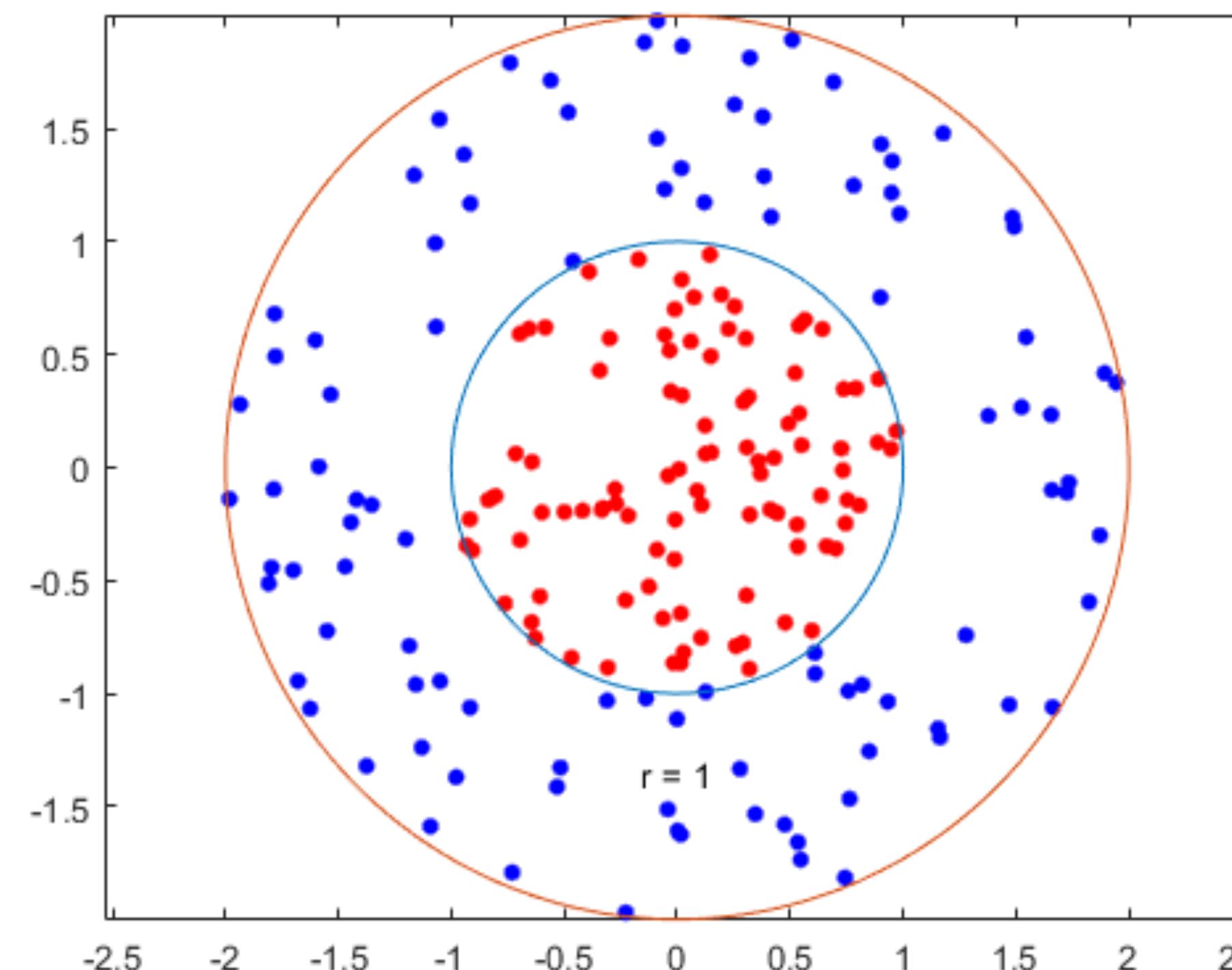


Data Representations

CMPUT 467/567: Machine Learning II

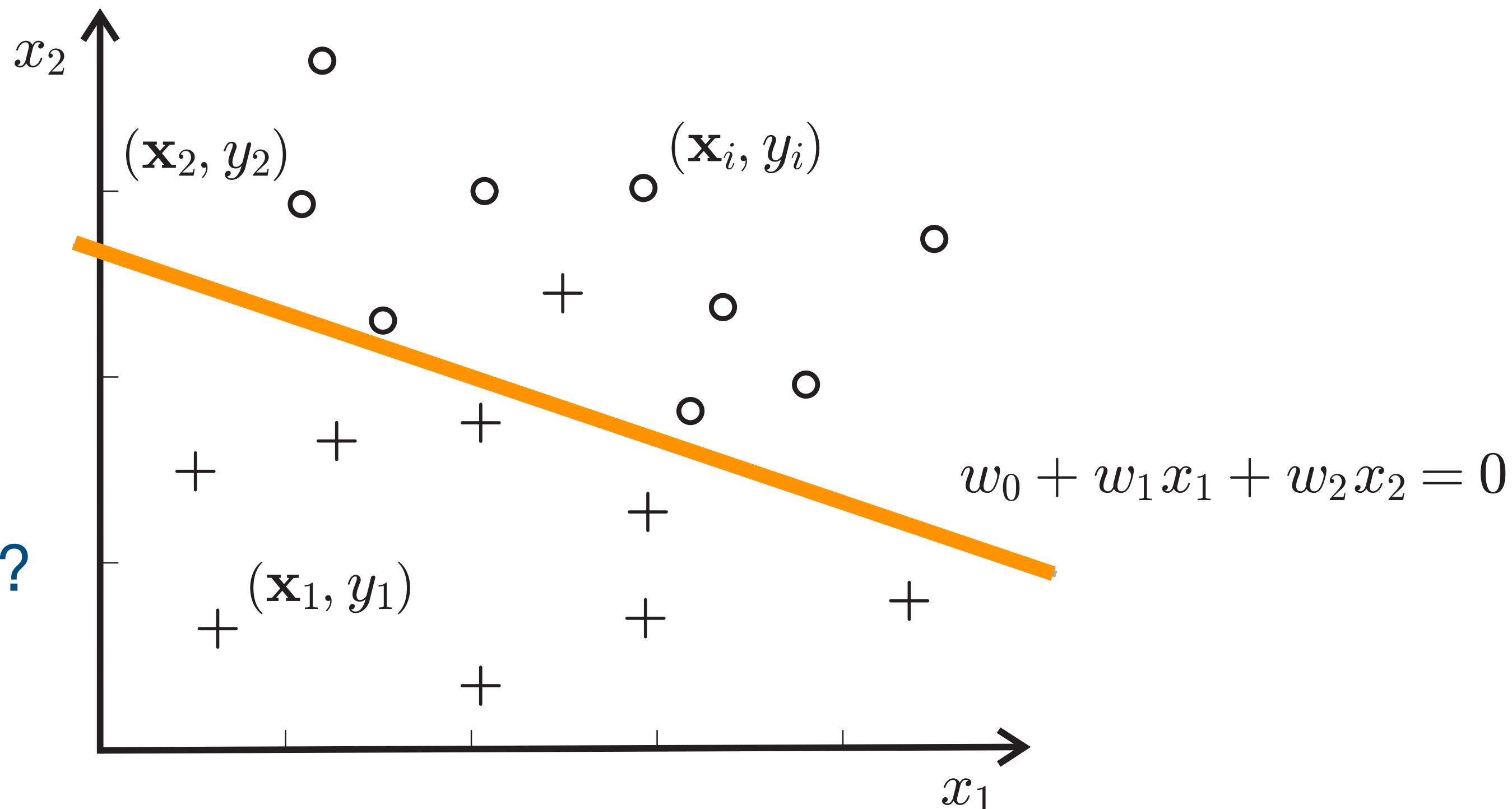
Projecting to Higher Dimensions Allows for Separability

- Consider this simple example where increasing from 2 to 3 dimensions (in a careful way) allows us to obtain linear separability



Brief Reminder: Linear Separability

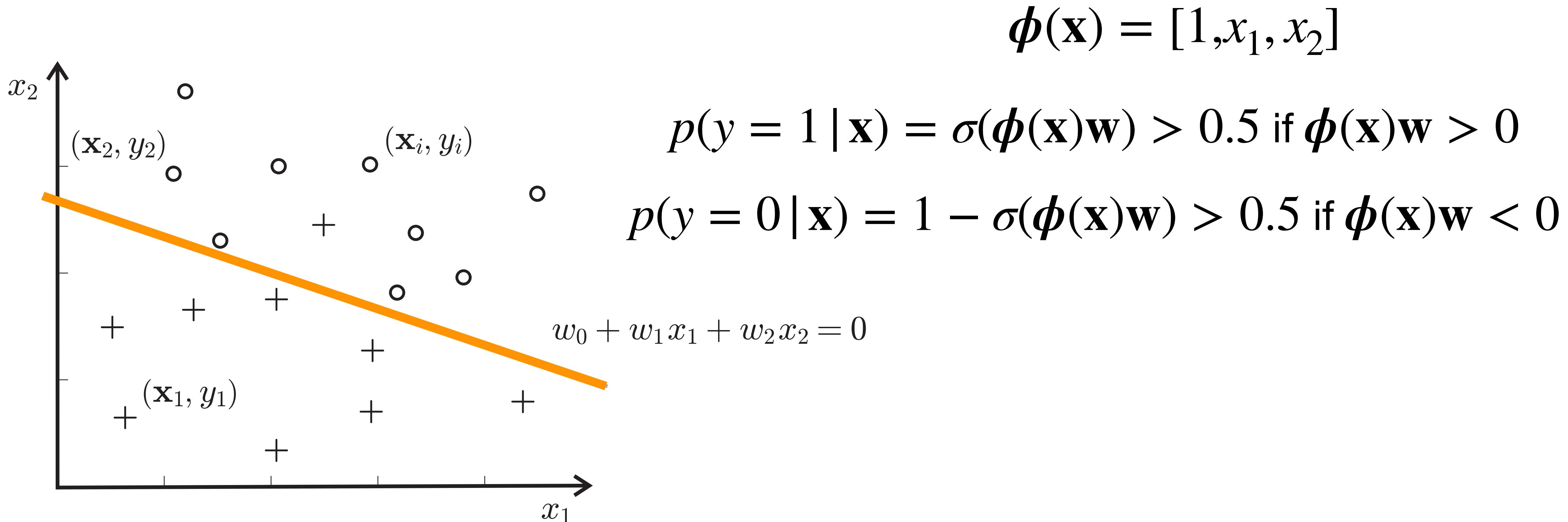
- Logistic regression learns a hyperplane that attempts to separate points
 - Observations on one side of decision boundary classified positive, other side negative
 - A dataset is linearly separable if there exists a linear decision boundary that perfectly classifies it



