new parameters—once we have done the maximization step—we need to
update the component probabilities—namely do the expectation step. This involves getting

pt+1(Zi = k) def= p(Zi = k|xi,θ
(t+1)) = w

(t+1)
k p(xi|θ(t+1)

k)∑m
j=1w

(t+1)
j p(xi|θ(t+1)

j)
. (A.5)

These again can be stored as an n × m matrix pt+1[i, k] and the normalized p̃t+1[i, k]
computed from those. Note that in practice, we do not create new variables pt+1, but
rather overwrite the existing n×m matrix; we simply index by time for clarity here.

Summarizing the EM Algorithm

In general, for each step t, the EM algorithm performs the following steps:

1. E-step: Compute p(z|D,θ(t))

2. M-step: Compute θ(t+1)

Exercise 44: Derive the updates again now assuming the mixture components are expo-
nentials and d = 1. □

APPENDIX A. EXTRA INFORMATION 160

A.7.3 Identifiability

When estimating the parameters of a mixture, it is possible that for some parametric families
one obtains multiple solutions. In other words, for all x ∈ X ,

p(x|θ) =
m∑

k=1
wkp(x|θk) =

m′∑
j=1

w′
jp(x|θ′

j) = p(x|θ′)

even though θ ̸= θ′. The parameters are identifiable if
m∑

k=1
wkp(x|θk) =

m′∑
k=1

w′
jp(x|θ′

k),

implies that m = m′ and that there exists a re-ordering of the parameters such that wk = w′
k

and θk = θ′
k. We explicitly state that there is a re-ordering because the order of the mixing

components is irrelevant, so they may need to be re-ordered to finding the matching pairs.
It is well-known that a mixture of Gaussian distributions is identifiable. In fact, more

generally, mixtures of exponential family distributions—which we discuss in the next Chapter—
are identifiable. Some distributions, however, may not satisfy this property.

A.7.4 Connection to Mirror Descent

The EM algorithm actually has an interesting connection to gradient descent [15]. More
specifically, it has a connection to an algorithm called mirror descent. The idea behind
mirror descent is simple: when deriving the gradient descent update, we use a different
distance d to the previous parameters:

wt+1 = argmin
w∈Rd

c(wt) +∇c(wt)⊤(w−wt) + 1
2ηt

d(w,wt)

where for gradient descent we used d(w,wt) = ∥w−wt∥22.
The choice of squared distance is reasonable in many cases, but not that reasonable

when the parameters are those for a probability distribution, as they are in mixture models.
We do not in fact care too much if the parameters are close in Euclidean space—namely
according to squared error—but rather care more if their mixture distributions are similar.
We have seen one useful way to measure differences between distributions, in Section 2.5:
KL-divergences! We can use

d(w,wt) = KL(p(x; wt)||p(x; w))

It has been shown that each iteration of EM actually corresponds to computing wt+1
with this d, with a stepsize of 1, for a reasonably large set of mixture distributions [15].
This connection is useful because it motivates the EM algorithm further, as well as suggests
ways to extend the algorithm using algorithmic choices in mirror descent.

A.8 More on Generative Models

A.8.1 Contrasting with Generative Classifiers

The term generative models has also been used to describe an alternative approach to clas-
sification. The standard approach we have considered is to learn a discriminative classifier :

APPENDIX A. EXTRA INFORMATION 161

one where we learn p(y|x). This model lets us discriminate between possible targets for a
given input x. A generative classifier is still trying to obtain argmaxy∈Y p(y|x), but instead
estimates p(x|y) and p(y). It uses the fact that

p(y|x) = p(x|y)p(y)
p(x) =⇒ argmax

y∈Y
p(y|x) = argmax

y∈Y
p(x|y)p(y)

You can see why this is called a generative classifier, since we learn the joint distribution
p(x|y)p(y) = p(x, y) that enables us to generate (sample) pairs (x, y). Further, because x
is often more complex—such as an image—we use approaches that we use for generative
models, such as mixture models or variational autoencoders.

However, this approach seems to violate the principle of simplicity. It is typically easier
to learn p(y|x). Why learn a full generative model on x when all you really need is p(y|x)?
Primarily the answers are that (a) we can encode different inductive biases (priors) into
our generative models and (b) we can learn relatively simple generative models and still
obtain reasonable classification accuracy. For example, if you are trying to classify faces
into narrow or wide, then as an expert you might be able to encode prior knowledge into
p(x|y = narrow) and p(x|y = wide). It can actually be harder to encode prior knowledge
into p(y|x).

For the second point, a canonical example of a generative classifier is naive Bayes. This
algorithm is called naive because it imposes a simplistic (and likely untrue) assumption:
that all the features are independent given the class information. Mathematically,

p(x|y) = p(x1, x2, . . . , xd|y) =
d∏

j=1
p(xj |y)

The utility of this (strong) assumption is that it is much simpler to learn these univariate
distributions over each features, than it is to learn one larger joint distribution. If we have
m classes, then we simply learn m univariate distributions over each xj , for a total of md
univariate distributions. For example, we can learn Gaussians p(xj |y = k) = N (µjk, σ

2
jk)

or we can even learn mixture models p(xj |y = k) for each (j, k). In either case, we have
relatively simple algorithms to do so. For Gaussians, we have a closed form solution: the
maximum likelihood estimates µjk and σ2

jk are simply the mean and variance for feature j
for each data point labeled class k. For mixture models, we can similarly create individual
datasets and use our EM algorithm. We take all the points labeled as class k and include
only feature j: Djk = {xij : yi = k for (xi, yi) ∈ D}.

A.9 More on Generalization Theory

In this section, we talk about the basic ideas behind generalization bounds. This is a
brief introduction, that is primarily to pique your interest and only scratches the surface.
Statistical learning theory is a constantly evolving field, with many new discoveries. Many
advances are also focused on more information theoretical results, under more specialized
cases or assuming properties of the data. Here, we focus on the simplest case, where
we assume little about the structure of the data, and consider primarily the role of the
complexity of the function class.

