
Data Representations
CMPUT 467/567: Machine Learning II 

Projecting to Higher Dimensions Allows for Separability

• Consider this simple example where increasing from 2 to 3 dimensions (in a
careful way) allows us to obtain linear separability

Brief Reminder: Linear Separability
• Logistic regression learns a hyperplane that attempts to separate points

• Observations on one side of decision boundary classified positive, other
side negative

• A dataset is linearly separable if there exists a linear decision boundary that
perfectly classifies it

(,)x1 1y

(,)xi yi(,)x2 2y

w w w x0 1 2 2+ +x1 0=

x1

x2

+
+

+

+

+

+

+

+ +
Is this dataset linearly separable?

Defining the decision boundary
• Parameters define a linear decision boundary

• Observations on one side of boundary classified positive, other side negative

w

(,)x1 1y

(,)xi yi(,)x2 2y

w w w x0 1 2 2+ +x1 0=

x1

x2

+
+

+

+

+

+

+

+ +

p(y = 1 |x) = σ(ϕ(x)w) > 0.5 if ϕ(x)w > 0

ϕ(x) = [1,x1, x2]

p(y = 0 |x) = 1 − σ(ϕ(x)w) > 0.5 if ϕ(x)w < 0

Explaining the linear decision boundary
XD X2

⇒
W=(1,1)

Wo=0→wo= -0.5
*
W=(1,1)

0.5 •

y

Xp 24

-11-1,1)
(0,0-5)+(-1-1,1)

⟨(x1, x2), (w1, w2)⟩
= ⟨t(−1,1), (1,1)⟩ = t(0) = 0

−0.5+⟨(0.5,0) + t(−1,1), (1,1)⟩
= − 0.5 + 0.5 + t0 = 0

Back to Our Example

How can we learn such an f(x) where f(x) > 0 predicts positive and  
f(x) < 0 predicts negative?

x1 = x2 = 0

=) f(x) = �1 < 0

x1 = 2, x2 = �1

=) f(x) = 4 + 1� 1 = 4 > 0

f(x) = x2
1 + x2

2 � 1x2
1 + x2

2 = 1

Back to Our Example

How can we learn such an f(x) where f(x) > 0 predicts positive and
f(x) < 0 predicts negative? Use logistic regression with new features

x1 = x2 = 0

=) f(x) = �1 < 0

x1 = 2, x2 = �1

=) f(x) = 4 + 1� 1 = 4 > 0

f(x) = x2
1 + x2

2 � 1x2
1 + x2

2 = 1

f(x) = ϕ(x)w for ϕ(x) = [1,x2
1 , x2

2]

I
& S

#
&
-

&

I
O

5
&

0
0
X
X

4
0
0
0
X

0
X
X

IJ
I

-
-
-
-
-

ji
-
y

!I

-
-
-
-
-

G

·
I &
& & S
Il

& 0
0
0
0
0
0
0
4
0
-

May have to project higher
• Cover’s Theorem: a dataset that is not linearly separable is highly likely to be

separable by projecting to a higher-dimensional space with a nonlinear
transformation

• One easy way to see this: consider a fine grained binning

I
& S

#
&
-

&

I
O

5
&

0
0
X
X

4
0
0
0
X

0
X
X

IJ
I

-
-
-
-
-

ji
-
y

!I

-
-
-
-
-

G

·
I &
& & S
Il

& 0
0
0
0
0
0
0
4
0
-

May have to project higher
• One easy way to see this: consider a fine grained binning

Exercise: What weights w are learned, assuming red circle is the negative class?

Recall: Classify as positive class if ϕ(x)w > 0

This Theorem is One Motivation for Radial Basis Functions

k(x, c) = exp(− 1
2σ2 ∥x − c∥2

2) is a center or prototypec

x → [K (x , x
1
) K (x , x

2
) K (x , x

3
)] '

 = [5 2 3] '

x

x
2

x
3 x

1

5

3

2

0.1

0.8

0.5

.1 .8 .5

f(x) =
p

∑
j=1

k(x, cj)wj

This Theorem is One Motivation for Radial Basis Functions

k(x, c) = exp(− 1
2σ2 ∥x − c∥2

2)
x → [k(x, c1), k(x, c2), k(x, c3)] = [0.1,0.8,0.5]

 is a center or prototypecj

c2

c3
c1

Can learn a highly nonlinear function!
f(x) =

p

∑
j=1

k(x, cj)wj

Other (similarity) transforms

• Linear kernel:  

• Laplace kernel (Laplace distribution instead of Gaussian) 

• Binning transformation 

k(x, c) = ⟨x, c⟩

s(x, c) =

⇢
1 if x in box around c
0 else

k(x, c) = exp(�bkx� ck1)

k

Picking prototypes

• Effectiveness of these methods depends heavily on how protoypes are picked

• One easy choice: use all of your data

• Lots of features, really projected up!

• A more efficient choice: subselect a representative set of points

• How? Many many algorithms, you will use l1 regularization later

• Choice in your first assignment: random subset 

Contrasting to polynomials

• How do functions with RBF features differ from polynomial functions?

