
Chapter 7: Evaluating  
Generalization Performance

CMPUT 467: Machine Learning II 

Generalization Error

• Generalization error (GE) for a a function is the expected cost

• where expected over RVs sampled from joint
distribution

• Or equivalently and where

• Cost depends on the problem setting

f

GE(f) = 𝔼[cost(f(X), Y)] X, Y
p(x, y)

x ∼ px y ∼ p(y |x) p(x, y) = p(y |x)px(x)

Some costs for regression

•

• Exercise: write explicitly using or
 and where

cost(̂y, y) = (̂y − y)2

GE(f) = 𝔼[cost(f(X), Y)] (x, y) ∼ p
x ∼ px y ∼ p(y |x) p(x, y) = p(y |x)px(x)

Exercise: GE for squared error

• Write explicitly using
or and where

•

•

GE(f) = 𝔼[cost(f(X), Y)] = 𝔼[(f(X) − Y)2] (x, y) ∼ p
x ∼ px y ∼ p(y |x) p(x, y) = p(y |x)px(x)

GE(f) = 𝔼[cost(f(X), Y)] = ∫ p(x, y)cost(f(x), y)dxdy

= ∫ p(x, y)(f(x) − y)2dxdy = ∫ px(x)∫ p(y |x)(f(x) − y)2dydx

Some costs for regression

• (squared error)

• (absolute error)

• (absolute percentage error)

• Multivariate version per dimension

• e.g.,

cost(̂y, y) = (̂y − y)2

cost(̂y, y) = | ̂y − y |

cost(̂y, y) =
| ̂y − y |

|y |

cost(ŷ, y) =
m

∑
k=1

| ̂yk − yk |

Some costs for classification

• (0-1 cost)

• Exercise: write explicitly using or
 and where

cost(̂y, y) = {0 if ̂y = y,
1 if ̂y ≠ y .

GE(f) = 𝔼[cost(f(X), Y)] (x, y) ∼ p
x ∼ px y ∼ p(y |x) p(x, y) = p(y |x)px(x)

Exercise: GE for 0-1 cost

• Write explicitly using or and
 where

•

•

•

GE(f) = 𝔼[cost(f(X), Y)] (x, y) ∼ p x ∼ px
y ∼ p(y |x) p(x, y) = p(y |x)px(x)

GE(f) = 𝔼[cost(f(X), Y)] = ∫ ∑
y∈{1,2,…,m}

p(x, y)cost(f(x), y)dx

= ∫ px(x) ∑
y∈{1,2,…,m}

p(y |x)cost(f(x), y)dx = ∫ px(x) ∑
y∈{1,2,…,m},y≠f(x)

p(y |x)dx

= ∫ px(x)(1 − p(f(x) |x))dx

Some costs for classification

• (0-1 cost)

•
for ,

• e.g., do not send for (disease) test, do send for test

• What is another asymmetric cost example for 3-class classification?

cost(̂y, y) = {0 if ̂y = y,
1 if ̂y ≠ y .

𝒴 = {0,1} cost(̂y, y) =
0 if ̂y = y,
2 if y = 0 (false positive)
1000 if y = 1 (false negative)

̂y = 0 ̂y = 1

Some costs for generative model

• What cost could we use for a mixture model? How do you know you did a
good job of fitting the data?

• Notice that the function f we evaluate is the distribution where
 are the parameter for the mixture

•

• What is if the mixture components are Gaussian? Or Poisson?

pθ
θ = (w1, w2, …, wm, β1, β2, …, βm)

pθ =
m

∑
k=1

wkp(y |βk)

βk

Some costs for generative model

• What cost could we use for a mixture model? How do you know you did a
good job of fitting the data?

• Notice that the function f we evaluate is the distribution

• Log-likelihood of the data is a common choice

•

pθ

GE(pθ) = 𝔼[−ln pθ(y)]

Estimating GE with a Test Set

• Goal is to estimate generalization error (GE) for a learned function f

• Simplest option: split dataset into training and test set

• Q1: For logistic regression, do we compute the cross-entropy on the test set
or the 0-1 loss on the test set?

