Quiz Review

CMPUT 467: Machine Learning Il




Ch 2: Probability Basics

 EXxpectations and variance
* |ndependence and conditional independence
* Joint probabilities, marginal and conditional probabilities

e Mixture distributions



Some questions (1)

e« Assume X is a random vector of dimension d, with covariance 2

* Question: Does this mean X is a multivariate Gaussian? Why or why not?



Some questions (2)

e« Assume X is a random vector of dimension d, with covariance 2

* Question: Does this mean X is a multivariate Gaussian? Why or why not?

 Answer: No, covariance is defined for any of the distributions we talk about.

The variable X can even consist of both continuous and discrete random
variables



Some questions (3)

e« Assume X is a random vector of dimension d, with covariance 2

 Follow-up question: If X, is continuous and X, is discrete, then what is the
formula for Cov(X,, X,) ?

 Recall: Cov(X,, X,) = E[(X; — E[X,; (X, — E[X,])]




Some questions (4)

» Assume X is a random vector of dimension d, with covariance X
« Follow-up: If X, is continuous and X, is discrete, then what is the formula for Cov(X;, X,) ?

« Answer: Let i, and u, be the means for X; and X, respectively

COV(XI,Xz) — —[(Xl — "[X1])(X2 — _[Xz])]

J Z p(-xla Xz)(xl — ,ul)(xz — ﬂz)dxl
vA

1 €L,

' = J p(xy) Z Py [ X)Xy = py) (X — pp)dx,
X

I XHEX 5




Some questions (5)

e« Assume X is a random vector of dimension d, with covariance 2

« Now assume X is a multivariate Gaussian

» Question: If the first eigenvalue in 2 is very big (1000) and the second is very
small (0.1), then what does this tell us about the shape of the Gaussian?



Some questions (5)

e« Assume X is a random vector of dimension d, with covariance 2

« Now assume X is a multivariate Gaussian

» Question: If the first eigenvalue in 2 is very big (1000) and the second is very
small (0.1), then what does this tell us about the shape of the Gaussian?

e Answer: The distribution is wide In one orientation and narrow In another



Example of eigenvalues

This X2 has singular values: o, = 1.75, 6, = 0.25

These are also the eigenvalues for 2!

This is not true in general. Why is is true for 2.?




Example of eigenvalues

This X2 has singular values: o, = 1.75, 6, = 0.25
These are also the eigenvalues for 2.!

For a square, symmetric matrix, the eigenvalue
decomposition Is

> = UAU' for orthonormal U, diagonal A

= 075 1.0 We also know 2. is positive definite. What does this
tell us about A?



Example of eigenvalues

This X2 has singular values: o, = 1.75, 6, = 0.25
These are also the eigenvalues for !

For a square, symmetric matrix, the eigenvalue
decomposition Is

> = UAU' for orthonormal U, diagonal A

2. is positive definite, so A is a diagonal matrix with
positive terms on the diagonal

Therefore, 2 = UAU ' is also a valid SVD




Mixture distributions

* Mixture distributions allow us to get more complex distributions by taking a
convex combination of simpler distributions

* (Gaussian mixture model (GMM) takes a mixture of m Gaussians, can get back
a distribution with up to m modes

* Question: can we get even ju%t a bit more complexity by mixin%GMI\/ls? What

if we take one GMM p(x) = Z w, p.(x) and another g(x) = Z w, ¢, (x) and

k=1 k=1
set the mixture to p(x) = 0.5p(x) + 0.5g(x)?



Mixture distributions

* Mixture distributions allow us to get more complex distributions by taking a
convex combination of simpler distributions

* Question: can we get even just a bi;gl more complexity by mixing GMMs?

What if we take one GMM p(x) = 2 w, D.(x) and another

m k=1
g(x) = Z a, q.(x) and set the mixture to p(x) = 0.5p(x) + 0.5g(x)?
k=1

* Ans: this is equivalent to taking a GMM with 2m modes



Ch 3: Revisiting Linear Regression

* Linear regression objective and closed-form matrix solution (OLS)
* note you don’t need to remember formulas
* Understanding why small singular values can indicate we get overfitting
* The utility of 12 regularization for avoiding issues with small singular values

 The bias-variance trade-off, and relationship to the covariance matrix and the
singular values of the data matrix



Linear Regression Objectives

n
. . | > 1 T 2
LR objective 5||XW -yll5 = > Z (X, W —y:)
i=1

. Ridge Regression objective %HXW — yH% + EHWH%

 Question: How do we get the LR objective from the RR objective?



