Data Representations

CMPUT 467/567: Machine Learning Il



Projecting to Higher Dimensions Allows for Separability

* Consider this simple example where increasing from 2 to 3 dimensions (in a
careful way) allows us to obtain linear separability
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Brief Reminder: Linear Separability

* Logistic regression learns a hyperplane that attempts to separate points

* Observations on one side of decision boundary classified positive, other
side negative

A dataset is linearly separable if there exists a linear decision boundary that
perfectly classifies it
L2
[(Xz, Y2)
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Is this dataset linearly separable?




Defining the decision boundary

 Parameters w define a linear decision boundary

* Observations on one side of boundary classified positive, other side negative

¢(X) — [laxla x2]

[(m yo) I SR p(y=1|x) =oc(@d(x)w) > 0.5ifp(x)w > O
i s T p=0]x)=1-0@x)W) > 0.5if p(x)W < 0
T ” " ~ Wy + w11 + wexy =0




Explaining the linear decision boundary

(X1, %), (W, wo)) —0.54+((0.5,0) + t(—=1,1), (1,1))
= (#(—=1,1),(1,1)) =1(0) =0 = —05+05+10=0



Back to Our Example
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> f(x)=—-1<0

L1 :2,332 = —1

— f(z)=44+1—-1=4>0

How can we learn such an f(x) where f(x) > O predicts positive and

f(x) < O predicts negative?



Back to Our Example
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—1 <0

- fla) =

-33‘1:2,332:—1

— f(z)=44+1-1=4>0

fx) = p(x)w  for p(x) = [1,x7, ]

How can we learn such an f(x) where f(x) > O predicts positive and
f(x) < O predicts negative”? Use logistic regression with new features




May have to project higher

 Cover’s Theorem: a dataset that is not linearly separable is highly likely to be
separable by projecting to a higher-dimensional space with a nonlinear

transformation

* One easy way to see this: consider a fine grained binning
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May have to project higher

* One easy way to see this: consider a fine grained binning
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Exercise: What weights w are learned, assuming red circle is the negative class?

Recall: Classify as positive class if p(x)w > 0
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This Theorem is One Motivation for Radial Basis Functions

1
k(X,C) = exp(—z—(szX — CH%) C is a center or prototype

-"




This Theorem is One Motivation for Radial Basis Functions

k(X,cC) = exp(—z%zHX — CH%) ¢; is a center or prototype
A
X = [k(X, €), k(X, ¢,), k(X, ¢3)] = [0.1,0.8,0.5]
i
® p
L fx) = ) k(x,c)w,
0.5 /" \\ 0.1 j=1
C3 o




Canl
earn a hi
|
ghly nonlinear funct
ction!
A(X) =
(x) = ) k(x.¢)w,
j=1 ]




Other (similarity) transforms

» Linear kernel: k(X, ¢) = (X, ¢)

| aplace kernel (Laplace distribution instead of Gaussian)

k(x,c) = exp(—b||x — cl|1)
* Binning transformation

1 1if x 1n box around c

k(x,¢) = { 0 else



Picking prototypes

o Effectiveness of these methods depends heavily on how protoypes are picked
* One easy choice: use all of your data

* |ots of features, really projected up!
* A more efficient choice: subselect a representative set of points

« How? Many many algorithms, you will use |11 regularization later

* Choice in your first assignment: random subset



Contrasting to polynomials

 How do functions with RBF features differ from polynomial functions?



Recall polynomials functions

3}

(a) Degree 1 polynomial (b) Degree 3 polynomial (c) Degree 7 polynomial

Figure 3.4: Visualizing functions using polynomial features, with increasing degree. (a)
Linear function (degree 1 polynomial) f(x) = 2x + 1 with weights wg = 1, w1 = 2 and
feature vector x = [1 x]. (b) Degree 8 polynomial f(x) = x° — 3z + 1 with weights wo = 1,
w; = —3, wy = 0, wz = 1 and feature vector x = [1 x x* x°]. (¢) Degree 7 polynomial
f(z) = 0.12" — 1.52° + ba’ — 4x with weights wo = 0, w1 = —4, we =0, w3 = 5, wy = 0,

ws = —1.5, wg = 0, wy = 0.1 and feature vector x = [1 x z° z° z* 2° 2% 27].

L X X T X



Contrasting RBFs features to polynomials features

 Generalize differently

 RBF features are highly localized, features are

* |f new point X far from observed prototypes, RBF features are all nearly
zero, unlike polynomial features

 Polynomial features can provide weird generalization outside of data (e.g.,
consider cubic or linear functions)



Contrasting RBFs features to polynomials features

 Generalize differently
 RBF features are highly localized, features are
« Scale differently

 RBF features grow with number of prototypes, could leverage data lying on
lower-dimensional manifold (lower effective dimension)

d +
, For degree ¢, polynomials grow as ( q) . For smallish ¢,

q
(d + 61) q° ;
~ —. Grows quickly.
q d!



Generalization Error

« Generalization error of a function (model) f assuming data is generated from
p(X,y) is the expected cost [E|cost(f(X), Y)]




Estimating generalization error

o Split dataset into training set of n samples and test set of k samples

e e.g., for 10k samples, use n = 9000 and k = 1000

n+k

- GE(f) = Test-Error(f) = = Z cost(f(Xx,), y;)

iI=n+1



Estimating generalization error

» Split dataset into training set of n samples and test set of k samples

e e.g., for 10k samples, use n = 9000 and k = 1000

n+k

1
~ GE(f) =~ Test-Error(f) = - Z cost(f(X,), y;)

i=n-+1

* Can also obtain confidence interval, such as 90% Student’st Cl, e.g

1.646 1.646
| Test-Error(f) — ————0, Test-Error(f) + ——6]

v/ 1000 v/ 1000

* Question: For a 90% Gaussian CIl, we would have 1.645. Why do we use 1.646
instead of 1.6457



How do we know we did a good job?



Some possible outcomes
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Question: what about an RBF representation with all the data as prototypes?



How do we know we did a good job?

» Signs of overfitting:

e see an increase In test error when increasing model complexity



Hypothetical example of behavior with

Increasing model complexity
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At what degree q do we
see overfitting?

Why does training error
always decrease?

Are there settings with
polynomials where
training error

might increase?



How do we know we did a good job?

» Signs of overfitting:
e sSee an increase In test error when increasing model complexity

* high magnitude weights (see Example 6 in the notes and when we discuss
bias-variance for linear regression)

» Signs of underfitting:

* training and test error are similarly high, and can decrease both with
Increased model complexity



Hypothetical example of behavior with
Increasing model complexity
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Move to whiteboard

e Jo discuss bias and variance

» Can characterize in closed-form for linear regression



