Final Review

CMPUT 467: Machine Learning Il




Goal of these Slides

* (5o over each section of the notes and highlight key concepts
» Additionally highlight what | will and will not test

* |t is in the notes for your knowledge, but hard to directly test
* Practice Final will be covered on the last day

* Note: the final largely focuses on Chapter 8 onwards. But as usual it builds on
your knowledge from earlier chapters



Chapter 1: Intro to ML

 Know the difference between a generative model and predictor (1.1)
 Will not be directly tested:

* Relationship to Statistics and Probability (1.2)

* The Blessing and Curse of Dimensionality (1.3)

 SVDs and Eigenvalue decompositions (1.4)

* You will not need to take gradients



Chapter 2: Probability Concepts

* Understand the definition of a multi-dimensional probabillity (2.1)
 Understand the definition of a mixture of distributions (2.2)
 Know the purpose of the KL divergence (2.3)
 Will not be directly tested:

 Knowing the PMFs or PDFs of specific distributions

e Specific expectation and variance formulas

« Remembering the KL divergence formula



Chapter 3: Revisiting Linear Regression

 Understand that Linear Regression and |12-regularized linear regression have
closed-form solutions (unlike most GLMSs)

e Understand that this let’s us characterize the bias and variance of these solutions
 Understand the LR solution is unbiased, if the true function is linear

 Understand LR+I2 is biased, but that asymptotically (as n grows) they reach the
same solution

 Will not be directly tested:

* Any specific closed-form solutions; | will give them to you if you need them



Chapter 4: Optimization Principles

* Understand multivariate gradient descent, including gradients (4.3) and the role of the
Hessian in second-order GD (4.1)

* Understand Stochastic GD (SGD) and the reason to move from full batch GD to mini-batch
SGD (4.4)

* Understand the role of vector stepsize algorithms and the use of momentum (4.5)
 Will not be directly tested:

* Directional derivatives (3.2)

 Knowing the updates of specific vector stepsize algorithms

 Convergence rate formulas



Exercise Question

 How might the size of the dataset n interact with the number of epochs that
we need to converge?



Exercise Question

 How might the size of the dataset n interact with the number of epochs that
we need to converge?

 Answer: With a very large dataset, we are doing more updates in each epoch
and likely need fewer epochs to converge.



Chapter 5: GLMs

* Understand that Generalized Linear Models (GLMSs) allow us to model

» p(v|X) = any natural exponential family distribution with natural parameter = xw

» with associated transfer function g such that g(xw) approximates E[Y | X]
* Understand that multinomial logistic regression is for multi-class classification
 Will not be directly tested:
 Knowing specific GLM updates; if | need you to reason about one | will give it to you

* The details of exponential family distributions (5.2)



Exercise Question

* |magine you have multinomial logistic regression implemented. How would
you use this code to do binary classification?



Exercise Question

* |magine you have multinomial logistic regression implemented. How would
you use this code to do binary classification?

* Transform dataset of (x,y) with y in {O0,1} or y in {-1,1} to dataset with y in
{[1,0], [0,1]}, then call multinonimal logistic regression on this



Chapter 6: Constrained Optimization

 Understand that we need to use a different approach when we have a
constrained optimization (3.5)

 Understand that proximal gradient descent is a reasonably general purpose
approach for constrained or non-smooth optimization (3.5)

 Will not be directly tested:
* You do not need to know specific proximal operators

e You do not need to know about KKT conditions nor how to get the proximal
operator for the simplex constraint (3.6)



EXxercise for constrained optimization

e | et us revisit the optimization for mixture models

min — Z d Inw, (where d, = Z pli, k] > 0)
k=1 =1

m
Wl” . .,WkZO, Zk=1 szl

* Jo solve this, we can be lazy and first just check: does a stationary point give
us a feasible solution?



Exercise for constrained optimization (cont.)

delnwk = de—lnwk

]k_
1

W;

Stationary points are plus/minus infty, clearly not a feasible solution (does not
satisfy our constraints)
Our lazy step failed.