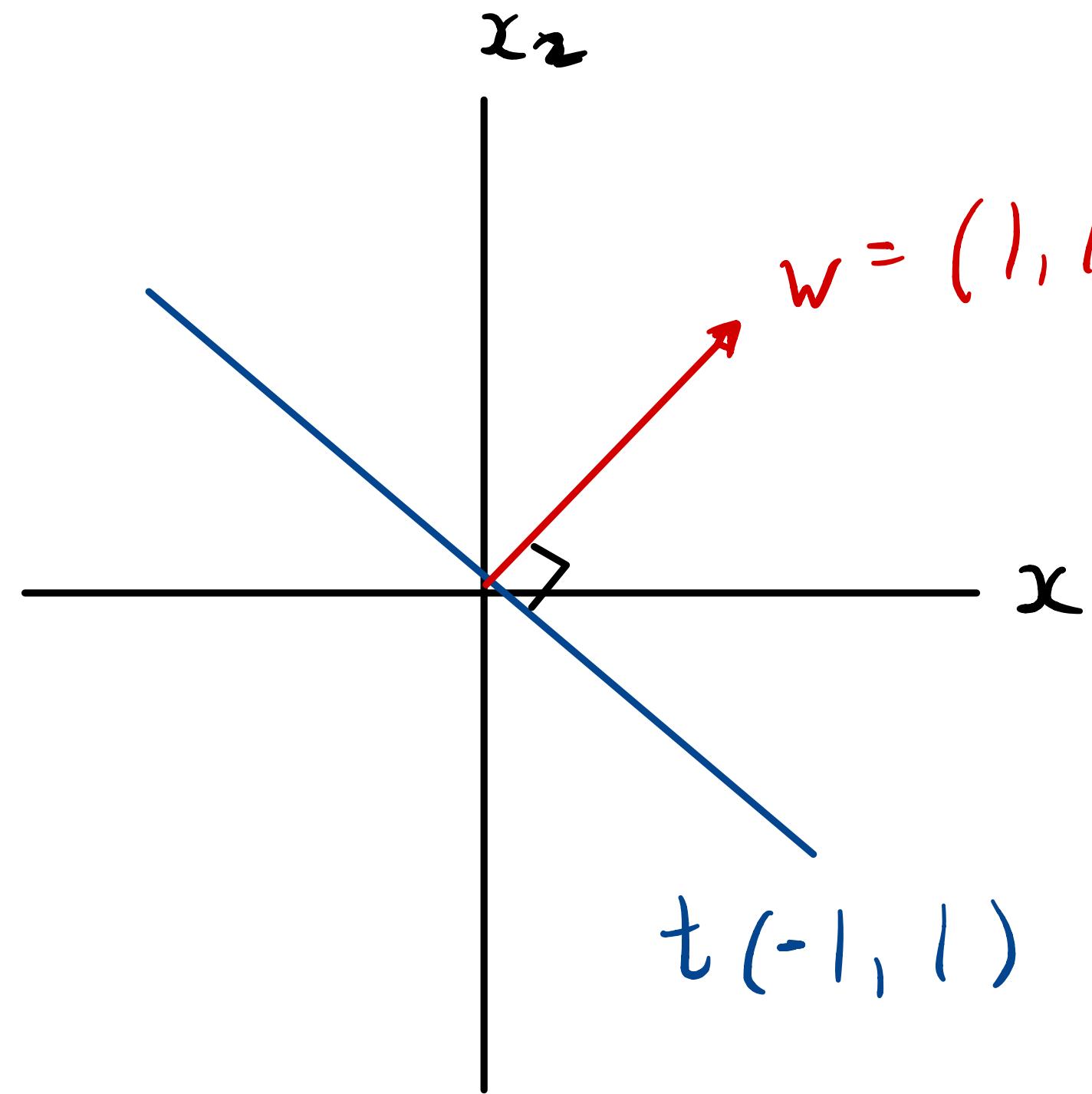
Is this dataset linearly separable?

Defining the decision boundary

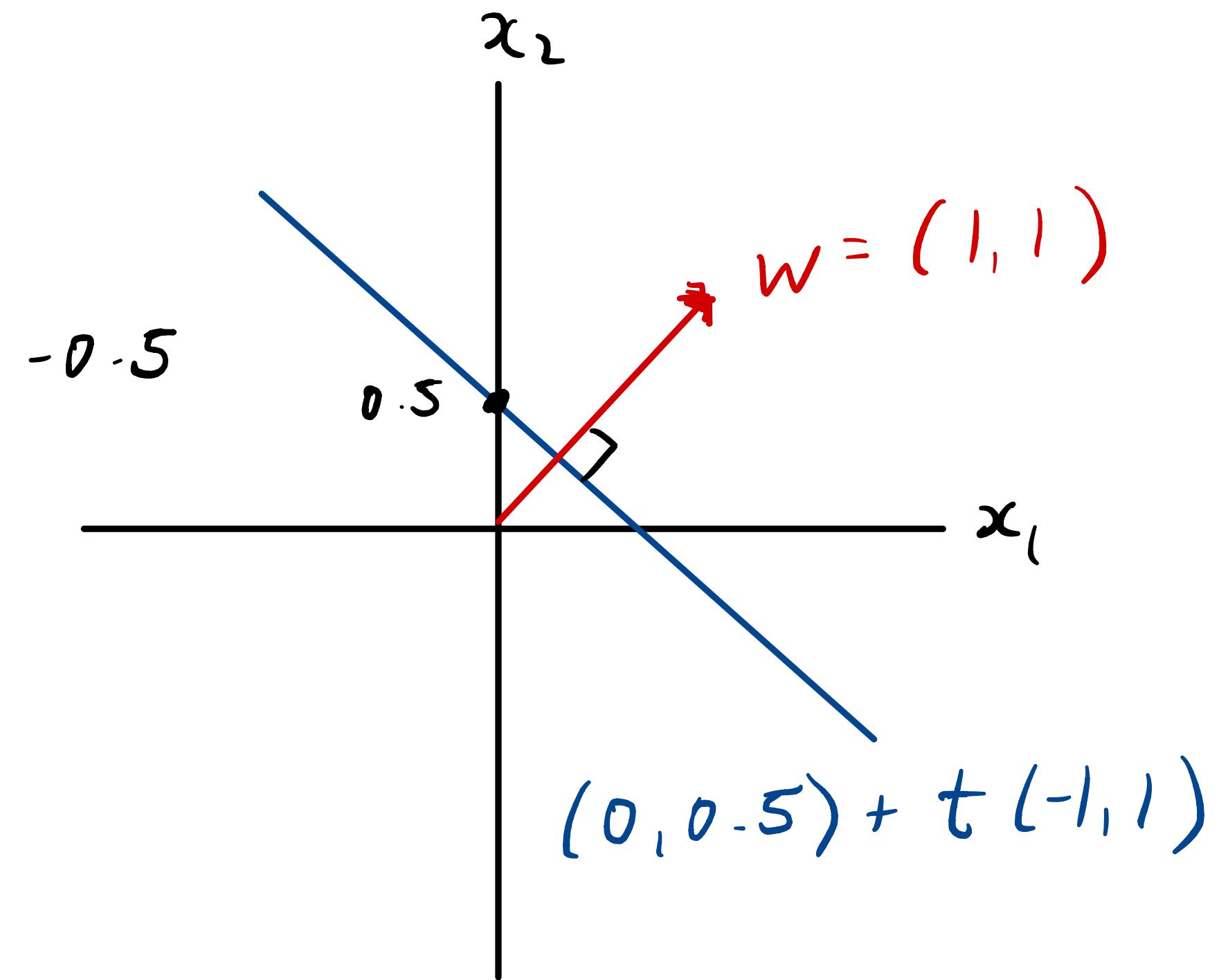
- Parameters \mathbf{w} define a linear decision boundary
- Observations on one side of boundary classified positive, other side negative