APPENDIX A. EXTRA INFORMATION 162

We begin with some basic finite-sample results, that relate the complexity of the model
class to the number of samples required to obtain a reasonable estimate of expected er-
ror (generalization error). We will discuss one result using concentration inequalities and
Rademacher complexity to characterize model-class complexity; for further information, you
could consider this tutorial on the topic [8].

A.9.1 A Shorter Overview

Most generalization bounds are focused on obtaining high-probability guarantees. The
general structure is rather simple. In this section we outline this general structure, and
provide more specific details for your interest in the following of sections.

Our goal is still to select a function from F to minimize generalization error,

min
f∈F

GE(f) where GE(f) = E[cost(f(X), Y)] =
ˆ

X ×Y
p(x, y)cost(f(x), y)dxdy.

We minimize a sample error as a proxy to the true expected error,

ĜE(f) = 1
n

n∑
i=1

cost(f(xi), yi).

We can decompose the true error using

GE(f) = ĜE(f) + GE(f)− ĜE(f)

≤ ĜE(f) + max
h∈F

(
GE(h)− ĜE(h)

)
.

The term ĜE(h) is dependent on the data, and so is a random variable. It is hard to reason
about the worst-case difference for a specific dataset. Instead, we use concentration inequal-
ities to get an upper bound with high probability. Under certain assumptions—needed to
be able to use the desired concentration inequality—we get a bound of the following form:
for some constant c, with probability 1− δ,

GE(f) ≤ ĜE(f) + ED

[
max
h∈F

(
GE(h)− ĜE(h)

)]
+ c

√
− ln δ
n

.

The second term R = maxh∈F (GE(h) − ĜE(h)) is now upper-bounded by its expectation
plus an interval to account for how far the sample R deviates from its expectation E[R].

This R reflects the complexity of the function class. The R is bigger if the function class
is more complex, because there is some h that can overfit the dataset and so make ĜE(h)
very small but have high true error GE(h). The expectation reflects this complexity across
training datasets, and so can be thought of as the expected complexity.

Different bounds arise depending on the assumptions. These types of bounds are
distribution-dependent, in that these assumptions typically restrict the types of data distri-
butions that we have to make it appropriate to use the chosen concentration inequality. It
is not important here to know how we measure complexity, nor specific details about these
assumptions. Rather, the purpose of the above was to get an idea of how we reason about
high probability generalization bounds. For specific examples of complexity measures and
assumptions, see the next few sections.

APPENDIX A. EXTRA INFORMATION 163

A.9.2 A Generalization Bound for Linear Regression

Our goal throughout this book has been to obtain a function, based on a set of examples,
that predicts accurately: produces low expected error across the space of possible examples.
We cannot, however, measure the expected error. Statistically, we know that with a suffi-
cient sample, we can approximate an expectation. Here, we quantify this more carefully for
learned functions.

Our goal more precisely is to select a function from a function class F to minimize a
loss function ℓ : R× R→ [0,∞) in expectation over all pairs (x, y)

min
f∈F

E[ℓ(f(X), Y)].

For example, in linear regression, F = {f : Rd → R | f(x) = x⊤w, for any w ∈ Rd}. This
space of functions F represents all possible linear functions of inputs x ∈ Rd, to produce a
scalar output. Our goal in linear regression was to minimize a proxy to the true expected
error, i.e., the sample error: 1

n

∑n
i=1 ℓ(f(xi), yi). Now a natural question to ask is: does this

sample error provide an accurate estimate of the true expected error? And what does it
tell us about the true generalization performance, i.e., true expected error?

Let’s start with a simple example, using linear regression. Assume a bounded function
class F , where F = {f : Rd → R | f(x) = x⊤w, for any w ∈ Rd such that ∥w∥2 ≤ Bw}
for some finite scalar Bw > 0. Assume the input features come from a bounded space,
such that for all x, ∥x∥2 ≤ Bx for some finite scalar Bx > 0, and further that the outputs
y ∈ [−By, By] for some By > 0. Assume we use loss ℓ(ŷ, y) = 1

2(ŷ − y)2. This loss
is Lipschitz continuous for our bounded region, which means that the function does not
change too quickly. Namely, for ŷ1, ŷ2 ∈ [−By, By], and any y ∈, there is a constant K such
that

|ℓ(ŷ1, y)− ℓ(ŷ2, y)| ≤ K|ŷ1 − ŷ2|.

This constant K reflects how fast the function can change, since it is the ratio between
the change in the function for two points to the distance between those two points (rise
over run). The squared error is not Lipschitz for all of R, since it grows quickly once ŷ gets
bigger. But, for our bounded region it is Lipschitz, with Lipschitz constant K = By +BxBw.
We can compute K because it is the maximum magnitude of the gradient of the function,
wrt to its inputs ŷ. Using the fact that |ŷ| ≤ BxBw, we have∣∣∣∣dℓ(ŷ, y)

dŷ

∣∣∣∣ = |ŷ − y| ≤ |ŷ|+ |y| ≤ By +BxBw.

Further, because y ∈ [−By, By], we know the loss is bounded as

ℓ(ŷ, y) = 1
2(ŷ − y)2 ≤ 1

2(B2
y +B2

xB
2
w).

For approximate error

Êrr(f) = 1
n

n∑
i=1

ℓ(f(xi), yi)

APPENDIX A. EXTRA INFORMATION 164

and true error

Err(f) = E[ℓ(f(X), Y)] =
ˆ

X ×Y
p(x, y)ℓ(f(x), y)dxdy

using Equation A.7 below, we get that with probability 1− δ, for δ ∈ (0, 1],

Err(f) ≤ Êrr(f) + 2KBxBw√
n

+ 1
2(B2

y +B2
xB

2
w)

√
ln(1/δ)

2n . (A.6)

With increasing samples n, the second two terms disappear and the sample error ap-
proaches the true expected error. This bound show the rate at which this discrepancy dis-
appears. For a higher confidence—small δ making ln(1/δ) larger—more samples are need
for the third term to be small. This third term is obtained using concentration inequalities,
which enable us to state the rate at which a sample mean gets close to its expected value.
For possibly large values of features or learned weights, the second term can be big and
can again require more samples. The second term reflects the properties of our function
class: a simpler class, with small bounded weights, can have a more accurate estimate of
the loss on a smaller number of samples. More generally, this complexity measure is called
the Rademacher complexity.2 For the linear functions above, with bounded ℓ2 norms for x,
w, the Rademacher complexity is bounded as Rn(F) ≤ BxBy/

√
n (see [13, Equation 3]).

