## **Final Review** CMPUT 467: Machine Learning II

## Goal of these Slides

- Go over each section of the notes and highlight key concepts
- Additionally highlight what I will and will not test
  - It is in the notes for your knowledge, but hard to directly test
- Practice Final will be covered on the last day
- Note: the final largely focuses on Chapter 8 onwards. But as usual it builds on your knowledge from earlier chapters

## **Chapter 1: Intro to ML**

- Know the difference between a generative model and predictor (1.1)
- Will not be directly tested:
  - Relationship to Statistics and Probability (1.2)
  - The Blessing and Curse of Dimensionality (1.3)
  - SVDs and Eigenvalue decompositions (1.4)
  - You will not need to take gradients

# **Chapter 2: Probability Concepts**

- Understand the definition of a multi-dimensional probability (2.1)
- Understand the definition of a mixture of distributions (2.2)
- Know the purpose of the KL divergence (2.3)
- Will not be directly tested:
  - Knowing the PMFs or PDFs of specific distributions
  - Specific expectation and variance formulas
  - Remembering the KL divergence formula

## **Chapter 3: Revisiting Linear Regression**

- Understand that Linear Regression and I2-regularized linear regression have closed-form solutions (unlike most GLMs)
- Understand that this let's us characterize the bias and variance of these solutions
- Understand the LR solution is unbiased, if the true function is linear
- Understand LR+I2 is biased, but that asymptotically (as n grows) they reach the same solution
- Will not be directly tested:
  - Any specific closed-form solutions; I will give them to you if you need them

# **Chapter 4: Optimization Principles**

- Understand multivariate gradient descent, including gradients (4.3) and the role of the Hessian in second-order GD (4.1)
- Understand Stochastic GD (SGD) and the reason to move from full batch GD to mini-batch SGD (4.4)
- Understand the role of vector stepsize algorithms and the use of momentum (4.5)
- Will not be directly tested:
  - Directional derivatives (3.2)
  - Knowing the updates of specific vector stepsize algorithms
  - Convergence rate formulas

#### **Exercise Question**

we need to converge?

#### How might the size of the dataset n interact with the number of epochs that

#### **Exercise Question**

- How might the size of the dataset n interact with the number of epochs that we need to converge?
- Answer: With a very large dataset, we are doing more updates in each epoch and likely need fewer epochs to converge.

## **Chapter 5: GLMs**

- Understand that Generalized Linear Models (GLMs) allow us to model
  - $p(y | \mathbf{x}) = any$  natural exponential family distribution with natural parameter  $\theta = \mathbf{x}\mathbf{w}$
  - with associated transfer function g such that  $g(\mathbf{x}\mathbf{w})$  approximates  $\mathbb{E}[Y|\mathbf{x}]$
- Understand that multinomial logistic regression is for multi-class classification
- Will not be directly tested:
  - Knowing specific GLM updates; if I need you to reason about one I will give it to you The details of exponential family distributions (5.2)

#### **Exercise Question**

you use this code to do binary classification?

Imagine you have multinomial logistic regression implemented. How would

#### **Exercise Question**

- Imagine you have multinomial logistic regression implemented. How would you use this code to do binary classification?
- Transform dataset of (x,y) with y in {0,1} or y in {-1,1} to dataset with y in {[1,0], [0,1]}, then call multinonimal logistic regression on this

## **Chapter 6: Constrained Optimization**

- Understand that we need to use a different approach when we have a constrained optimization (3.5)
- Understand that proximal gradient descent is a reasonably general purpose approach for constrained or non-smooth optimization (3.5)
- Will not be directly tested:
  - You do not need to know specific proximal operators
  - You do not need to know about KKT conditions nor how to get the proximal operator for the simplex constraint (3.6)

#### **Exercise for constrained optimization**

Let us revisit the optimization for mixture models 

$$\min_{w_1,...,w_k \ge 0, \sum_{k=1}^m w_k = 1} - \sum_{k=1}^m d_k \ln w_k$$

us a feasible solution?

(where 
$$d_k = \sum_{i=1}^n p_t[i, k] > 0$$
)

• To solve this, we can be lazy and first just check: does a stationary point give

## **Exercise for constrained optimization (cont.)**

$$\frac{\partial}{\partial w_j} \sum_{k=1}^m d_k \ln w_k = \sum_{k=1}^m d_k \frac{\partial}{\partial w_j} \ln w_k$$
$$= d_j \frac{1}{w_j} = 0$$

satisfy our constraints) Our lazy step failed.

