
Final Review
CMPUT 467: Machine Learning II 

Goal of these Slides

• Go over each section of the notes and highlight key concepts

• Additionally highlight what I will and will not test

• It is in the notes for your knowledge, but hard to directly test

• Practice Final will be covered on the last day

• Note: the final largely focuses on Chapter 8 onwards. But as usual it builds on
your knowledge from earlier chapters

Chapter 1: Intro to ML

• Know the difference between a generative model and predictor (1.1)

• Will not be directly tested:

• Relationship to Statistics and Probability (1.2)

• The Blessing and Curse of Dimensionality (1.3)

• SVDs and Eigenvalue decompositions (1.4)

• You will not need to take gradients

Chapter 2: Probability Concepts

• Understand the definition of a multi-dimensional probability (2.1)

• Understand the definition of a mixture of distributions (2.2)

• Know the purpose of the KL divergence (2.3)

• Will not be directly tested:

• Knowing the PMFs or PDFs of specific distributions

• Specific expectation and variance formulas

• Remembering the KL divergence formula

Chapter 3: Revisiting Linear Regression

• Understand that Linear Regression and l2-regularized linear regression have
closed-form solutions (unlike most GLMs)

• Understand that this let’s us characterize the bias and variance of these solutions

• Understand the LR solution is unbiased, if the true function is linear

• Understand LR+l2 is biased, but that asymptotically (as n grows) they reach the
same solution

• Will not be directly tested:

• Any specific closed-form solutions; I will give them to you if you need them

Chapter 4: Optimization Principles

• Understand multivariate gradient descent, including gradients (4.3) and the role of the
Hessian in second-order GD (4.1)

• Understand Stochastic GD (SGD) and the reason to move from full batch GD to mini-batch
SGD (4.4)

• Understand the role of vector stepsize algorithms and the use of momentum (4.5)

• Will not be directly tested:

• Directional derivatives (3.2)

• Knowing the updates of specific vector stepsize algorithms

• Convergence rate formulas

Exercise Question

• How might the size of the dataset n interact with the number of epochs that
we need to converge?

Exercise Question

• How might the size of the dataset n interact with the number of epochs that
we need to converge?

• Answer: With a very large dataset, we are doing more updates in each epoch
and likely need fewer epochs to converge.

Chapter 5: GLMs

• Understand that Generalized Linear Models (GLMs) allow us to model

• = any natural exponential family distribution with natural parameter

• with associated transfer function such that approximates

• Understand that multinomial logistic regression is for multi-class classification

• Will not be directly tested:

• Knowing specific GLM updates; if I need you to reason about one I will give it to you

• The details of exponential family distributions (5.2)

p(y |x) θ = xw

g g(xw) 𝔼[Y |x]

Exercise Question

• Imagine you have multinomial logistic regression implemented. How would
you use this code to do binary classification?

Exercise Question

• Imagine you have multinomial logistic regression implemented. How would
you use this code to do binary classification?

• Transform dataset of (x,y) with y in {0,1} or y in {-1,1} to dataset with y in
{[1,0], [0,1]}, then call multinonimal logistic regression on this

Chapter 6: Constrained Optimization

• Understand that we need to use a different approach when we have a
constrained optimization (3.5)

• Understand that proximal gradient descent is a reasonably general purpose
approach for constrained or non-smooth optimization (3.5)

• Will not be directly tested:

• You do not need to know specific proximal operators

• You do not need to know about KKT conditions nor how to get the proximal
operator for the simplex constraint (3.6)

Exercise for constrained optimization

• Let us revisit the optimization for mixture models

• (where)

• To solve this, we can be lazy and first just check: does a stationary point give
us a feasible solution?

min
w1,…,wk≥0,∑m

k=1 wk=1
−

m

∑
k=1

dk ln wk dk =
n

∑
i=1

pt[i, k] > 0

Exercise for constrained optimization (cont.)

Stationary points are plus/minus infty, clearly not a feasible solution (does not
satisfy our constraints) 
Our lazy step failed.

∂
∂wj

m

∑
k=1

dk ln wk =
m

∑
k=1

dk
∂

∂wj
ln wk

= dj
1
wj

= 0

Exercise for constrained optimization (cont.)

Stationary points are plus/minus infty, clearly not a feasible solution (does not satisfy
our constraints) 
Our lazy step failed. If the stationary point *had* been a feasible solution (satisfied

), then we would be done and wouldn’t need to use any

fancier optimization approaches

∂
∂wj

m

∑
k=1

dk ln wk =
m

∑
k=1

dk
∂

∂wj
ln wk

= dj
1
wj

= 0

w1, …, wk ≥ 0,
m

∑
k=1

wk = 1

Exercise for constrained optimization (cont)

• Let us now incorporate one of the constraints. We can see our objective
actually will not prefer negative weights, so let’s first do the sum constraint

• We consider now an equivalent augmented objective (Lagrangian), and see if a
stationary point of this objective gives us a solution

•

• Solve for we know a solution to this *must* satisfy this
constraint, as otherwise w suffers infinite loss

L(w, a) = −
m

∑
k=1

dk ln wk + a (
m

∑
k=1

wk − 1)
max
a∈ℝ

min
w∈ℝm

L(w, a)

Exercise for constrained optimization (cont)

• Lets start by solving for w

•

• We know a solution must have where

L(w, a) = −
m

∑
k=1

dk ln wk + a (
m

∑
k=1

wk − 1)
∂

∂wj
L(w, a) = −

m

∑
k=1

dk
∂

∂wj
ln wk + awj

= − dj
1
wj

+ a = 0 ⟹ wj =
dj

a

a
m

∑
k=1

wk =
m

∑
k=1

dk

a
= 1 ⟹ a =

m

∑
k=1

dk

Exercise for constrained optimization (cont)

•

• We know a solution must have where

• Feasible solution, since and so

• (We didn’t need to explicitly enforce this condition in our Lagrangian)

L(w, a) = −
m

∑
k=1

dk ln wk + a (
m

∑
k=1

wk − 1) wj =
dj

a

a
m

∑
k=1

wk =
m

∑
k=1

dk

a
= 1 ⟹ a =

m

∑
k=1

dk ⟹ wj =
dj

∑m
k=1 dk

dj > 0 wj > 0

Chapter 7: Evaluating Generalization Performance

• Understand that cross validation allows us to evaluate a model trained on the
entire dataset (without having to have a hold-out test set)

• Understand the k-fold CV algorithm

• Understand the repeated random subsampling (RSS) CV algorithm

• Will not be directly tested:

• The nuances about the bias-variance distinctions for different CV choices

Chapter 7: Evaluating Generalization Performance (cont)

• Know what it means to select hyperparameters

• Understand the utility of CV for hyperparameter selection

• Understand the difference between internal CV and external CV

• internal CV is for hyperparameter selection and external is to evaluate the
algorithm that might use internal CV

• Will not be directly tested:

• Knowing how to pick the set of hyperparameters to be tested with CV

Refresher on external & internal CVCHAPTER 7. EVALUATING GENERALIZATION PERFORMANCE 72

Algorithm 3: Nested cross-validation on a dataset D

1: Partition the dataset D into kexternal folds
2: Initialize err-f = 0
3: for i = 1 to kexternal do
4: Set D