Explaining the linear decision boundary



$$w_0 = 0 \rightarrow w_0 = -0.5$$

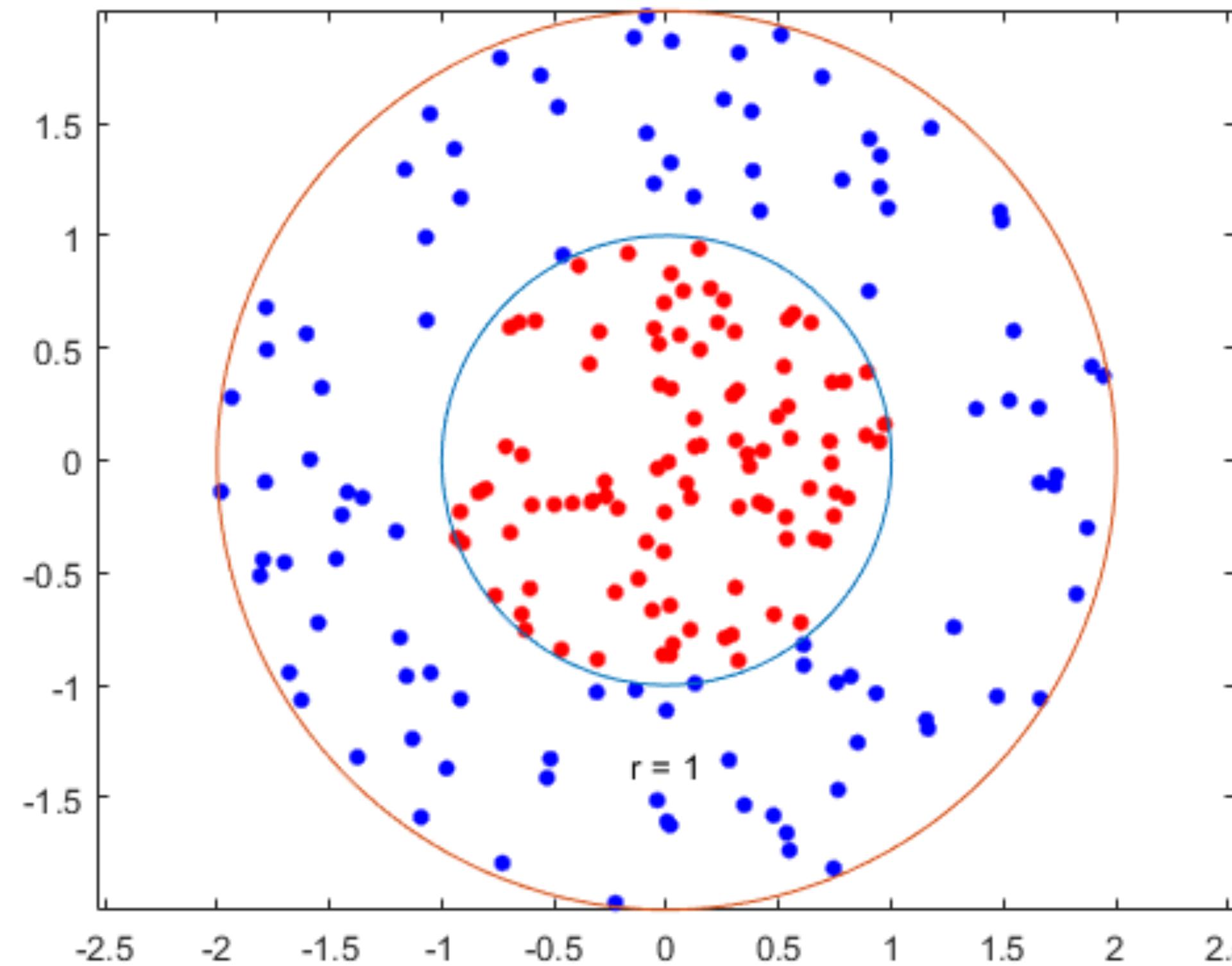


$$\begin{aligned} & \langle (x_1, x_2), (w_1, w_2) \rangle \\ &= \langle t(-1, 1), (1, 1) \rangle = t(0) = 0 \end{aligned}$$

$$\begin{aligned} & -0.5 + \langle (0.5, 0) + t(-1, 1), (1, 1) \rangle \\ &= -0.5 + 0.5 + t0 = 0 \end{aligned}$$

Back to Our Example

$$x_1^2 + x_2^2 = 1 \quad f(x) = x_1^2 + x_2^2 - 1$$



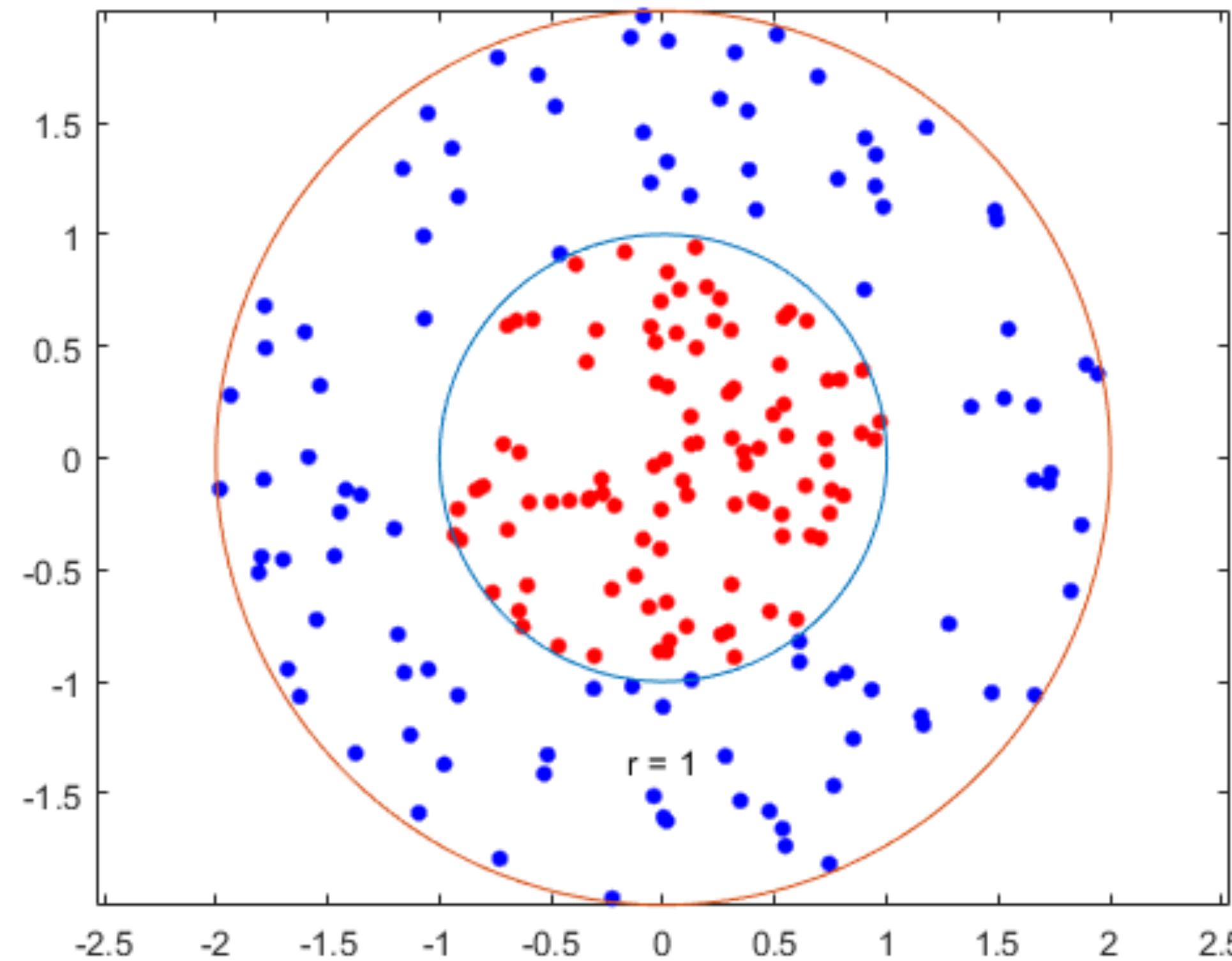
$$x_1 = x_2 = 0 \\ \implies f(x) = -1 < 0$$

$$x_1 = 2, x_2 = -1 \\ \implies f(x) = 4 + 1 - 1 = 4 > 0$$

How can we learn such an $f(x)$ where $f(x) > 0$ predicts positive and $f(x) < 0$ predicts negative?

Back to Our Example

$$x_1^2 + x_2^2 = 1 \quad f(x) = x_1^2 + x_2^2 - 1$$



$$x_1 = x_2 = 0 \\ \implies f(x) = -1 < 0$$

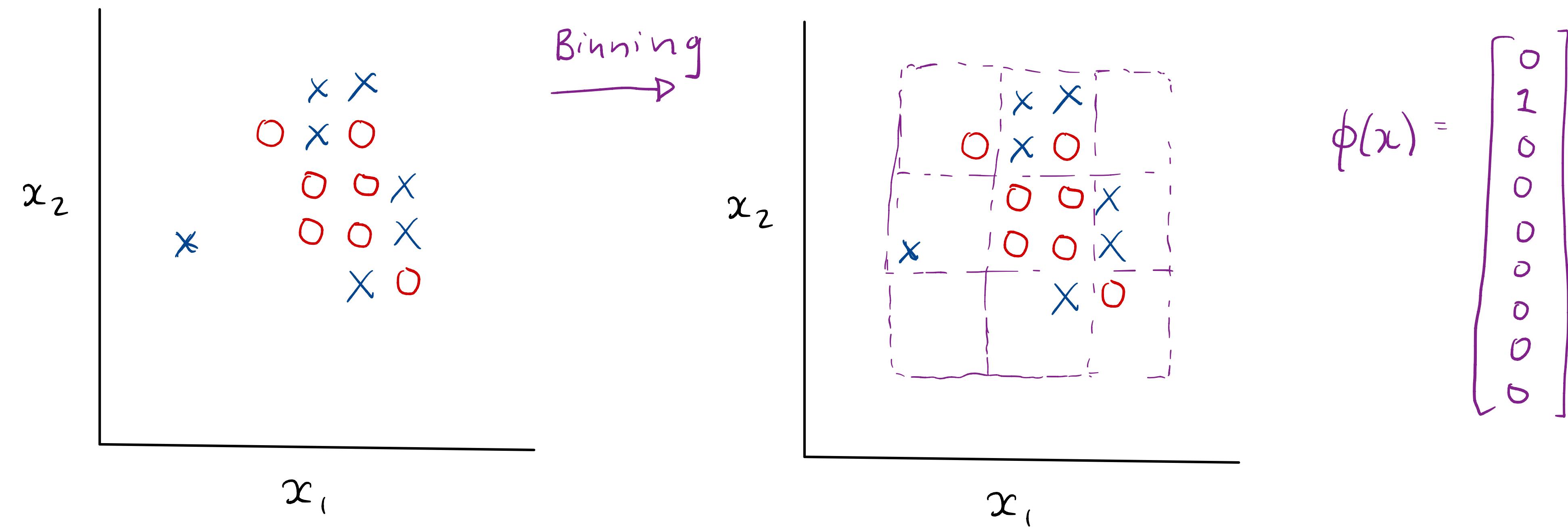
$$x_1 = 2, x_2 = -1 \\ \implies f(x) = 4 + 1 - 1 = 4 > 0$$

$$f(\mathbf{x}) = \phi(\mathbf{x})\mathbf{w} \quad \text{for } \phi(\mathbf{x}) = [1, x_1^2, x_2^2]$$