Linear Regression Objectives

n
. . | > 1 T 2
LR objective 5||XW -yll5 = > Z (X, W —y:)
i=1

. Ridge Regression objective %HXW — yH% + EHWH%

 Question: How do we get the LR objective from the RR objective?

» Answer: Set A = 0 (reqularization weight is zero, so no regularizer)



Linear Regression Solution

. The closed form solution satisfies AW = bfor A = X'Xandb =Xy

 Question: Our goal is to minimize %HXW — yH%. Why can’t we just use
W = X‘ly? This would be great because then we would have Xw =y



Linear Regression Solution

. The closed form solution satisfies AW = bfor A = X'Xandb =Xy

 Question: Our goal is to minimize %HXW — yH%. Why can’t we just use
W = X‘ly? Then we would have Xw =y

« Answer: X is typically not a square matrix and so cannot be inverted
(inverse only exists for square matrices)

adxn

e |nstead, use the pseudo-inverse X" el



Pseudoinverse

+ For thin SVD X = U, X,V and full rank X, we have X' = VXU,

. When X is full rank, we have X" = (X' X)~ !XT

. Even if not full rank, X" is defined X" = VZZ,Ud where the pseudo-inverse
of the singular value matrix is the inverse of non-zero values and 0 else

 [he pseudo-inverse X" € R%" is the closest we get to an inverse and
w=X'y (here XX =1 & R if X full rank, but XX" # I € R™"

. Notice Xw = XXy # y, but in some sense closest approximation



Linear Regression Solution and Overfitting

» The closed-form solution satisfies AW = b for A = X'Xand b = X'y

o If A is low-rank (X has a zero singular values), then there are infinitely many solutions
for w

e This linear system is under-constrained

» More likely, A is nearly low-rank; equivalently X is nearly low-rank
e Jypical reason: insufficient data

* |n d dimensions, the observed data looks like it lies in a lower-dimensional space,
because it takes many points to start covering the actual region spanned by the data



LR and Overfitting

« We know that X can have small singular values if
* input features are highly correlated (or linearly dependent)

e OR we have insufficient data

* Question: If the true y is only a function of the first two features of X, then
does that imply that X will be low rank?



LR and Overfitting

» We know that X can have small singular values if
* input features are highly correlated (or linearly dependent)

e OR we have insufficient data

* Question: If the true y is only a function of the first three features of X, then
does that imply that X will be low rank?

 Answer: likely not. They are different random variables. This functional
relationship is about how the RVs X and y are related. |t does not necessarily
imply anything about the relationships between RVs within X

Can you think of an example where this might happen?



LR and Overfitting

 If the true y is only a function of the first three features of X, then does that
imply that X will be low rank?

 Answer: likely not. They are different random variables. The functional
relationship is about how the RVs X and y are related. |t does not necessarily
imply anything about the relationships between RVs within X

 Exception: y might only be a function of the first three features because the
rest are all perfectly redundant. Then both y is only related to the first three

features AND X is low rank. But there is no reason to believe this is the
reason for the relationship, without further info



The LR solution, with and without regularization

rank(Xx) u-Ty
J

WMIE = Z —V; Tor WLE = (XTX)_IXTy
=1
rank(X) a-u-Ty
JJ _
. WMAP = Z 2 /1Vj for wpmap = (XTX + Al 1XTy
J

j=1

» If A reasonably big (say 10/-3), then we avoid dividing by a very small singular
value

* Question: Why do we subscript these with MLE and MAP?



Bias and variance

d
: : : : : 2 -2
Wp| E IS unbiased and potentially high-variance, o Z O;
J=1

: i 5
W IS blased and lower variance, oI ——

 Question: when do we expect wppap to be better than wyy g7?