In the next few sections, we provide a generalization result for more general functions,
as well as required background to determine that result.

A.9.3 Complexity of a function class

Rademacher complexity of a function class characterizes the overfitting ability of functions,
on a particular sample. Function classes that are more complex have functions that are
more likely to be able to fit random noise, and so have higher Rademacher complexity. The
empirical Rademacher complexity, for a sample {z1, . . . , zn} —where typically we consider
zi = (xi, yi) — is defined as3

R̂n(F) = E
[
max
f∈F

1
n

n∑
i=1

σif(xi)
]

where the expectation is over i.i.d.random variables σ1, . . . , σn chosen uniformly from {−1, 1}.
This choice reflects how well the function class can correlate with this random noise. Con-
sider for example if f(x) predicts 1 or -1, as in binary classification. If there exists a function
in the class of functions that can perfectly match the sign of the randomly sampled σi, then
that function produces the highest value

∑n
i=1 σif(xi). The empirical Rademacher complex-

ity for a function class is high, if for any randomly sampled σi, there exists such a function
within the function class (can be a different function for each σ1, . . . , σn). The Rademacher

2If you have heard of VC dimension, we will discuss the connection between Rademacher and VC dimen-
sion below. They both play a role in identifying the complexity of a function class.

3Here we are being a bit loose and using maximum instead of supremum, to avoid burdening the reader
with new terminology. We usually deal with function classes F where using the supremum is equivalent
to using the maximum. The supremum is used when a set does not contain a maximal point (e.g., [0, 1)),
where the supremum provides the closest upper bound (e.g., 1 for [0, 1)).

APPENDIX A. EXTRA INFORMATION 165

complexity is the expected empirical Rademacher complexity, over all possible samples of
n instances.

For function classes with high Rademacher complexity, error on the training set is un-
likely to be reflective of the generalization error, until there is a sufficient number of samples.
This is reflected in the generalization bound in Section A.9.4.

Connection to VC dimension: The complexity of a function class can also be char-
acterized by the VC dimension. The idea of VC dimension is to characterize the number
of points that can be separated (or shattered) by a function class. Simple functions have
low VC dimension, because they are not complex enough to separate many points. More
complex functions, that enable complex boundaries, have higher VC dimension. For ex-
ample, for functions of the form f((x1, x2)) = sign(x1w1 + x2w2 + w0), the VC dimension
is 3; more generally, for x ∈ Rd, the VC dimension is d + 1. VC dimension is a similar
idea to Rademacher complexity, but it is restricted to binary classifiers. For this reason, we
directly discuss the Rademacher complexity, which for binary classifiers can be bounded in
terms of the VC dimension. By Sauer’s Lemma, we can typically bound the Rademacher
complexity of a hypothesis class by

√
2VC-dimension ln n

n .

A.9.4 A Generalization Bound for General Function Classes

The generalization bound for a class of models can be obtained by combining the con-
centration inequalities to bound deviation from the mean for fewer samples, and using the
Rademacher complexity to bound the difference between the sample error and true expected
error across all functions in the function class. We additionally need to restrict the set of
losses. We assume that the losses are Lipschitz with constant K, meaning that they do
not change too quickly in a region, with c indicating the rate of change. Further, we also
assume that the loss is bounded by b, i.e., attains values in [−b, b]. As above, if {z1, . . . , zn}
is i.i.d., then with probability 1− δ, for every f ∈ F ,

E[ℓ(f(X), Y)] ≤ 1
n

n∑
i=1

ℓ(f(xi), yi) + 2KRn(F) + b

√
ln(1/δ)

2n (A.7)

For a more precise theorem statement and a proof, see [3, Theorem 7] and [13, Theorem 1].

A.10 More on Missing Data

A.10.1 Multiple Imputation and the MAR Assumption

Consider an idealized scenario. If we could, we would have the distribution for each subset
of available variables, to then allow us to compute p(y|x) for only the available terms in
x. In other words, what we would like to do is find p(y|xA) where xA are the available
components of x, and xM are the remaining missing ones. We can write this probability,
in terms of the conditional probabilities p(y|x), where the (unknown) complete vector x is

APPENDIX A. EXTRA INFORMATION 166

composed of xA and xM.

p(y|xA) =
ˆ
p(y,xM|xA)dxM ▷ marginalization

=
ˆ
p(y|xM,xA)p(xM|xA)dxM ▷ chain rule

We could approximate this integral, which is an expected value over xM, using a sam-
ple average. If we could sample multiple xM,1, . . . ,xM,b from p(xM|xA), then we could
approximate p(y|xA) ≈ 1

b

∑b
i=1 p(y|xA,xM,i). Or, if we are doing regression rather than

classification, we could use E[Y |xA] ≈ 1
b

∑b
i=1 E[Y |xA,xM,i] where each term E[Y |xA,xM,i]

is an output from the regression model on inputs xA,xM,i. This approach also gives us a
range of possible predictions, based on the variance across these b samples, providing some
insight into how different the prediction could have been if we had seen different values for
xM. This approach is called multiple imputation.

We can do multiple imputation by learning a model that lets us sample xM for given
xA. One setting where this is straightforward to do is probabilistic PCA. In PPCA, we
have Gaussian distribution over x, p(x) = N (µ = 0,DD⊤ + σ2I), where we learned D and
σ. For such a Gaussian, we can compute the conditional distribution p(xM|xA), which also
remains Gaussian. In other words, for[

xA
xM

]
∼ N

([
µA
µM

]
,

[
ΣAA ΣAM
ΣMA ΣMM

])

we know that

p(xM|xA) is N
(
µM + ΣMAΣ−1

AA(xA − µA), ΣMM −ΣMAΣ−1
AAΣAM

)
.