How can we learn such an $f(x)$ where $f(x) > 0$ predicts positive and $f(x) < 0$ predicts negative? Use logistic regression with new features

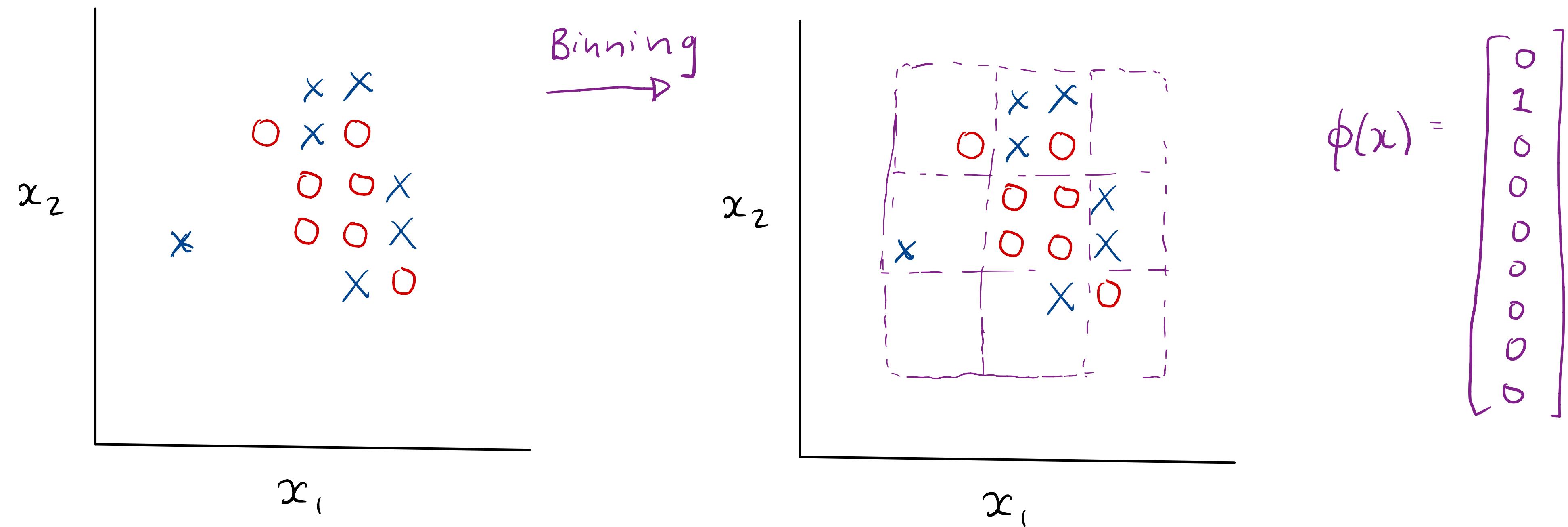
May have to project higher

- **Cover's Theorem:** a dataset that is not linearly separable is highly likely to be separable by projecting to a higher-dimensional space with a nonlinear transformation
- One easy way to see this: consider a fine grained binning



May have to project higher

- One easy way to see this: consider a fine grained binning



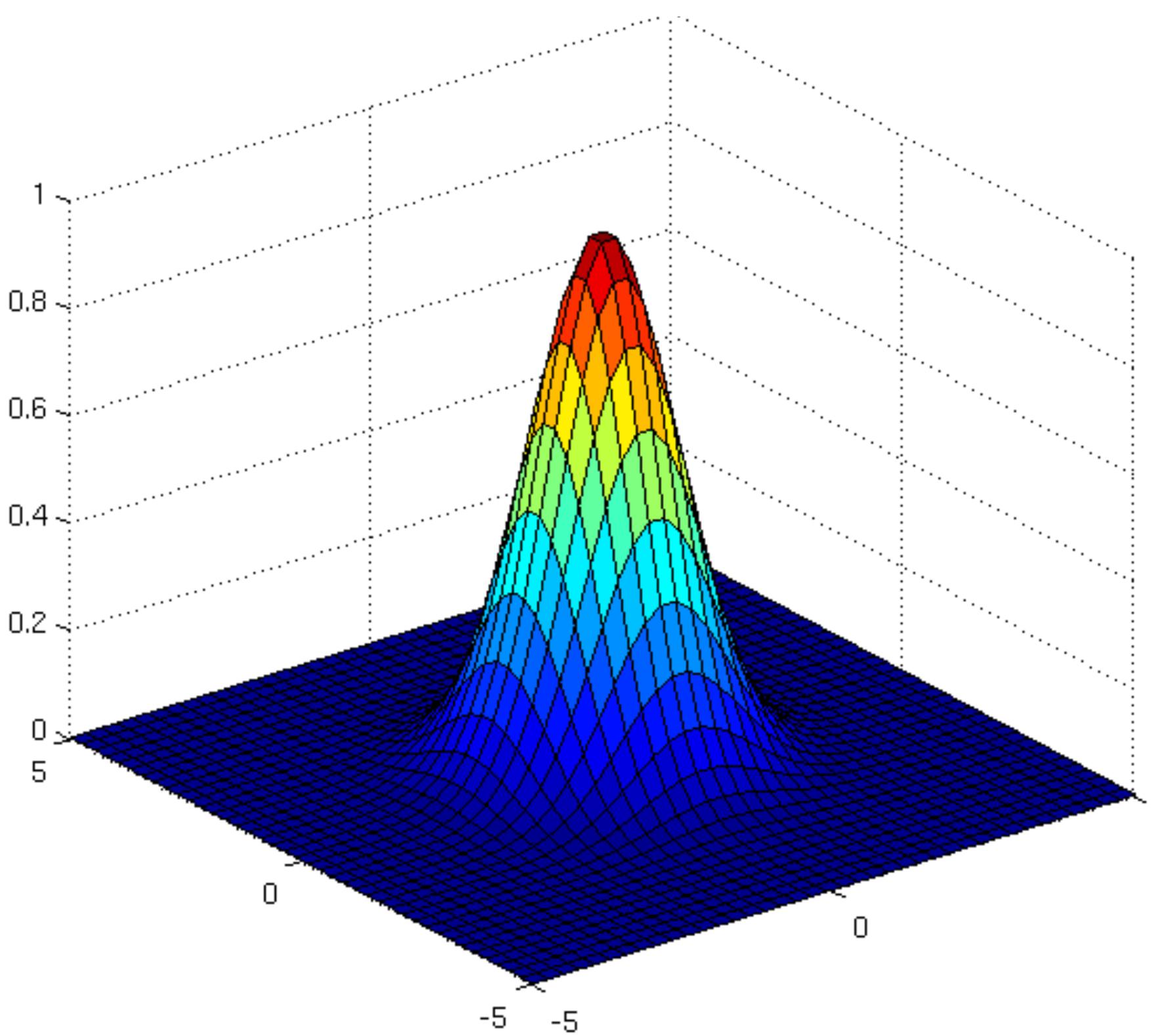
Exercise: What weights w are learned, assuming red circle is the negative class?

Recall: Classify as positive class if $\phi(x)w > 0$

This Theorem is One Motivation for Radial Basis Functions

$$k(\mathbf{x}, \mathbf{c}) = \exp\left(-\frac{1}{2\sigma^2} \|\mathbf{x} - \mathbf{c}\|_2^2\right)$$

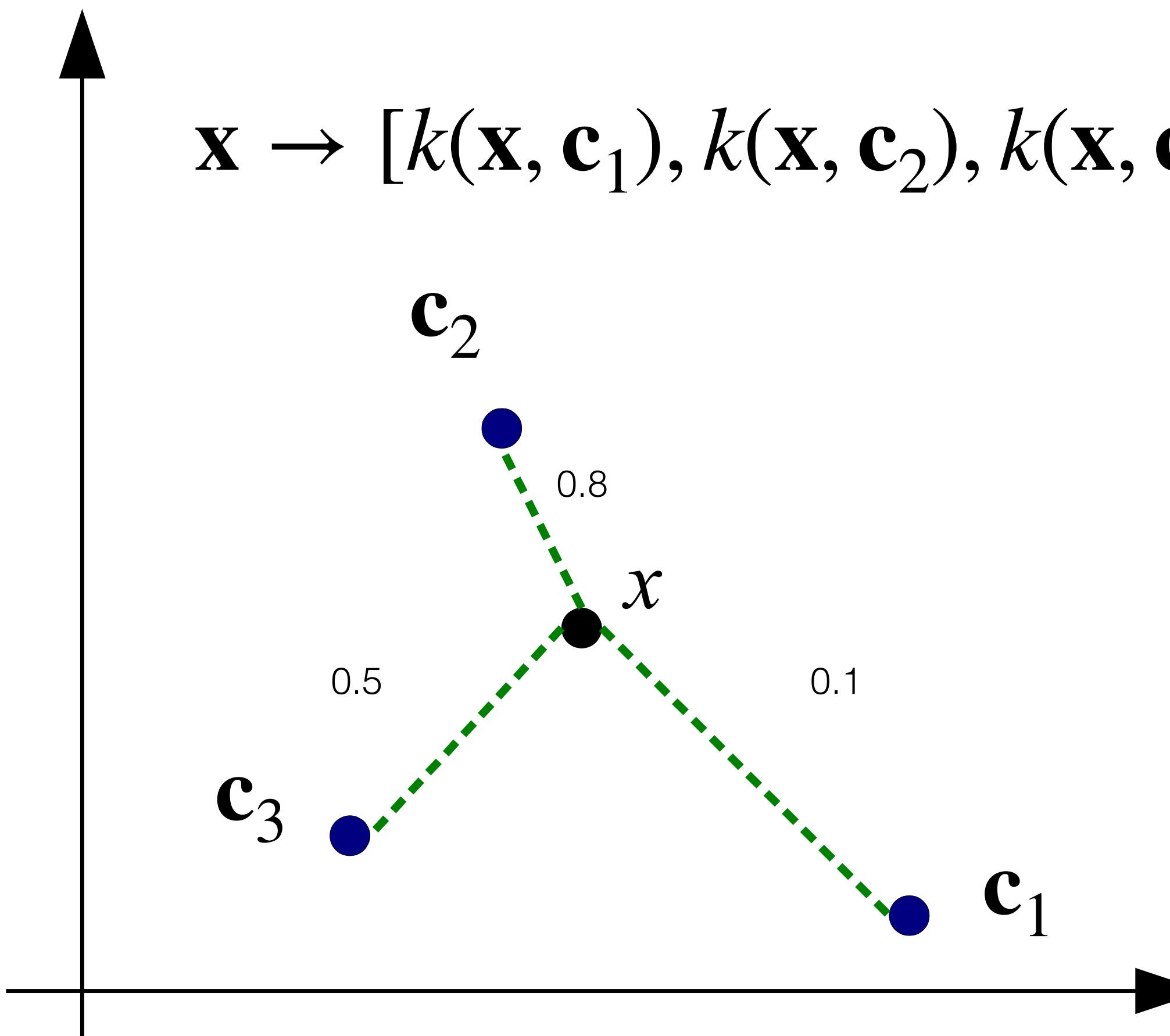
\mathbf{c} is a center or prototype



This Theorem is One Motivation for Radial Basis Functions

$$k(\mathbf{x}, \mathbf{c}) = \exp\left(-\frac{1}{2\sigma^2} \|\mathbf{x} - \mathbf{c}\|_2^2\right)$$

