Data Representations

CMPUT 467: Machine Learning Il



Projecting to Higher Dimensions Allows for Separability

* Consider this simple example where increasing from 2 to 3 dimensions (in a
careful way) allows us to obtain linear separability
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Brief Reminder: Linear Separability

* Logistic regression learns a hyperplane that attempts to separate points

 Parameters w define a linear decision boundary

* Observations on one side of decision boundary classified positive, other
side negative

A dataset is linearly separable if there exists a linear decision boundary that
perfeCtIy classifies it X2 o Is this dataset linear separable?
(X2, Y2)

piy=1|x) = o(x'w) > 0.5ifxw > 0
py=0|x)=1-0(x"w)>0.5
if o(x'w) < 0.5
ifx'w <0




Back to Our Example
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L1 :2,332 = —1

— f(z)=44+1-1=4>0

T

d(x) = | 3
1

How to learn f(x) such that f(x) > O predicts positive and
f(x) < O predicts negative?



May have to project higher

 Cover’s Theorem: a dataset that is not linearly separable is highly likely to be

separable by projecting to a higher-dimensional space with a nonlinear

transformation

* One easy way to see this: consider a fine grained binning
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Exercise: What weights w are learned, assuming circle is the negative class?
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This Theorem is One Motivation for Radial Basis Functions

k(x,x') = exp (_HX —2X/H%> f(x) = iwik(x,xi)
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RBFs (continued)

X; 1s a prototype or center

k(x,x') = exp (_”X _QX"@) f(x) = iwik(x,xi)

7

Possible function f with several centers

kernel Sqaured-exp kernel in 2d sample

\\\\‘
\%‘“}\?

\ \"
._;/ \\

Can learn a highly nonlinear function!



Other (similarity) transforms

+ Linear kernel: k(X,c) =X ' ¢
e | aplace kernel (Laplace distribution instead of Gaussian)

* Binning transformation k(x,c) = exp(—b|jx — cl|1)

1 1f x in box around c
5(x, ¢) = 0 else



Picking prototypes

* The effectiveness of these methods depends heavily on how protoypes are
picked

* One easy choice: use all of your data
* | ots of features, really projected up!
A more efficient choice: subselect a representative set of points

« How? Many many algorithms, you will use |1 regularization



¢, regularization for feature selection

 Have feature vector ¢(x) € R”

1 n
~ When minimize — Z (P(x)W — y,)* + A||w]|| {, get back some weights that
n -

1=1 . e g :
are zero. When a weight is zero, it is like a feature is removed
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¢, regularization for prototype selection

» For prototype feature vectors ¢p(x) € R?, removing features is the same as
removing a prototype

* The I1 regularization keeps only the most useful prototypes (selects a subset)
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How do we control the number?

1 n
The regularization parameter A in — 2 (P(x)W — yl-)2 + A||w||; controls the
n -

=1
level of sparsity but also shrinks the (/veights

 Larger A will subselect more, but also bias the weights more
 We also might want to say: | want exactly 100 prototypes

* |n your assignment, you will use this objective to find the most important
weights, and then zero out the smallest weights to get exactly p prototypes



