
Winter 2026

Chapter 7: Proximal  
Gradient Descent

CMPUT 467/567: Machine Learning II 

Proximal operators

• Optimize with smooth and non-smooth

• To solve we break it into two steps

• GD Step:

• Projection step: where the proximal operator is

•

c(w) r(w)

min
w∈ℝd

c(w) + r(w)

w̃t+1 = wt − η∇c(wt)

wt+1 = proxηr(w̃t+1)

proxηr(u) = arg min
w∈ℝd

1
2

∥w − u∥2
2 + ηr(w)

Why so many subscripts in prox?

•

• Really, we mean for function

• In our updates, we have functions like and then have the stepsize out
front too, so write

•

proxηr(u) = arg min
w∈ℝd

1
2

∥w − u∥2
2 + ηr(w)

proxf(u) = arg min
w∈ℝd

1
2

∥w − u∥2
2 + f(w) f

λℓ1(w)

proxηλℓ1
(u) = arg min

w∈ℝd

1
2

∥w − u∥2
2 + ηλℓ1(w)

Why does projection involve the stepsize?
• The GD step changes by stepsize amount, so we need to apply the

projection that amount also to ensure they eventually balance each other out

•
Example:

• At convergence, for larger , GD step has does and the
proximal update returns (no change, done opt)

• And for more negative, GD step has does and the
proximal update returns (no change, done opt)

w η

proxηλℓ1
(u) =

u − ηλ if u > ηλ
u + ηλ if u < − ηλ
0 else

wt,j w̃t+1,j = wt,j + ηλ
wt+1,j = w̃t+1,j − ηλ = wt,j

wt,j w̃t+1,j = wt,j − ηλ
wt+1,j = w̃t+1,j + ηλ = wt,j

Why is it useful to break up into two steps?

• Solving with simple loss  

is likely a lot simpler than solving for arbitrary

• Example, for , can reason about balancing error versus
error .

• e.g., , then at , . If increase w to 0.1, then
 but . Worse error! In fact, w = 0 is optimal because

these small differences to u are squared

proxηr(u) = arg min
w∈ℝd

1
2

∥w − u∥2
2 + ηr(w) ∥w − u∥2

2

min
w∈ℝd

c(w) + r(w) c(w)

r(w) = ℓ1(w) (w − u)2

ℓ − 1(w) = |w |

u = 0.1 w = 0 (w − u)2 = 0.01
(w − u)2 = 0 |w | = 0.1

Why is it useful to break up into two steps?

• Solving with simple loss  

is likely a lot simpler than solving for arbitrary

• Example, for , can reason about balancing error versus
error .

• For the cross-entropy loss, how do we do this reasoning?

proxηr(u) = arg min
w∈ℝd

1
2

∥w − u∥2
2 + ηr(w) ∥w − u∥2

2

min
w∈ℝd

c(w) + r(w) c(w)

r(w) = ℓ1(w) (w − u)2

ℓ − 1(w) = |w |

c(w)