Exercise for constrained optimization (cont.)

0
” delnwk — Zd"aw In w,
k=1
1

Wj

Stationary points are plus/minus infty, clearly not a feasible solution (does not satisfy

our constraints)
Our lazy step fail%d. If the stationary point *had* been a feasible solution (satisfied

Wiy ey W 2 0, Z w, = 1), then we would be done and wouldn’t need to use any

. . k=1
fancier optlmlzaﬁon approaches



Exercise for constrained optimization (cont)

* | et us now incorporate one of the constraints. We can see our objective
actually will not prefer negative weights, so let’s first do the sum constraint

* We consider now an equivalent augmented objective (Lagrangian), and see if a
stationary point of this objective gives us a solution

- L(w,a) = — delnwk+a Zwk— 1
k=1 k=1

. Solve for max min L(w,a) we know a solution to this *must* satisfy this

~ aeR weR" -
constraint, as otherwise w suffers infinite loss



Exercise for constrained optimization (cont)

- L(w,a) = Z d.Inw, +a ( Z Wy — 1) Lets start by solving for w

_8 L(w,a) = — E d—l +
W, d nw aw;
()W k k

d.
J

_J
W] d

1
=—d—+a=0 = w, =

d
. We know a solution must have a where z Wy = z =] = a= Z d,
a
k=1 k=1



Exercise for constrained optimization (cont)

,L(W,a)=—2dklnwk+a(2wk—l) wj:—]
k=1 k=1 a

e \WWe know a solution must have a where

;Wk=23k=1 — a=2dk — W, = Zm_Jldk

k=1 k=1 —

« Feasible solution, since d] > () and so w; > 0

* (We didn’t need to explicitly enforce this condition in our Lagrangian)



Chapter 7: Evaluating Generalization Performance

e Understand that cross validation allows us to evaluate a model trained on the
entire dataset (without having to have a hold-out test set)

* Understand the k-fold CV algorithm
* Understand the repeated random subsampling (RSS) CV algorithm
 Will not be directly tested:

e The nuances about the bias-variance distinctions for different CV choices



Chapter 7: Evaluating Generalization Performance (cont)

« Know what it means to select hyperparameters
* Understand the utility of CV for hyperparameter selection
* Understand the difference between internal CV and external CV

* internal CV is for hyperparameter selection and external is to evaluate the
algorithm that might use internal CV

 WIill not be directly tested:

 Knowing how to pick the set of hyperparameters to be tested with CV



Refresher on external & internal CV

Algorithm 3: Nested cross-validation on a dataset D Algorithm 4: Learner using cross-validation on a dataset D’

1: Partition the dataset D into Kkexterna folds 1: Partition the dataset D’ into Einternal folds

2: Initialize err-f = 0 2: for h in the set of hyperparameters H do

3: for i = 1 t0 kexternal dO 3:  Initialize err[h| = 0

4:  Set DE? to the data in fold ¢ 4:  for 5 =1 to kinternal dO

5- Set Dg) — D — DE? 5 Set D’Ee) to the data in fold 5 for dataset D( ‘)
6:  fi Learner(Dg)) 6: Set D/(J) D' — D/Eé)

7:  err-f = err-t4 error of f; on D(Z) 7 Train f = Alg(D’Ef.), h)

8: err-f = err-f/kexternal 8 err|h] = err|h]+ error for f on D’ Eg)

9: f; = Learner(Dg)) 9:  err|h] = err|h]/Kinternal
10: return f and err-f 10: Pick h* = argminy g err|h

11: // Learner done picking its hyperparameter, can now retu
12: Train f = Alg(D, h*)
13: return f




Exercise Question

Do we have to use nested cross-validation?

 When should we use a single train-validation-test split?



Exercise Question

Do we have to use nested cross-validation?

 When should we use a single train-validation-test split?
* \We have a massive dataset, so can make train, validation and test big

 And sometimes compromise if our model is very expensive to train, making
CV impractical to use



Exercise Question

Do we have to use nested cross-validation?

