
Midterm Review
CMPUT 467: Intermediate Machine Learning 



Comments

• Midterm on Chapters 1 - 9 (up to and including neural networks)


• The goal of the exam is to test (a) did you understand the basic ideas and (b) 
can you apply that understanding


• Brief Review


• Then Practice Midterm


• Then Q&A session. Consider also looking again at Review Slides for Ch 1-7



Chapters 1-4

• Covered in Previous Review


• Should be comfortable with 


• Basic probability info (won’t be tested, just needed to understand the course)


• Basic Optimization concepts, including first and second order gradient descent, SGD, 
vector stepsizes and momentum 


• Basic matrix operators, including weights that are matrices, matrix multiplication and SVD


• The role of l2 regularization (in any GLM) and the bias-variance trade-off in linear regression


• Understand why (and when) we might use SGD and GD, as well as first-order versus 
scond-order GD



Ch. 5: Generalized Linear Models

• Understand the purpose of the generalization from linear regression to GLMs


• Understand that the exponential family distribution underlies GLMs


• Know that linear regression, Poisson regression, logistic regression and 
multinomial logistic regression are examples of GLMs


• Know the distributions and transfers that correspond to each of these four GLMs


• e.g., Poisson regression has a Poisson distribution p(y | x) with transfer exp


• Don’t expect you to know most formulas, but expect at this point you know these 
four distributions and the transfers for each distribution



How do we use GLMs?

• In a GLM we learn E[Y | x], which fully characterizes our p(y | x)


• Bernoulli, Poisson and Multinomial all only have one key parameter, which 
is E[Y]


• Gaussian has mean and variance, but we assume the variance is fixed and 
that we not learning it; so its key param is also only E[Y | x]


• How do we use GLMs for prediction?


• Mode of p(y|x) is a reasonable answer


• Mean E[Y | x] is also a reasonable answer



Why mode or mean?

• We will suffer a cost for our prediction 


• recall: we want to minimize expected cost


• If we picked a squared cost, then the best choice was E[Y | x]


• If we picked a 0-1 cost, then the best choice was argmax p(y | x) (mode) 



• Optimization of the form      for smooth c, nonsmooth r


• Example: c is squared errors and r is box constraints


• Smooth means differentiable everywhere

min
w∈ℝd

c(w) + r(w)

Chapter 6: Constrained Optimization



Questions for optimization min
w∈ℝd

c(w) + r(w)

• What is c and what is r for linear regression + l1 regularization?


• What is c and what is r for logistic regression + l1 regularization?


• What is c and what is r for linear regression + l2 regularization + l1 
regularization?



Questions for optimization min
w∈ℝd

c(w) + r(w)

• What is c and what is r for linear regression + l1 regularization?


• 


• What is c and what is r for logistic regression + l1 regularization?


• What is c and what is r for linear regression + l2 regularization + l1 
regularization?
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1
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(xiw − yi)2  and r(w) = λ∥w∥1
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Questions for optimization min
w∈ℝd

c(w) + r(w)

• What is c and what is r for linear regression + l1 regularization?


• 


• What is c and what is r for logistic regression + l1 regularization?


• 


• What is c and what is r for linear regression + l2 regularization + l1 regularization?


•

c(w) =
1
2

n

∑
i=1

(xiw − yi)2  and r(w) = λ∥w∥1

c(w) =
1
2

n

∑
i=1

[−yi ln σ(xiw) − (1 − yi)ln yi ln(1 − σ(xiw))]  and r(w) = r(w) = λ∥w∥1

c(w) =
1
2

n

∑
i=1

(xiw − yi)2 +
λ
2

∥w∥2
2  and r(w) = λ∥w∥1



• Optimization of the form      for smooth c, nonsmooth r


• Proximal update: 


• Do not need to know 

• Specific proximal operators; just need to know where to use the given 
proximal operator


• How to use vector stepsizes or momentum; we only did scalar stepsizes


• I will not get you to derive solutions with Lagrangians

min
w∈ℝd

c(w) + r(w)

wt+1 = proxηtr
(wt − ηt ∇c(wt))

Chapter 6: Constrained Optimization



• Optimization of the form      for smooth c, nonsmooth r


• Proximal update: 


• You should know 

• That we used proximal gradient descent for l1 regularization


• That we do not always have closed-form solutions for the proximal 
operator, and sometimes have to solve a simple optimization to get the 
projection step (proximal operator), as in Section 6.3

min
w∈ℝd

c(w) + r(w)

wt+1 = proxηtr
(wt − ηt ∇c(wt))

Chapter 6: Constrained Optimization



Exercise: l1 regularization and independent features

• Imagine we have a feature vector 


• Imagine y is independent of  and dependent on 


• Imagine we have 1000 samples and d = 30


• If we use l1-regularization, what might happen?