(i)
te to the data in fold i

5: Set D
(i)
tr = D → D

(i)
te

6: fi ↑ Learner(D(i)
tr)

7: err-f = err-f+ error of fi on D
(i)
te

8: err-f = err-f/kexternal
9: fi ↑ Learner(D(i)

tr)
10: return f and err-f

Algorithm 4: Learner using cross-validation on a dataset D
→

1: Partition the dataset D
→ into kinternal folds

2: for h in the set of hyperparameters H do
3: Initialize err[h] = 0
4: for j = 1 to kinternal do
5: Set D

→(j)
te to the data in fold j for dataset D

(i)
tr

6: Set D
→(j)
tr = D

→
→ D

→(j)
te

7: Train f = Alg(D→(j)
tr , h)

8: err[h] = err[h]+ error for f on D
→(j)
te

9: err[h] = err[h]/kinternal
10: Pick h↑ = argminh↓H err[h]
11: // Learner done picking its hyperparameter, can now return the learned function
12: Train f = Alg(D, h↑)
13: return f

ω. It uses internal CV on D
→. For example, it might use k-fold CV on D

→ to evaluate
each possible hyperparameter.

In Algorithm 3, in pseudocode, we more explicitly write what is called nested cross-
validation, where the evaluator use k-fold cross-validation and the learner also uses k-fold
cross-validation. The evaluator is said to use external CV, because it is in the outer loop,
and the learner is said to use internal CV because it is in the inner loop. We have separated
out the Learner pseudocode in Algorithm 4 because it is used both inside the for loop and
again at the end of the algorithm to learn the final function.

This pseudocode helps us reason about the computational complexity. If we copied in
the Learner function into our for loop in Algorithm 3, then we would see three for loops:
external loop over folds, a loop over hyperparameters and then an internal loop over folds.
In total, this means we can the algorithm kexternalkinternal|H| times, where |H| is the number
of hyperparameters. This can be very expensive. For example, if we use 10 folds for external
CV, with 8 hyperparameter choices and 10 internal folds, we call the algorithm 800 times!

The criteria for making choices may di!er between internal and external CV. For ex-
ternal CV, the evaluator wants to have a high confidence estimate of performance, and

CHAPTER 7. EVALUATING GENERALIZATION PERFORMANCE 72

Algorithm 3: Nested cross-validation on a dataset D

1: Partition the dataset D into kexternal folds
2: Initialize err-f = 0
3: for i = 1 to kexternal do
4: Set D

(i)
te to the data in fold i

5: Set D
(i)
tr = D → D

(i)
te

6: fi ↑ Learner(D(i)
tr)

7: err-f = err-f+ error of fi on D
(i)
te

8: err-f = err-f/kexternal
9: fi ↑ Learner(D(i)

tr)
10: return f and err-f

Algorithm 4: Learner using cross-validation on a dataset D
→

1: Partition the dataset D
→ into kinternal folds

2: for h in the set of hyperparameters H do
3: Initialize err[h] = 0
4: for j = 1 to kinternal do
5: Set D

→(j)
te to the data in fold j for dataset D

(i)
tr

6: Set D
→(j)
tr = D

→
→ D

→(j)
te

7: Train f = Alg(D→(j)
tr , h)

8: err[h] = err[h]+ error for f on D
→(j)
te

9: err[h] = err[h]/kinternal
10: Pick h↑ = argminh↓H err[h]
11: // Learner done picking its hyperparameter, can now return the learned function
12: Train f = Alg(D, h↑)
13: return f

ω. It uses internal CV on D
→. For example, it might use k-fold CV on D

→ to evaluate
each possible hyperparameter.

In Algorithm 3, in pseudocode, we more explicitly write what is called nested cross-
validation, where the evaluator use k-fold cross-validation and the learner also uses k-fold
cross-validation. The evaluator is said to use external CV, because it is in the outer loop,
and the learner is said to use internal CV because it is in the inner loop. We have separated
out the Learner pseudocode in Algorithm 4 because it is used both inside the for loop and
again at the end of the algorithm to learn the final function.

This pseudocode helps us reason about the computational complexity. If we copied in
the Learner function into our for loop in Algorithm 3, then we would see three for loops:
external loop over folds, a loop over hyperparameters and then an internal loop over folds.
In total, this means we can the algorithm kexternalkinternal|H| times, where |H| is the number
of hyperparameters. This can be very expensive. For example, if we use 10 folds for external
CV, with 8 hyperparameter choices and 10 internal folds, we call the algorithm 800 times!

The criteria for making choices may di!er between internal and external CV. For ex-
ternal CV, the evaluator wants to have a high confidence estimate of performance, and

Exercise Question
Do we have to use nested cross-validation?

• When should we use a single train-validation-test split?

Exercise Question
Do we have to use nested cross-validation?

• When should we use a single train-validation-test split?

• We have a massive dataset, so can make train, validation and test big

• And sometimes compromise if our model is very expensive to train, making
CV impractical to use

Exercise Question
Do we have to use nested cross-validation?

• When should we use a single train-validation-test split?

• Why does CV only have train and test partitions? Why aren’t there also three
datasets (train, validation and test)?

Exercise Question
Do we have to use nested cross-validation?

• When should we use a single train-validation-test split?

• Why does CV only have train and test partitions? Why aren’t there also three
datasets (train, validation and test)?

• Validation is used for hyperparameter selection (role of internal CV)

• Test is used for evaluation of the final function (role of external CV)

• CV uses the whole dataset for both evaluation and training, so it actually
only makes splits for evaluation, and trains on the entire dataset

Exercise Question
Do we have to use nested cross-validation?

• When should we use a single train-validation-test split?

• Why does CV only have train and test partitions? Why aren’t there also three
datasets (train, validation and test)?

• Do we have to use nested cross validation? Can we use a single train-test
split externally, and k-fold CV internally?

•

Exercise Question
Do we have to use nested cross-validation?

• When should we use a single train-validation-test split?

• Why does CV only have train and test partitions? Why aren’t there also three
datasets (train, validation and test)?

• Do we have to use nested cross validation? Can we use a single train-test
split externally, and k-fold CV internally?

• Yes! The learner uses CV to algorithmically set its hyperparameters. We can
evaluate this learner in any way we want (external CV or one train-test split)

Exercise Question
Do we have to use nested cross-validation?

• When should we use a single train-validation-test split?

• Why does CV only have train and test partitions? Why aren’t there also three
datasets (train, validation and test)?

• Do we have to use nested cross validation? Can we use a single train-test
split externally, and k-fold CV internally?

• Can we use a single train-validation split internally, and CV externally?

Exercise Question
Do we have to use nested cross-validation?

• When should we use a single train-validation-test split?

• Why does CV only have train and test partitions? Why aren’t there also three
datasets (train, validation and test)?

• Do we have to use nested cross validation? Can we use a single train-test
split externally, and k-fold CV internally?

• Can we use a single train-validation split internally, and CV externally?

• Yes! The learner uses a validation set to algorithmically set its
hyperparameters. We can evaluate this learner in any way we want.

Exercise Question
Do we have to use nested cross-validation?

• When should we use a single train-validation-test split?

• Why does CV only have train and test partitions? Why aren’t there also three
datasets (train, validation and test)?