 When should we use a single train-validation-test split?

 Why does CV only have train and test partitions”? Why aren’t there also three
datasets (train, validation and test)?



Exercise Question

Do we have to use nested cross-validation?

 When should we use a single train-validation-test split?

 Why does CV only have train and test partitions”? Why aren’t there also three
datasets (train, validation and test)?

» Validation is used for hyperparameter selection (role of internal CV)
* Test is used for evaluation of the final function (role of external CV)

 CV uses the whole dataset for both evaluation and training, so it actually
only makes splits for evaluation, and trains on the entire dataset



Exercise Question

Do we have to use nested cross-validation?

 When should we use a single train-validation-test split?

 Why does CV only have train and test partitions”? Why aren’t there also three
datasets (train, validation and test)?

Do we have to use nested cross validation”? Can we use a single train-test
split externally, and k-fold CV internally??



Exercise Question

Do we have to use nested cross-validation?

 When should we use a single train-validation-test split?

 Why does CV only have train and test partitions”? Why aren’t there also three
datasets (train, validation and test)?

Do we have to use nested cross validation”? Can we use a single train-test
split externally, and k-fold CV internally??

* Yes! The learner uses CV to algorithmically set its hyperparameters. We can
evaluate this learner in any way we want (external CV or one train-test split)



Exercise Question

Do we have to use nested cross-validation?

 When should we use a single train-validation-test split?

 Why does CV only have train and test partitions”? Why aren’t there also three
datasets (train, validation and test)?

Do we have to use nested cross validation”? Can we use a single train-test
split externally, and k-fold CV internally??

 Can we use a single train-validation split internally, and CV externally?



Exercise Question

Do we have to use nested cross-validation?

 When should we use a single train-validation-test split?

 Why does CV only have train and test partitions”? Why aren’t there also three
datasets (train, validation and test)?

Do we have to use nested cross validation”? Can we use a single train-test
split externally, and k-fold CV internally??

 Can we use a single train-validation split internally, and CV externally?

* Yes! The learner uses a validation set to algorithmically set its
hyperparameters. We can evaluate this learner in any way we want.



Exercise Question

Do we have to use nested cross-validation?

 When should we use a single train-validation-test split?

 Why does CV only have train and test partitions”? Why aren’t there also three
datasets (train, validation and test)?

Do we have to use nested cross validation”? Can we use a single train-test
split externally, and k-fold CV internally??

 Can we use a single train-validation split internally, and CV externally?

« Should we do either of these?



Chapter 8: Fixed Representations

 Understand that projecting to higher dimensions makes data separable
(classification) or allows for a simpler function for regression

* Understand that RBF network define features using RBF kernels to a set of centers,
with similarity controlled by the width of the RBF

 Understand that Prototype Representations use similarities to prototypes taken from
the training dataset

 WIill not be directly tested:
 Knowing specific kernels

 The advanced remark about the representer theorem



Exercise

 What are the implications of using |1 regularization with polynomial features?



Exercise

 What are the implications of using |1 regularization with polynomial features?

 Removes certain elements of the polynomial (e.g., keeps x173, removes
X172, keep x1x2, removes x1/2x2)

* Could reduce the degree of the polynomial, if removes highest order terms



Exercise

* | didn’t give you an example of how projecting to higher dimensions also
facilitates regression with simple (linear functions)

* Can you think of a similar example to this one, but for regression?

2 A Space
B'\me\/\j P "5
X X P $ :X )<$ ] 1
OXO L__ij)fgl_, ) (F[)LB O
X, O OX X, , 0 OX U
« 00X x 100X | 0
X O [ xo / -
o T 5
1 N

\/b 4

x(




Exercise

e | didn’t give you an example of how projecting to higher dimensions also
facilitates regression with simple (linear functions)

* Can you think of a similar example to this one, but for regression?