• If we don’t use any regularization, what might happen?

x = [x1, x2, …, xd]⊤

x2 x6



Chapter 7: Estimating GE and Cross Validation

• Goal is to estimate generalization error (GE) for a learned function f



Question about GE

• What is the generalization error for a linear regression model?


• What is the generalization error for a logistic regression model?


• What is the generalization error for a multinomial logistic regression model?


• [Extra Q] What is the generalization error for a Poisson regression model?



Question about GE

• What is the generalization error for a linear regression model?


• 


• What is the generalization error for a logistic regression model?


• 


• What is the generalization error for a multinomial logistic regression model?


• 


• [Extra Q] What is the generalization error for a Poisson regression model?


• Typically use 

GE( f ) = 𝔼[( f(X) − Y)2]

GE( f ) = 𝔼[1( f(X) = = Y)]

GE( f ) = 𝔼[1( f(X) = = Y)]

GE( f ) = 𝔼[( f(X) − Y)2]



Chapter 7: Estimating GE and Cross Validation

• Goal is to estimate generalization error (GE) for a learned function f


• Having a training and testing split can be data inefficient


• Cross-validation lets us use the training data for training and evaluation



Cross validation

Dataset
Cross Validation

k=4

Alg(D)

f

f1

…
fk

e1 ek…

average e1 to ek

error estimate for f

Step 1: Learn f on the entire dataset 
 
Step 2: Do CV to estimate the GE for f


 
Step 2 consists of 
1. Get k partitions of the dataset, to  
get k training and test splits 
 
2. For every i = 1 to k,  
train  and 
compute error  on 


 

3. Get average error  

fi = Alg(𝒟(i)
tr )

ei 𝒟(i)
test

1
k ∑

i

ei



k-fold vs RSS

• Partition means disjoint subsets that cover the data


• k-fold is one way to get partitioning


• Partition data into k folds/chunks


• Each fold is set to a test dataset, the training is union of the remaining folds


• Repeated random subsampling (RSS) is another way to get a partitioning


• Randomly sample points for test dataset (without replacement), and set the rest 
to the training set


• Have to specify percentage for test p and number repeats k 
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How do we pick k and p?

• For lower bias pick k large for k-fold and p smaller for RRS 


• Bigger k means training set size (k-1)/k n closer to full dataset size n


• Smaller p means training set size (1-p) n closer to full dataset size n


• Each  more similar to  learned on all the datafi f



How do we pick k and p?

• For lower bias pick k large for k-fold and p smaller for RRS 


• But variance can increase with large k for k-fold or smaller p for RRS, as 
variance of errors larger (error is computed with smaller # of testing samples)


• And for large k/smaller p likely more covariance between errors


• Finally, large k is computationally expensive, so rarely set very big


• No clear answers, just some rules of thumb, usually pick interim k (e.g., k=10)



Chapter 7: Estimating GE and Cross Validation

• Goal is to estimate generalization error (GE) for a learned function f


• Having a training and testing split can be data inefficient


• Cross-validation let’s us use the training data for training and evaluation


• k-fold and RSS as two partitioning approaches


• You do not need to know 

• All the sources of bias and variance in CV, just know that our estimator is 
biased and that the choice of k (and p) can impact bias and variance



Chapter 7: CV for hyperparameter selection

• Our estimate of (GE) is a good criteria to pick hyperparameters



CV for hyper selection

LearnerDataset
Internal CV

k=4

Alg(D, h)

f

for every hyper h in H

f1 e1

…
fkek…

average

err[h]

Best h*
(err[h*] lowest)

f



• Our estimate of (GE) is a good criteria to pick hyperparameters


• We still need to evaluate the model produce by Learner 


• Can use training / validation set to evaluate it


• Step 0: Split data into training  and validation set 


• Step 1: Call Learner on dataset , to get function f


• Step 2:  Evaluate f on 

𝒟tr 𝒟test

𝒟tr

𝒟test

Chapter 7: CV for hyperparameter selection



• Our estimate of (GE) is a good criteria to pick hyperparameters


• We still need to evaluate the model produce by Learner 


• Can use training / validation set to evaluate it


• Step 0: Split data into training  and validation set 


• Step 1: Call Learner on dataset , to get function f


• Step 2:  Evaluate f on 


• What is the issue with this approach?

𝒟tr 𝒟test

𝒟tr

𝒟test

Chapter 7: CV for hyperparameter selection



• Our estimate of (GE) is a good criteria to pick hyperparameters


• We still need to evaluate the model produce by Learner 


• Can use training / validation set to evaluate it


• Step 0: Split data into training  and validation set 


• Step 1: Call Learner on dataset , to get function f


• Step 2:  Evaluate f on 


• What is the issue with this approach? Data inefficient, let’s use CV!

