
Midterm Review
CMPUT 467: Intermediate Machine Learning 

Comments

• Midterm on Chapters 1 - 9 (up to and including neural networks)

• The goal of the exam is to test (a) did you understand the basic ideas and (b)
can you apply that understanding

• Brief Review

• Then Practice Midterm

• Then Q&A session. Consider also looking again at Review Slides for Ch 1-7

Chapters 1-4

• Covered in Previous Review

• Should be comfortable with

• Basic probability info (won’t be tested, just needed to understand the course)

• Basic Optimization concepts, including first and second order gradient descent, SGD,
vector stepsizes and momentum

• Basic matrix operators, including weights that are matrices, matrix multiplication and SVD

• The role of l2 regularization (in any GLM) and the bias-variance trade-off in linear regression

• Understand why (and when) we might use SGD and GD, as well as first-order versus
scond-order GD

Ch. 5: Generalized Linear Models

• Understand the purpose of the generalization from linear regression to GLMs

• Understand that the exponential family distribution underlies GLMs

• Know that linear regression, Poisson regression, logistic regression and
multinomial logistic regression are examples of GLMs

• Know the distributions and transfers that correspond to each of these four GLMs

• e.g., Poisson regression has a Poisson distribution p(y | x) with transfer exp

• Don’t expect you to know most formulas, but expect at this point you know these
four distributions and the transfers for each distribution

How do we use GLMs?

• In a GLM we learn E[Y | x], which fully characterizes our p(y | x)

• Bernoulli, Poisson and Multinomial all only have one key parameter, which
is E[Y]

• Gaussian has mean and variance, but we assume the variance is fixed and
that we not learning it; so its key param is also only E[Y | x]

• How do we use GLMs for prediction?

• Mode of p(y|x) is a reasonable answer

• Mean E[Y | x] is also a reasonable answer

Why mode or mean?

• We will suffer a cost for our prediction

• recall: we want to minimize expected cost

• If we picked a squared cost, then the best choice was E[Y | x]

• If we picked a 0-1 cost, then the best choice was argmax p(y | x) (mode)

• Optimization of the form for smooth c, nonsmooth r

• Example: c is squared errors and r is box constraints

• Smooth means differentiable everywhere

min
w∈ℝd

c(w) + r(w)

Chapter 6: Constrained Optimization

Questions for optimization min
w∈ℝd

c(w) + r(w)

• What is c and what is r for linear regression + l1 regularization?

• What is c and what is r for logistic regression + l1 regularization?

• What is c and what is r for linear regression + l2 regularization + l1
regularization?

Questions for optimization min
w∈ℝd

c(w) + r(w)

• What is c and what is r for linear regression + l1 regularization?

•

• What is c and what is r for logistic regression + l1 regularization?

• What is c and what is r for linear regression + l2 regularization + l1
regularization?

c(w) =
1
2

n

∑
i=1

(xiw − yi)2 and r(w) = λ∥w∥1

Questions for optimization min
w∈ℝd

c(w) + r(w)

• What is c and what is r for linear regression + l1 regularization?

•

• What is c and what is r for logistic regression + l1 regularization?

•

• What is c and what is r for linear regression + l2 regularization + l1 regularization?

c(w) =
1
2

n

∑
i=1

(xiw − yi)2 and r(w) = λ∥w∥1

c(w) =
1
2

n

∑
i=1

[−yi ln σ(xiw) − (1 − yi)ln yi ln(1 − σ(xiw))] and r(w) = r(w) = λ∥w∥1

Questions for optimization min
w∈ℝd

c(w) + r(w)

• What is c and what is r for linear regression + l1 regularization?

•

• What is c and what is r for logistic regression + l1 regularization?

•

• What is c and what is r for linear regression + l2 regularization + l1 regularization?