• Do we have to use nested cross validation? Can we use a single train-test
split externally, and k-fold CV internally?

• Can we use a single train-validation split internally, and CV externally?

• Should we do either of these?

Chapter 8: Fixed Representations

• Understand that projecting to higher dimensions makes data separable
(classification) or allows for a simpler function for regression

• Understand that RBF network define features using RBF kernels to a set of centers,
with similarity controlled by the width of the RBF

• Understand that Prototype Representations use similarities to prototypes taken from
the training dataset

• Will not be directly tested:

• Knowing specific kernels

• The advanced remark about the representer theorem

Exercise

• What are the implications of using l1 regularization with polynomial features?

Exercise

• What are the implications of using l1 regularization with polynomial features?

• Removes certain elements of the polynomial (e.g., keeps x1^3, removes
x1^2, keep x1x2, removes x1^2x2)

• Could reduce the degree of the polynomial, if removes highest order terms

Exercise

• I didn’t give you an example of how projecting to higher dimensions also
facilitates regression with simple (linear functions)

• Can you think of a similar example to this one, but for regression?

I
& S

#
&
-

&

I
O

5
&

0
0
X
X

4
0
0
0
X

0
X
X

IJ
I

-
-
-
-
-

ji
-
y

!I

-
-
-
-
-

G

·
I &
& & S
Il

& 0
0
0
0
0
0
0
4
0
-

Exercise

• I didn’t give you an example of how projecting to higher dimensions also
facilitates regression with simple (linear functions)

• Can you think of a similar example to this one, but for regression?

• Same phi lets us learn an average y per bin

• Features duplicated per bin can learn linear functions for each bin, giving
piecewise linear functions

I
& S

#
&
-

&

I
O

5
&

0
0
X
X

4
0
0
0
X

0
X
X

IJ
I

-
-
-
-
-

ji
-
y

!I

-
-
-
-
-

G

·
I &
& & S
Il

& 0
0
0
0
0
0
0
4
0
-

Chapter 9: Learned Representations

• Understand that PCA extracts a lower-dimensional representation

• Understand the objective underlying PCA (minimize for every x)

• Understand that sparse coding similarly minimizes , but additionally has an
l1 regularizer on h to find a high-dimensional sparse representation

• Will not be directly tested:

• PPCA

• Algorithms for PCA and sparse coding, such as matrix factorization

• Interpretations of latent factors (was only for intuition about what might be learned)

∥x − hD∥2
2

∥x − hD∥2
2

PCA on training data and new points
xz

Training data D = [+, 1] e
-R

- error from projection hi
*

v

x - hD Y (x , 1 , >(2)

New datapoint o
X
X

hnem 3)
⑧project to point know
of

knew
: (new

, 1
,
knew ,2)

on the line Y
Y

ha

· = (x21 , <(22)

Exercise Question

• Imagine we first expand the dimension using a kernel representation, going
from 10 features to 5000.

• Imagine we compute the SVD of Phi, and the top 100 singular values are
reasonably big, and the rest are relatively small.

• So we decide to use PCA to get 100 features.

• How do we interpret these 100 features?

Chapter 9: Learned Representations

• Understand types of transformation on the input given by a neural network

• Understand that backpropagation is gradient descent

• Understand that linear autoencoders extract a low-dimensional rep like PCA

• Can see nonlinear autoencoders as a nonlinear extension of PCA

• Understand that supervised autoencoders add an auxiliary loss

• Will not be directly tested:

• You will not need to derive the gradients for an NN

Exercise Question

• We discussed that many transformations consist of (1) linear weighting
followed by (2) nonlinear activation (differentiable almost everywhere)

• What are some other activations we could consider using in a network,
beyond the three we discussed (ReLU, sigmoid, tanh)? Why would these be
reasonable?

Exercise Question

• Write down the set of functions F1 obtained using a kernel representation with
kernel k, and a random subset of 100 points from the training data as centers
(assume is the space of all possible inputs)

• Write down the set of functions F2 obtained using an NN with two hidden
layers each of size 256, with ReLu activations, for regression

𝒳 x

Exercise Question

• Write down the set of functions F1 obtained using a kernel representation with
kernel k, and a random subset of 100 points from the training data as centers
(assume is the space of all possible inputs)

• Write down the set of functions F2 obtained using an NN with two hidden
layers each of size 256, with ReLu activations, for regression

• If I told you that F1 is a subset of F2, what does that mean? Which class has
higher complexity (or capacity)?

• How do you know one is a subset of the other? Is F1 a subset of F2 here?

𝒳 x

Chapter 10: Bias, Variance and Generalization Error

• Understand that the generalization error of a function f is the error in
expectation across all possible datapoints (expected cost)

CHAPTER 12. GENERALIZATION THEORY BASICS 117

using linear regression with regularization, we are introducing bias both from selecting a
simpler function class and from the regularization. If the true function is not linear, then
we cannot compare the learned weights for a linear function directly to the true function.

If a powerful basis is used to first transform the data, then we can learn nonlinear
functions even though the solution uses linear regression. In this case, it is feasible that
this function class is su�ciently powerful and includes the true function, and that the bias
is mostly due to regularization. But, in general, it will be di�cult to guarantee that we
have specified a function class that includes the true function, and it will be di�cult to
directly compare our parameters to true parameters (which may not even be of the same
dimension).

We can more generally talk about bias and variance by considering instead the reducible
error. In fact, the bias-variance trade-o� is all about reducing the reducible error. Recall
that the generalization error for the squared error decomposes into the reducible and irre-
ducible errors:

GE(f) = E[(f(X) ≠ Y)2] = E[(f(X) ≠ fú(X))2]
¸ ˚˙ ˝

reducible error

+E[(fú(X) ≠ Y)2]
¸ ˚˙ ˝

irreducible error

(12.1)

where fú(x) = E[Y |X = x].This fú could be a highly nonlinear function, and may not be
in our function class. For example, if we are learning a neural network with three hidden
layers, each of size 1024, with ReLU activations, then fú may not be in this set of functions.

We can write this reducible error in terms of the bias and variance of our learned function.
We write fD to emphasize that it is a random variable that depends on the dataset. We
can first consider the bias for a given input x,

E
Ë
(fD(x) ≠ fú(x))2

È
= (E [fD(x)] ≠ fú(x))2 + Var [fD(x)] .

Notice that in the second line, the expectation is now inside the squared distance; this
term corresponds to the squared bias. The bias here reflects the output of the estimated
function fD(x), in expectation across all datasets D. The variance term reflects how much
the prediction for x can vary, if we learn on di�erent iid datasets. This decomposition of
the mean-squared error into a squared bias and variance is not obvious, but does follow
similar steps to above. It is left as an exercise. We can then write this more generally, in
expectation over X as well

E[(fD(X) ≠ fú(X))2] = EX

Ë
(ED[fD(X)] ≠ fú(X))2 + VarD[fD(X)]

È
(12.2)

where we subscript each expectation with the variable we are taking the expectation over,
to be clear about the two sources of stochasticity.

A complex function class is likely to have low bias, but may have high variance because
it can overfit to each dataset. This means across di�erent datasets, we are likely to see very
di�erent functions and so the variance in the predictions f(x) will also vary significantly.
For example, if we have 100 data points for d = 3 dimensional inputs, and use a neural
network with one million parameters, then likely we will have high variance. The bias is also
likely low, since the true function for a three-dimensional input can likely be represented
by such a complex neural network—though of course it is possible that it cannot and we
still have some bias.