𝒟tr 𝒟test

𝒟tr

𝒟test

Chapter 7: CV for hyperparameter selection



Nested Cross-Validation

EvaluatorDataset

External CV
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f

f1

…
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cannot 
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Step 1: Learn f on the entire dataset 
 
Step 2: Do CV to estimate the GE for f


 
Step 2 consists of 
1. Get k partitions of the dataset, to  
get k training and test splits 
 
2. For every i = 1 to k,  
train  and 
compute error  on 


 

3. Get average error  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Chapter 8: Fixed Representations

• We discussed polynomials, RBF Networks and Prototype representations


•
 for centers ϕ(x) =

k(x, c1)
k(x, c2)

⋮
k(x, cp)

ci

RBF kernel k(x, c) Function f(x) =
p

∑
j=1

wik(x, cj)
What is  and  in this plot?x c



Chapter 8: Fixed Representations

• We discussed polynomials, RBF Networks and Prototype representations


• Question: what is the difference between RBF Networks and Prototype 
representations that use an RBF kernel?



Chapter 8: Fixed Representations

• We discussed polynomials, RBF Networks and Prototype representations


• Question: what is the difference between RBF Networks and Prototype 
representations that use an RBF kernel?


• Answer: Prototype Rep + RBF kernel is an instance of an RBF network where 
the centers are prototypes (samples from the training dataset)


• Why do we use the data as centers?



Chapter 8: Fixed Representations

• We discussed polynomials, RBF Networks and Prototype representations


• We discussed how l1 regularization pushes weights to zero and also allows us 
to subselect prototypes


• You do not need to know 

• Any representability results for these functions


• You just need to know that they let us learn nonlinear functions



Chapter 9: Learning Latent Factors

• Understand that PCA extracts a lower-dimensional representation  for 


• Understand that sparse coding extracts a higher-dimensional, sparse 
representation 


• Understand that for both we are trying to solve 


• For both we try to minimize  for all , but for sparse coding we 
additionally add a sparsity regularizer to , namely 

h x

h

x ≈ hD

∥x − hD∥2
2 x

h ∥h∥1



• Understand that PCA extracts a lower-dimensional representation  for 


• Understand that sparse coding extracts a higher-dimensional, sparse 
representation 


• You do not need to know 

• The exact formulas for the optimizations; I will give them to you. But you 
should know how to reason about minimizing them 


• You do not need to know the probabilistic PCA solution, nor the closed-
form PCA solution

h x

h

Chapter 9: Learning Latent Factors



PCA representation

• To learn the PCA weights  with , we optimize the objective 




• For a new datapoint , we get the representation
. where  for projection  

the top right singular vectors of training data matrix 

D p < d
min

h1,…,hn∈ℝp,D∈ℝp×d

n

∑
i=1

∥xi − hiD∥2
2

xnew
hnew = arg min

h∈ℝp
∥xnew − hD∥2

2 hnew = xnewVp Vp

X



Exercise Question

• Imagine we have 5000 datapoints for a problem with d = 10


• Imagine we first expand the dimension using a kernel representation, going 
from 10 features to 5000. 


• Subquestion: why are there 5000 features?


• Then we apply PCA to extract 100 features. How do we interpret what those 
features are?



Increasing p

• If , then the objective  produces trivial 

solutions  and 


• Add a regularizer on  and  to avoid trivial solutions


• Sparse coding we put an  regularizer on  to encourage sparse 
representations

p > d min
h1,…,hn∈ℝp,D∈ℝp×d

n

∑
i=1

∥xi − hiD∥2
2

D = I hi = xi

hi D

ℓ1 hi



Chapter 9: Learning Neural Networks

• Understand types of transformation on the input given by a neural network


• series of linear functions composed with simple activations


• Understand that backpropagation is gradient descent


• Understand that linear autoencoders also extract a low-dimensional representation 
like PCA


• Will not be directly tested: 

• You will not need to derive the gradients for an NN


• You will not be tested on supervised autoencoders



Exercise: NN choices

• An NN with three layers transforms the inputs as


•  for weights  composed of 


• Can think of this NN as learning p(y | x) with key parameter   
for  


• We pick a GLM loss and transfer  for the output that matches the targets 


• e.g., what if the output is a binary 0,1 variable? What is f1?