•

c(w) =
1
2

n

∑
i=1

(xiw − yi)2 and r(w) = λ∥w∥1

c(w) =
1
2

n

∑
i=1

[−yi ln σ(xiw) − (1 − yi)ln yi ln(1 − σ(xiw))] and r(w) = r(w) = λ∥w∥1

c(w) =
1
2

n

∑
i=1

(xiw − yi)2 +
λ
2

∥w∥2
2 and r(w) = λ∥w∥1

• Optimization of the form for smooth c, nonsmooth r

• Proximal update:

• Do not need to know

• Specific proximal operators; just need to know where to use the given
proximal operator

• How to use vector stepsizes or momentum; we only did scalar stepsizes

• I will not get you to derive solutions with Lagrangians

min
w∈ℝd

c(w) + r(w)

wt+1 = proxηtr
(wt − ηt ∇c(wt))

Chapter 6: Constrained Optimization

• Optimization of the form for smooth c, nonsmooth r

• Proximal update:

• You should know

• That we used proximal gradient descent for l1 regularization

• That we do not always have closed-form solutions for the proximal
operator, and sometimes have to solve a simple optimization to get the
projection step (proximal operator), as in Section 6.3

min
w∈ℝd

c(w) + r(w)

wt+1 = proxηtr
(wt − ηt ∇c(wt))

Chapter 6: Constrained Optimization

Exercise: l1 regularization and independent features

• Imagine we have a feature vector

• Imagine y is independent of and dependent on

• Imagine we have 1000 samples and d = 30

• If we use l1-regularization, what might happen?

• If we don’t use any regularization, what might happen?

x = [x1, x2, …, xd]⊤

x2 x6

Chapter 7: Estimating GE and Cross Validation

• Goal is to estimate generalization error (GE) for a learned function f

Question about GE

• What is the generalization error for a linear regression model?

• What is the generalization error for a logistic regression model?

• What is the generalization error for a multinomial logistic regression model?

• [Extra Q] What is the generalization error for a Poisson regression model?

Question about GE

• What is the generalization error for a linear regression model?

•

• What is the generalization error for a logistic regression model?

•

• What is the generalization error for a multinomial logistic regression model?

•

• [Extra Q] What is the generalization error for a Poisson regression model?

• Typically use

GE(f) = 𝔼[(f(X) − Y)2]

GE(f) = 𝔼[1(f(X) = = Y)]

GE(f) = 𝔼[1(f(X) = = Y)]

GE(f) = 𝔼[(f(X) − Y)2]

Chapter 7: Estimating GE and Cross Validation

• Goal is to estimate generalization error (GE) for a learned function f

• Having a training and testing split can be data inefficient

• Cross-validation lets us use the training data for training and evaluation

Cross validation

Dataset
Cross Validation

k=4

Alg(D)

f

f1

…
fk

e1 ek…

average e1 to ek

error estimate for f

Step 1: Learn f on the entire dataset 
 
Step 2: Do CV to estimate the GE for f

 
Step 2 consists of 
1. Get k partitions of the dataset, to  
get k training and test splits 
 
2. For every i = 1 to k,  
train and 
compute error on

 

3. Get average error  

fi = Alg(𝒟(i)
tr)

ei 𝒟(i)
test

1
k ∑

i

ei

k-fold vs RSS

• Partition means disjoint subsets that cover the data

• k-fold is one way to get partitioning

• Partition data into k folds/chunks

• Each fold is set to a test dataset, the training is union of the remaining folds

• Repeated random subsampling (RSS) is another way to get a partitioning

• Randomly sample points for test dataset (without replacement), and set the rest
to the training set

• Have to specify percentage for test p and number repeats k

R-fold partitioning k = 7
(1)-

I

&tr&
10 samplesI I & 11 &

↓ ↓-(2)
D 9)+ - (k)

D size

Dtr is 1/7 M

size 7/8n

RRS with percentage p for
test

k = 7

9)
I I

b * -
*

Randomly Shuffle
I

- Randomly shuffle
I

Set first (l-p)n as + "
Set first (l-p)n as

R)

Set lastpu as De"
Set lastpu as De

How do we pick k and p?