• GE is about a specific function f, rather than about a function class
where we have that varies with data f𝒟

Chapter 10: Bias, Variance and Generalization Error

• Understand that we can reason about function as a random variable,
where randomness comes from the underlying dataset

• Understand that we can reason about the generalization error of functions
from a function class, by considering the bias and variance of this

• Understand that reducible error of decomposes into bias and variance

• For a specific x, we have

f𝒟

f𝒟

f𝒟

CHAPTER 12. GENERALIZATION THEORY BASICS 117

using linear regression with regularization, we are introducing bias both from selecting a
simpler function class and from the regularization. If the true function is not linear, then
we cannot compare the learned weights for a linear function directly to the true function.

If a powerful basis is used to first transform the data, then we can learn nonlinear
functions even though the solution uses linear regression. In this case, it is feasible that
this function class is su�ciently powerful and includes the true function, and that the bias
is mostly due to regularization. But, in general, it will be di�cult to guarantee that we
have specified a function class that includes the true function, and it will be di�cult to
directly compare our parameters to true parameters (which may not even be of the same
dimension).

We can more generally talk about bias and variance by considering instead the reducible
error. In fact, the bias-variance trade-o� is all about reducing the reducible error. Recall
that the generalization error for the squared error decomposes into the reducible and irre-
ducible errors:

GE(f) = E[(f(X) ≠ Y)2] = E[(f(X) ≠ fú(X))2]
¸ ˚˙ ˝

reducible error

+E[(fú(X) ≠ Y)2]
¸ ˚˙ ˝

irreducible error

(12.1)

where fú(x) = E[Y |X = x].This fú could be a highly nonlinear function, and may not be
in our function class. For example, if we are learning a neural network with three hidden
layers, each of size 1024, with ReLU activations, then fú may not be in this set of functions.

We can write this reducible error in terms of the bias and variance of our learned function.
We write fD to emphasize that it is a random variable that depends on the dataset. We
can first consider the bias for a given input x,

E
Ë
(fD(x) ≠ fú(x))2

È
= (E [fD(x)] ≠ fú(x))2 + Var [fD(x)] .

Notice that in the second line, the expectation is now inside the squared distance; this
term corresponds to the squared bias. The bias here reflects the output of the estimated
function fD(x), in expectation across all datasets D. The variance term reflects how much
the prediction for x can vary, if we learn on di�erent iid datasets. This decomposition of
the mean-squared error into a squared bias and variance is not obvious, but does follow
similar steps to above. It is left as an exercise. We can then write this more generally, in
expectation over X as well

E[(fD(X) ≠ fú(X))2] = EX

Ë
(ED[fD(X)] ≠ fú(X))2 + VarD[fD(X)]

È
(12.2)

where we subscript each expectation with the variable we are taking the expectation over,
to be clear about the two sources of stochasticity.

A complex function class is likely to have low bias, but may have high variance because
it can overfit to each dataset. This means across di�erent datasets, we are likely to see very
di�erent functions and so the variance in the predictions f(x) will also vary significantly.
For example, if we have 100 data points for d = 3 dimensional inputs, and use a neural
network with one million parameters, then likely we will have high variance. The bias is also
likely low, since the true function for a three-dimensional input can likely be represented
by such a complex neural network—though of course it is possible that it cannot and we
still have some bias.

CHAPTER 12. GENERALIZATION THEORY BASICS 117

using linear regression with regularization, we are introducing bias both from selecting a
simpler function class and from the regularization. If the true function is not linear, then
we cannot compare the learned weights for a linear function directly to the true function.

If a powerful basis is used to first transform the data, then we can learn nonlinear
functions even though the solution uses linear regression. In this case, it is feasible that
this function class is su�ciently powerful and includes the true function, and that the bias
is mostly due to regularization. But, in general, it will be di�cult to guarantee that we
have specified a function class that includes the true function, and it will be di�cult to
directly compare our parameters to true parameters (which may not even be of the same
dimension).

We can more generally talk about bias and variance by considering instead the reducible
error. In fact, the bias-variance trade-o� is all about reducing the reducible error. Recall
that the generalization error for the squared error decomposes into the reducible and irre-
ducible errors:

GE(f) = E[(f(X) ≠ Y)2] = E[(f(X) ≠ fú(X))2]
¸ ˚˙ ˝

reducible error

+E[(fú(X) ≠ Y)2]
¸ ˚˙ ˝

irreducible error

(12.1)

where fú(x) = E[Y |X = x].This fú could be a highly nonlinear function, and may not be
in our function class. For example, if we are learning a neural network with three hidden
layers, each of size 1024, with ReLU activations, then fú may not be in this set of functions.

We can write this reducible error in terms of the bias and variance of our learned function.
We write fD to emphasize that it is a random variable that depends on the dataset. We
can first consider the bias for a given input x,

E
Ë
(fD(x) ≠ fú(x))2

È
= (E [fD(x)] ≠ fú(x))2 + Var [fD(x)] .

Notice that in the second line, the expectation is now inside the squared distance; this
term corresponds to the squared bias. The bias here reflects the output of the estimated
function fD(x), in expectation across all datasets D. The variance term reflects how much
the prediction for x can vary, if we learn on di�erent iid datasets. This decomposition of
the mean-squared error into a squared bias and variance is not obvious, but does follow
similar steps to above. It is left as an exercise. We can then write this more generally, in
expectation over X as well

E[(fD(X) ≠ fú(X))2] = EX

Ë
(ED[fD(X)] ≠ fú(X))2 + VarD[fD(X)]

È
(12.2)

where we subscript each expectation with the variable we are taking the expectation over,
to be clear about the two sources of stochasticity.

A complex function class is likely to have low bias, but may have high variance because
it can overfit to each dataset. This means across di�erent datasets, we are likely to see very
di�erent functions and so the variance in the predictions f(x) will also vary significantly.
For example, if we have 100 data points for d = 3 dimensional inputs, and use a neural
network with one million parameters, then likely we will have high variance. The bias is also
likely low, since the true function for a three-dimensional input can likely be represented
by such a complex neural network—though of course it is possible that it cannot and we
still have some bias.

Exercise Question

• We wrote F1 the set of function using a kernel representation and F2 using an
NN. We thought about the case where F1 is a subset of F2

• Do you think F1 or F2 has higher bias?

• Do you think F1 or F2 has higher variance?

• Why is this reasoning useful? Can’t we just measure generalization error of
our actual learned function using a test set or cross validation?

Chapter 10: Bias, Variance and Generalization Error

• Understand the definition of covariate shift

• ptrain(x, y) = p(y |x)ptrain(x) ≠ p(y |x)ptest(x) = ptest(x, y)

A more realistic example of covariate shift

Figure 1.2: An example observational dataset (synthetic). Points in • repre-
sent a patient who actually got surgery (t = 1) and indicate their respective
factual outcome. Points in • represent patients who in reality got medication
but indicate their counterfactual outcome had they got surgery (¬t = 1).