𝒟 𝒟tr 𝒟test

Estimating GE with a Test Set

• Goal is to estimate generalization error (GE) for a learned function f

• Simplest option: split dataset into training and test set

• Issue 1: How much data do we use for train and test?

• Tension: want more data for to learn a good function f, but also want
more data for to get a good GE estimate

• Can we use all of to train f, and still get an estimate of GE for it?

𝒟 𝒟tr 𝒟test

𝒟tr
𝒟test

𝒟

Estimating GE via Cross Validation

• Cross-validation let’s us use the training data for training and evaluation

• But, what?!?

• Unlike having a separate test set, we get a biased estimator, but still a good one

• The idea: we use unbiased evaluations of different functions

Which functions?

• Step 1: Get k partitions of the dataset,

• Train a function on training set and evaluate on test to get error

• We now have functions with corresponding errors

• We actually throw away these functions and only use the errors to get our GE

estimate for the function f learned on the entire dataset ,

𝒟(i)
tr , 𝒟(i)

test

fi 𝒟(i)
tr 𝒟(i)

test ei

f1, f2, …, fk e1, e2, …, ek

𝒟 ̂GE(f) =
1
k ∑

i

ei

Cross validation

Dataset
Cross Validation

k=4

Alg(D)

f

f1

…
fk

e1 ek…

average e1 to ek

error estimate for f

Step 1: Learn f on the entire dataset 
 
Step 2: Do CV to estimate the GE for f

 
Step 2 consists of 
1. Get k partitions of the dataset, to  
get k training and test splits 
 
2. For every i = 1 to k,  
train and 
compute error on

 

3. Get average error  

fi = Alg(𝒟(i)
tr)

ei 𝒟(i)
test

1
k ∑

i

ei

Why is this a biased estimate of GE?

•

• It is not likely that equals , because the functions and
 are not the same. But, their generalization error should be pretty similar

• Q: We contrasted to using a training test split, where we train f on the training
set and the get the GE estimate on the test. Is this unbiased?

𝔼 [1
k

k

∑
i=1

ei] =
1
k

k

∑
i=1

𝔼 [ei]

𝔼 [ei] = GE(fi) GE(f) fi
f

How do we get the k partitions?

• Partition means disjoint subsets that cover the data

• There are many ways we can get multiple train and test splits

• k-fold and repeated random subsampling (RSS) are two common ones

k-fold vs RSS

• k-fold is one way to get partitioning

• Partition data into k folds/chunks

• Each fold is set to a test dataset, the training is union of the remaining folds

• Repeated random subsampling (RSS) is another way to get a partitioning

• Randomly sample points for test dataset (without replacement), and set the
rest to the training set

• Have to specify percentage for test p and number repeats k

R-fold partitioning k = 7
(1)-

I

&tr&
10 samplesI I & 11 &

↓ ↓-(2)
D 9)+ - (k)

D size

Dtr is 1/7 M

size 7/8n

RRS with percentage p for
test

k = 7

9)
I I

b * -
*

Randomly Shuffle
I

- Randomly shuffle
I

Set first (l-p)n as + "
Set first (l-p)n as

R)

Set lastpu as De"
Set lastpu as De

R-fold partitioning k = 7
(1)-

I

&tr&
10 samplesI I & 11 &

↓ ↓-(2)
D 9)+ - (k)

D size

Dtr is 1/7 M

size 7/8n

RRS with percentage p for
test

k = 7

9)
I I

b * -
*

Randomly Shuffle
I

- Randomly shuffle
I

Set first (l-p)n as + "
Set first (l-p)n as

R)

Set lastpu as De"
Set lastpu as De

R-fold partitioning k = 7
(1)-

I

&tr&
10 samplesI I & 11 &

↓ ↓-(2)
D 9)+ - (k)

D size

Dtr is 1/7 M

size 7/8n

RRS with percentage p for
test

k = 7

9)
I I

b * -
*

Randomly Shuffle
I

- Randomly shuffle
I

Set first (l-p)n as + "
Set first (l-p)n as

R)

Set lastpu as De"
Set lastpu as De

How do we pick k?

• How is bias impacted by the choice of k in for k-fold CV?

• How is bias impacted by the choice of k or pfor RRS CV?

How do we pick k? (for bias)

• How is bias impacted by the choice of k in for k-fold CV?