Stationary points are plus/minus infty, clearly not a feasible solution (does not



## **Exercise for constrained optimization (cont.)**

$$\frac{\partial}{\partial w_j} \sum_{k=1}^m d_k \ln w_k = \sum_{k=1}^m d_k \frac{\partial}{\partial w_j} \ln w_k$$
$$= d_j \frac{1}{w_j} = 0$$

our constraints) Our lazy step failed. If the stationary point 'had' been a feasible solution (satisfied  $w_1, \ldots, w_k \ge 0$ ,  $\sum w_k = 1$ ), then we would be done and wouldn't need to use any fancier optimization approaches

Stationary points are plus/minus infty, clearly not a feasible solution (does not satisfy



# Exercise for constrained optimization (cont)

- Let us now incorporate one of the constraints. We can see our objective actually will not prefer negative weights, so let's first do the sum constraint
- We consider now an equivalent augmented objective (Lagrangian), and see if a stationary point of this objective gives us a solution

$$L(\mathbf{w}, a) = -\sum_{k=1}^{m} d_k \ln w_k + a \left(\sum_{k=1}^{m} d_$$

• Solve for max min  $L(\mathbf{w}, a)$  we know a solution to this \*must\* satisfy this  $a \in \mathbb{R} \ \mathbf{w} \in \mathbb{R}^m$  constraint, as otherwise w suffers infinite loss

$$w_k - 1$$

## **Exercise for constrained optimization (cont)**

• 
$$L(\mathbf{w}, a) = -\sum_{k=1}^{m} d_k \ln w_k + a \left(\sum_{k=1}^{m} w_k\right)$$
  
 $\frac{\partial}{\partial w_j} L(\mathbf{w}, a) = -\sum_{k=1}^{m} d_k \frac{\partial}{\partial w_j} \ln w_k + a w_k$   
•  $= -d_j \frac{1}{w_j} + a = 0 \implies 1$ 



## **Exercise for constrained optimization (cont)**

• 
$$L(\mathbf{w}, a) = -\sum_{k=1}^{m} d_k \ln w_k + a \left(\sum_{k=1}^{m} d_k \ln w_k + a \left(\sum_{k=1}^{m}$$

- We know a solution must have a where  $\sum_{k=1}^{m} w_k = \sum_{k=1}^{m} \frac{d_k}{a} = 1 \implies a = \sum_{k=1}^{m} d_k \implies w_j = \frac{d_j}{\sum_{k=1}^{m} d_k}$
- Feasible solution, since  $d_i > 0$  and so  $w_i > 0$
- (We didn't need to explicitly enforce this condition in our Lagrangian)





#### **Chapter 7: Evaluating Generalization Performance**

- Understand that cross validation allows us to evaluate a model trained on the entire dataset (without having to have a hold-out test set)
- Understand the k-fold CV algorithm
- Understand the repeated random subsampling (RSS) CV algorithm
- Will not be directly tested:
  - The nuances about the bias-variance distinctions for different CV choices



#### **Chapter 7: Evaluating Generalization Performance (cont)**

- Know what it means to select hyperparameters
- Understand the utility of CV for hyperparameter selection
- Understand the difference between internal CV and external CV
  - internal CV is for hyperparameter selection and external is to evaluate the algorithm that might use internal CV
- Will not be directly tested:
  - Knowing how to pick the set of hyperparameters to be tested with CV



### **Refresher on external & internal CV**

Algorithm 3: Nested cross-validation on a dataset  $\mathcal{D}$ 

- 1: Partition the dataset  $\mathcal{D}$  into  $k_{\text{external}}$  folds
- 2: Initialize  $\operatorname{err-f} = 0$
- 3: for i = 1 to  $k_{\text{external}}$  do
- Set  $\mathcal{D}_{te}^{(i)}$  to the data in fold *i* 4:

5: Set 
$$\mathcal{D}_{\mathrm{tr}}^{(i)} = \mathcal{D} - \mathcal{D}_{\mathrm{te}}^{(i)}$$

6: 
$$f_i \leftarrow \mathbf{Learner}(\mathcal{D}_{\mathrm{tr}}^{(i)})$$

7: err-f = err-f + error of 
$$f_i$$
 on  $\mathcal{D}_{te}^{(i)}$ 

8: err-f = err-f/
$$k_{\text{external}}$$

10: return 
$$f$$
 and err-f

**eturn** 
$$f$$
 and err-f

**Algorithm 4: Learner** using cross-validation on a dataset  $\mathcal{D}'$ 1: Partition the dataset  $\mathcal{D}'$  into  $k_{\text{internal}}$  folds 2: for h in the set of hyperparameters H do Initialize  $\operatorname{err}[h] = 0$ 3: for j = 1 to  $k_{\text{internal}}$  do 4: Set  $\mathcal{D}'_{te}^{(j)}$  to the data in fold j for dataset  $\mathcal{D}_{tr}^{(i)}$ 5: Set  $\mathcal{D}'_{\mathrm{tr}}^{(j)} = \mathcal{D}' - \mathcal{D}'_{\mathrm{to}}^{(j)}$ 6: 7: Train  $f = \operatorname{Alg}(\mathcal{D}'_{\operatorname{tr}}^{(j)}, h)$  $\operatorname{err}[h] = \operatorname{err}[h] + \operatorname{error} \text{ for } f \text{ on } \mathcal{D}'_{\mathrm{te}}^{(j)}$ 8:  $\operatorname{err}[h] = \operatorname{err}[h]/k_{\operatorname{internal}}$ 9: 10: Pick  $h^* = \operatorname{argmin}_{h \in H} \operatorname{err}[h]$ 11: // Learner done picking its hyperparameter, can now retuin 12: Train  $f = \operatorname{Alg}(\mathcal{D}, h^*)$ 13: return f





When should we use a single train-validation-test split?