The main focus of this research is on finding the Individual Treatment E↵ect

(ITE) for each instance i— i.e., estimating ei = y
1
i �y

0
i . We frame the solution

as a regression task — i.e., learning the function f : X ⇥ T ! Y that can

accurately predict the outcomes (both observed ŷi
ti as well as counterfactuals

ŷi
¬ti) given the context information xi for each individual. There are two

challenges associated with this task:

1. The fact that counterfactual outcomes for any specific instance xi are

unobservable (i.e., not present in any training data) [41] makes esti-

mating treatment e↵ects more di�cult than the generalization1 problem

in the typical supervised learning paradigm. 2

2. Often, the training data is an observational study, which means the data

...

(a) is o↵-line — i.e., we cannot make interventions to explore the

e↵ect of various treatments on the outcome; e↵ectively preventing

discovery of the causal relationships, and

1I.e., how well a trained model can make predictions about unseen data.
2In supervised learning, given [xi, yi], we want to predict yj for an unseen xj . In causal

inference, however, given [xi, ti, y
ti
i] we not only want to estimate y¬ti

i but also all yjs (of
all treatments) of an unseen xj .

3

Exercise: What is ptrain and ptest?

Figure 1.2: An example observational dataset (synthetic). Points in • repre-
sent a patient who actually got surgery (t = 1) and indicate their respective
factual outcome. Points in • represent patients who in reality got medication
but indicate their counterfactual outcome had they got surgery (¬t = 1).

The main focus of this research is on finding the Individual Treatment E↵ect

(ITE) for each instance i— i.e., estimating ei = y
1
i �y

0
i . We frame the solution

as a regression task — i.e., learning the function f : X ⇥ T ! Y that can

accurately predict the outcomes (both observed ŷi
ti as well as counterfactuals

ŷi
¬ti) given the context information xi for each individual. There are two

challenges associated with this task:

1. The fact that counterfactual outcomes for any specific instance xi are

unobservable (i.e., not present in any training data) [41] makes esti-

mating treatment e↵ects more di�cult than the generalization1 problem

in the typical supervised learning paradigm. 2

2. Often, the training data is an observational study, which means the data

...

(a) is o↵-line — i.e., we cannot make interventions to explore the

e↵ect of various treatments on the outcome; e↵ectively preventing

discovery of the causal relationships, and

1I.e., how well a trained model can make predictions about unseen data.
2In supervised learning, given [xi, yi], we want to predict yj for an unseen xj . In causal

inference, however, given [xi, ti, y
ti
i] we not only want to estimate y¬ti

i but also all yjs (of
all treatments) of an unseen xj .

3

Chapter 10: Bias, Variance and Generalization Error

• Understand the definition of covariate shift

•

• Understand that our definition for GE stays the same

• still about deployment data, but before so we
simply called them both

ptrain(x, y) = p(y |x)ptrain(x) ≠ p(y |x)ptest(x) = ptest(x, y)

ptrain(x, y) = ptest(x, y)
p

CHAPTER 12. GENERALIZATION THEORY BASICS 120

remains the same regardless of it is April or January. In other words, p(y = Has Person|x =
Room Snapshot) does not change. But, the distribution over the room snapshots that we
see does change, namely over p(x = Room Snapshot). To see why this can be corrected
with reweighting, let the test distribution over images be ptest and ptrain for the training
data. The GE for this setting is

GE(f) = Eptest [(f(X) ≠ Y)2] =
ˆ

X
ptest(x)E[(f(x) ≠ Y)2

|X = x]dx (12.3)

In other words, the generalization error is the error across all pairs under distribution
p(y|x)ptest(x). When we minimize the squared error on training data obtained using ptrain,
we are instead trying to minimize the error across all pairs under distribution p(y|x)ptrain(x).

ˆ
X

ptrain(x)E[(f(x) ≠ Y)2
|X = x]dx

We simply need to reweight the importance of a sample (x, y) using1 ptest(x)/ptrain(x). We
saw how to incorporate weightings into regression, in Section 3.1.1.

Exercise 29: Consider the weighted squared error loss

c(w) = 1
n

nÿ

i=1
bi (fw(xi) ≠ yi)2 ,

where we use bi = ptest(xi)/ptrain(xi). Show that in expectation, across (X, Y) sampled
according to p(x, y) = p(y|x)ptrain(x), that this loss equals the true generalization error in
Equation (12.3). ⇤

12.3.2 Issues of Data Coverage and Using Inductive Biases
More di�cult is the setting when the distribution of the training data does not cover what
is observed in deployment. For this setting, we have x where ptest(x) > 0 but ptrain(x) = 0.
For example, let us imagine a setting where images were only collected during the day, when
taking Room Snapshots. But, now, we would like to recognize if there is a person in the
room under very low-light, in the evening. The training data does not contain any images
in the evening, and so we might wonder if such a generalization task is even possible.

The answer to this question depends heavily on what we build into our model. What
we build is in typically called an inductive bias. A prior is an inductive bias, as is the
optimization algorithm we use to find our parameters, as is the architecture we use for our
neural network. It is anything that defines the learning algorithm, before we feed data
into it. In the above example, we could design an architecture that focuses on edges in an
image, and attempts to remove information in the pixels that is due to di�erent lighting
conditions. Under such an architecture, it is feasible that we could learn a model on data
that only has images in the daytime, and deploy on test data that includes images in the
evening. Our inductive bias makes it so that training datapoints are now representative of

1You may notice an additional complication here that we may not have access to either of these distribu-
tions, ptest nor ptrain. A large part of the literature on covariate shift is about estimating these reweightings,
without having these distributions explicitly. The goal here was to introduce you to the problem setting,
and so we do not cover these approaches here.

Exercise

• When we talk about bias-variance, in expectation across inputs, how does
this change under covariate shift?

CHAPTER 12. GENERALIZATION THEORY BASICS 117

using linear regression with regularization, we are introducing bias both from selecting a
simpler function class and from the regularization. If the true function is not linear, then
we cannot compare the learned weights for a linear function directly to the true function.

If a powerful basis is used to first transform the data, then we can learn nonlinear
functions even though the solution uses linear regression. In this case, it is feasible that
this function class is su�ciently powerful and includes the true function, and that the bias
is mostly due to regularization. But, in general, it will be di�cult to guarantee that we
have specified a function class that includes the true function, and it will be di�cult to
directly compare our parameters to true parameters (which may not even be of the same
dimension).

We can more generally talk about bias and variance by considering instead the reducible
error. In fact, the bias-variance trade-o� is all about reducing the reducible error. Recall
that the generalization error for the squared error decomposes into the reducible and irre-
ducible errors:

GE(f) = E[(f(X) ≠ Y)2] = E[(f(X) ≠ fú(X))2]
¸ ˚˙ ˝

reducible error

+E[(fú(X) ≠ Y)2]
¸ ˚˙ ˝

irreducible error

(12.1)

where fú(x) = E[Y |X = x].This fú could be a highly nonlinear function, and may not be
in our function class. For example, if we are learning a neural network with three hidden
layers, each of size 1024, with ReLU activations, then fú may not be in this set of functions.

We can write this reducible error in terms of the bias and variance of our learned function.
We write fD to emphasize that it is a random variable that depends on the dataset. We
can first consider the bias for a given input x,

E
Ë
(fD(x) ≠ fú(x))2

È
= (E [fD(x)] ≠ fú(x))2 + Var [fD(x)] .