This formula is not simple or that easy to interpret, but it is easy to compute and sample
from. We simply compute the above mean and covariance, and sample from a Gaussian to
get a sample of xM. We can do this repeatedly, to get a multiple imputation estimate for
our prediction.

We can do this for other generative models too, but sampling becomes a bit more
complicated and expensive. There are many algorithms out there for it, though, so it is a
feasible route! The sampling literature is vast and we will not cover those approaches here.

An important part of this approach is the assumption that the data is Missing At Ran-
dom (MAR). This assumption states that conditioned on the observable information—
other features that are not missing—the distribution over the missing feature is not skewed.
In the terms above, this means we are assuming that p(xM|xA) = p(xM|xA,M is missing).
Essentially, we are saying that knowing certain features are missing is not relevant, and this
conditional distribution remains the same regardless whether those features are missing or
not.

Example 19: Assume there is a true joint distribution p(x), where x is information
about a patient (disease severity, gender, age, etc.). For x2 = male, x3 = 30, we have a
distribution over x1 = disease severity ∈ [0, 1]: p(x1|x2 = male, x3 = 30. This is the
true distribution in the population; let’s say it is centered at a severity of 0.1 for 30 year
old males.

APPENDIX A. EXTRA INFORMATION 167

But now let’s imagine that men are less likely to report any information about the
disease, so this feature x1 is more often missing for these patients. This means in the
dataset, whether or not x1 is missing will be correlated with seeing x2 = male. But, we may
still be able to say it is MAR, conditioned on the fact that the patient is listed as a male:
once we know that the patient is male, the fact that the feature is missing does not tell us
anything the severity of the disease. If we assume x1 is missing, and x\1 are the remaining
features that are observed, then MAR means

p(x1|x\1, x1 is missing) = p(x1|x\1)

□

This MAR assumption is likely to be violated, at least somewhat. In this example, it is
not easy to know if someone with low or high severity is more or less likely to report disease
information. Someone with low severity may be lazy and not bother. Someone with high
severity may be unhappy about the situation and choose to not report. If there is balance
across severities in terms of willingness to report—and the primary differences in whether
the info is reported are due to the observed factors like gender and age—then MAR is a
reasonable assumption, even if not perfectly true. In other cases, it is clear that MAR is
not reasonable; and so we say that the data is Missing Not At Random (MNAR).

A.10.2 Naive Bayes and Missing Data

A benefit of generative classifiers like naive Bayes is that they allow us to deal with missing
data using marginalization. Recall that in naive Bayes we classify using p(x|y)p(y) instead
of p(y|x), because

argmax
y∈Y

p(y|x) = argmax
y∈Y

p(x|y)p(y)

Now assume we have a point xi, and assume attribute 2 is missing. But, p(x|y) requires
all of x to be specified. Instead, we would like to use only our available information. If we
could, then we would have the learned model p(xi1, xi3, xi4, . . . , xid|y). Then to classify the
input, we would instead use argmaxy∈Y p(xi1, xi3, xi4, . . . , xid|y)p(y).

Implicitly, we have learned all of these marginals, by learning the full joint distribution.
We can always extract out the distribution over a subset of variables, by marginalizing over
the other (missing) variables. For this example, we have that

p(x1, x3, x4, . . . , xd|y) =
ˆ

X2

p(x1, x2, x3, x4, . . . , xd|y)p(y)dx2

ˆ
X2

p(x|y)p(y)dx2

For naive Bayes, this marginal is easy to obtain, because each feature is independent given
the class. In fact, we get

p(x1, x3, x4, . . . , xd|y) = p(x1|y)p(x3|y) . . . p(xd|y)

APPENDIX A. EXTRA INFORMATION 168

which is the same asˆ
X2

p(x1, x2,x3, x4, . . . , xd|y)dx2 =
ˆ

X2

p(x1|y)p(x2|y)p(x3|y) . . . p(xd|y)dx2

= p(x1|y)p(x2|y)p(x3|y) . . . p(xd|y)
ˆ

X2

p(x2|y)dx2

= p(x1|y)p(x2|y)p(x3|y) . . . p(xd|y) ▷ where
ˆ

X2

p(x2|y)dx2 = 1.

More generally, for any input xi with available features Ai, we get that

argmax
y∈Y

p(xi|y)p(y) = argmax
y∈Y

p(y)
∏

j∈Ai

p(xij |y)

Appendix B

Convergence Rates for Gradient Descent

We know the optimization procedure is important, but have not yet theoretically analyzed
these optimization choices. Fortunately for us, some of the optimization theory in machine
learning is quite simple. In this chapter, we will go through the convergence proof for
gradient descent. Then we will contrast the convergence rates for our different algorithms,
and particularly get a more concrete understanding of how the mini-batch size might impact
convergence rates. We conclude by discussing how the choice of optimizer is not only
about computation—how fast we can get to our solution—but also can have an impact on
generalization.1

B.1 A Convergence Proof for Gradient Descent

The convergence proof for gradient descent requires only a few assumptions. We will not
need the function to be convex; instead, we will only characterize convergence to a stationary
point (which might be a local minimum). Instead, we only need two conditions. First, the
function should be bounded from below, and so have a non-infinite minimum value c(w∗).
Second, we will need the function to smooth. In particular, we will assume that the gradient
of c is Lipschitz continuous, which simply means that there exists an L > 0 such that for
all w,v,

∥∇c(w)−∇c(v)∥ ≤ L∥w− v∥ (B.1)

where we can use any norm ∥ · ∥, but we assume here that it is the ℓ2 norm. This condition
just means that the gradient cannot change arbitrarily fast. It is true for most of our
models, including any of our GLMs whether we use linear features or neural networks. The
results apply even for ReLU activations, which have some non-differentiable points, because
we only need this condition to be true almost everywhere.