- When should we use a single train-validation-test split?
  - We have a massive dataset, so can make train, validation and test big
  - And sometimes compromise if our model is very expensive to train, making CV impractical to use



- When should we use a single train-validation-test split?
- Why does CV only have train and test partitions? Why aren't there also three datasets (train, validation and test)?

- When should we use a single train-validation-test split?
- Why does CV only have train and test partitions? Why aren't there also three datasets (train, validation and test)?
  - Validation is used for hyperparameter selection (role of internal CV)
  - Test is used for evaluation of the final function (role of external CV)
  - CV uses the whole dataset for both evaluation and training, so it actually only makes splits for evaluation, and trains on the entire dataset

- When should we use a single train-validation-test split?
- Why does CV only have train and test partitions? Why aren't there also three datasets (train, validation and test)?
- Do we have to use nested cross validation? Can we use a single train-test split externally, and k-fold CV internally?

- When should we use a single train-validation-test split?
- Why does CV only have train and test partitions? Why aren't there also three datasets (train, validation and test)?
- Do we have to use nested cross validation? Can we use a single train-test split externally, and k-fold CV internally?
  - Yes! The learner uses CV to algorithmically set its hyperparameters. We can evaluate this learner in any way we want (external CV or one train-test split)

- When should we use a single train-validation-test split?
- Why does CV only have train and test partitions? Why aren't there also three datasets (train, validation and test)?
- Do we have to use nested cross validation? Can we use a single train-test split externally, and k-fold CV internally?
- Can we use a single train-validation split internally, and CV externally?

- When should we use a single train-validation-test split?
- Why does CV only have train and test partitions? Why aren't there also three datasets (train, validation and test)?
- Do we have to use nested cross validation? Can we use a single train-test split externally, and k-fold CV internally?
- Can we use a single train-validation split internally, and CV externally?
  - Yes! The learner uses a validation set to algorithmically set its hyperparameters. We can evaluate this learner in any way we want.

- When should we use a single train-validation-test split?
- Why does CV only have train and test partitions? Why aren't there also three datasets (train, validation and test)?
- Do we have to use nested cross validation? Can we use a single train-test split externally, and k-fold CV internally?
- Can we use a single train-validation split internally, and CV externally?
- Should we do either of these?

## **Chapter 8: Fixed Representations**

- Understand that projecting to higher dimensions makes data separable (classification) or allows for a simpler function for regression
- Understand that RBF network define features using RBF kernels to a set of centers, with similarity controlled by the width of the RBF
- Understand that Prototype Representations use similarities to prototypes taken from the training dataset
- Will not be directly tested:
  - Knowing specific kernels
  - The advanced remark about the representer theorem



#### • What are the implications of using I1 regularization with polynomial features?

#### Exercise

- What are the implications of using 11 regularization with polynomial features? Removes certain elements of the polynomial (e.g., keeps x1^3, removes x1^2, keep x1x2, removes x1^2x2)

  - Could reduce the degree of the polynomial, if removes highest order terms

#### Exercise

- I didn't give you an example of how projecting to higher dimensions also facilitates regression with simple (linear functions)
- Can you think of a similar example to this one, but for regression? 22 space





$$\mathcal{X}_{(}$$

#### Exercise

- I didn't give you an example of how projecting to higher dimensions also facilitates regression with simple (linear functions)
- Can you think of a similar example to this one, but for regression?
  - Same phi lets us learn an average y per bin
  - Features duplicated per bin can learn linear functions for each bin, giving piecewise linear functions





## **Chapter 9: Learned Representations**

- Understand that PCA extracts a lower-dimensional representation
- Understand the objective underlying PCA (minimize  $\|\mathbf{x} \mathbf{h}\mathbf{D}\|_2^2$  for every x)
- Understand that sparse coding similarly minimizes  $||\mathbf{x} \mathbf{h}\mathbf{D}||_2^2$ , but additionally has an 11 regularizer on h to find a high-dimensional sparse representation
- Will not be directly tested:
  - PPCA
  - Algorithms for PCA and sparse coding, such as matrix factorization
  - Interpretations of latent factors (was only for intuition about what might be learned)
### PCA on training data and new points





- from 10 features to 5000.
- reasonably big, and the rest are relatively small.
- So we decide to use PCA to get 100 features.
- How do we interpret these 100 features?