Bias and variance

d
: : : : : 2 —1
Wp| E IS unbiased and potentially high-variance, o Z O;
J=1

: i 5
W IS blased and lower variance, oI ——

» Exercise: show that the variance for wy,ap always lower than wp E



Ch. 4: Optimization

 Second-order multivariate gradient descent

 Understanding why the Hessian in the second-order update accounts for
differences in curvature in different dimensions

* Understanding the importance of an adaptive vector stepsize
 The mini-batch stochastic gradient descent (SGD) update rule
» Understanding why SGD is a more computationally efficient update than GD

* Understanding the momentum update



All the Updates

n

Assumes we have c(W) = — Z c(W)

n
=1

« Second-order GD: W, ; <« W, — H;&Vt)Vc(Wt)

» First-order GD with vector stepsizes: W,, | < W, —#,- Vc(W,)

* element-wise product with stepsize

» Mini-batch SGD with vector stepsizes, using a mini-batch 98 of indices:

1
Wit < W= 4 Z Ve (w))
€S



Some optimization questions

n

|
- We use c(w) = — Z c;(w) to grab b components of n for SGD

n
=1

n

But when we did LR we used c(W) = ) c(w) = —||Xw — y||3. Is this
=1

mismatch a problem?

n

How do we write the Ridge Regression loss as c(w) = — Z c(W)?

n
=1



Some optimization questions

n

|
- We use c(w) = — Z ¢;(w). But when we did LR we used

"
n =1

c(w) = Z c(W) = %HXW — yH%. s this mismatch a problem?
i=1

 Answer: the constant 1/n in front does not change the solution. For OLS, it is
really not necessary to include 1/n. When talking about GD and SGD, its

useful to think of ¢ as an expectation over losses per sample



What is the OLS solution for the normalized objective?

n

c(w) = L Z c(W) = %”XW — y||% gives gradients

® n

i=1
1 1 1 -1
. IXTXw = LXTy and so w = (—XTX) 1XTy
n n n n
 Notice that the 1/n comes outside the inverse and becomes n

1
W= (lXTX) LxTy = n (X'X) ™ 1XTy = (X'X) "' XTy



Some optimization questions

n

|
- We use c(w) = — Z ¢;(w). But when we did LR we used

n
=1

c(wW) = %HXW — yH% + EHWH%. s this mismatch a problem?

n

How do we write the Ridge Regression loss as c(w) = — 2 c(W)?

n
=1



A normalized RR objective

. %HXW — yH% + EHWH%. What is the normalized c?

n

A A

1 1 1

L W) =2 ) cw) = 5 lIXw —ylI5 + w3 =5 (ﬂXw - I3+ Euwu%)
=1

. Therefore must have c(w) = %(XZTW — yl-)2 + EHWH%

 Makes very clear that regularizer has a diminishing role with increasing n



A normalized RR objective

. %HXW — yH% + EHWH%. What is the normalized c?

n

A
1 Z | X o) 2 1 1 X 2

. Therefore must have c(w) = %(XZTW — ) + EHWH%

 Makes very clear that regularizer has a diminishing role with increasing n

* Question: What is the mini-batch SGD update for RR?

2

A
uwH%)



Mini-batch SGD for RR

. Therefore must have c(w) = %(XZTW — yl-)2 + EHWH%

* Question: What is the mini-batch SGD update for RR?

1
Wirit < W= Z Ve (w))
€S

« where V(W) = (XiTW — V)X, + AW



The Hesslian and curvature

 The Hesslian and second-derivative have a clear correspondence using the
directional derivative

 The curvature (second-derivative) is about the shape of the bowl (wide flat
bowl, or steep bowl)

 The gradient is at a specific point in that bowl, and can be big or small



Visualizing the difference

| 2 fx)=2x”
{60 52 [ ) =2
qcubd _ ,,2, b"ﬁ [Dj jlfkﬂél(“t
jmw{/t’{v\t
(urvatwre s 0-S (wove 1““0 Coarvatwrve & 2.0
(v ov SRCP).

Second-order stepsize is always 2 here, for both gradients

Second-order stepsize is alway



The Hessian has two uses

 The Hessian also helps us know: are we in a local-min, local-max or
potentially a saddlepoint?