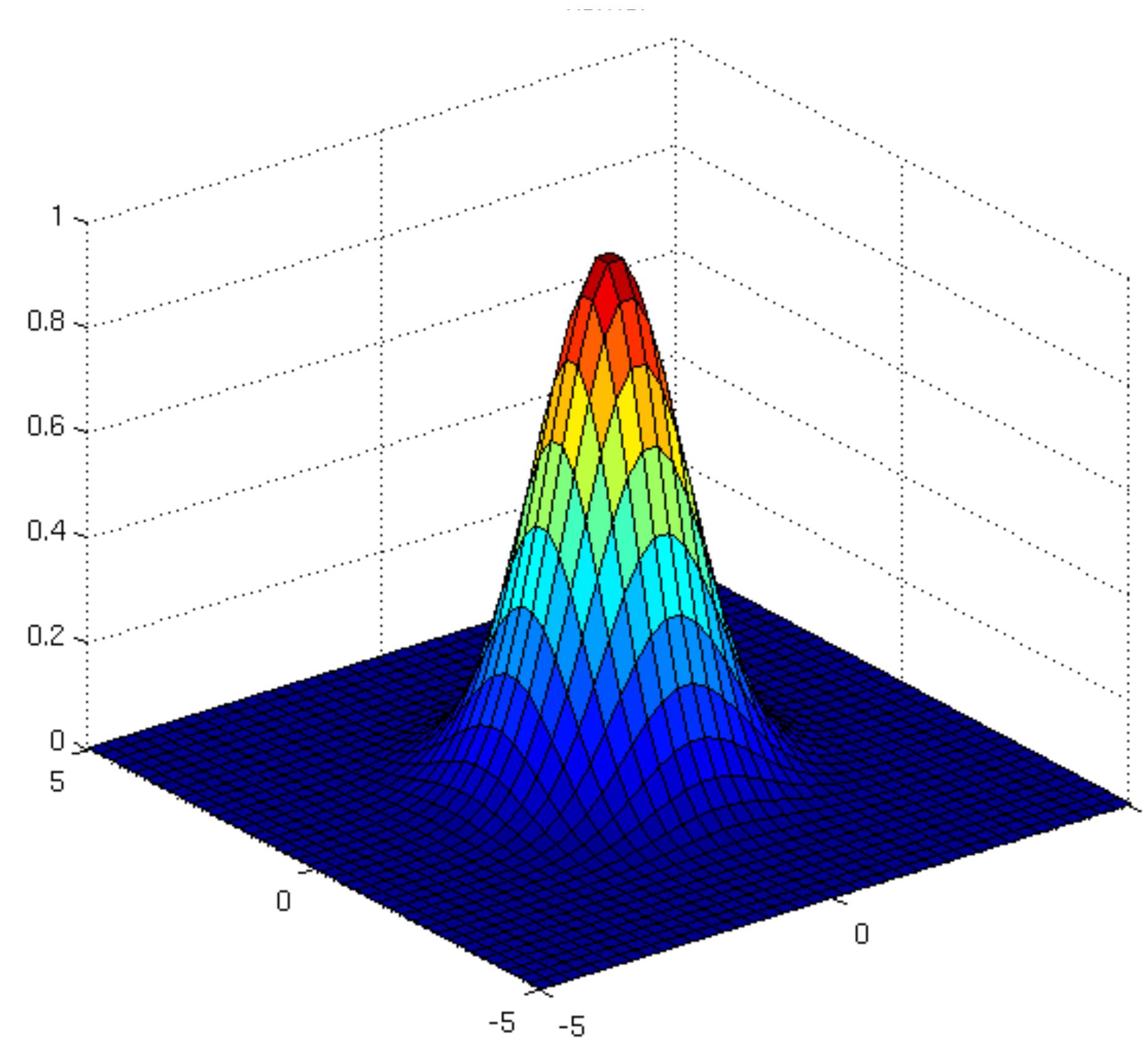
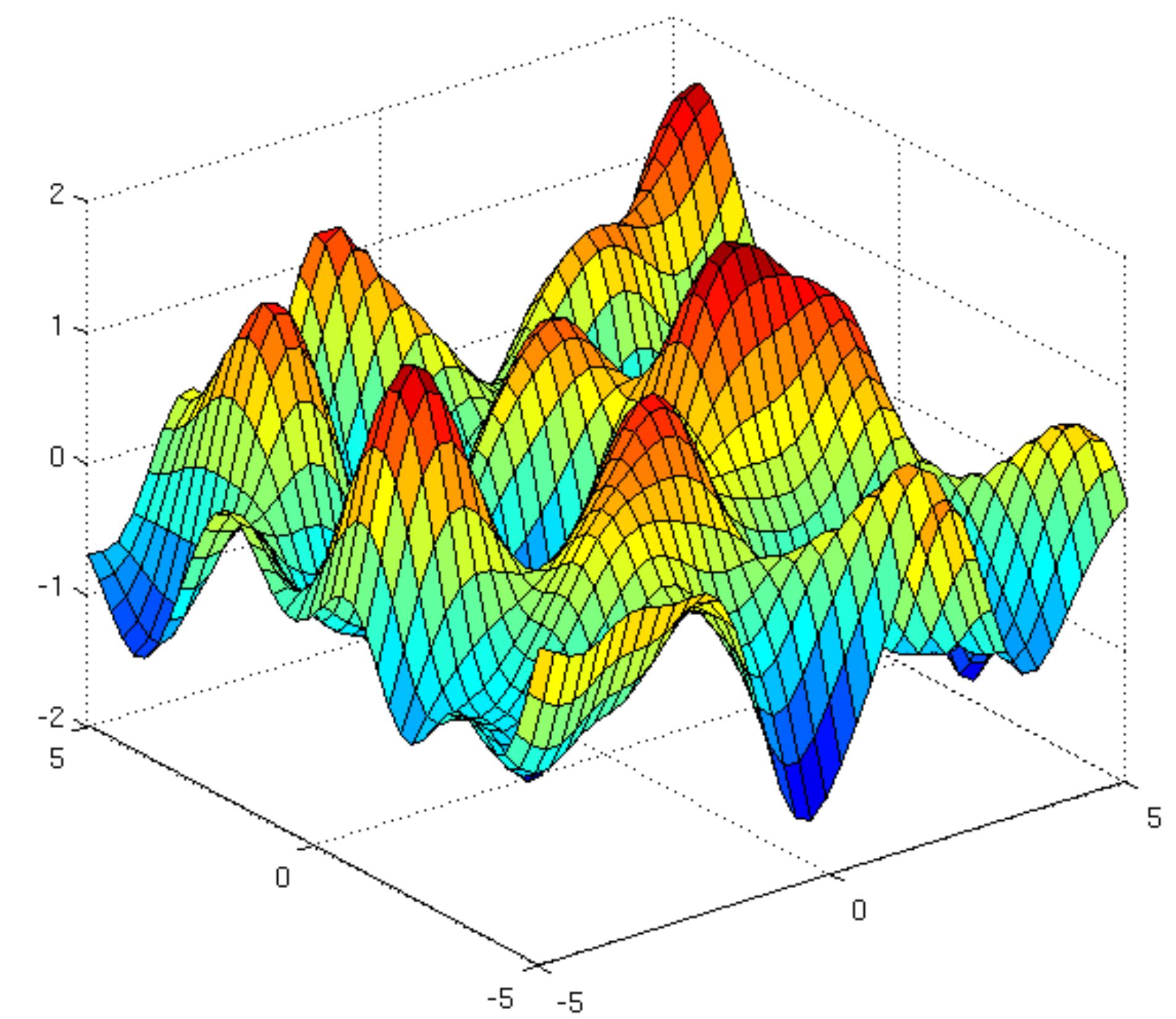
\mathbf{c}_j is a center or prototype



$$f(\mathbf{x}) = \sum_{j=1}^p k(\mathbf{x}, \mathbf{c}_j) w_j$$

Can learn a highly nonlinear function!

$$f(\mathbf{x}) = \sum_{j=1}^p k(\mathbf{x}, \mathbf{c}_j) w_j$$



Other (similarity) transforms

- Linear kernel: $k(\mathbf{x}, \mathbf{c}) = \langle \mathbf{x}, \mathbf{c} \rangle$
- Laplace kernel (Laplace distribution instead of Gaussian)

$$k(\mathbf{x}, \mathbf{c}) = \exp(-b\|\mathbf{x} - \mathbf{c}\|_1)$$

- Binning transformation

$$k(\mathbf{x}, \mathbf{c}) = \begin{cases} 1 & \text{if } \mathbf{x} \text{ in box around } \mathbf{c} \\ 0 & \text{else} \end{cases}$$