Notice that in the second line, the expectation is now inside the squared distance; this
term corresponds to the squared bias. The bias here reflects the output of the estimated
function fD(x), in expectation across all datasets D. The variance term reflects how much
the prediction for x can vary, if we learn on di�erent iid datasets. This decomposition of
the mean-squared error into a squared bias and variance is not obvious, but does follow
similar steps to above. It is left as an exercise. We can then write this more generally, in
expectation over X as well

E[(fD(X) ≠ fú(X))2] = EX

Ë
(ED[fD(X)] ≠ fú(X))2 + VarD[fD(X)]

È
(12.2)

where we subscript each expectation with the variable we are taking the expectation over,
to be clear about the two sources of stochasticity.

A complex function class is likely to have low bias, but may have high variance because
it can overfit to each dataset. This means across di�erent datasets, we are likely to see very
di�erent functions and so the variance in the predictions f(x) will also vary significantly.
For example, if we have 100 data points for d = 3 dimensional inputs, and use a neural
network with one million parameters, then likely we will have high variance. The bias is also
likely low, since the true function for a three-dimensional input can likely be represented
by such a complex neural network—though of course it is possible that it cannot and we
still have some bias.

Exercise

• When we talk about bias-variance, in expectation across inputs, how does this change
under covariate shift?

• Expectation over datasets assumes

• Expectation over X assumes

• (Before both were sampled from the same distribution)

• Why is this the new definition?

𝒟 ∼ ptrain

x ∼ ptest

p

CHAPTER 12. GENERALIZATION THEORY BASICS 117

using linear regression with regularization, we are introducing bias both from selecting a
simpler function class and from the regularization. If the true function is not linear, then
we cannot compare the learned weights for a linear function directly to the true function.

If a powerful basis is used to first transform the data, then we can learn nonlinear
functions even though the solution uses linear regression. In this case, it is feasible that
this function class is su�ciently powerful and includes the true function, and that the bias
is mostly due to regularization. But, in general, it will be di�cult to guarantee that we
have specified a function class that includes the true function, and it will be di�cult to
directly compare our parameters to true parameters (which may not even be of the same
dimension).

We can more generally talk about bias and variance by considering instead the reducible
error. In fact, the bias-variance trade-o� is all about reducing the reducible error. Recall
that the generalization error for the squared error decomposes into the reducible and irre-
ducible errors:

GE(f) = E[(f(X) ≠ Y)2] = E[(f(X) ≠ fú(X))2]
¸ ˚˙ ˝

reducible error

+E[(fú(X) ≠ Y)2]
¸ ˚˙ ˝

irreducible error

(12.1)

where fú(x) = E[Y |X = x].This fú could be a highly nonlinear function, and may not be
in our function class. For example, if we are learning a neural network with three hidden
layers, each of size 1024, with ReLU activations, then fú may not be in this set of functions.

We can write this reducible error in terms of the bias and variance of our learned function.
We write fD to emphasize that it is a random variable that depends on the dataset. We
can first consider the bias for a given input x,

E
Ë
(fD(x) ≠ fú(x))2

È
= (E [fD(x)] ≠ fú(x))2 + Var [fD(x)] .

Notice that in the second line, the expectation is now inside the squared distance; this
term corresponds to the squared bias. The bias here reflects the output of the estimated
function fD(x), in expectation across all datasets D. The variance term reflects how much
the prediction for x can vary, if we learn on di�erent iid datasets. This decomposition of
the mean-squared error into a squared bias and variance is not obvious, but does follow
similar steps to above. It is left as an exercise. We can then write this more generally, in
expectation over X as well

E[(fD(X) ≠ fú(X))2] = EX

Ë
(ED[fD(X)] ≠ fú(X))2 + VarD[fD(X)]

È
(12.2)

where we subscript each expectation with the variable we are taking the expectation over,
to be clear about the two sources of stochasticity.

A complex function class is likely to have low bias, but may have high variance because
it can overfit to each dataset. This means across di�erent datasets, we are likely to see very
di�erent functions and so the variance in the predictions f(x) will also vary significantly.
For example, if we have 100 data points for d = 3 dimensional inputs, and use a neural
network with one million parameters, then likely we will have high variance. The bias is also
likely low, since the true function for a three-dimensional input can likely be represented
by such a complex neural network—though of course it is possible that it cannot and we
still have some bias.

Chapter 10: Bias, Variance and Generalization Error (cont)

• Most of the rest of Chapter 10 will not be directly tested

• Will not be directly tested

• Implicit regularization and double descent (10.2)

• I only expect you to know what covariate shift is; I will not test on
understanding how to fix covariate shift (e.g., importance sampling)

• Nonstationary in p(y|x) (10.3.3)

Chapter 11: Mixture Models

• Understand how we sample from mixture models

• Understand that the EM algorithm consists of (a) the introduction of auxiliary variables
z (component) and (b) alternating between updating and parameters

• Understand that the E-step updates for fixed , and the M-step updates for
fixed with each component updated independently using a (weighted) log-
likelihood

• Will not be directly tested:

• You do not need to memorize the EM algorithm, but you should be able to
recognize key components of it

p(zi |xi) θ

p(zi |xi) θ θ
p(zi |xi)

EM AlgorithmCHAPTER 11. SIMPLE GENERATIVE MODELS: MIXTURE MODELS 111

Algorithm 8: EM for Gaussian Mixture Models
1: Input: number of components m

2: Initialize µ(0)
k

, !(0)
k

and w(0)
k

for all k → 1 to m, t = 0
3: while not converged do
4: pt[i, k] = w

(t)
k

p(xi|ω(t)
k

)∑
m

j=1 w
(t)
j

p(xi|ω(t)
j

)
for all i → {1, 2, . . . , n}, k → {1, 2, . . . , m}

5: Compute pt[k] def= 1
n

∑
n

i=1 pt[i, k]
6: for k → {1, 2, . . . , m} do
7: w(t+1)

k
= pt[k]

8: µ(t+1)
k

= 1
npt[k]

∑
n

i=1 pt[i, k]xi

9: !(t+1)
k

= 1
npt[k]

∑
n

i=1 pt[i, k](x ↑ µ(t+1)
k

)(x ↑ µ(t+1)
k

)→

10: t ↓ t + 1
11: return wt

k
, µ(t)

k
, !(t)

k
for all k → {1, 2, . . . , m}

minimization problems, where F is the simplex.

argmin
w↑F

↑

m∑

k=1
pt[k] ln wk (11.2)

argmin
ωk

↑

n∑

i=1
pt[i, k] ln p(xi|ωk) (11.3)

where we slightly overload notation and define array pt[k] def= 1
n

∑
n

i=1 pt[i, k]. Notice that
pt[k] is the average likelihood of each component across samples. The beauty of the EM
formulation is that the optimization for each component distribution is independent, for
the given probabilities pt[i, k] computed in the E-step. (Again, to understand why you
need to look at the derivation in Appendix A.7 or wait to see the VAE derivation and
Section 12.3). We are already pros at solving (weighted) log likelihood problems for simple
distributions, so solving for each ωk is simple. We have also already seen how to solve for
w, with simplex constraints, in Section 6.3, where we found that intuitively wk = pt[k], the
average likelihood of each component across samples.