Recall polynomials functionsCHAPTER 3. NONLINEAR FIXED REPRESENTATIONS 40

(a) Degree 1 polynomial (b) Degree 3 polynomial (c) Degree 7 polynomial

Figure 3.4: Visualizing functions using polynomial features, with increasing degree. (a)
Linear function (degree 1 polynomial) f(x) = 2x + 1 with weights w0 = 1, w1 = 2 and
feature vector x = [1 x]. (b) Degree 3 polynomial f(x) = x3

→ 3x + 1 with weights w0 = 1,
w1 = →3, w2 = 0, w3 = 1 and feature vector x = [1 x x2 x3]. (c) Degree 7 polynomial
f(x) = 0.1x7

→ 1.5x5 + 5x3
→ 4x with weights w0 = 0, w1 = →4, w2 = 0, w3 = 5, w4 = 0,

w5 = →1.5, w6 = 0, w7 = 0.1 and feature vector x = [1 x x2 x3 x4 x5 x6 x7].

We know the number of polynomial features is given by choosing q items from the set of
possible d+q,

(
d+q

q

)
. For example, if d = 10 and q = 2, then we have p =

(10+2
2

)
=

(12
2

)
= 66.

Exercise 12: Once the input x ↑ Rd has d > 1, the polynomial features include
cross-products, like x1x2 and x3

2x4x5, etc. For d = 4, what would all the features be
for a degree 4 polynomial?

3.2 Radial Basis Function Networks

Radial basis functions (RBFs) involve using a distance to a particular point or center. In
this section, we provide nonlinearity, just like polynomial transformations. We first explain
what they are and then explain the types of functions they allow us to represent.

As usual, assume we are given data set D = {(xi, yi)}n

i=1. We start by picking p points
in X to serve as the centers. We denote those centers as c1, c2, . . . , cp ↑ X . These can be
selected in a variety of ways, with some of the most common including

1. to uniformly cover X

2. selected as a subset from D or

3. computed using some clustering technique on the data, such as k-means clustering or
k-mediods clustering.

The new representation consists of p features ω1(x), ω2(x), . . . , ωp(x) with ωj(x) ↑ R

ωj(x) def= exp
(
→

1
2ω2 ↓x → cj↓

2
2
)

,

where ε gives the width of the RBF, which look like Gaussians just without the normalizer
in-front that provides a valid pdf, depicted in Figure 3.5. The resulting features are between

Contrasting RBFs features to polynomials features
• Generalize differently

• RBF features are highly localized, polynomial features are global

• If new point far from observed prototypes, RBF features are all nearly
zero, unlike polynomial features

• Polynomial features can provide weird generalization outside of data (e.g.,
consider cubic or linear functions)

x

Contrasting RBFs features to polynomials features
• Generalize differently

• RBF features are highly localized, polynomial features are global

• Scale differently

• RBF features grow with number of prototypes, could leverage data lying on
lower-dimensional manifold (lower effective dimension)

• For degree , polynomials grow as . For smallish ,

. Grows quickly.

q (d + q
q) q

(d + q
q) ≈

qd

d!

Generalization Error

• Generalization error of a function (model) assuming data is generated from
 is the expected cost

•

f
p(x, y) 𝔼[cost(f(X), Y)]

Estimating generalization error
• Split dataset into training set of n samples and test set of k samples

• e.g., for 10k samples, use n = 9000 and k = 1000

• GE(f) ≈ Test-Error(f) =
1
k

n+k

∑
i=n+1

cost(f(xi), yi)

Estimating generalization error
• Split dataset into training set of n samples and test set of k samples

• e.g., for 10k samples, use n = 9000 and k = 1000

•

• Can also obtain confidence interval, such as 90% Student’s t CI, e.g 

• Question: For a 90% Gaussian CI, we would have 1.645. Why do we use 1.646
instead of 1.645?

GE(f) ≈ Test-Error(f) =
1
k

n+k

∑
i=n+1

cost(f(xi), yi)

[Test-Error(f) −
1.646

1000
̂σ, Test-Error(f) +

1.646

1000
̂σ]

How do we know we did a good job?

Some possible outcomes
& s
É
:-
.
.

.

.
.

.
.

• •
t

9
I

→
•

-
-
-
-

.

§
+

5
.

S
-

y
s E

.

.

÷ .
s

1
- → ±

↳

s
o

1
-

↳
•
a

G
•

•

a
F

s
-

e

→
•

+
D
o

•

•

B
-

e.
.

?
'

#
¥

¥
I

&
5

•
0 ¥
.

↳
< ÷

Question: what about an RBF representation with all the data as prototypes?

How do we know we did a good job?

• Signs of overfitting:

• see an increase in test error when increasing model complexity

Hypothetical example of behavior with
increasing model complexity

Err§Trainiq%
It'sPolynomial Degree

At what degree q do we 
see overfitting?

Why does training error 
always decrease? 
 
Are there settings with 
polynomials where  
training error  
might increase?

How do we know we did a good job?

• Signs of overfitting:

• see an increase in test error when increasing model complexity

• high magnitude weights (see Example 6 in the notes and when we discuss
bias-variance for linear regression)

• Signs of underfitting:

• training and test error are similarly high, and can decrease both with
increased model complexity

Hypothetical example of behavior with
increasing model complexity

Err§Trainiq%
It'sPolynomial Degree

At what degree q do we 
see underfitting?

Contrasting different choices
·"

S 5
&
-

&
J

S
&

&

E
& * &

&

/
↓

&

&

T
G

E
Y

S
&
- -i

&
&

&

C
&

-
3
&
&

I
S

&

I
=

5
s
#

-
-

&
&

-

C
-

*
-

5
↳
5

⑤
&

J
T

&
E
&
S

&
S S
s
G

Move to whiteboard

• To discuss bias and variance

• Can characterize in closed-form for linear regression