Imagine we first expand the dimension using a kernel representation, going

Imagine we compute the SVD of Phi, and the top 100 singular values are

## **Chapter 9: Learned Representations**

- Understand types of transformation on the input given by a neural network
- Understand that backpropagation is gradient descent
- Understand that linear autoencoders extract a low-dimensional rep like PCA
  - Can see nonlinear autoencoders as a nonlinear extension of PCA
- Understand that supervised autoencoders add an auxiliary loss
- Will not be directly tested:
  - You will not need to derive the gradients for an NN

- We discussed that many transformations consist of (1) linear weighting followed by (2) nonlinear activation (differentiable almost everywhere)
- What are some other activations we could consider using in a network, reasonable?

beyond the three we discussed (ReLU, sigmoid, tanh)? Why would these be

- Write down the set of functions F1 obtained using a kernel representation with kernel k, and a random subset of 100 points from the training data as centers (assume  $\mathscr{X}$  is the space of all possible inputs **x**)
- Write down the set of functions F2 obtained using an NN with two hidden layers each of size 256, with ReLu activations, for regression



- Write down the set of functions F1 obtained using a kernel representation with kernel k, and a random subset of 100 points from the training data as centers (assume  $\mathscr{X}$  is the space of all possible inputs **x**)
- Write down the set of functions F2 obtained using an NN with two hidden layers each of size 256, with ReLu activations, for regression
- If I told you that F1 is a subset of F2, what does that mean? Which class has higher complexity (or capacity)?
- How do you know one is a subset of the other? Is F1 a subset of F2 here?



#### **Chapter 10: Bias, Variance and Generalization Error**

 Understand that the generalization error of a function f is the error in expectation across all possible datapoints (expected cost)

$$\operatorname{GE}(f) = \mathbb{E}[(f(X) - Y)^2] = \underbrace{\mathbb{E}[(f(X) - f^*(X))^2]}_{\text{reducible error}} + \underbrace{\mathbb{E}[(f^*(X) - Y)^2]}_{\text{irreducible error}}$$

• GE is about a specific function f, rather than about a function class where we have  $f_{\mathcal{D}}$  that varies with data

#### **Chapter 10: Bias, Variance and Generalization Error**

- Understand that we can reason about function  $f_{\mathcal{D}}$  as a random variable, where randomness comes from the underlying dataset
- Understand that we can reason about the generalization error of functions from a function class, by considering the bias and variance of this  $f_{\mathcal{P}}$
- Understand that reducible error of  $f_{\mathcal{D}}$  decomposes into bias and variance • For a specific x, we have  $\mathbb{E}\left[(f_{\mathcal{D}}(\mathbf{x}) - f^*(\mathbf{x}))^2\right] = (\mathbb{E}\left[f_{\mathcal{D}}(\mathbf{x})\right] - f^*(\mathbf{x}))^2 + \operatorname{Var}\left[f_{\mathcal{D}}(\mathbf{x})\right].$  $\mathbb{E}[(f_{\mathcal{D}}(\boldsymbol{X}) - f^{*}(\boldsymbol{X}))^{2}] = \mathbb{E}_{\boldsymbol{X}}\left[ (\mathbb{E}_{\mathcal{D}}[f_{\mathcal{D}}(\boldsymbol{X})] - f^{*}(\boldsymbol{X}))^{2} + \operatorname{Var}_{\mathcal{D}}[f_{\mathcal{D}}(\boldsymbol{X})] \right]$



- We wrote F1 the set of function using a kernel representation and F2 using an NN. We thought about the case where F1 is a subset of F2
- Do you think F1 or F2 has higher bias?
- Do you think F1 or F2 has higher variance?
- Why is this reasoning useful? Can't we just measure generalization error of our actual learned function using a test set or cross validation?

#### **Chapter 10: Bias, Variance and Generalization Error**

- Understand the definition of covariate shift lacksquare
  - $p_{\text{train}}(\mathbf{x}, y) = p(y | \mathbf{x}) p_{\text{train}}(\mathbf{x}) \neq p(y | \mathbf{x}) p_{\text{test}}(\mathbf{x}) = p_{\text{test}}(\mathbf{x}, y)$

## A more realistic example of covariate shift



Figure 1.2: An example observational dataset (synthetic). Points in • represent a patient who actually got surgery (t = 1) and indicate their respective *factual* outcome. Points in • represent patients who in reality got medication but indicate their *counterfactual* outcome had they got surgery  $(\neg t = 1)$ .

## **Exercise: What is ptrain and ptest?**



Figure 1.2: An example observational dataset (synthetic). Points in • represent a patient who actually got surgery (t = 1) and indicate their respective *factual* outcome. Points in • represent patients who in reality got medication but indicate their *counterfactual* outcome had they got surgery  $(\neg t = 1)$ .

#### **Chapter 10: Bias, Variance and Generalization Error**

- Understand the definition of covariate shift
  - $p_{\text{train}}(\mathbf{x}, y) = p(y | \mathbf{x}) p_{\text{train}}(\mathbf{x}) \neq p(y | \mathbf{x}) p_{\text{test}}(\mathbf{x}) = p_{\text{test}}(\mathbf{x}, y)$
- Understand that our definition for GE stays the same
  - still about deployment data, but before  $p_{train}(\mathbf{x}, y) = p_{test}(\mathbf{x}, y)$  so we simply called them both p

$$\operatorname{GE}(f) = \mathbb{E}_{p_{\text{test}}}[(f(X) - Y)^2] = \int_{\mathcal{X}}$$

 $p_{\text{test}}(\mathbf{x})\mathbb{E}[(f(\mathbf{x}) - Y)^2 | X = \mathbf{x}]d\mathbf{x}$ (12.3)



this change under covariate shift?