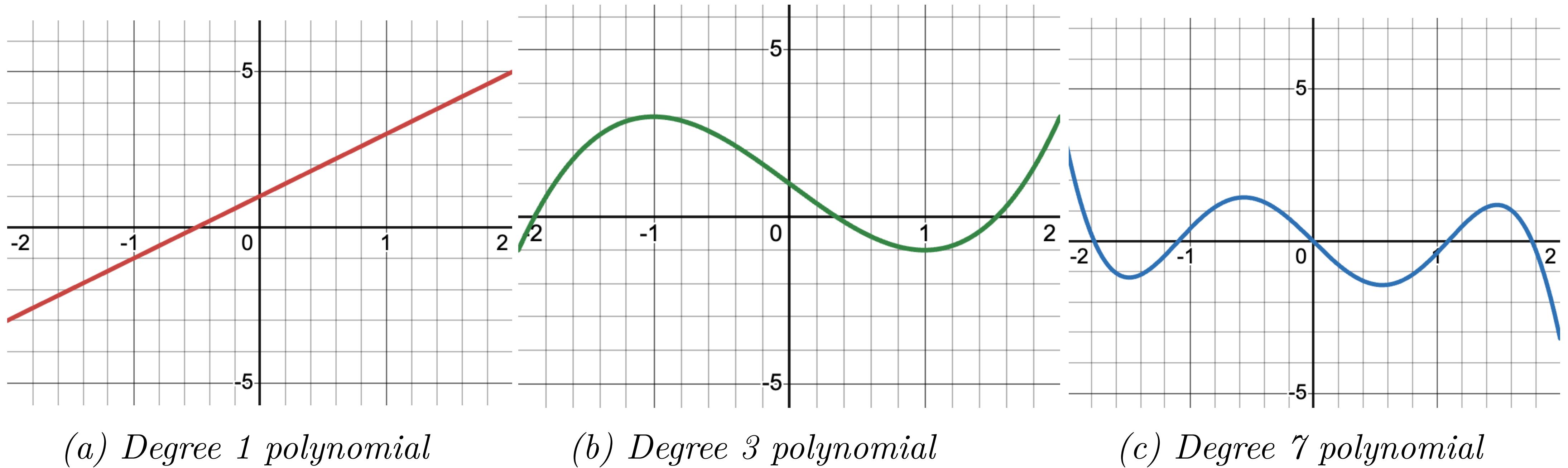
Picking prototypes

- Effectiveness of these methods depends heavily on how prototypes are picked
- One easy choice: **use all of your data**
 - Lots of features, really projected up!
- A more efficient choice: **subselect a representative** set of points
 - How? Many many algorithms, you will use l_1 regularization later
 - Choice in your first assignment: random subset

Contrasting to polynomials

- How do functions with RBF features differ from polynomial functions?

Recall polynomials functions



(a) Degree 1 polynomial

(b) Degree 3 polynomial

(c) Degree 7 polynomial

Figure 3.4: Visualizing functions using polynomial features, with increasing degree. (a) Linear function (degree 1 polynomial) $f(x) = 2x + 1$ with weights $w_0 = 1$, $w_1 = 2$ and feature vector $\mathbf{x} = [1 \ x]$. (b) Degree 3 polynomial $f(x) = x^3 - 3x + 1$ with weights $w_0 = 1$, $w_1 = -3$, $w_2 = 0$, $w_3 = 1$ and feature vector $\mathbf{x} = [1 \ x \ x^2 \ x^3]$. (c) Degree 7 polynomial $f(x) = 0.1x^7 - 1.5x^5 + 5x^3 - 4x$ with weights $w_0 = 0$, $w_1 = -4$, $w_2 = 0$, $w_3 = 5$, $w_4 = 0$, $w_5 = -1.5$, $w_6 = 0$, $w_7 = 0.1$ and feature vector $\mathbf{x} = [1 \ x \ x^2 \ x^3 \ x^4 \ x^5 \ x^6 \ x^7]$.

Contrasting RBFs features to polynomials features

- Generalize differently
 - RBF features are highly **localized**, polynomial features are **global**
 - If new point x far from observed prototypes, RBF features are all nearly zero, unlike polynomial features
 - Polynomial features can provide weird generalization outside of data (e.g., consider cubic or linear functions)

Contrasting RBFs features to polynomials features

- Generalize differently
 - RBF features are highly **localized**, polynomial features are **global**
- Scale differently
 - RBF features grow with number of prototypes, could leverage data lying on lower-dimensional manifold (lower effective dimension)
 - For degree q , polynomials grow as $\binom{d+q}{q}$. For smallish q ,
$$\binom{d+q}{q} \approx \frac{q^d}{d!}$$
. Grows quickly.

Generalization Error

- **Generalization error** of a function (model) f assuming data is generated from $p(\mathbf{x}, y)$ is the **expected cost** $\mathbb{E}[\text{cost}(f(\mathbf{X}), Y)]$
-

Estimating generalization error

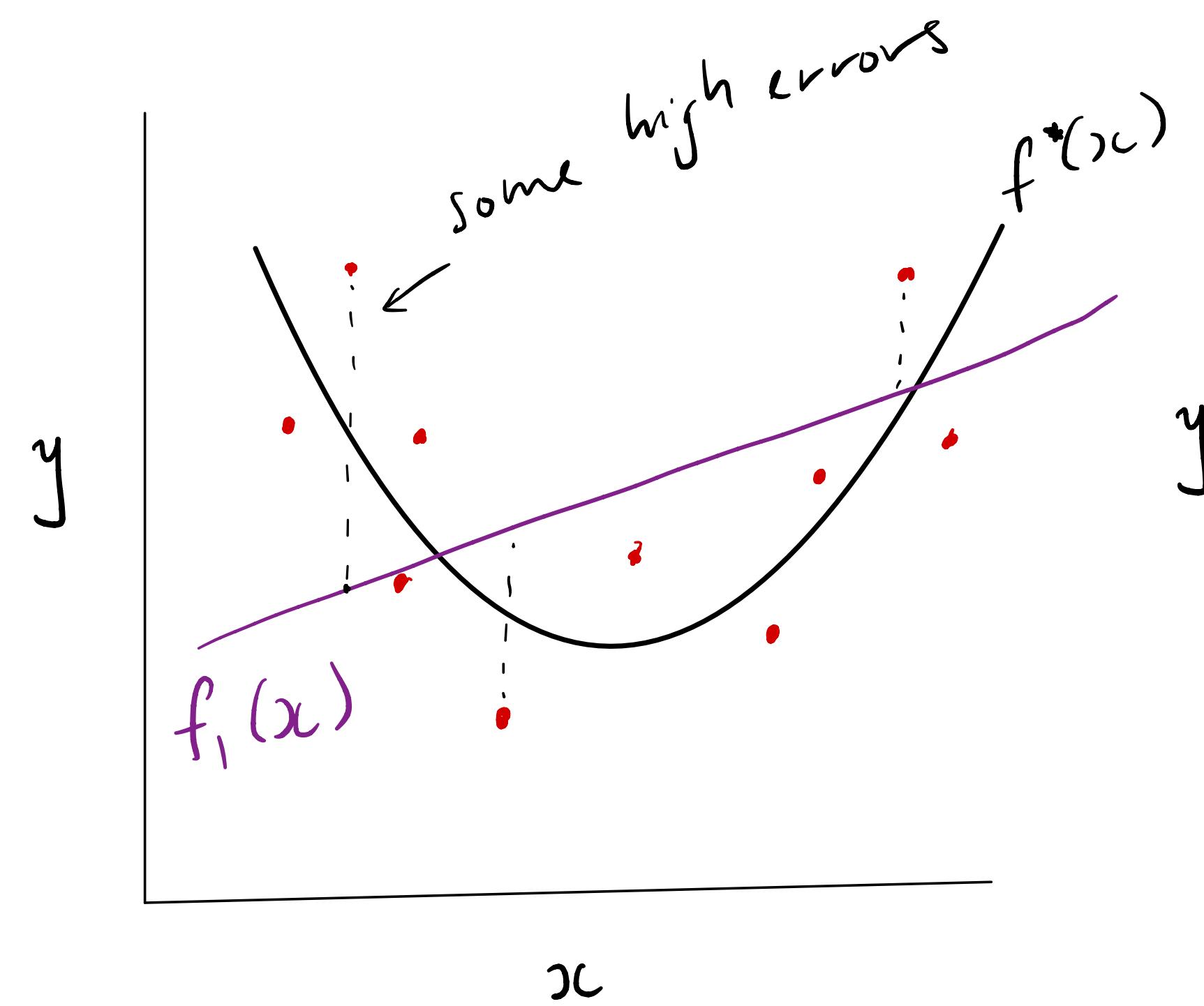
- Split dataset into training set of n samples and test set of k samples
 - e.g., for 10k samples, use $n = 9000$ and $k = 1000$
- $GE(f) \approx \text{Test-Error}(f) = \frac{1}{k} \sum_{i=n+1}^{n+k} \text{cost}(f(\mathbf{x}_i), y_i)$