 Same phi lets us learn an average y per bin

* Features duplicated per bin can learn linear functions for each bin, giving

piecewise linear functions 24 space
Bl\lfmf\/lj o (
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Chapter 9: Learned Representations

 Understand that PCA extracts a lower-dimensional representation

 Understand the objective underlying PCA (minimize ||X — hDH% for every x)

« Understand that sparse coding similarly minimizes ||x — hDH%, but additionally has an
11 regularizer on h to find a high-dimensional sparse representation

 Will not be directly tested:
« PPCA
* Algorithms for PCA and sparse coding, such as matrix factorization

* |nterpretations of latent factors (was only for intuition about what might be learned)



PCA on training data and new points
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Exercise Question

* Imagine we first expand the dimension using a kernel representation, going
from 10 features to 5000.

* |Imagine we compute the SVD of Phi, and the top 100 singular values are
reasonably big, and the rest are relatively small.

 So we decide to use PCA to get 100 features.

« How do we interpret these 100 features?



Chapter 9: Learned Representations

 Understand types of transformation on the input given by a neural network

 Understand that backpropagation is gradient descent

 Understand that linear autoencoders extract a low-dimensional rep like PCA
» (Can see nonlinear autoencoders as a nonlinear extension of PCA

 Understand that supervised autoencoders add an auxiliary loss

 Will not be directly tested:

* You will not need to derive the gradients for an NN



Exercise Question

* We discussed that many transformations consist of (1) linear weighting
followed by (2) nonlinear activation (differentiable almost everywhere)

 What are some other activations we could consider using in a network,
beyond the three we discussed (RelLLU, sigmoid, tanh)? Why would these be
reasonable?



Exercise Question

* Write down the set of functions F1 obtained using a kernel representation with
kernel k, and a random subset of 100 points from the training data as centers

(assume X is the space of all possible inputs X)

* Write down the set of functions F2 obtained using an NN with two hidden
layers each of size 256, with Rel.u activations, for regression



Exercise Question

* Write down the set of functions F1 obtained using a kernel representation with
kernel k, and a random subset of 100 points from the training data as centers

(assume X is the space of all possible inputs X)

* Write down the set of functions F2 obtained using an NN with two hidden
layers each of size 256, with Rel.u activations, for regression

* |f | told you that F1 is a subset of F2, what does that mean”? Which class has
higher complexity (or capacity)?

 How do you know one is a subset of the other? Is F1 a subset of F2 here?



Chapter 10: Bias, Variance and Generalization Error

* Understand that the generalization error of a function f is the error in
expectation across all possible datapoints (expected cost)

GE(f) =E[(f(X) = Y)*] =E[(f(X) - [*(X))*] + E[(/"(X) — V)]
— Lot Ty

reducible error irreducible error

 GE is about a specific function f, rather than about a function class
where we have f, that varies with data



Chapter 10: Bias, Variance and Generalization Error

» Understand that we can reason about function fg, as a random variable,
where randomness comes from the underlying dataset

* Understand that we can reason about the generalization error of functions
from a function class, by considering the bias and variance of this fg,

» Understand that reducible error of 5, decomposes into bias and variance

(fo(x) = f*(x)*] = (E[fp(x)] - f*(x))" + Var [fp(x)].

_4“I

 For a specific x, we have =«

S[(fp(X) — £(X))?] = Ex [Eplfo(X)] - £*(X))* + Varp[fp(X)]




Exercise Question

 We wrote F1 the set of function using a kernel representation and F2 using an
NN. We thought about the case where F1 is a subset of F2

Do you think F1 or F2 has higher bias?
Do you think F1 or F2 has higher variance?

 Why is this reasoning useful? Can’t we just measure generalization error of
our actual learned function using a test set or cross validation?



Chapter 10: Bias, Variance and Generalization Error

e Understand the definition of covariate shift

* Ptrain(X,y) = p(y [ X)Pirain(X) # p(y | X)Ptest(X) = Prest(X, y)



y (e.qg., survival time)

A more realistic example of covariate shift

+

t=1 (e.q., surgery)

t=0 (e.qg., medication)
—t=1 [if got surgery]
—t=0 [if got medication]
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Figure 1.2: An example observational dataset (synthetic). Points in e repre-
sent a patient who actually got surgery (£ = 1) and indicate their respective

factual outcome. Points in

represent patients who in reality got medication

but indicate their counterfactual outcome had they got surgery (-t = 1).