It is straightforward to show that Equation (B.1) is equivalent to saying

c(w) ≤ c(v) + ⟨∇c(v),w− v⟩+ L

2 ∥w− v∥2 (B.2)

The intuition for why this is true is that the right-hand side (rhs) gives us a quadratic
approximation around v that is guaranteed to be above our objective function c, even for w
far away from v. Instead of the standard Taylor series expansion, which uses the Hessian in
the second-order term, here we use the more conservative Lipschitz constant, which ensures
that second-term is quite large. In fact, practically, it is likely quite a bit too large, and we

1This chapter was written using the very nice lecture notes from Mark Schmidt here: https://www.cs.
ubc.ca/~schmidtm/Courses/540-W19. Unrelated, Mark—possibly the best optimization person ever—also
uses Julia for his Machine Learning course.

169

https://www.cs.ubc.ca/~schmidtm/Courses/540-W19
https://www.cs.ubc.ca/~schmidtm/Courses/540-W19

APPENDIX B. CONVERGENCE RATES FOR GRADIENT DESCENT 170

could have selected a smaller constant than L and still obtained an upper bound for most
w in a nearby region. But, let’s keep this easy on ourselves and use this nice result about
Lipschitz functions c.

This property almost immediately gives us the result. Just like when we derived gradient
descent, we can minimize this second-order approximation, which tells us to use the stepsize
ηt = 1/L. Then for iterations wt+1 = wt − 1

L∇c(wt), we can substitute w = wt+1 and
v = wt in Equation (B.2) to get

c(wt+1) ≤ c(wt) + ⟨∇c(wt),wt+1 −wt⟩+ L
2 ∥wt+1 −wt∥2

= c(wt) + ⟨∇c(wt),− 1
L∇c(wt)⟩+ L

2 ∥
1
L∇c(wt)∥2 ▷wt+1 −wt = − 1

L
∇c(wt)

= c(wt)− 1
L∥∇c(wt)∥2 + 1

2L∥∇c(wt)∥2 ▷ ∥ 1
L∇c(wt)∥2 = 1

L2 ∥∇c(wt)∥2

= c(wt)− 1
2L∥∇c(wt)∥2

Therefore, on each step we have guaranteed improvement. This improvement slows down
as the gradient gets smaller. We can say we have converged when ∥∇c(wt)∥2 ≤ ϵ for some
tolerance ϵ > 0. The guaranteed progress implies we must reach this condition, otherwise
the objective value would decrease infinitely, which is not possible because the lowest it can
go to is c(w∗). In the next section, we characterize the rate at which is reaches this point.

B.2 Convergence Rate of Gradient Descent

Notice that

c(wt) ≤ c(wt−1)− 1
2L∥∇c(wt−1)∥2 =⇒ ∥∇c(wt−1)∥2 ≤ 2L(c(wt−1)− c(wt))

and that we have the telescoping sum

t∑
k=1

(c(wk−1)− c(wk))

= c(w0)− c(w1) + c(w1)︸ ︷︷ ︸
=0

− c(w2) + c(w2)︸ ︷︷ ︸
=0

−c(w3) + . . .− c(wt−1) + c(wt−1)︸ ︷︷ ︸
=0

−c(wt)

= c(w0)− c(wt)

Combining these two equations, we get that

t∑
k=1
∥∇c(wk−1)∥2 ≤ 2L

t∑
k=1

(c(wk−1)− c(wk)) = 2L(c(w0)− c(wt)) ≤ 2L(c(w0)− c(w∗))

where the last step follows from the fact that c(wt) ≥ c(w∗). Now further for any
k ∈ {1, . . . , t}, we know that minj∈{1,...,t} ∥∇c(wj−1)∥2 ≤ ∥∇c(wk−1)∥2, by definition of
a minimum (the minimum in a set must be smaller than any one of the items in the set).
Therefore

t min
j∈{1,...,t}

∥∇c(wj−1)∥2 ≤
t∑

k=1
∥∇c(wk−1)∥2

APPENDIX B. CONVERGENCE RATES FOR GRADIENT DESCENT 171

and so
min

j∈{1,...,t}
∥∇c(wj−1)∥2 ≤ 2L

t
(c(w0)− c(w∗))

Therefore, after t iterations we are guaranteed to have seen a gradient less than 1/t, times a
constant that depends on the Lipschitz constant L and how far we started from the optimum
c(w∗). In particular, to guarantee the norm is less than ϵ, we need

2L
t

(c(w0)− c(w∗)) ≤ ϵ =⇒ t ≥ 2L
ϵ

(c(w0)− c(w∗))

Therefore, within t = O(1/ϵ) iterations, we know we will reach our termination condition
∥∇c(wj)∥2 ≤ ϵ and have converged.

B.3 Convergence Rate of Stochastic Gradient Descent

We can use a similar analysis for mini-batch SGD, by leveraging the fact that we can see
SGD as a noisy version of batch GD. For mini-batch Bt on time step t, we can define

ϵt
def=

 1
|Bt|

∑
i∈Bt

∇ci(wt)

−∇c(wt) (B.3)

as the stochastic noise introduced from using a mini-batch rather than all the data and
rewrite the SGD update as

wt+1 = wt − ηt (∇c(wt) + ϵt)

Again leveraging that c is Lipschitz, with Lipschitz constant L, and using wt+1 − wt =
−ηt (∇c(wt) + ϵt), we get that

c(wt+1) ≤ c(wt) + ⟨∇c(wt),wt+1 −wt⟩+ L
2 ∥wt+1 −wt∥2

= c(wt) + ⟨∇c(wt),−ηt (∇c(wt) + ϵt)⟩+ L
2 ∥ηt (∇c(wt) + ϵt) ∥2

= c(wt)− ηt∥∇c(wt)∥2 − ηt⟨∇c(wt), ϵt⟩+ Lη2
t

2 ∥∇c(wt) + ϵt∥2

We want to understand how much progress we make on each step, but now each step is
stochastic. Instead, we reason about the expected value of the objective after our update.
The bound involves the variance due to this noise from using a mini-batch, which we can
assume is upper bounded by a constant σ2

t > 0,

E
[
∥∇c(wt) + ϵt∥2

]
≤ σ2

t .