Estimating generalization error

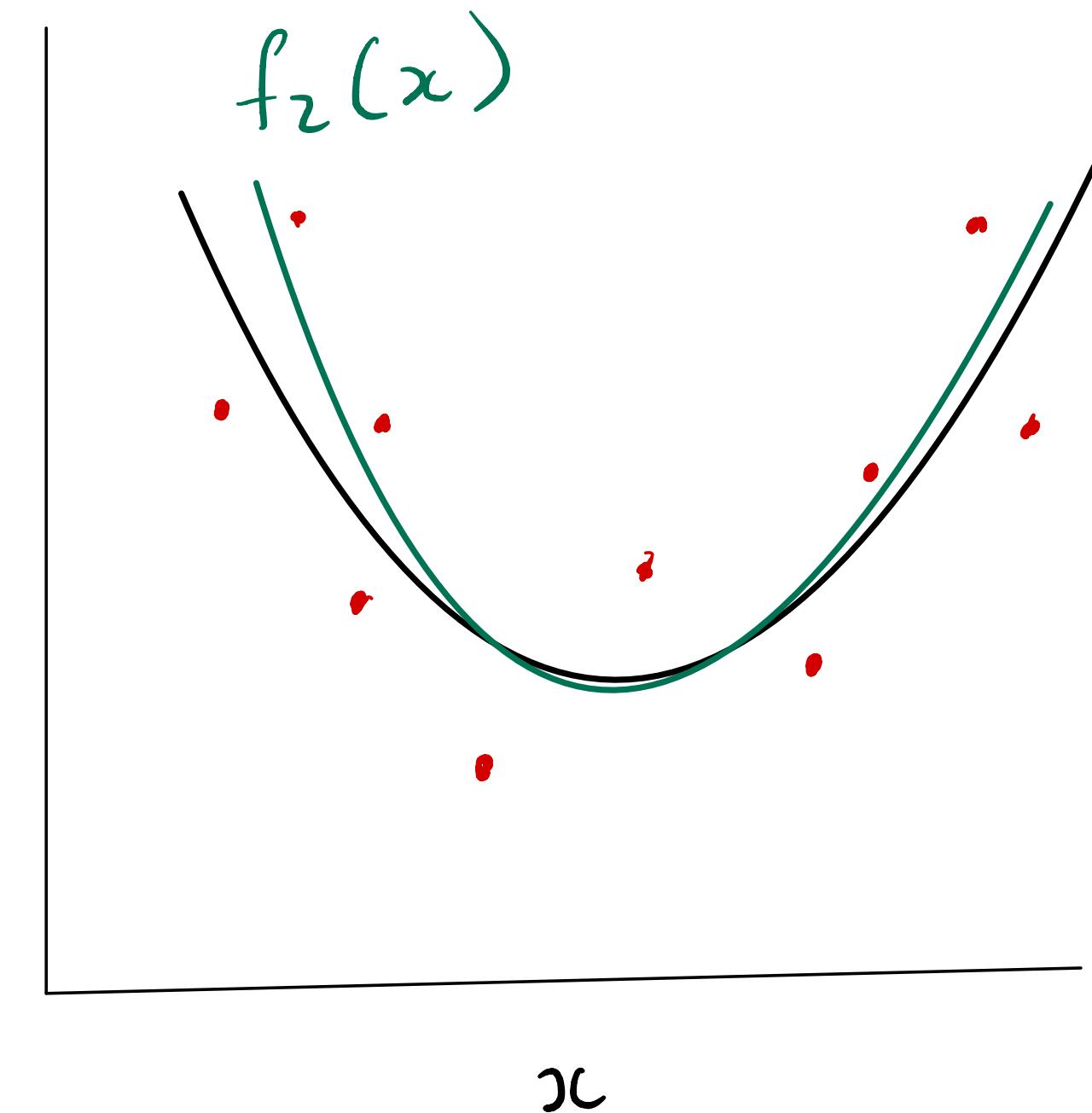
- Split dataset into training set of n samples and test set of k samples
 - e.g., for 10k samples, use $n = 9000$ and $k = 1000$
- $GE(f) \approx \text{Test-Error}(f) = \frac{1}{k} \sum_{i=n+1}^{n+k} \text{cost}(f(\mathbf{x}_i), y_i)$
- Can also obtain confidence interval, such as 90% Student's t CI, e.g
$$[\text{Test-Error}(f) - \frac{1.646}{\sqrt{1000}} \hat{\sigma}, \text{Test-Error}(f) + \frac{1.646}{\sqrt{1000}} \hat{\sigma}]$$
- **Question:** For a 90% Gaussian CI, we would have 1.645. Why do we use 1.646 instead of 1.645?

How do we know we did a good job?

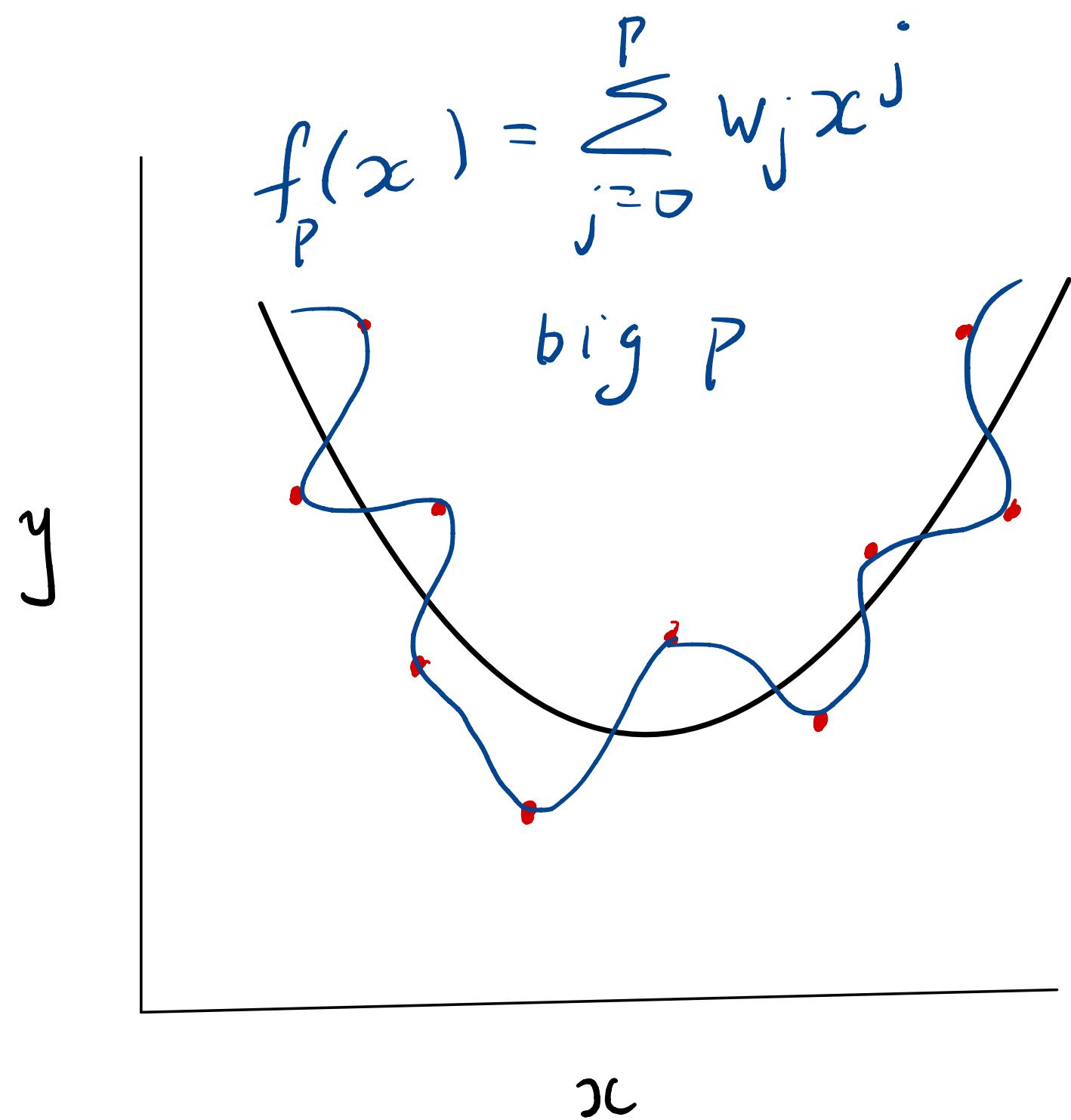
Some possible outcomes



underfitting



good fit



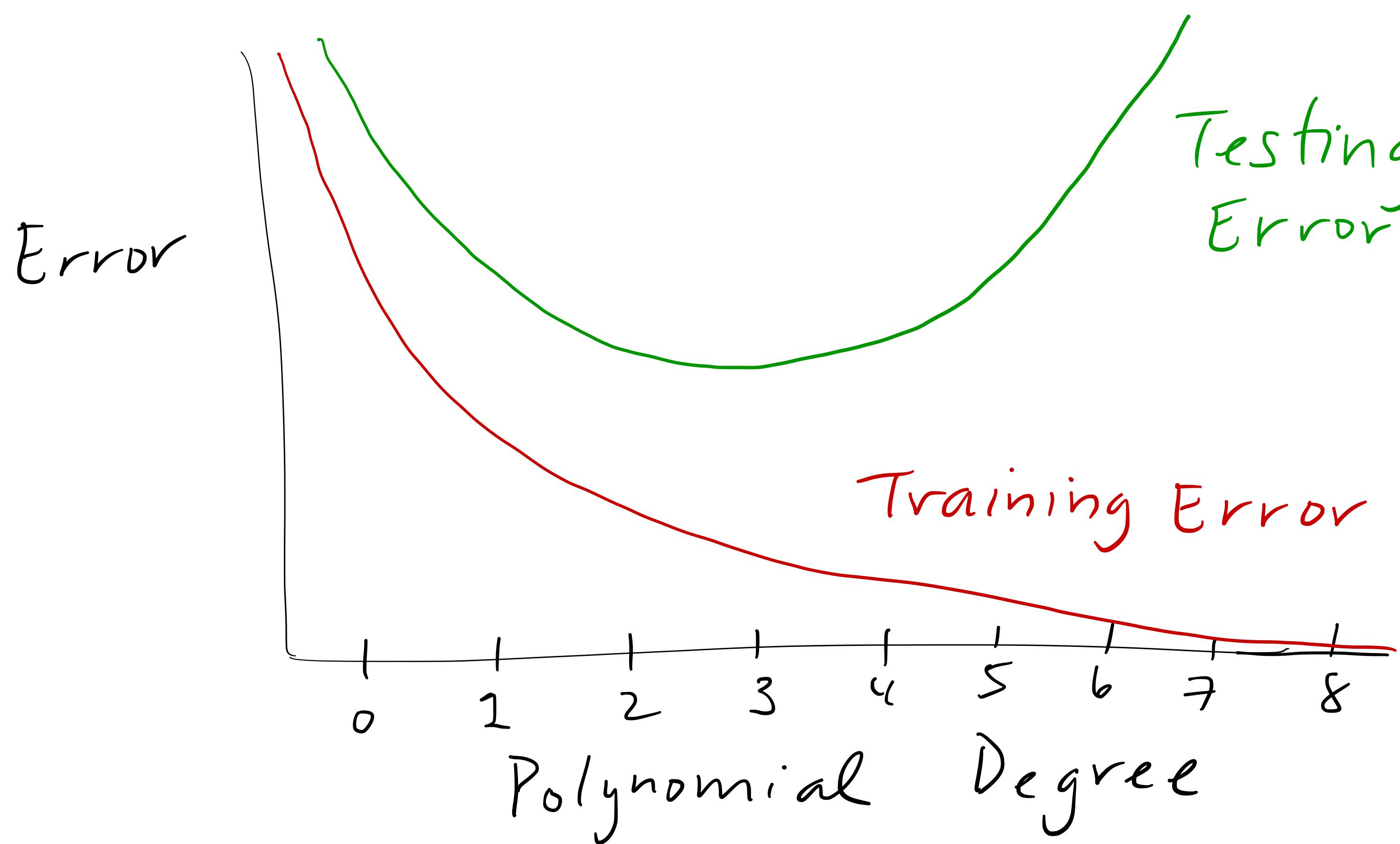
overfitting

Question: what about an RBF representation with all the data as prototypes?