» But this question only uses the sign of the eigenvalues of the Hessian. The
magnitudes give additional information (about curvature)

» Signs tell us type of bowl (convex or concave)
 Magnitudes tells us the shape of the bowil

* \We care more about Hessian approximations to approximate curvature



Understanding the Hessian

» Imagine we are at point w, and we want to step in direction u

o Easier to reason about curvature in the direction of u (essentially on a line)

» Define local function g(7) = ¢(W, + 7u), how functions changes as move 7 in
the direction of u

» ¢'(7) and g"(7) tell us steepness of change and curvature at points along that
direction and ¢'(0) and g"(0) tell us steepness/curvature at this current point

 Notice g"(0) = uTHC(Wt)u



Understanding the Hessian

» Imagine we are at point w, and we want to step in direction u

 Notice g”"(0) = u HC(Wt)u

- If uis an eigenvector of H ,, , with eigenvalue 4, then
g’"(0)=u HC(Wt)u =u ADu=Au'u=141

 Ifu = a;u, + a,u, for eigenvectors u,, u, then
g"(0)=u'H,  u=u'(4ou + 10, = ... =a’l + %4

c(w,)

Question: can the eigenvalues be both positive and negative?



Momentum

 Replaces update with an exponential average of gradients
e W, | < W,— 1, -8g becomesw, ; < W,—n,-m,_, for either
- m,, =g + fm,ornormalized m,_, = (1 — f)g, + pm,

e Smooths descent direction



Normalizing the momentum

» Equivalenttousem, ; = g, + fm, or
normalized m,,; = (1 — f)g, + fm,

» To get the normalized one, equivalent to use m,, ; = g, + /m, and then normalize
(1 = p)m,_ ; the normalization absorbed into the stepsize 7

[
. 2 .
. Noticem,, ; = g, +,Bmt =g +ﬁgt_1 + f m_,=..= Zﬁ’gt_i
i=0

.m,, =(1-pg+pm=1-pg+p1-pg_ +pm_=..=01-p) g,
=0



Momentum vs RMSProp

« RMSProp slows down descent if several big gradients in a row

e Momentum seems to accelerate if so. What’s the deal?



Momentum vs RMSProp

« RMSProp slows down descent if several big gradients in a row
* Momentum seems to accelerate if so. What’s the deal?
 Answer:. we should think of momentum actually more as dampening.

* |t takes an average of gradient, so it doesn’t really accumulate large values (as
long as we normalize, or make the stepsize out in front a bit smaller)

e But it nicely avoids oscillating when gradients change signs

« RMSProp does not as effectively prevent oscillation, since it just uses
magnitude not sign



Convergence rates

» Typically opt for SGD if d and n are larger

 Note: SGD means mini-batch SGD, using one sample per update is just a
specific instance of mini-batch SGD with a batch size of b=1

* Our very approximate, big-O reasoning

» Worth using 2nd order GD over GD if de log(1/¢) < 1

» Worth using SGD over GD if b < en



Convergence rates

» Typically opt for SGD if d and n are larger

 Note: SGD means mini-batch SGD, using one sample per update is just a
specific instance of mini-batch SGD with a batch size of b=1

* Our very approximate, big-O reasoning

» Worth using 2nd order GD over GD if de log(1/¢) < 1

» Worth using SGD over GD if b < en



Convergence rates

» Typically opt for SGD if d and n are larger

* Our very approximate, big-O reasoning
» Worth using 2nd order GD over GD if de log(1/¢) < 1

» Worth using SGD over GD if b < en
 How does Adagrad or Adam change this”?
» Jypically changes the constants in the bounds, not the rates

* Very much matters practically, but not at this higher-level big-O view



Ch. 5: Generalized Linear Models

* Understand the purpose of the generalization from linear regression to GLMs
* Understand that the exponential family distribution underlies GLMs

 Know that linear regression, Poisson regression, logistic regression and
multinomial logistic regression are examples of GLMs

 Know the distributions and transfers that correspond to each of these four
GLMs

e e.g., Poisson regression has a Poisson distribution p(y | x) with transfer exp



Generalized Linear Models (GLMs)

* Generalizes linear regression and p(y | x) a Gaussian: allows p(y [x) to be any natural
exponential family distribution with natural parameter 6(X)