Exercise: What is ptrain and ptest?

. )® ® t=1 (e.q., surgery)
V| o + t=0 (e.g., medication)
g —t=1 [if got surgery]
- ° .. ) o —t=0 [if got medication]
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Figure 1.2: An example observational dataset (synthetic). Points in e repre-
sent a patient who actually got surgery (£ = 1) and indicate their respective

factual ou
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represent patients who in reality got medication

e their counterfactual outcome had they got surgery (-t =1).



Chapter 10: Bias, Variance and Generalization Error

e Understand the definition of covariate shift

* Ptrain(X,y) = p(y [ X)Pirain(X) # p(y | X)Ptest(X) = Prest(X, y)

* Understand that our definition for GE stays the same

» still about deployment data, but before pir4in(X, ¥) = piest(X, ¥) so we
simply called them both p

GE(f) = Epp. [(f(X) — V)] = / Prest(OE[(f(x) — Y)2|X = xJdx  (12.3)

X



Exercise

 \When we talk about bias-variance, in expectation across inputs, how does
this change under covariate shift?

S[(/p(X) — £(X))?) = Ex [Eplfp(X)] — f*(X))? + Varp|fp(X)]




Exercise

* When we talk about bias-variance, in expectation across inputs, how does this change
under covariate shift?

S[(f(X) = £(X))] = Ex [(Eplfp(X)) = *(X))” + Varp|fo(X)]

« Expectation over datasets assumes & ~ Ptrain
» EXxpectation over X assumes X ~ Diagt

» (Before both were sampled from the same distribution p)

 Why is this the new definition?



Chapter 10: Bias, Variance and Generalization Error (cont)

 Most of the rest of Chapter 10 will not be directly tested
 Will not be directly tested
* Implicit regularization and double descent (10.2)

* | only expect you to know what covariate shift is; | will not test on
understanding how to fix covariate shift (e.g., importance sampling)

* Nonstationary in p(y|x) (10.3.3)



Chapter 11: Mixture Models

 Understand how we sample from mixture models

* Understand that the EM algorithm consists of (a) the introduction of auxiliary variables
z (component) and (b) alternating between updating p(z; | x;) and parameters 0

» Understand that the E-step updates p(z; | x;) for fixed @, and the M-step updates @ for

fixed p(z;|x;) with each component updated independently using a (weighted) log-
likelihood

 WIill not be directly tested:

* You do not need to memorize the EM algorithm, but you should be able to
recognize key components of it



EM Algorithm

Algorithm 8: EM for Gaussian Mixture Models

1: Input: number of components m

2: Initialize “(0) 2}({0) and w,(co) forall k€l tom,t=0
3: while not converged do

(t) (X |9(t))
4. pelt, k| = — -
[ | ] y:; 1 J(t)p(lee(t))

forall 2 € {1,2,...,n}, k€ {1,2,...,m}

5. Compute pt[ | = =1 =D i1 pelt, K

6: for ke {l1,2 m} do

7 ](f_l_l) = D¢ [k’]

s opp = o S il K]xs

0. B = LS il K (x - ) (- )T
10 t<+1+1

11: return w};,u,(f), Z,(f) for all k € {1,2,...,m}




EM Algorithm for any component distribution

Algorithm 9: EM for any component distribution

1: Input: number of components m, with components distributions p(-|01),...,p(:|0m)

2: Initialize 6’,& ) and w,i ) forall kel tom,t=0

3: while not converged do
(t) (XZ‘H(t))

4:  peli, k| = F:;”’ RRCmPICE forall i € {1,2,...,n}, ke {1,2,...,m}
5. Compute py k] = =1 =D i1 Pt|t, k]

6: for ke {l1,2 m} do

I w;(fﬂ) = Pt[k’]

8: Hl(fﬂ) = argming, — > ;" p¢|t, k] In p(x;|0)

9: t<+t+1

10: return wk,,H( ) for all k € {1,2,...,m}




Exercise

 What is the algorithm if we use a mixture of exponential distributions? Recall
exponential pdf is p(x) = 4 exp(—4x).