#### • When we talk about bias-variance, in expectation across inputs, how does

#### $\mathbb{E}[(f_{\mathcal{D}}(\boldsymbol{X}) - f^{*}(\boldsymbol{X}))^{2}] = \mathbb{E}_{\boldsymbol{X}}\left[ (\mathbb{E}_{\mathcal{D}}[f_{\mathcal{D}}(\boldsymbol{X})] - f^{*}(\boldsymbol{X}))^{2} + \operatorname{Var}_{\mathcal{D}}[f_{\mathcal{D}}(\boldsymbol{X})] \right]$



under covariate shift?

$$\mathbb{E}[(f_{\mathcal{D}}(\boldsymbol{X}) - f^{*}(\boldsymbol{X}))^{2}] = \mathbb{E}_{\boldsymbol{X}}\left[(\mathbb{E}_{\mathcal{D}}[f_{\mathcal{D}}(\boldsymbol{X})] - f^{*}(\boldsymbol{X}))^{2} + \operatorname{Var}_{\mathcal{D}}[f_{\mathcal{D}}(\boldsymbol{X})]\right]$$

- Expectation over datasets assumes  $\mathscr{D} \sim p_{\text{train}}$
- Expectation over X assumes  $\mathbf{x} \sim p_{\text{test}}$
- (Before both were sampled from the same distribution p)
- Why is this the new definition?

• When we talk about bias-variance, in expectation across inputs, how does this change

#### Chapter 10: Bias, Variance and Generalization Error (cont)

- Most of the rest of Chapter 10 will not be directly tested
- Will not be directly tested
  - Implicit regularization and double descent (10.2)
  - I only expect you to know what covariate shift is; I will not test on
  - Nonstationary in p(y|x) (10.3.3)

understanding how to fix covariate shift (e.g., importance sampling)



## Chapter 11: Mixture Models

- Understand how we sample from mixture models
- Understand that the EM algorithm consists of (a) the introduction of auxiliary variables z (component) and (b) alternating between updating  $p(z_i | x_i)$  and parameters  $\theta$
- Understand that the E-step updates  $p(z_i | x_i)$  for fixed  $\theta$ , and the M-step updates  $\theta$  for fixed  $p(z_i | x_i)$  with each component updated independently using a (weighted) log-likelihood
- Will not be directly tested:
  - You do not need to memorize the EM algorithm, but you should be able to recognize key components of it

## **EM Algorithm**

Algorithm 8: EM for Gaussian Mixture Models

- 1: **Input**: number of components *m*
- 2: Initialize  $\mu_k^{(0)}$ ,  $\Sigma_k^{(0)}$  and  $w_k^{(0)}$  for all  $k \in 1$  to m, t = 0
- 3: while not converged do
- 5: Compute  $p_t[k] \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n p_t[i,k]$
- for  $k \in \{1, 2, ..., m\}$  do 6:  $w_k^{(t+1)} = p_t[k]$ 7:

- 10:  $t \leftarrow t + 1$

11: **return**  $w_k^t, \mu_k^{(t)}, \Sigma_k^{(t)}$  for all  $k \in \{1, 2, ..., m\}$ 

4:  $p_t[i,k] = \frac{w_k^{(t)} p(\mathbf{x}_i | \boldsymbol{\theta}_k^{(t)})}{\sum_{i=1}^m w_i^{(t)} p(\mathbf{x}_i | \boldsymbol{\theta}_i^{(t)})}$  for all  $i \in \{1, 2, \dots, n\}, k \in \{1, 2, \dots, m\}$ 

8:  $\boldsymbol{\mu}_{k}^{(t+1)} = \frac{1}{np_{t}[k]} \sum_{i=1}^{n} p_{t}[i,k] \mathbf{x}_{i}$ 9:  $\boldsymbol{\Sigma}_{k}^{(t+1)} = \frac{1}{np_{t}[k]} \sum_{i=1}^{n} p_{t}[i,k] (\mathbf{x} - \boldsymbol{\mu}_{k}^{(t+1)}) (\mathbf{x} - \boldsymbol{\mu}_{k}^{(t+1)})^{\top}$ 

## EM Algorithm for any component distribution

Algorithm 9: EM for any component distribution

- 2: Initialize  $\theta_k^{(0)}$  and  $w_k^{(0)}$  for all  $k \in 1$  to m, t = 0
- 3: while not converged do
- 4:  $p_t[i,k] = \frac{w_k^{(t)} p(\mathbf{x}_i | \boldsymbol{\theta}_k^{(t)})}{\sum_{i=1}^m w_i^{(t)} p(\mathbf{x}_i | \boldsymbol{\theta}_i^{(t)})}$  for all  $i \in \{1, 2, \dots, n\}, k \in \{1, 2, \dots, m\}$
- 5: Compute  $p_t[k] \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n p_t[i,k]$
- 6: for  $k \in \{1, 2, ..., m\}$  do
- 7:  $w_k^{(t+1)} = p_t[k]$
- 8:  $\boldsymbol{\theta}_{k}^{(i+1)} = \operatorname{argmin}_{\boldsymbol{\theta}_{k}} \sum_{i=1}^{n} p_{t}[i,k] \ln p(\mathbf{x}_{i}|\boldsymbol{\theta}_{k})$ 9:  $t \leftarrow t+1$
- 10: **return**  $w_k^t, \theta_k^{(t)}$  for all  $k \in \{1, 2, ..., m\}$