* In GLMSs, we learn the natural parameter 8(X) = xXw

» Then E[Y|X] = g(8(x)) for transfer function g

* e.g., Gaussian with fixed (unknown) variance has g = identity

e e.g., Bernoullihas g = o (i.e., o(6(x)) = E[Y]Xx])
* e.g., Poisson p(y | x) has g = exp

 e.g., Multinomial (categorial) p(y | x) for multi-class has g = softmax



Exponential Family Distribution

. Generalize from p(y|x) = A (x'w, 6%) to a wider set of distributions

» p(y[X) = exp(0(x)y — a(d(x)) + b(y)) for O(X) = xw

o for log-partition function a : R — R where the transfer g = a’is the derivative of
a

* More generally, y can also be multivariate giving. Let y be a row vector.

+ p(y %) = exp({0(x), y) — a(d(x)) + b(y)) for O(x) = xW

e and where the log-partition function a inputs vectors instead of scalars



Exponential Family Distribution

. Generalize from p(y|x) = A (x'w, 67) to a wider set of distributions

* More generally, y can also be multivariate giving. Let y be a row vector.
» p(y|x) = exp({0(x),y) — a(0(x)) + b(y)) for O(x) = xW

e and where the log-partition function a inputs vectors instead of scalars

» Using g = Va and 6(x) = xW with log-likelihood results in a convex
optimization (univariate or multivariate)

e Question: why is it useful that this is a convex optimization?



Proximal operators

» Optimize with smooth ¢(w) and non-smooth r(w)

. To solve mind c(w) + r(w) we break it into two steps
weR

» GD Step:w,.; =W, —nVc(w,)

« Projection step: W, | = proxm(Wt . 1) Where the proximal operator is

- 2
. prox (u) = areg min —||w — ul||5 + nr(w)
'7’” S weR? 2 | ”2 {



Why so many subscripts in prox?

. prox_(u) = arg min —||w — ul|3 + nr(w)
O gWEIRd 2 :

. Really, we mean proxf(u) = arg min —||w — uH% + f(w) for function f
weRd 2

» In our updates, we have functions like AZ;(W) and then have the stepsize out
front too, so write

— T —nll?
. prox, ., (w) = arg min —{|w — w3+ 7if,(w



Why does our project involve the stepsize?

* The GD step changes w by stepsize 7 amount, so we need to apply the

projection that amount also to ensure they eventually balance each other out
u—ni ifu>ni

Example: proxﬂwl(u) = yu+nil ifu<-—ni

0 else

- At convergence, for larger w, ;, GD step has does W, | ; = w, ; + nA and the
proximal update returns Wip1j = Wt+1,j — A = W, ; (no change, done opt)

o« And for W, ; more negative, GD step has does VT/HL]- =W, — n/ and the

proximal update returns w,, ; . = w, 1t nA = W, ; (hno change, done opt)

1,7




Why is it useful to break up into two steps?

. Solving proxm(u) = arg mindEHW — uH% + nr(w) with simple loss ||w — uH%
weR
is likely a lot simpler than solving mind c(W) + r(w) for arbitrary c(w)
weR

» Example, for r(w) = £;(w), can reason about balancing error (w — 1t)” versus
error — 1(w) = |w]|.

+ e.g,u=0.1,thenatw =0, (w — u)* = 0.01. If increase w to 0.1, then

(w —u)* =0 but |w| = 0.1. Worse error! In fact, w = 0 is optimal because
these small differences to u are squared



Why is it useful to break up into two steps?

. Solving proxm(u) = arg mindEHW — uH% + nr(w) with simple loss ||w — uH%
weR
is likely a lot simpler than solving mind c(W) + r(w) for arbitrary c(w)
weR

» Example, for r(w) = £;(w), can reason about balancing error (w — 1t)” versus
error — 1(w) = |w]|.

» For c(w) the cross-entropy loss, how do we do this reasoning?



Cross-validation

 When have lots and lots of data, might just do train-validation-test split

* [rain models on training data, use validation to select hyperparameters

» Example: might train with 4 = 0, 4 = 0.01 and 4 = 0.1 and pick the best
using the validation set (instead of doing internal CV)

e Once select A, then retrain on train+validation, and evaluation on test before
deploying (instead of doing external CV)

* When we have less data, want to use all the data for training, validation & test