• For lower bias pick k large for k-fold and p smaller for RRS

• Bigger k means training set size (k-1)/k n closer to full dataset size n

• Smaller p means training set size (1-p) n closer to full dataset size n

• Each more similar to learned on all the datafi f

How do we pick k and p?

• For lower bias pick k large for k-fold and p smaller for RRS

• But variance can increase with large k for k-fold or smaller p for RRS, as
variance of errors larger (error is computed with smaller # of testing samples)

• And for large k/smaller p likely more covariance between errors

• Finally, large k is computationally expensive, so rarely set very big

• No clear answers, just some rules of thumb, usually pick interim k (e.g., k=10)

Chapter 7: Estimating GE and Cross Validation

• Goal is to estimate generalization error (GE) for a learned function f

• Having a training and testing split can be data inefficient

• Cross-validation let’s us use the training data for training and evaluation

• k-fold and RSS as two partitioning approaches

• You do not need to know

• All the sources of bias and variance in CV, just know that our estimator is
biased and that the choice of k (and p) can impact bias and variance

Chapter 7: CV for hyperparameter selection

• Our estimate of (GE) is a good criteria to pick hyperparameters

CV for hyper selection

LearnerDataset
Internal CV

k=4

Alg(D, h)

f

for every hyper h in H

f1 e1

…
fkek…

average

err[h]

Best h*
(err[h*] lowest)

f

• Our estimate of (GE) is a good criteria to pick hyperparameters

• We still need to evaluate the model produce by Learner

• Can use training / validation set to evaluate it

• Step 0: Split data into training and validation set

• Step 1: Call Learner on dataset , to get function f

• Step 2: Evaluate f on

𝒟tr 𝒟test

𝒟tr

𝒟test

Chapter 7: CV for hyperparameter selection

• Our estimate of (GE) is a good criteria to pick hyperparameters

• We still need to evaluate the model produce by Learner

• Can use training / validation set to evaluate it

• Step 0: Split data into training and validation set

• Step 1: Call Learner on dataset , to get function f

• Step 2: Evaluate f on

• What is the issue with this approach?

𝒟tr 𝒟test

𝒟tr

𝒟test

Chapter 7: CV for hyperparameter selection

• Our estimate of (GE) is a good criteria to pick hyperparameters

• We still need to evaluate the model produce by Learner

• Can use training / validation set to evaluate it

• Step 0: Split data into training and validation set

• Step 1: Call Learner on dataset , to get function f

• Step 2: Evaluate f on

• What is the issue with this approach? Data inefficient, let’s use CV!

𝒟tr 𝒟test

𝒟tr

𝒟test

Chapter 7: CV for hyperparameter selection

Nested Cross-Validation

EvaluatorDataset

External CV
k=4

Learner(D)

f

f1

…
fk

e1 ek…

average

error estimate of f
If error acceptable, then f

else
cannot
deploy

function

Step 1: Learn f on the entire dataset 
 
Step 2: Do CV to estimate the GE for f

 
Step 2 consists of 
1. Get k partitions of the dataset, to  
get k training and test splits 
 
2. For every i = 1 to k,  
train and 
compute error on

 

3. Get average error  

fi = Alg(𝒟(i)
tr)

ei 𝒟(i)
test

1
k ∑

i

ei

Chapter 8: Fixed Representations

• We discussed polynomials, RBF Networks and Prototype representations

•
 for centers ϕ(x) =

k(x, c1)
k(x, c2)

⋮
k(x, cp)

ci

RBF kernel k(x, c) Function f(x) =
p

∑
j=1

wik(x, cj)
What is and in this plot?x c

Chapter 8: Fixed Representations

• We discussed polynomials, RBF Networks and Prototype representations

• Question: what is the difference between RBF Networks and Prototype
representations that use an RBF kernel?

Chapter 8: Fixed Representations

• We discussed polynomials, RBF Networks and Prototype representations

• Question: what is the difference between RBF Networks and Prototype
representations that use an RBF kernel?

• Answer: Prototype Rep + RBF kernel is an instance of an RBF network where
the centers are prototypes (samples from the training dataset)

• Why do we use the data as centers?