1: Input: number of components m, with components distributions  $p(\cdot|\boldsymbol{\theta}_1), \ldots, p(\cdot|\boldsymbol{\theta}_m)$ 



#### Exercise

exponential pdf is  $p(x) = \lambda \exp(-\lambda x)$ .

Algorithm 9: EM for any component distribution

- 2: Initialize  $\theta_k^{(0)}$  and  $w_k^{(0)}$  for all  $k \in 1$  to m, t = 0
- 3: while not converged do
- 4:  $p_t[i,k] = \frac{w_k^{(t)} p(\mathbf{x}_i | \boldsymbol{\theta}_k^{(t)})}{\sum_{i=1}^m w_i^{(t)} p(\mathbf{x}_i | \boldsymbol{\theta}_i^{(t)})}$  for all  $i \in \{1, 2, \dots, n\}, k \in \{1, 2, \dots, m\}$
- 5: Compute  $p_t[k] \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n p_t[i,k]$
- for  $k \in \{1, 2, ..., m\}$  do 6:
- $w_{k}^{(t+1)} = p_t[k]$ 7:
- $\boldsymbol{\theta}_{k}^{(t+1)} = \operatorname{argmin}_{\boldsymbol{\theta}_{k}} \sum_{i=1}^{n} p_{t}[i,k] \ln p(\mathbf{x}_{i}|\boldsymbol{\theta}_{k})$ 8:  $t \leftarrow t + 1$ 9:

10: return  $w_k^t, \boldsymbol{\theta}_k^{(t)}$  for all  $k \in \{1, 2, \dots, m\}$ 

## • What is the algorithm if we use a mixture of exponential distributions? Recall

1: Input: number of components m, with components distributions  $p(\cdot|\theta_1), \ldots, p(\cdot|\theta_m)$ 

#### **Chapter 12: Generative Models & Data Representations**

Understand that both PPCA and VAEs make the assumption that

• 
$$p(\mathbf{x}) = \int p(\mathbf{x} | \mathbf{h}) p(\mathbf{h}) d\mathbf{h}$$
 with  $p(\mathbf{h}) = \mathcal{N}(\mathbf{x} | \mathbf{h})$ 

- Understand that PPCA assumes a linear relationship between  $\mathbf{x}$  and  $\mathbf{h}$  $p(\mathbf{x} | \mathbf{h}) = \mathcal{N}(\mathbf{h}\mathbf{D}, \sigma^2 \mathbf{I})$
- And that VAE generalizes to a nonlinear relationship, using NN  $f_{W}$  to give  $p(\mathbf{x} | \mathbf{h}) = \mathcal{N}(f_{\mathbf{W}}(\mathbf{h}), \sigma^2 \mathbf{I})$
- Understand how to sample from a VAE •
  - Step 1: Sample  $\mathbf{h} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$  and then
  - Step 2: Return  $f_{\mathbf{W}}(\mathbf{h})$

 $(\mathbf{0}, \mathbf{I})$ 

(where  $f_{\mathbf{W}}$  is the decoder part of the network)



## Chapter 12: VAEs (cont)

Understand our goal is to minimize  $\sum -\ln p(\mathbf{x}_i | \mathbf{W})$ 

- help us learn  $p(\mathbf{x} | \mathbf{h})$ ; we do not need  $q(\mathbf{h} | \mathbf{x})$  itself
- $-\ln p(\mathbf{x} | \mathbf{W}) + D_{KL}(q(\cdot | \mathbf{x}) | p(\cdot | \mathbf{x}, \mathbf{W}))$  and rearranging terms to get  $D_{KL}(q(\cdot |\mathbf{x})| | \mathcal{N}(0,\mathbf{I})) - \mathbb{E}_{\mathbf{h} \sim q(\cdot |\mathbf{x})}[\ln p(\mathbf{x} | \mathbf{h}, \mathbf{W})]$
- Understand why we use the reparameterization trick to get the gradient

# i=1

• But that this is hard to because  $p(\mathbf{x}_i | \mathbf{W})$  involves an integral over hidden **h** 

• Understand that we learn the encoder  $q(\mathbf{h} \mid \mathbf{x})$  only as part of the optimization, to

Understand that we derive the VAE objective (the negative ELBO) by starting with



## **Exercise: which part is q and p?**



• Recall we parameterized our encoder as  $q(\mathbf{h} | \mathbf{x}, \boldsymbol{\theta}) = \mathcal{N}(f_{\mu, \theta}(\mathbf{x}), f_{\sigma, \theta}(\mathbf{x}))$ 