Algorithm 9: EM for any component distribution

1: Input: number of components m, with components distributions p(:|01),...,p(:|0)

2: Initialize (9/1(C ) and w,i ) forallkeltom,t=0

3: while not converged do
(t) (X’L‘H](:))

4:  pele, k| = Z;n 1 §t> ( \H(t)) for all 2 € {1,2,...,n}, k€ {1,2,...,m}
5. Compute p¢|k| = =1 ZZ—I peli, k|

6: for ke {1,2,. m} do

noowy ) = pt[k]

8: Hl(fH) = argming, - S o pele, k] In p(x;]6%)

O: t<—t+1

10: return wk,H( ) for all k € {1,2,...,m}




Chapter 12: Generative Models & Data Representations

* Understand that both PPCA and VAEs make the assumption that
. P(X) = Jp(x | h)p(h)dh with p(h) = #(0,1)

« Understand that PPCA assumes a linear relationship between X and h

p(x|h) = #/(hD, ¢°1)

» And that VAE generalizes to a nonlinear relationship, using NN fy to give

p(x|h) = #(fw(h),c"T)

 Understand how to sample from a VAE
» Step 1: Sample h ~ /4/(0, 1) and then

» Step 2: Return fyy(h) (where fyy is the decoder part of the network)



Chapter 12: VAEs (cont)

n

Understand our goal is to minimize Z — In p(x;| W)
i=1

» But that this is hard to because p(x;| W) involves an integral over hidden h

» Understand that we learn the encoder g(h | X) only as part of the optimization, to
help us learn p(x | h); we do not need g(h | X) itself

* Understand that we derive the VAE objective (the negative ELBO) by starting with
—Inp(X| W) + Di;(g( - |X)| | p(- | X, W)) and rearranging terms to get

Dy (q(- 1x) || 4(0,1)) — ‘th(.‘X)[ln p(x|h, W)]

* Understand why we use the reparameterization trick to get the gradient




Exercise: which part is q and p?

© , \ ,
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. Recall we parameterized our encoder as g(h | X, 0) = N (f, /(X), 1. o(X))
’ u,0 'J 0,0



Exercise: Reparameterization trick

. Recall we parameterized our encoder as g(h | x,0) = J/( ]jw(x), Jo.0(X))

* \We used reparameterization

“heg oINPT, W= E o plinp(X|h; = pi(X) + 6i(X)€;, W)

e Q1: What is the dimension of € ~ /' (0, I)? How is this sampled?

e Q2: What if we decided we wanted discrete hidden h, like mixtures, and used
g(h|x,0) = softmax(f,(x))? How does the NN change? Can we still use

N l - 2
reparam? _J s G /Ae‘m  pou )+ 6o, (1) i
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Exercise

 To sample from a VAE, we use
« Step 1: Sample h ~ /#(0, 1) and then
» Step 2: query the decoder part of the VAE network fy(h)

» Why don’t we sample h from g(h [ x)?



Exercise: Why do we do this complicated alg with VAEs?

 Can’t we just train an auto-encoder, and then sample h to use the decoder
part?



Chapter 12: Conditional VAEs

. () | /] () . (r) 7 ()
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Chapter 12: VAEs (cont)

 Will not be directly tested
 Memorizing the VAE objective (I will give you formulas)
 Memorizing the gradient update for the VAE
 The connection to Expectation-Maximization (9.3)
* Deriving the gradient with the reparameterization trick

 Mixture density networks



Chapter 13: Evaluating Generative Models

n |
Understand goal is to estimate GE(0) = — 2 — Inp(x;|0)
. m
Y€Dtest

 Understand that can easily compute this for a mixture model, as long as the
components are ones where it is easy to compute —In p(x;|6,)

 Understand that this is hard to compute for VAEs, must be estimated
 Will not be directly tested

* importance sampling approach to estimate this GE for VAEs



Exercise

 How would you use k-fold CV to pick the number of centers for a GMM?



