Data Representations

CMPUT 467: Machine Learning II

Projecting to Higher Dimensions Allows for Separability

 Consider this simple example where increasing from 2 to 3 dimensions (in a careful way) allows us to obtain linear separability

Brief Reminder: Linear Separability

- Logistic regression learns a hyperplane that attempts to separate points
 - Parameters w define a linear decision boundary
 - Observations on one side of decision boundary classified positive, other side negative

 A dataset is <u>linearly separable</u> if there exists a linear decision boundary that perfectly classifies it

$$p(y = 1 \mid x) = \sigma(x^{\mathsf{T}}w) > 0.5 \text{ if } xw > 0$$

$$p(y = 0 \mid x) = 1 - \sigma(x^{\mathsf{T}}w) > 0.5$$

$$\text{if } \sigma(x^{\mathsf{T}}w) < 0.5$$

$$\text{if } x^{\mathsf{T}}w < 0$$

Back to Our Example

$$x_{1}^{2} + x_{2}^{2} = 1 f(x) = x_{1}^{2} + x_{2}^{2} - 1$$

$$x_{1} = x_{2} = 0$$

$$\Rightarrow f(x) = -1 < 0$$

$$x_{1} = 2, x_{2} = -1$$

$$\Rightarrow f(x) = 4 + 1 - 1 = 4 > 0$$

$$f(x) = \begin{bmatrix} x_{1}^{2} \\ x_{2}^{2} \\ 1 \end{bmatrix} f(x) = \phi(x)^{\top} w$$

How to learn f(x) such that f(x) > 0 predicts positive and f(x) < 0 predicts negative?

May have to project higher

- Cover's Theorem: a dataset that is not linearly separable is highly likely to be separable by projecting to a higher-dimensional space with a nonlinear transformation
- One easy way to see this: consider a fine grained binning

Exercise: What weights w are learned, assuming circle is the negative class?

This Theorem is One Motivation for Radial Basis Functions

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(\frac{-\|\mathbf{x} - \mathbf{x}'\|_2^2}{\sigma^2}\right)$$
 $f(\mathbf{x}) = \sum_{i=1}^p w_i k(\mathbf{x}, \mathbf{x}_i)$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \rightarrow \begin{bmatrix} k(\mathbf{x}, \mathbf{x}_1) \\ \vdots \\ k(\mathbf{x}, \mathbf{x}_p) \end{bmatrix}$$

RBFs (continued)

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(\frac{-\|\mathbf{x} - \mathbf{x}'\|_2^2}{\sigma^2}\right)$$

 \mathbf{x}_i is a prototype or center

$$f(\mathbf{x}) = \sum_{i=1}^{p} w_i k(\mathbf{x}, \mathbf{x}_i)$$

Possible function f with several centers

Can learn a highly nonlinear function!

Other (similarity) transforms

- Linear kernel: $k(\mathbf{x}, \mathbf{c}) = \mathbf{x}^{\top} \mathbf{c}$
- Laplace kernel (Laplace distribution instead of Gaussian)
- Binning transformation $k(\mathbf{x}, \mathbf{c}) = \exp(-b||\mathbf{x} \mathbf{c}||_1)$

$$s(\mathbf{x}, \mathbf{c}) = \begin{cases} 1 & \text{if } \mathbf{x} \text{ in box around } \mathbf{c} \\ 0 & \text{else} \end{cases}$$

Picking prototypes

- The effectiveness of these methods depends heavily on how protoypes are picked
- One easy choice: use all of your data
 - Lots of features, really projected up!
- A more efficient choice: subselect a representative set of points
 - How? Many many algorithms, you will use I1 regularization

ℓ_1 regularization for feature selection

• Have feature vector $\phi(\mathbf{x}) \in \mathbb{R}^p$

When minimize $\frac{1}{n}\sum_{i=1}^{n}(\phi(\mathbf{x}_i)\mathbf{w}-y_i)^2+\lambda\|\mathbf{w}\|_1$, get back some weights that are zero. When a weight is zero, it is like a feature is removed

Dot product
$$\begin{cases}
\phi(x) = \begin{pmatrix} \psi(x) \\ \psi(x) \end{pmatrix} \\
\psi(x) = \begin{pmatrix} \psi(x) \\ \psi(x) \end{pmatrix} \\
\psi(x)$$

\mathcal{E}_1 regularization for prototype selection

- For prototype feature vectors $\phi(\mathbf{x}) \in \mathbb{R}^p$, removing features is the same as removing a prototype
- The I1 regularization keeps only the most useful prototypes (selects a subset)

Dot product
$$\begin{cases}
\phi(x) = \begin{cases}
\phi(x) = --- \\
\phi(x) = --- \\
\psi(x) = --- \\
\psi(x)$$

How do we control the number?

- The regularization parameter λ in $\frac{1}{n}\sum_{i=1}^n (\phi(\mathbf{x}_i)\mathbf{w}-y_i)^2 + \lambda\|\mathbf{w}\|_1$ controls the level of sparsity but also shrinks the weights
- Larger λ will subselect more, but also bias the weights more
- We also might want to say: I want exactly 100 prototypes
- In your assignment, you will use this objective to find the most important weights, and then zero out the smallest weights to get exactly p prototypes