Chapter 8: Fixed Representations

• We discussed polynomials, RBF Networks and Prototype representations

• We discussed how l1 regularization pushes weights to zero and also allows us
to subselect prototypes

• You do not need to know

• Any representability results for these functions

• You just need to know that they let us learn nonlinear functions

Chapter 9: Learning Latent Factors

• Understand that PCA extracts a lower-dimensional representation for

• Understand that sparse coding extracts a higher-dimensional, sparse
representation

• Understand that for both we are trying to solve

• For both we try to minimize for all , but for sparse coding we
additionally add a sparsity regularizer to , namely

h x

h

x ≈ hD

∥x − hD∥2
2 x

h ∥h∥1

• Understand that PCA extracts a lower-dimensional representation for

• Understand that sparse coding extracts a higher-dimensional, sparse
representation

• You do not need to know

• The exact formulas for the optimizations; I will give them to you. But you
should know how to reason about minimizing them

• You do not need to know the probabilistic PCA solution, nor the closed-
form PCA solution

h x

h

Chapter 9: Learning Latent Factors

PCA representation

• To learn the PCA weights with , we optimize the objective

• For a new datapoint , we get the representation
. where for projection

the top right singular vectors of training data matrix

D p < d
min

h1,…,hn∈ℝp,D∈ℝp×d

n

∑
i=1

∥xi − hiD∥2
2

xnew
hnew = arg min

h∈ℝp
∥xnew − hD∥2

2 hnew = xnewVp Vp

X

Exercise Question

• Imagine we have 5000 datapoints for a problem with d = 10

• Imagine we first expand the dimension using a kernel representation, going
from 10 features to 5000.

• Subquestion: why are there 5000 features?

• Then we apply PCA to extract 100 features. How do we interpret what those
features are?

Increasing p

• If , then the objective produces trivial

solutions and

• Add a regularizer on and to avoid trivial solutions

• Sparse coding we put an regularizer on to encourage sparse
representations

p > d min
h1,…,hn∈ℝp,D∈ℝp×d

n

∑
i=1

∥xi − hiD∥2
2

D = I hi = xi

hi D

ℓ1 hi

Chapter 9: Learning Neural Networks

• Understand types of transformation on the input given by a neural network

• series of linear functions composed with simple activations

• Understand that backpropagation is gradient descent

• Understand that linear autoencoders also extract a low-dimensional representation
like PCA

• Will not be directly tested:

• You will not need to derive the gradients for an NN

• You will not be tested on supervised autoencoders

Exercise: NN choices

• An NN with three layers transforms the inputs as

• for weights composed of

• Can think of this NN as learning p(y | x) with key parameter  
for

• We pick a GLM loss and transfer for the output that matches the targets

• e.g., what if the output is a binary 0,1 variable? What is f1?

• e.g., what if the output is ordinal 0, 1, 2, 3, 4, 5, .., 100? What is f1?

fw(x) = f1(f2(f3(xW(3))W(2))W(1)) w W(3), W(2), W(1)

θ(x) = h(1)W(1)

h(1) = f2(f3(xW(3))W(2))

f1

Exercise: NN vs PCA

• An NN with three layers transforms the inputs as

• for weights composed of

• Can think of this NN as learning p(y | x) with key parameter  
for

• Can think of as the new representation of . How do we extract the new
representation for a new ?

fw(x) = f1(f2(f3(xW(3))W(2))W(1)) w
W(3), W(2), W(1)

θ(x) = h(1)W(1)

h(1) = f2(f3(xW(3))W(2))

h(1) x
xnew

Exercise: NN vs PCA

• An NN with three layers transforms the inputs as

• for weights composed of

• Can think of this NN as learning p(y | x) with key parameter  
for

• Can think of as the new representation of . How do we extract the new
representation for a new ? Ans

fw(x) = f1(f2(f3(xW(3))W(2))W(1)) w
W(3), W(2), W(1)

θ(x) = h(1)W(1)

h(1) = f2(f3(xW(3))W(2))

h(1) x
xnew hnew = f2(f3(xnewW(3))W(2))

PCA equivalent to a linear autoencoder

• Can also learn with and , called a (linear)
autoencoder that is a neural network with

• identity activations

• smaller hidden dimension

• loss function equal to

• For a new datapoint , we get the representation.