How do we know we did a good job?

- Signs of overfitting:
 - see an increase in test error when increasing model complexity

Hypothetical example of behavior with increasing model complexity



At what degree q do we see overfitting?

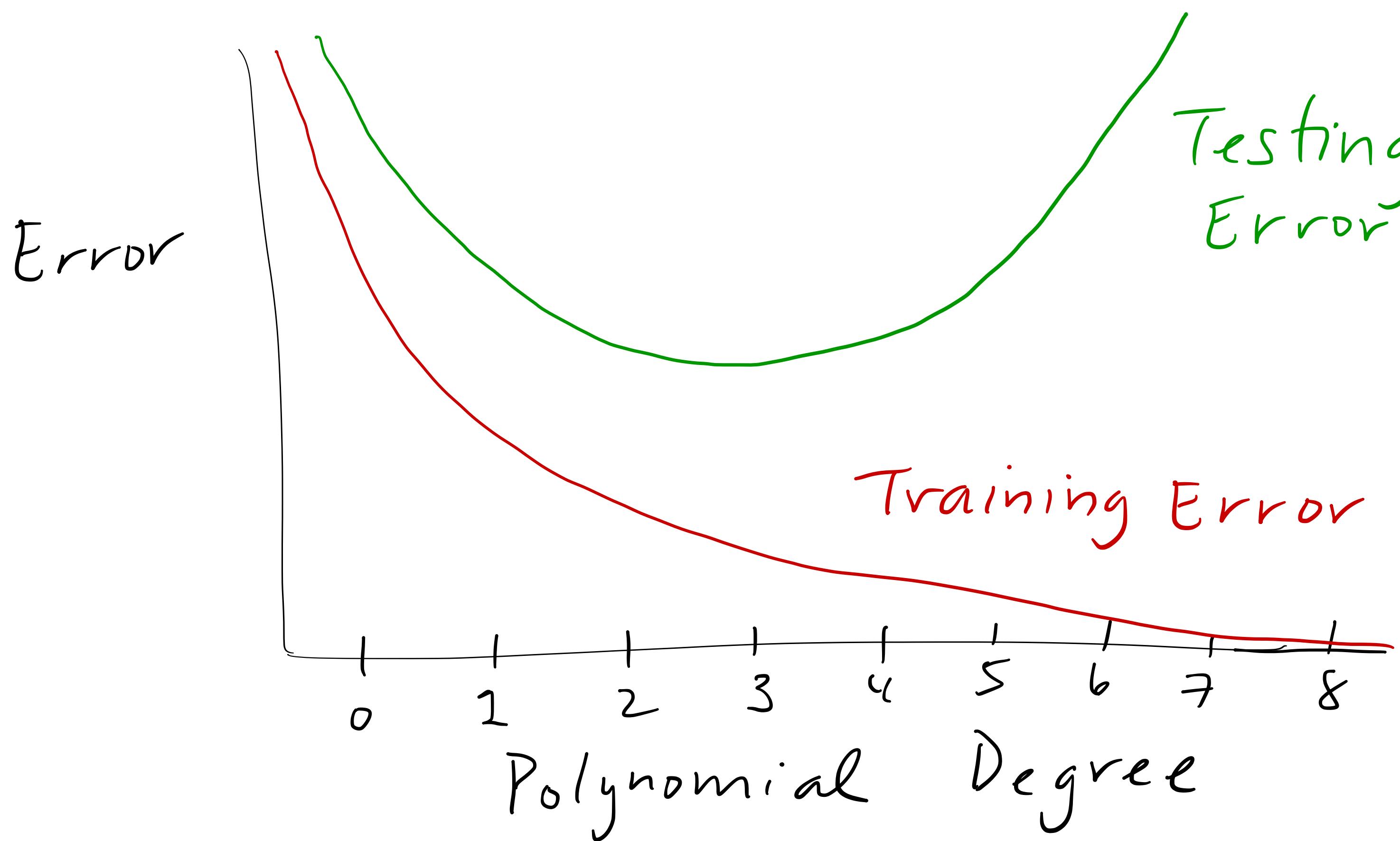
Why does training error always decrease?

Are there settings with polynomials where training error might increase?

How do we know we did a good job?

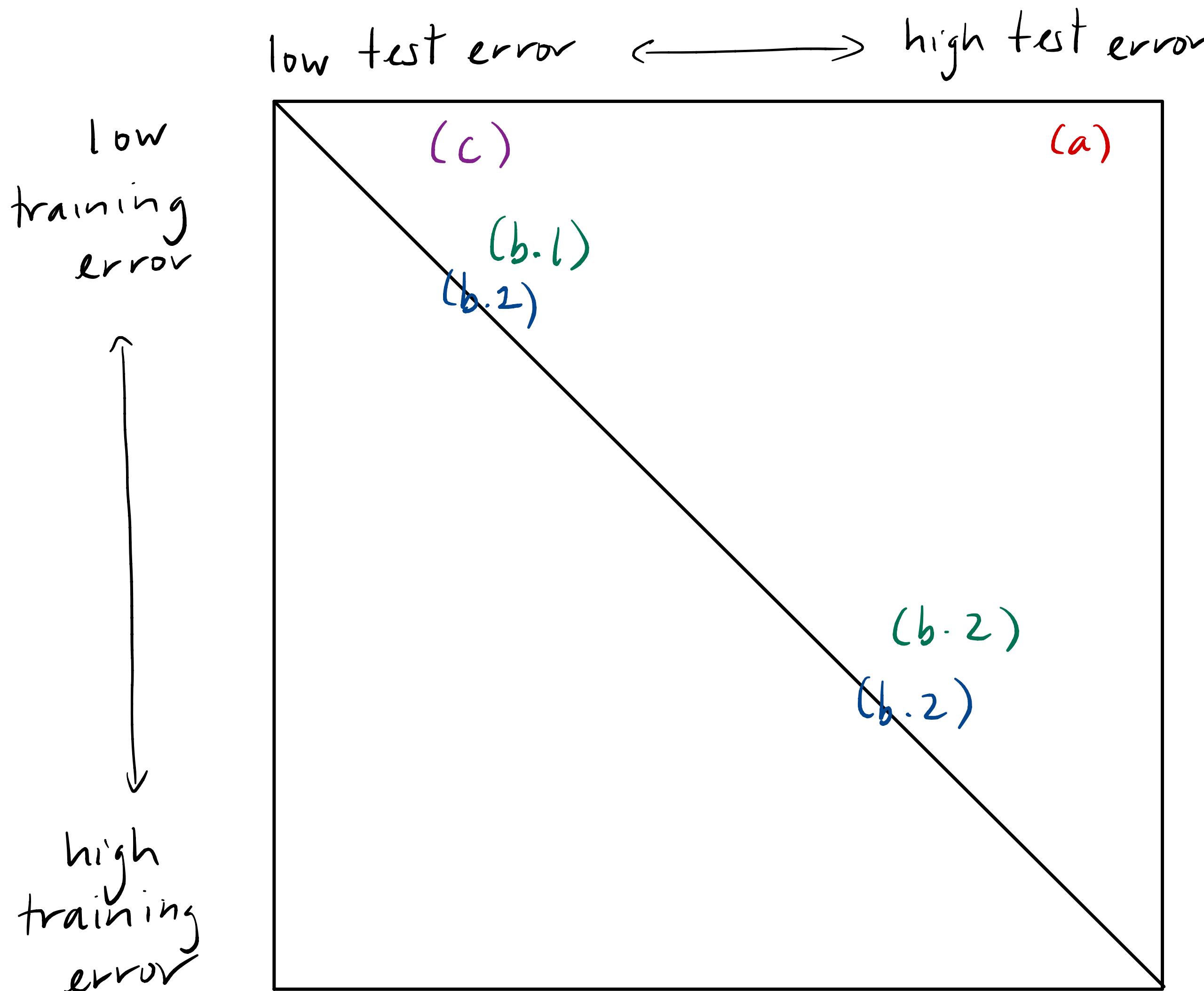
- Signs of overfitting:
 - see an increase in test error when increasing model complexity
 - high magnitude weights (see Example 6 in the notes and when we discuss bias-variance for linear regression)
- Signs of underfitting:
 - training and test error are similarly high, and can decrease both with increased model complexity

Hypothetical example of behavior with increasing model complexity



At what degree q do we see underfitting?

Contrasting different choices



(a) η small, \mathcal{F} complex
(e.g. \mathcal{F} = 8th degree polynomials)

(b) η small, \mathcal{F} simple (e.g. linear)

Case 1: f_{true} simple

Case 2: f_{true} complex

(c) η big, \mathcal{F} complex

(d) η big, \mathcal{F} simple

Case 1: f_{true} simple

Case 2: f_{true} complex

Move to whiteboard

- To discuss bias and variance
- Can characterize in closed-form for linear regression