## **Exercise: Reparameterization trick**

- We used reparameterization  $\mathbb{E}_{\mathbf{h} \sim q(\cdot | \mathbf{x})}[\ln p(\mathbf{x} | \mathbf{h}, \mathbf{W})] = \mathbb{E}_{\epsilon \sim \mathcal{N}(0, \mathbf{w})}[\ln p(\mathbf{x} | \mathbf{h}, \mathbf{W})] = \mathbb{E}_{\epsilon \sim \mathcal{N}(0, \mathbf{w})}[\ln p(\mathbf{x} | \mathbf{h}, \mathbf{W})] = \mathbb{E}_{\epsilon \sim \mathcal{N}(0, \mathbf{w})}[\ln p(\mathbf{x} | \mathbf{h}, \mathbf{W})] = \mathbb{E}_{\epsilon \sim \mathcal{N}(0, \mathbf{w})}[\ln p(\mathbf{x} | \mathbf{h}, \mathbf{W})] = \mathbb{E}_{\epsilon \sim \mathcal{N}(0, \mathbf{w})}[\ln p(\mathbf{x} | \mathbf{h}, \mathbf{W})] = \mathbb{E}_{\epsilon \sim \mathcal{N}(0, \mathbf{w})}[\ln p(\mathbf{x} | \mathbf{h}, \mathbf{W})]$
- Q1: What is the dimension of  $\epsilon \sim \mathcal{N}(0, \mathbf{I})$ ? How is this sampled?
- reparam?

• Recall we parameterized our encoder as  $q(\mathbf{h} | \mathbf{x}, \boldsymbol{\theta}) = \mathcal{N}(f_{\mu, \theta}(\mathbf{x}), f_{\sigma, \theta}(\mathbf{x}))$ 

$$\mathbf{I}_{j}[\ln p(\mathbf{x} \mid h_{j} = \mu_{j}(\mathbf{x}) + \sigma_{j}(\mathbf{x})\boldsymbol{\epsilon}_{j}, \mathbf{W})]$$

 Q2: What if we decided we wanted discrete hidden h, like mixtures, and used  $q(\mathbf{h} | \mathbf{x}, \boldsymbol{\theta}) = \operatorname{softmax}(f_{\theta}(\mathbf{x}))$ ? How does the NN change? Can we still use



#### Exercise

- To sample from a VAE, we use
  - Step 1: Sample  $\mathbf{h} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$  and then
  - Step 2: query the decoder part of the VAE network  $f_{W}(\mathbf{h})$
- Why don't we sample **h** from  $q(\mathbf{h} | \mathbf{x})$ ?

#### Exercise: Why do we do this complicated alg with VAEs?

 Can't we just train an auto-encoder, and then sample h to use the decoder part?



### Chapter 12: Conditional VAEs



## Chapter 12: VAEs (cont)

- Will not be directly tested
  - Memorizing the VAE objective (I will give you formulas)
  - Memorizing the gradient update for the VAE
  - The connection to Expectation-Maximization (9.3)
  - Deriving the gradient with the reparameterization trick
  - Mixture density networks

# **Chapter 13: Evaluating Generative Models** Understand goal is to estimate $\hat{GE}(\boldsymbol{\theta}) = \frac{1}{m} \sum_{x_i \in \mathcal{D}_{\text{test}}} -\ln p(\mathbf{x}_i | \boldsymbol{\theta})$

- Understand that can easily compute this for a mixture model, as long as the components are ones where it is easy to compute  $-\ln p(\mathbf{x}_i | \boldsymbol{\theta}_k)$
- Understand that this is hard to compute for VAEs, must be estimated
- Will not be directly tested
  - importance sampling approach to estimate this GE for VAEs



#### How would you use k-fold CV to pick the number of centers for a GMM?

#### Exercise

- How would you use k-fold CV to pick the number of centers for a GMM? Answer: You would decide on the set of numbers to select from,
- e.g.,  $H = \{2, 4, 8, 16\}$
- After partitioning the data into k folds, for each hyper m in H and each fold f Learn the GMM phat on all but fold f
- - Evaluate on fold f, by computing the negative log likelihood on the data sum\_{x in fold f} -ln phat(x)



• Can we take a mixture over VAE components?

#### Exercise

- Can we take a mixture over VAE components?
  - Yes! Why not? Seems fun, you should try it. Go back to the MM algorithms and see if you can figure out how to do it
- Is this still easy to evaluate, in terms of negative log-likelihood?

