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Proximal operators

• Optimize with smooth  and non-smooth 


• To solve  we break it into two steps


• GD Step: 


• Projection step:  where the proximal operator is


•

c(w) r(w)

min
w∈ℝd

c(w) + r(w)

w̃t+1 = wt − η∇c(wt)

wt+1 = proxηr(w̃t+1)

proxηr(u) = arg min
w∈ℝd

1
2

∥w − u∥2
2 + ηr(w)



Why so many subscripts in prox?

• 


• Really, we mean  for function 


• In our updates, we have functions like  and then have the stepsize out 
front too, so write


•

proxηr(u) = arg min
w∈ℝd

1
2

∥w − u∥2
2 + ηr(w)

proxf(u) = arg min
w∈ℝd

1
2

∥w − u∥2
2 + f(w) f

λℓ1(w)

proxηλℓ1
(u) = arg min

w∈ℝd

1
2

∥w − u∥2
2 + ηλℓ1(w)



Why does projection involve the stepsize?
• The GD step changes  by stepsize  amount, so we need to apply the 

projection that amount also to ensure they eventually balance each other out


•
Example: 


• At convergence, for larger , GD step has does  and the 
proximal update returns  (no change, done opt)


• And for  more negative,  GD step has does  and the 
proximal update returns  (no change, done opt)

w η

proxηλℓ1
(u) =

u − ηλ if u > ηλ
u + ηλ if u < − ηλ
0 else

wt,j w̃t+1,j = wt,j + ηλ
wt+1,j = w̃t+1,j − ηλ = wt,j

wt,j w̃t+1,j = wt,j − ηλ
wt+1,j = w̃t+1,j + ηλ = wt,j



Why is it useful to break up into two steps?

• Solving  with simple loss   

is likely a lot simpler than solving  for arbitrary 


• Example, for , can reason about balancing error  versus 
error . 


• e.g., , then at , . If increase w to 0.1, then 
 but . Worse error! In fact, w = 0 is optimal because 

these small differences to u are squared

proxηr(u) = arg min
w∈ℝd

1
2

∥w − u∥2
2 + ηr(w) ∥w − u∥2

2

min
w∈ℝd

c(w) + r(w) c(w)

r(w) = ℓ1(w) (w − u)2

ℓ − 1(w) = |w |

u = 0.1 w = 0 (w − u)2 = 0.01
(w − u)2 = 0 |w | = 0.1



Why is it useful to break up into two steps?

• Solving  with simple loss   

is likely a lot simpler than solving  for arbitrary 


• Example, for , can reason about balancing error  versus 
error . 


• For  the cross-entropy loss, how do we do this reasoning?

proxηr(u) = arg min
w∈ℝd

1
2

∥w − u∥2
2 + ηr(w) ∥w − u∥2

2

min
w∈ℝd

c(w) + r(w) c(w)

r(w) = ℓ1(w) (w − u)2

ℓ − 1(w) = |w |

c(w)