Exercise

 How would you use k-fold CV to pick the number of centers for a GMM?

 Answer: You would decide on the set of numbers to select from,
e.g., H=1{2, 4, 8, 16}

» After partitioning the data into k folds, for each hyper m in H and each fold f
| earn the GMM phat on all but fold f

* Evaluate on fold f, by computing the negative log likelihood on the data
sum_{x in fold f} -In phat(x)



Exercise

 Can we take a mixture over VAE components”?



Exercise

 Can we take a mixture over VAE components”?

* Yes! Why not? Seems fun, you should try it. Go back to the MM algorithms
and see If you can figure out how to do it

* |s this still easy to evaluate, in terms of negative log-likelihood?



Chapter 14: Missing Data

* Understand how to do imputation using PCA (matrix factorization), including
training with missing data and using the model for new data

* Understand how to do imputation using an autoencoder, including training
with missing data and using the model for new data

* Understand the difference between the two stage approach (impute then
hand to learning algorithm) versus the direct approach (missingness indicator)

 WIill not be directly tested

* Connections to the transductive and semi-supervised settings



Exercise: PCA (matrix completion)

n d

In PCA we solve for min 2 Z (xl-j — hl-I):j)2
’ h,,h,,....h eR?,DeRP*4 -1 i1

n

In PCA with missing data, min D ) (x;—hD,y
. h,,h,,....,h ER?DeRP*d 4=t
l=1 ‘]EgQ[l

« Why didn’t we just set X M = 0 (set unavailable values to zero) and call PCA?
We will get back the same h’s and D?



Exercise: PCA (matrix completion)

n d

In PCA we solve for min Z Z (x;; — hl-D:]-)2

‘ h,,h,,....,h eR? DeR*4 -1 =1

n
In PCA with missing data, min D ), (x;—hD,)>
. h,,h,,....,h ER?DeRP*d 4=t
l:1 ]E’Q{l

« Why didn’t we just set X u, = 0 (set unavailable values to zero) and call PCA?
We will get back the same h’s and D?

« No. But we do if we minimize over X ,,



More general loss we use

n d
In PCA we solve for min min Z Z (xl-j — hl-D:j)2
. Xy 10Xt h,,h,,....,h eR? DeRP*4 i
For autoencoder, ' m1n Z Z ( i fw(X; ))?
Mty =1 j=I1

* We need this more general purpose loss for the autoencoder, because we cannot
use ol;}ljective Why"?

min ), ), 0 = fw(%)’

=1 jed,



Chapter 15: Uncertainty estimation

* Understand that we might want to know distribution over plausible values of w,
given the evidence (data)

 Understand that this allows us to also obtain a distribution over our predictions,
and so construct credible intervals [ /(X)) — €, f,,(X) + €]

* Understand why the posterior and credible interval shrink with growing n

 Will not test you on
 Memorizing the formulas for Bayesian linear regression

 The Normal-inverse gamma distribution



Shrinking posterior




Credible Interval for Predictions




Chapter 15: Nonlinear setting

 Understand that we can use fixed representations + Bayesian linear regression to
get nonlinear regressors + credible intervals

* Understand that we can use bootstrap resampling to estimate uncertainty for neural
networks

* Understand that we sample m datasets with replacement from all the training
data, and that we train an NN fwk from scratch on each dataset k

* We use this ensemble of NNs to get a set of predictions to compute intervals for
our predictions, ¥ = fyy (X), ..., ¥, = fw (X)

» Compute Gaussian (or Student’s t) confidence intervalon y, ..., y,,

* WIll not test: smarter confidence interval strategies than Gaussian/Student’s t



All later material not tested

* Will not test you Gaussian Processes nor the kernel trick

* Will not test you on handling temporal data (Chapter 16)