## Chapter 14: Missing Data

- Understand how to do imputation using PCA (matrix factorization), including training with missing data and using the model for new data
- Understand how to do imputation using an autoencoder, including training with missing data and using the model for new data
- Understand the difference between the two stage approach (impute then hand to learning algorithm) versus the direct approach (missingness indicator)
- Will not be directly tested
  - Connections to the transductive and semi-supervised settings



## **Exercise: PCA (matrix completion)**

- In PCA we solve for  $\min_{\mathbf{h}_1, \mathbf{h}_2, \dots, \mathbf{h}_n \in \mathbb{R}^p, \mathbf{D} \in \mathbb{R}^p}$
- In PCA with missing data,  $\min_{\mathbf{h}_1,\mathbf{h}_2,...,\mathbf{h}_n \in \mathbb{R}^p, \mathbf{D} \in \mathbb{R}^{p \times d}} \sum_{i=1}^{n} \sum_{j \in \mathcal{A}_i} (x_{ij} + \mathbf{D})$
- We will get back the same h's and D?

$$\sum_{i=1}^{n} \sum_{j=1}^{d} \sum_{i=1}^{n} (x_{ij} - \mathbf{h}_i \mathbf{D}_{:j})^2$$

$$\min_{\mathbf{n} \in \mathbb{D}^n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} (x_{ij} - \mathbf{h}_i \mathbf{D}_{:j})^2$$

• Why didn't we just set  $\mathbf{x}_{\mathscr{M}_i} = \mathbf{0}$  (set unavailable values to zero) and call PCA?

## **Exercise: PCA (matrix completion)**

- In PCA we solve for  $\min_{\mathbf{h}_1,\mathbf{h}_2,\ldots,\mathbf{h}_n \in \mathbb{R}^p, \mathbf{D} \in \mathbb{R}^p}$
- In PCA with missing data,  $\min_{\mathbf{h}_1,\mathbf{h}_2,...,\mathbf{h}_n \in \mathbb{R}^p, \mathbf{D} \in \mathbb{R}^{p \times d}} \sum_{i=1}^r \sum_{j \in \mathscr{A}_i} (x_{ij} \mathbf{h}_i \mathbf{D}_{j})^2$
- We will get back the same h's and D?
  - No. But we do if we minimize over

$$\sum_{n=1}^{n} \sum_{j=1}^{d} (x_{ij} - \mathbf{h}_i \mathbf{D}_{j})^2$$
  
$$\sum_{n=1}^{n} \sum_{j=1}^{n} (x_{ij} - \mathbf{h}_j \mathbf{D}_{j})^2$$

• Why didn't we just set  $\mathbf{x}_{\mathcal{M}_i} = \mathbf{0}$  (set unavailable values to zero) and call PCA?

$$\mathsf{r} \mathbf{X}_{\mathcal{M}_i}$$
### More general loss we use

- In PCA we solve for  $\min_{\mathbf{x}_{1,\mathcal{M}_{1}},\ldots,\mathbf{x}_{n,\mathcal{M}_{n}}\mathbf{h}_{1},\mathbf{h}_{2},\ldots}$
- For autoencoder,  $\min_{\mathbf{x}_{1,\mathcal{M}_{1}},\ldots,\mathbf{x}_{n,\mathcal{M}_{n}}} \min_{\mathbf{W}} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^$
- We need this more general purpose lo use objective. Why?

$$\min_{\mathbf{W}} \sum_{i=1}^{n} \sum_{j \in \mathscr{A}_{i}} (x_{ij} - f_{\mathbf{W}}(\mathbf{x}_{i}))^{2}$$

$$\min_{\substack{\dots,\mathbf{h}_n \in \mathbb{R}^p, \mathbf{D} \in \mathbb{R}^{p \times d}} \sum_{i=1}^n \sum_{j=1}^d (x_{ij} - \mathbf{h}_i \mathbf{D}_{ji})^2$$
$$\sum_{i=1}^d (x_{ij} - f_{\mathbf{W}}(\mathbf{x}_i))^2$$

• We need this more general purpose loss for the autoencoder, because we cannot

# **Chapter 15: Uncertainty estimation**

- Understand that we might want to know distribution over plausible values of  $\mathbf{w}$ , given the evidence (data)
- Understand that this allows us to also obtain a distribution over our predictions, and so construct credible intervals  $[f_w(\mathbf{x}) \epsilon, f_w(\mathbf{x}) + \epsilon]$
- Understand why the posterior and credible interval shrink with growing n
- Will not test you on
  - Memorizing the formulas for Bayesian linear regression
  - The Normal-inverse gamma distribution

### Shrinking posterior



### **Credible Interval for Predictions**



### For x, ER

# Chapter 15: Nonlinear setting

- Understand that we can use fixed representations + Bayesian linear regression to get nonlinear regressors + credible intervals
- Understand that we can use bootstrap resampling to estimate uncertainty for neural networks
  - Understand that we sample m datasets with replacement from all the training data, and that we train an NN  $f_{\mathbf{W}_k}$  from scratch on each dataset k
  - We use this ensemble of NNs to get a set of predictions to compute intervals for our predictions,  $\hat{y}_1 = f_{\mathbf{W}_1}(\mathbf{x}), \dots, \hat{y}_m = f_{\mathbf{W}_m}(\mathbf{x})$
  - Compute Gaussian (or Student's t) confidence interval on  $\hat{y}_1, \dots, \hat{y}_m$
- Will not test: smarter confidence interval strategies than Gaussian/Student's t

## All later material not tested

- Will not test you Gaussian Processes nor the kernel trick
- Will not test you on handling temporal data (Chapter 16)