• Produces same representation as PCAs

fw(x) = xW(2)W(1) W(2) ∈ ℝd×p W(1) ∈ ℝp×d

p < d
n

∑
i=1

∥fw(xi) − xi∥2
2

xnew h = xW(2)

hnew = arg min
h∈ℝp

∥x − hD∥2
2

Questions about linear autoencoders

• Can learn with and

• What happens if pick hidden dimension ?

fw(x) = xW(2)W(1) W(2) ∈ ℝd×p W(1) ∈ ℝp×d

p > d

Questions about linear autoencoders

• Can learn with and

• What happens if pick hidden dimension ?

• Learn linear function because is the same as learning
 for , and get

• But wait, we can always write , so whats different?

fw(x) = xW(2)W(1) W(2) ∈ ℝd×p W(1) ∈ ℝp×d

p > d

fw(x) = xW(2)W(1)

fw(x) = xW W ∈ ℝd×d W = I

W = W(2)W(1) ∈ ℝd×d

Questions about linear autoencoders

• Can learn with and

• What happens if pick hidden dimension ?

• Learn linear function because is the same as learning
 for , and get

• But wait, we can always write , so whats different?

• For , we are restricting to be low-rank

• More constrained linear function to reconstruct , don’t get

fw(x) = xW(2)W(1) W(2) ∈ ℝd×p W(1) ∈ ℝp×d

p > d

fw(x) = xW(2)W(1)

fw(x) = xW W ∈ ℝd×d W = I

W = W(2)W(1) ∈ ℝd×d

p < d W = W(2)W(1) ∈ ℝd×d

x W = I

Questions about linear autoencoders

• Can learn with and

• What happens if keep but change the output target of NN to scalar y

and loss function from to ?

fw(x) = xW(2)W(1) W(2) ∈ ℝd×p W(1) ∈ ℝp×d

p < dn

∑
i=1

∥fw(xi) − xi∥2
2

n

∑
i=1

∥fw(xi) − yi∥2
2

Questions about linear autoencoders

• Can learn with and

• What happens if keep but change the output target of NN to scalar y

and loss function from to ?

• Learn linear function because with and
 is same as learning for

fw(x) = xW(2)W(1) W(2) ∈ ℝd×p W(1) ∈ ℝp×d

p < dn

∑
i=1

∥fw(xi) − xi∥2
2

n

∑
i=1

∥fw(xi) − yi∥2
2

fw(x) = xW(2)W(1) W(2) ∈ ℝd×p

W(1) ∈ ℝp×1 fw(x) = xW W(2) ∈ ℝd×1

Questions about linear autoencoders

• Can learn with and

• What happens if keep but change the output target of NN to scalar y

and loss function from to ?

• What about multinomial logistic regression and
?

fw(x) = xW(2)W(1) W(2) ∈ ℝd×p W(1) ∈ ℝp×d

p < dn

∑
i=1

∥fw(xi) − xi∥2
2

n

∑
i=1

∥fw(xi) − yi∥2
2

fw(x) = softmax(xW(2)W(1))
p > m

Questions about linear autoencoders

• Can learn with and

• What happens if keep but change the output target of NN to scalar y and

loss function from to ?

• What about multinomial logistic regression and
?

• Learn linear function because with and
 is same as learning for

fw(x) = xW(2)W(1) W(2) ∈ ℝd×p W(1) ∈ ℝp×d

p < dn

∑
i=1

∥fw(xi) − xi∥2
2

n

∑
i=1

∥fw(xi) − yi∥2
2

fw(x) = softmax(xW(2)W(1))
p > m

fw(x) = xW(2)W(1) W(2) ∈ ℝd×p

W(1) ∈ ℝp×1 fw(x) = xW W(2) ∈ ℝd×1