Now we can take the expectation over this noise, ϵt, that results in wt+1 from the given wt,
and get

E[c(wt+1)] ≤ c(wt)− ηt∥∇c(wt)∥2 − ηtE[⟨∇c(wt), ϵt⟩] + Lη2
t

2 E
[
∥∇c(wt) + ϵt∥2

]
= c(wt)− ηt∥∇c(wt)∥2 − ηt⟨∇c(wt),E[ϵt]︸ ︷︷ ︸

=0

⟩+ Lη2
t

2 E
[
∥∇c(wt) + ϵt∥2

]
︸ ︷︷ ︸

≤σ2
t

≤ c(wt)− ηt∥∇c(wt)∥2 + Lη2
t σ2

t
2

APPENDIX B. CONVERGENCE RATES FOR GRADIENT DESCENT 172

We can go through similar steps to above, now also including expectations and allowing
the stepsize ηt to change with each iteration. The final result, with ηsum

def=
∑t−1

k=0 ηk and
ηvar

def=
∑t−1

k=0 η
2
kσ

2
k, is

min
j∈{1,...,t}

E
[
∥∇c(wj−1)∥2

]
≤ 1
ηsum

(c(w0)− c(w∗)) + L
2
ηvar
ηsum

(B.4)

This result differs from gradient descent in that we have this additional second term in the
upper bound.

We can reason about the values for this second term, depending on different stepsize
choices and mini-batch sizes. First, let’s assume we have a fixed mini-batch size, and so
variability due to the mini-batch is fixed across iterations. In other words, we can assume
that σt corresponds to a fixed σ for all t. Notice that if the mini-batch size is the whole
dataset, then σ2 = 0 and so

ηvar =
t−1∑
k=0

η2
kσ

2
k = σ2

t−1∑
k=0

η2
k = 0

Voila! We get back the same upper bound as gradient descent, because the second term
disappears. (This is a good sanity check that the general result applies to our known special
case). For mini-batch SGD, though, we expect σ2 > 0.

Now let us consider three options for the stepsize: a constant stepsize η, a slowly de-
creasing stepsize ηt = η/

√
t and a quickly decreasing stepsize ηt = η/t. For the constant

stepsize we get that

ηt = η =⇒ ηsum =
t−1∑
k=0

ηk =
t−1∑
k=0

η = tη and ηvar = σ2
t−1∑
k=0

η2
k = σ2

t−1∑
k=0

η2 = tσ2η2

Plugging this into the above upper bound in Equation (B.4), we get that

min
j∈{0,1,...,t−1}

E[∥∇c(wj)∥2] ≤ 1
ηt

(c(w0)− c(w∗)) + Lσ2η
2 (B.5)

The first term still converges to zero at the same rate, O(1/t), as gradient descent; this is
true even though each update costs much less than a full-batch GD update. How neat! But,
there is a cost: the second term prevents us from getting this bound all the way to zero.
We reduce error fast in early steps, because we reduce this first term at a rate of O(1/t).
Once we start getting near the solution, then we get stuck at the error given by the second
term. The constant stepsize helped us get to this region fast, but then we are not robust
to the noise in the mini-batch stochastic gradient.

Naturally, we could use a slowly decreasing stepsize, to help be robust to this noise.

ηt = η/
√
t+ 1 =⇒ ηsum =

t−1∑
k=0

ηk = η
t−1∑
k=0

1√
k+1 = η

t∑
k=1

1√
k
≈ η
√
t

ηvar = σ2
t−1∑
k=0

η2
k = σ2η2

t∑
k=1

1
k ≈ σ

2η2 log t

APPENDIX B. CONVERGENCE RATES FOR GRADIENT DESCENT 173

where the approximations
√
t and log t come from well-known formulas for these summa-

tions. Plugging this into the above upper bound in Equation (B.4), we get that

min
j∈{0,1,...,t−1}

E[∥∇c(wj)∥2] ≤ 1
η
√
t
(c(w0)− c(w∗)) + L

2 σ
2η log t√

t
(B.6)

Now both terms go to zero at a rate of O(1/
√
t).2 This is quite a bit slower than gradient

descent and SGD with a constant stepsize. For example, after t = 100 updates,
√
t = 10

and after t = 1000 updates we have that
√
t ≈ 30. We can see that 1/t gets smaller much

faster than 1/
√
t. However, now we do have the advantage that the second term goes to

zero.
Finally, it is informative to consider what happens if we decrease the stepsize too quickly.

ηt = η/(t+ 1) =⇒ ηsum =
t−1∑
k=0

ηk = η
t∑

k=1

1
k ≈ η log t

ηvar = σ2
t−1∑
k=0

η2
k = σ2η2

t∑
k=1

1
k2 ≈ σ2η2

giving
min

j∈{0,1,...,t−1}
E[∥∇c(wj)∥2] ≤ 1

η log t(c(w0)− c(w∗)) + Lσ2η 1
log t (B.7)

A rate of 1/ log t is a very poor rate. The optimizer stops making real progress too early,
and is stuck very very slowly decreasing error. Eventually, it will get there, as log t→∞.

The above analysis gives us some insight into how to set our stepsize. It suggests that
we should start with more aggressive stepsizes, and then potentially start decaying later in
learning. It might be problematic to decay all the way to zero, as we might prevent further
learning too quickly. An idea between all of the above is to decay the stepsize to some
minimal value—rather than all the way to zero—and consider alternative rules to decide
when to start decaying. Many optimization packages out there have options for different
stepsize decay schedules, that take into account this understanding of how SGD behaves.

B.4 Selecting the Size of the Mini-batch

The previous sections gives us some insight into selecting the mini-batch size. We see
that it is typically not that useful to select the mini-batch size to be the full dataset,
because SGD can converge as fast as GD, at least initially. Further, the noise introduced by
using a mini-batch actually seems to improve generalization performance, through implicit
regularization. However, picking a mini-batch of size b = 1 is rarely (if ever) as effective as
picking b > 1. So what is the right choice, between b = 1 and b = n?

Let’s assume that we have a fixed stepsize η. Recall that our upper bound, giving us
our convergence rate, was 1

ηt(c(w0)− c(w∗)) + Lσ2η
2 . This upper bound is smaller for bigger

η and smaller σ2. The σ2 is smaller for bigger b. In fact, the implicit regularization results
show that the weight on the implicit regularizer is approximately proportional to η/b, for
reasonably small b (number of samples n much bigger than b, written n ≫ b). This result

2It is more correct to say the rate is O(log t/
√
t), but log t grows so slowly that the primary factor is the

denominator with
√
t.