The above was all agnostic to the choice of component distributions. To be concrete,
we summarize the EM algorithm for a mixture of m Gaussian distributions in Algorithm 8.
A common convergence criteria is to check if

∑
m

k=1 pt[k] ln wk barely changed between iter-
ations. This criteria checks that the component weighting have converged, and is su!cient
to indicate that the whole optimization has converged.

Exercise 34: Derive the updates to the Gaussian parameters in Algorithm 8. ↭

Exercise 35: A typical heuristic is to initialize the coe!cients to be uniform, the covariance
matrices to be diagonal with a large number on the diagonal and to initialize the means to
random points in the dataset. What might happen if we initialized the covariance matrices
to be very small instead? ↭

Algorithm 8 can be modified to use other component distributions, simply by solving
Equation 11.3 for your chosen distribution. You can even have di"erent distributions for

EM Algorithm for any component distribution CHAPTER 11. SIMPLE GENERATIVE MODELS: MIXTURE MODELS 112

Algorithm 9: EM for any component distribution
1: Input: number of components m, with components distributions p(·|ω1), . . . , p(·|ωm)
2: Initialize ω(0)

k
and w(0)

k
for all k → 1 to m, t = 0

3: while not converged do
4: pt[i, k] = w

(t)
k

p(xi|ω(t)
k

)∑
m

j=1 w
(t)
j

p(xi|ω(t)
j

)
for all i → {1, 2, . . . , n}, k → {1, 2, . . . , m}

5: Compute pt[k] def= 1
n

∑
n

i=1 pt[i, k]
6: for k → {1, 2, . . . , m} do
7: w(t+1)

k
= pt[k]

8: ω(t+1)
k

= argminωk
↑

∑
n

i=1 pt[i, k] ln p(xi|ωk)
9: t ↓ t + 1

10: return wt

k
, ω(t)

k
for all k → {1, 2, . . . , m}

di!erent components, since they are solved independently. To be concrete, we provided
the updates for Gaussian distributions, but the above can be generically done for other
distribution. Similar update rules can be obtained for di!erent probability distributions,
where the derivatives for the mixture parameters will be slightly di!erent but the solution
for the coe"cients w is actually the same.

Exercise 36: Rewrite Algorithm 9 with component distributions corresponding to expo-
nential distributions. ↭

Exercise 37: Rewrite Algorithm 9 with two components distributions, one Gaussian and
one exponential. ↭

Exercise 38: We could also use a mixture model with component distributions that are
categorical. For example, for a discrete random variable with categories {1, 2, . . . , s} with
s = 25, we could define a mixture model with m = 3 and three categorical distributions.
Show that this does not provide additional modeling power beyond using a single categorical
distribution. ↭

Exercise
• What is the algorithm if we use a mixture of exponential distributions? Recall

exponential pdf is .p(x) = λ exp(−λx)CHAPTER 11. SIMPLE GENERATIVE MODELS: MIXTURE MODELS 112

Algorithm 9: EM for any component distribution
1: Input: number of components m, with components distributions p(·|ω1), . . . , p(·|ωm)
2: Initialize ω(0)

k
and w(0)

k
for all k → 1 to m, t = 0

3: while not converged do
4: pt[i, k] = w

(t)
k

p(xi|ω(t)
k

)∑
m

j=1 w
(t)
j

p(xi|ω(t)
j

)
for all i → {1, 2, . . . , n}, k → {1, 2, . . . , m}

5: Compute pt[k] def= 1
n

∑
n

i=1 pt[i, k]
6: for k → {1, 2, . . . , m} do
7: w(t+1)

k
= pt[k]

8: ω(t+1)
k

= argminωk
↑

∑
n

i=1 pt[i, k] ln p(xi|ωk)
9: t ↓ t + 1

10: return wt

k
, ω(t)

k
for all k → {1, 2, . . . , m}

di!erent components, since they are solved independently. To be concrete, we provided
the updates for Gaussian distributions, but the above can be generically done for other
distribution. Similar update rules can be obtained for di!erent probability distributions,
where the derivatives for the mixture parameters will be slightly di!erent but the solution
for the coe"cients w is actually the same.

Exercise 36: Rewrite Algorithm 9 with component distributions corresponding to expo-
nential distributions. ↭

Exercise 37: Rewrite Algorithm 9 with two components distributions, one Gaussian and
one exponential. ↭

Exercise 38: We could also use a mixture model with component distributions that are
categorical. For example, for a discrete random variable with categories {1, 2, . . . , s} with
s = 25, we could define a mixture model with m = 3 and three categorical distributions.
Show that this does not provide additional modeling power beyond using a single categorical
distribution. ↭

Chapter 12: Generative Models & Data Representations
• Understand that both PPCA and VAEs make the assumption that

• with

• Understand that PPCA assumes a linear relationship between and

• And that VAE generalizes to a nonlinear relationship, using NN to give

• Understand how to sample from a VAE

• Step 1: Sample and then

• Step 2: Return (where is the decoder part of the network)

p(x) = ∫ p(x |h)p(h)dh p(h) = 𝒩(0, I)

x h
p(x |h) = 𝒩(hD, σ2I)

fW
p(x |h) = 𝒩(fW(h), σ2I)

h ∼ 𝒩(0, I)

fW(h) fW

Chapter 12: VAEs (cont)

• Understand our goal is to minimize

• But that this is hard to because involves an integral over hidden

• Understand that we learn the encoder only as part of the optimization, to
help us learn ; we do not need itself

• Understand that we derive the VAE objective (the negative ELBO) by starting with
 and rearranging terms to get

• Understand why we use the reparameterization trick to get the gradient

n

∑
i=1

− ln p(xi |W)

p(xi |W) h

q(h |x)
p(x |h) q(h |x)

−ln p(x |W) + DKL(q(⋅ |x) | |p(⋅ |x, W))
DKL(q(⋅ |x) | |𝒩(0,I)) − 𝔼h∼q(⋅|x)[ln p(x |h, W)]

Exercise: which part is q and p?

Putting it all together : use SGD to ophmize

[D (gol) (I N(0 ,11) - (np(u)ho(x , E). w)]min Essen
,Empathe

w
,
O

Ce (0 , W)

① Sample his is .. sample xivD ,
ENCO ,I)

Forward pass
g(5)

1 loss 11-clla"
② h15] y W(2) Wal

x

-
Mana

j
O
(2)

j H f jJ -

E

=

ap(x) g(3) h"
g()

+ KL-divergence Fixed layer jj(
W"= W" - I I"

③ Backward pass ga : f(h "W"l
- x

W(= W(g((
*)

gazz -
propagateeand j

"

① continue to encoder. S" = &Wis'" In"

• Recall we parameterized our encoder as
q(h |x, θ) = 𝒩(fμ,θ(x), fσ,θ(x))

Exercise: Reparameterization trick
• Recall we parameterized our encoder as

• We used reparameterization

• Q1: What is the dimension of ? How is this sampled?