• e.g., what if the output is ordinal 0, 1, 2, 3, 4, 5, .., 100? What is f1?

fw(x) = f1( f2( f3(xW(3))W(2))W(1)) w W(3), W(2), W(1)

θ(x) = h(1)W(1)

h(1) = f2( f3(xW(3))W(2))

f1



Exercise: NN vs PCA

• An NN with three layers transforms the inputs as


•  for weights  composed of 



• Can think of this NN as learning p(y | x) with key parameter   
for  


• Can think of  as the new representation of . How do we extract the new 
representation for a new ?

fw(x) = f1( f2( f3(xW(3))W(2))W(1)) w
W(3), W(2), W(1)

θ(x) = h(1)W(1)

h(1) = f2( f3(xW(3))W(2))

h(1) x
xnew



Exercise: NN vs PCA

• An NN with three layers transforms the inputs as


•  for weights  composed of 



• Can think of this NN as learning p(y | x) with key parameter   
for  


• Can think of  as the new representation of . How do we extract the new 
representation for a new ? Ans 

fw(x) = f1( f2( f3(xW(3))W(2))W(1)) w
W(3), W(2), W(1)

θ(x) = h(1)W(1)

h(1) = f2( f3(xW(3))W(2))

h(1) x
xnew hnew = f2( f3(xnewW(3))W(2))



PCA equivalent to a linear autoencoder

• Can also learn  with  and , called a (linear) 
autoencoder that is a neural network with 


• identity activations 


• smaller hidden dimension 


• loss function equal to 


• For a new datapoint , we get the representation. 


• Produces same representation as PCAs 

fw(x) = xW(2)W(1) W(2) ∈ ℝd×p W(1) ∈ ℝp×d

p < d
n

∑
i=1

∥fw(xi) − xi∥2
2

xnew h = xW(2)

hnew = arg min
h∈ℝp

∥x − hD∥2
2



Questions about linear autoencoders

• Can learn  with  and 


• What happens if pick hidden dimension ? 

fw(x) = xW(2)W(1) W(2) ∈ ℝd×p W(1) ∈ ℝp×d

p > d



Questions about linear autoencoders

• Can learn  with  and 


• What happens if pick hidden dimension ?


• Learn linear function because  is the same as learning 
 for , and get  


• But wait, we can always write , so whats different?

fw(x) = xW(2)W(1) W(2) ∈ ℝd×p W(1) ∈ ℝp×d

p > d

fw(x) = xW(2)W(1)

fw(x) = xW W ∈ ℝd×d W = I

W = W(2)W(1) ∈ ℝd×d



Questions about linear autoencoders

• Can learn  with  and 


• What happens if pick hidden dimension ?


• Learn linear function because  is the same as learning 
 for , and get  


• But wait, we can always write , so whats different?


• For , we are restricting  to be low-rank


• More constrained linear function to reconstruct , don’t get 

fw(x) = xW(2)W(1) W(2) ∈ ℝd×p W(1) ∈ ℝp×d

p > d

fw(x) = xW(2)W(1)

fw(x) = xW W ∈ ℝd×d W = I

W = W(2)W(1) ∈ ℝd×d

p < d W = W(2)W(1) ∈ ℝd×d

x W = I



Questions about linear autoencoders

• Can learn  with  and 


• What happens if keep  but change the output target of NN to scalar y 

and loss function from  to ?

fw(x) = xW(2)W(1) W(2) ∈ ℝd×p W(1) ∈ ℝp×d

p < dn

∑
i=1

∥fw(xi) − xi∥2
2

n

∑
i=1

∥fw(xi) − yi∥2
2



Questions about linear autoencoders

• Can learn  with  and 


• What happens if keep  but change the output target of NN to scalar y 

and loss function from  to ?


• Learn linear function because  with  and 
 is same as learning  for 

fw(x) = xW(2)W(1) W(2) ∈ ℝd×p W(1) ∈ ℝp×d

p < dn

∑
i=1

∥fw(xi) − xi∥2
2

n

∑
i=1

∥fw(xi) − yi∥2
2

fw(x) = xW(2)W(1) W(2) ∈ ℝd×p

W(1) ∈ ℝp×1 fw(x) = xW W(2) ∈ ℝd×1



Questions about linear autoencoders

• Can learn  with  and 


• What happens if keep  but change the output target of NN to scalar y 

and loss function from  to ?


• What about multinomial logistic regression  and 
?

fw(x) = xW(2)W(1) W(2) ∈ ℝd×p W(1) ∈ ℝp×d

p < dn

∑
i=1

∥fw(xi) − xi∥2
2

n

∑
i=1

∥fw(xi) − yi∥2
2

fw(x) = softmax(xW(2)W(1))
p > m



Questions about linear autoencoders

• Can learn  with  and 


• What happens if keep  but change the output target of NN to scalar y and 

loss function from  to ?


• What about multinomial logistic regression  and 
?


• Learn linear function because  with  and 
 is same as learning  for  

fw(x) = xW(2)W(1) W(2) ∈ ℝd×p W(1) ∈ ℝp×d

p < dn

∑
i=1

∥fw(xi) − xi∥2
2

n

∑
i=1

∥fw(xi) − yi∥2
2

fw(x) = softmax(xW(2)W(1))
p > m

fw(x) = xW(2)W(1) W(2) ∈ ℝd×p

W(1) ∈ ℝp×1 fw(x) = xW W(2) ∈ ℝd×1