APPENDIX B. CONVERGENCE RATES FOR GRADIENT DESCENT 174

also suggests that if we increase our stepsize, then it is reasonable to increase the batch-size
to maintain the same level of implicit regularization, again up to a point where the ratio of
the batch-size to number of samples is small. For example, if we have n = 1 million, then
we likely would not pick b to be any larger than 2048. This perspective suggests that we
should pick the largest, reasonably small mini-batch size (e.g., 2048).

There is yet one more option to consider, which is computation. If we can perfectly
parallelize computation of the mini-batch, then it is a no-brainer to pick a larger mini-
batch size. However, what if the number of gradients we can compute in parallel, m, is less
that this mini-batch size? (Say our compute can only do 32). Now should we opt to use a
mini-batch of size b = m and do more updates, or pick b > m and do fewer updates?

We can try to reason about this using our bound again. Let’s imagine, that if we could,
we would pick an ideal batch size of b∗ (say b∗ = 2048, the largest reasonably small mini-
batch size) with correspond ideal learning rate η∗. But, we can only compute m < b∗

gradients in parallel. Let’s contrast to using b = m. If we use the heuristic above, the ratio
between the stepsize and mini-batch size should stay the same, so we need to pick η such
that η/m = η∗/b∗, giving η = m

b∗ η∗. This stepsize is smaller, because our mini-batch is
smaller. For each iteration using b∗ mini-batches, we have to take b∗/m computation steps.
Therefore, if we did t∗ iterations using b∗ mini-batches, we would have been able to do more
iterations t = b∗

m t
∗ only using mini-batches of size m. Plugging this into our bound, we get

1
ηt

(c(w0)− c(w∗)) + Lσ2η
2 = 1

m
b∗ η∗ b∗

m t
∗ (c(w0)− c(w∗)) + Lσ2 m

b∗ η∗

2

= 1
η∗t∗

(c(w0)− c(w∗)) + Lσ2 m
b∗ η∗

2

The first term is actually the same for both! And the second term is approximately the same
for both too. To understand why, recall that the variance of the mini-batch is proportional
to b, meaning σ2 ∝ 1/b. Therefore, the variance σ2

∗ for b∗ is proportional to 1/b∗ and so the
ratio σ2η/(σ2

∗η
∗) = (1/m) m

b∗ η∗/((1/b∗)η∗) = 1. The conclusion from this is that it does not
matter which we pick: we can pick our mini-batch to be size b = m and do more updates
or choose to do fewer updates and estimate up to a mini-batch of size b∗. (But we still keep
the mini-batches reasonably small, since b∗ << n.) Under this outcome, it might actually
make sense to pick b = m, to ensure that we do not have to pick too big of a stepsize to get
the nice regularization properties of SGD.

This reasoning, of course, is using our upper bound rather than a true convergence
rate, so it is not perfect. Interestingly, though, there is a comprehensive empirical study
that corroborates that this linear relationship holds, at least for smaller mini-batch sizes
[25]. This suggests that a reasonably safe option is to set b = m, since there is definitely
a convergence rate improvement that is linear in increasing batch-size, when going from
b = 1 to smaller mini-batch sizes. At some point, there is diminishing returns where it was
wasteful to increase the mini-batch size further. Once we fix b, we do still have to tune our
stepsize, but at least now we only have one hyperparameter to tune.

Appendix C

Exercise Solutions

C.1 Chapter 2 Exercises

Solution to Exercise 7

∇Σ− ln p(x) = ∇Σ− ln(2π)−d/2 +∇Σ
1
2 ln |Σ|+∇Σ

1
2(x− µ)⊤Σ−1(x− µ) (C.1)

As before the first term disappears. However, the second two terms both include Σ. The
gradient of the log of the determinant of this matrix is Σ−1 (see [21, Equation 48]). The
same resource gives us an easy rule to compute the gradient of the second term, without
having to do so ourselves using partial derivatives. Namely, we know that for a symmetric
matrix X (see [21, Equation 52])

∇Xa⊤X−1a = −X−1aa⊤X−1

where we use the fact that X⊤ = X for a symmetric matrix. Therefore, we can plug these
into Equation (C.1) to get that

∇Σ− ln p(x) = 1
2Σ−1 − 1

2Σ−1(x− µ)(x− µ)⊤Σ−1

Now we can use this to find

∇Σ−
n∑

i=1
ln p(xi) = 1

2nΣ−1 − 1
2

n∑
i=1

Σ−1(xi − µ)(xi − µ)⊤Σ−1 = 0

=⇒ nΣ−1 = Σ−1

[
n∑

i=1
(xi − µ)(xi − µ)⊤

]
Σ−1

=⇒ nI =
[

n∑
i=1

(xi − µ)(xi − µ)⊤
]

Σ−1 ▷ left multiply both sides by Σ

=⇒ nΣ =
n∑

i=1
(xi − µ)(xi − µ)⊤ ▷ right multiply both sides by Σ

=⇒ Σ = 1
n

n∑
i=1

(xi − µ)(xi − µ)⊤

175

APPENDIX C. EXERCISE SOLUTIONS 176

C.2 Chapter 3 Exercises

Solution to Exercise 11

∥Xw− y∥22 = (Xw− y)⊤(Xw− y)

=
n∑

i=1
(Xi:w− yi)2 =

n∑
i=1

(xiw− yi)2.