• Q2: What if we decided we wanted discrete hidden h, like mixtures, and used
? How does the NN change? Can we still use

reparam?

q(h |x, θ) = 𝒩(fμ,θ(x), fσ,θ(x))

𝔼h∼q(⋅|x)[ln p(x |h, W)] = 𝔼ϵ∼𝒩(0,I)[ln p(x |hj = μj(x) + σj(x)ϵj, W)]

ϵ ∼ 𝒩(0, I)

q(h |x, θ) = softmax(fθ(x))

Putting it all together : use SGD to ophmize

[D (gol) (I N(0 ,11) - (np(u)ho(x , E). w)]min Essen
,Empathe

w
,
O

Ce (0 , W)

① Sample his is .. sample xivD ,
ENCO ,I)

Forward pass
g(5)

1 loss 11-clla"
② h15] y W(2) Wal

x

-
Mana

j
O
(2)

j H f jJ -

E

=

ap(x) g(3) h"
g()

+ KL-divergence Fixed layer jj(
W"= W" - I I"

③ Backward pass ga : f(h "W"l
- x

W(= W(g((
*)

gazz -
propagateeand j

"

① continue to encoder. S" = &Wis'" In"

Exercise

• To sample from a VAE, we use

• Step 1: Sample and then

• Step 2: query the decoder part of the VAE network

• Why don’t we sample from ?

h ∼ 𝒩(0, I)

fW(h)

h q(h |x)

Exercise: Why do we do this complicated alg with VAEs?

• Can’t we just train an auto-encoder, and then sample h to use the decoder
part?

Chapter 12: Conditional VAEs

jaja Jjje Dj
(3)

Y Y
Y

J
⑭

golhkiy)
j
⑮

C p(x)h
,y ,W)-~

Example
: (x = bottom

i

half
= top half image

imag

One nuance usually
learn v(x) = ena" (i) and use

-

90 .j1 · (, 0)
=NMoj(l , exp(r(x))) hjMj + +j

E-0, 1)

ho
.j(x)

=

Maj (k)
+ Nexr(x) 2;

to EM for mixture models p(x)0) = wpu(k)On)
connection -
- h = 21 , 2,., m3

0 = (w,, wai . iWmi ... Om)

pch
= k10) : W

g(h(x)
= p(h(x , 8) = pph10) p(x(h = h

,
a) = p(x)0r)

p(x(0)

Dir (g) · (x)()p(
· (x ,0)) - enp(ic(0) =

Chapter 12: VAEs (cont)
• Will not be directly tested

• Memorizing the VAE objective (I will give you formulas)

• Memorizing the gradient update for the VAE

• The connection to Expectation-Maximization (9.3)

• Deriving the gradient with the reparameterization trick

• Mixture density networks

Chapter 13: Evaluating Generative Models

•
Understand goal is to estimate

• Understand that can easily compute this for a mixture model, as long as the
components are ones where it is easy to compute

• Understand that this is hard to compute for VAEs, must be estimated

• Will not be directly tested

• importance sampling approach to estimate this GE for VAEs

̂GE(θ) =
1
m ∑

xi∈𝒟test

− ln p(xi |θ)

−ln p(xi |θk)

Exercise

• How would you use k-fold CV to pick the number of centers for a GMM?

Exercise

• How would you use k-fold CV to pick the number of centers for a GMM?

• Answer: You would decide on the set of numbers to select from,  
e.g., H = {2, 4, 8, 16}

• After partitioning the data into k folds, for each hyper m in H and each fold f

• Learn the GMM phat on all but fold f

• Evaluate on fold f, by computing the negative log likelihood on the data  
sum_{x in fold f} -ln phat(x)

Exercise

• Can we take a mixture over VAE components?

Exercise

• Can we take a mixture over VAE components?

• Yes! Why not? Seems fun, you should try it. Go back to the MM algorithms
and see if you can figure out how to do it

• Is this still easy to evaluate, in terms of negative log-likelihood?

Chapter 14: Missing Data

• Understand how to do imputation using PCA (matrix factorization), including
training with missing data and using the model for new data

• Understand how to do imputation using an autoencoder, including training
with missing data and using the model for new data

• Understand the difference between the two stage approach (impute then
hand to learning algorithm) versus the direct approach (missingness indicator)

• Will not be directly tested

• Connections to the transductive and semi-supervised settings

Exercise: PCA (matrix completion)

• In PCA we solve for

• In PCA with missing data,

• Why didn’t we just set (set unavailable values to zero) and call PCA?
We will get back the same h’s and D?

min
h1,h2,…,hn∈ℝp,D∈ℝp×d

n

∑
i=1

d

∑
j=1

(xij − hiD:j)2

min
h1,h2,…,hn∈ℝp,D∈ℝp×d

n

∑
i=1

∑
j∈𝒜i

(xij − hiD:j)2

xℳi
= 0

Exercise: PCA (matrix completion)

• In PCA we solve for

• In PCA with missing data,

• Why didn’t we just set (set unavailable values to zero) and call PCA?
We will get back the same h’s and D?

• No. But we do if we minimize over

min
h1,h2,…,hn∈ℝp,D∈ℝp×d

n

∑
i=1

d

∑
j=1

(xij − hiD:j)2

min
h1,h2,…,hn∈ℝp,D∈ℝp×d

n

∑
i=1

∑
j∈𝒜i

(xij − hiD:j)2

xℳi
= 0

xℳi

More general loss we use

• In PCA we solve for

• For autoencoder,

• We need this more general purpose loss for the autoencoder, because we cannot
use objective. Why? 

min
x1,ℳ1

,…,xn,ℳn

min
h1,h2,…,hn∈ℝp,D∈ℝp×d

n

∑
i=1

d

∑
j=1

(xij − hiD:j)2

min
x1,ℳ1

,…,xn,ℳn

min
W

n

∑
i=1

d

∑
j=1

(xij − fW(xi))2

min
W

n

∑
i=1

∑
j∈𝒜i

(xij − fW(xi))2

Chapter 15: Uncertainty estimation

• Understand that we might want to know distribution over plausible values of ,
given the evidence (data)

• Understand that this allows us to also obtain a distribution over our predictions,
and so construct credible intervals

• Understand why the posterior and credible interval shrink with growing n

• Will not test you on

• Memorizing the formulas for Bayesian linear regression

• The Normal-inverse gamma distribution

w

[fw(x) − ϵ, fw(x) + ϵ]

·)-
J

I

FijiStation

-

Shrinking posterior

Credible Interval for Predictions

D & S
· ↓
I Y
J

SE
F

&

&

h
&
i

e
&

&
&
&

·
&

& e
8
3

su
8

>
d

&
S

g
j

Chapter 15: Nonlinear setting
• Understand that we can use fixed representations + Bayesian linear regression to

get nonlinear regressors + credible intervals

• Understand that we can use bootstrap resampling to estimate uncertainty for neural
networks

• Understand that we sample m datasets with replacement from all the training
data, and that we train an NN from scratch on each dataset k

• We use this ensemble of NNs to get a set of predictions to compute intervals for
our predictions,

• Compute Gaussian (or Student’s t) confidence interval on

• Will not test: smarter confidence interval strategies than Gaussian/Student’s t

fWk

̂y1 = fW1
(x), …, ̂ym = fWm

(x)

̂y1, …, ̂ym

All later material not tested

• Will not test you Gaussian Processes nor the kernel trick

• Will not test you on handling temporal data (Chapter 16)