To compute this gradient, we can use the standard approach from before, with partial
derivatives. However, for these relatively simple objectives, it is actually simpler to use the
basic rules for computing gradient with matrices and vector, shown in Table 1.1. First,
notice that

(Xw− y)⊤(Xw− y) = (w⊤X⊤ − y⊤)(Xw− y) because (AB)⊤ = B⊤A⊤

= w⊤X⊤Xw− 2y⊤Xw + y⊤y because y⊤Xw = w⊤X⊤y

Using the derivative rules for vectors and matrices, where ∇w⊤Aw = 2Aw and ∇b⊤Aw =
A⊤b,1 we get

∇∥Xw− y∥22 = 2X⊤Xw− 2X⊤y

C.3 Representation Exercises

Solution to Exercise 29
∂c(W(1),W(2))

∂W(1)
j

= ∂ℓ(ŷ, y)
∂W(1)

j

=
(
∂ℓ(ŷ, y)
∂ŷ

)
∂ŷ

∂W(1)
j

=
(
∂ℓ(ŷ, y)
∂ŷ

)
∂σ(θ(1))
∂θ(1)

∂θ(1)

∂W(1)
j

▷ θ(1) = h(1)W(1)

=
(
∂ℓ(ŷ, y)
∂ŷ

)
∂σ(θ(1))
∂θ(1) hj ▷

∂θ(1)

∂W(1)
j

= h(1)W(1)

∂W(1)
j

=
∑p1

i=1 h(1)
i W(1)

i

∂W(1)
j

= h(1)
j

Now we simply need to compute
∂ℓ(ŷ, y)
∂ŷ

= ∂ − y ln ŷ − (1− y) ln(1− ŷ)
∂ŷ

= −y∂ ln ŷ
∂ŷ

− (1− y)∂ ln(1− ŷ)
∂ŷ

= −y 1
ŷ
− (1− y) −1

1− ŷ

1Notice if A is a scalar and w a scalar, this result is intuitive: the derivative of w · a ·w is the derivative
of aw2, which is 2aw.

	Notation Reference
	Introduction to Machine Learning II
	A Very Brief Refresher of the Basics of Machine Learning
	Generative Models and Predictors
	Relationship to Statistics and Probability Theory
	The Blessing and Curse of Dimensionality
	Matrix Methods
	Matrix multiplication
	Matrix Inverse and Eigenvalue Decomposition
	Basic Rules for Gradients with Vectors and Matrices

	I Revisiting Concepts
	Multivariate Probability Concepts
	Multidimensional distributions
	Properties of Expectations
	Mixtures of Distributions
	Revisiting MLE with Multivariate Gaussians
	Entropy and KL Divergence

	Revisiting Linear Regression
	Ordinary Least-Squares (OLS) Regression
	Extension to a Weighted Error Function
	Predicting Multiple Outputs Simultaneously

	Stability and the Bias-Variance of the OLS Solution
	Sensitivity of the OLS solution
	Improving Stability with 2 Regularization
	The Bias-Variance Trade-off

	Multivariate Optimization Principles
	Second-order Multivariate Gradient Descent
	Visualizing the Hessian
	Contrasting Convergence Rates
	Stepsize Selection and Momentum

	Generalized Linear Models
	A First Example: The Poisson Distribution
	Exponential Family Distributions
	Formalizing Generalized Linear Models
	Revisiting Logistic Regression
	Multinomial Logistic Regression

	Constrained Optimization with Proximal Methods
	Proximal Methods
	Case Study: 1 Regularization for Feature Selection
	Case Study: Simplex Constraints for Mixture Models

	Evaluating Generalization Performance
	Defining Generalization Error
	Estimating Generalization Error using Cross Validation
	Bias and Variance of the Cross Validation Estimator
	Using Cross Validation to Select Hyperparameters

	II Data Representations
	Fixed Representations
	The Utility of Projecting to Higher Dimensions
	Radial Basis Function Networks
	Prototype Representations
	Feature Selection and Subselecting Prototypes

	Learned Representations
	Latent Factors and Factor Analysis
	Matrix Factorization Approaches
	Probabilistic Approaches

	Learning Representations with Neural Networks
	Functions Produced by a Neural Network
	Activations and Loss Functions
	The Backpropagation Algorithm

	Autoencoders and the Connection to PCA

	Generalization Error in More Settings
	Bias, Variance and Generalization Error
	Implicit Regularization with SGD & Large NNs
	Moving Beyond the iid Setting
	Generalization Issues under Covariate Shift
	Issues of Data Coverage and Using Inductive Biases
	Nonstationarity and Generalization

	III Generative Models
	Simple Generative Models: Mixture Models
	Using Mixture Models
	Learning Mixture Models

	Generative Models using Data Representations
	Connections to Models We Have Already Discussed
	Variational Autoencoders
	Connection to Expectation-Maximization
	Conditional Generative Models

	Evaluating Generative Models

	IV Advanced Topics
	Dealing with Missing Data
	Imputation: Filling in Missing Values
	Imputation of Missing Data for Prediction
	Direct Methods for Prediction Under Missing Data

	Uncertainty Estimation and Bayesian Approaches
	Bayesian Linear Regression
	Using the Bayesian Posterior over Weights
	The Nonlinear Setting & Gaussian Processes
	The Kernel Trick
	Kernelizing Bayesian Linear Regression

	Uncertainty Estimation for Neural Networks using Ensembles

	Learning on Temporal Data
	Conditioning on History
	Recurrent Neural Networks
	Transformers

	Bibliography
	Extra Information
	More on Linear Regression
	The Bias-Variance Trade-off

	More on Cross-Validation
	More on GLMs
	More on Constrained Optimization
	Detailed Steps for the Proximal Update
	Beyond Closed-form Proximal Operators

	More on Latent Factors
	More on Sparse Coding

	More on Backpropagation
	More on Mixture Models and EM
	Setting Up for the EM Algorithm
	The Expectation-Maximization Algorithm
	Identifiability
	Connection to Mirror Descent

	More on Generative Models
	Contrasting with Generative Classifiers

	More on Generalization Theory
	A Shorter Overview
	A Generalization Bound for Linear Regression
	Complexity of a function class
	A Generalization Bound for General Function Classes

	More on Missing Data
	Multiple Imputation and the MAR Assumption
	Naive Bayes and Missing Data

	Convergence Rates for Gradient Descent
	A Convergence Proof for Gradient Descent
	Convergence Rate of Gradient Descent
	Convergence Rate of Stochastic Gradient Descent
	Selecting the Size of the Mini-batch

	Exercise Solutions
	Chapter 2 Exercises
	Chapter 3 Exercises
	Representation Exercises