• Bigger k means training set size (k-1)/k n closer to full dataset size n

• Each more similar to learned on all the data

• Extreme: leave-one-out CV, where train n functions!

fi f

How do we pick k? (for bias)

• How is bias impacted by the choice of k in for k-fold CV?

• Bigger k means less bias

• How is bias impacted by the choice of k or p for RRS CV?

• Smaller p means training set size (1-p) n closer to full dataset size n

• Each more similar to learned on all the data

• Can get same behavior as leave-one-out k-fold CV, but do not need to learn
n functions, k is independently chosen from p

fi f

How do we pick k?

• For lower bias pick k large for k-fold and p smaller for RRS

• But variance can increase with large k for k-fold or smaller p for RRS, as
variance of errors larger (error is computed with smaller # of testing samples)

• And large k or smaller p means there is likely more covariance between errors

CHAPTER 7. EVALUATING GENERALIZATION PERFORMANCE 69

between training and test.
We can also reason about the variance of this estimator.

Var
[
Ḡ

]
= 1

k2




k∑

j=1
Var

[
err(j)

]
+

∑

i,j

Cov[err(i), err(j)]





The variance decreases if (1) k is larger and (2) Var
[
err(j)

]
is smaller, which occurs when

n is larger. Notice that (2), however, is also dependent on how many samples are used
for training and for test. The relationship is nuanced, as the variance of the errors might
be higher for a small test set, but the variance of the learned function might be higher
with a smaller training set. Further, if k becomes larger, typically there is more correlation
between each (f (i), err(i)) and (f (j), err(j)), making the covariance term larger. Overall, due
to these nuanced relationships,1 there is not a clear answer for how to choose k and the
partitioning. There are, however, some rules of thumb, which we discuss after Exercise 24.

Exercise 24: We previously discussed that once a hold-out test set has been used for
evaluation, we cannot use it again because it will not provide an unbiased estimate of
the expected error. For example, after getting performance of your models on that test
set, one could go back and adjust hyperparameters such as the regularization parameters.
However, once you have done this, the test-set has influenced the learned models and is
likely to produce an optimistic estimate of performance on new data. Is this also true for
cross validation? Namely, if you realized you should have tested a model with di!erent
hyperparameters, and reran the cross validation procedure for the new model, would your
estimate using cross validation su!er from similar bias as in the hold-out test set case? ↭

Now let us revisit the strategies to generate these sub-datasets. In k-fold cross-validation
the data is partitioned into k disjoint sets, called folds. The training set is composed of
k → 1 of the folds, and test set is the remaining fold. We use all possible combinations—
namely each fold is used once as a test set—resulting in k train-test splits. This partitioning
approach has the advantage that the resulting k performance estimates are mostly inde-
pendent, with some dependency introduced due to dependencies between the training sets.
As mentioned above, there is also the bias from the fact that we do not run the model on
the entire training set, but rather get an estimate of the error for the algorithm trained on
n→ (n/k). The disadvantage of this approach is that the number k both dictates how many
train-test splits we consider as well as the size of the training and test sets.

Repeated random subsampling (RRS) does not su!er from that same issue, but has its
own disadvantages. In RRS, because we create splits using random sampling rather than
a disjoint partitioning, we can decouple k and the size of the training and test sets. For
example, we might want to have at least k = 10 di!erent train-test splits, but we might
want to use more than n → (n/k) for train; RRS allows this. You could take a dataset of
size 1000, set k = 10 and pick the training set size to be 950 and 50 for test. In k-fold CV,
once you pick k = 10, the size of the training set is set to 900 and test is set to 100.

There are common rules of thumb to pick these sizes. A common choice for k-fold CV is
to use k = 10. For RRS, it is generally reasonable to pick k a bit higher, though a limiting
factor is always computation, since you need to train the model k times to get the error
estimate. For slow deployment settings—where the predictor in deployment is changed

1See Appendix A.2 for a just alittle bit more discussion on some of these nuances

How do we pick k?

• For lower bias pick k large for k-fold and p smaller for RRS

• But variance can increase with large k for k-fold or smaller p for RRS, as
variance of errors larger (error is computed with smaller # of testing samples)

• And large k or smaller p means there is likely more covariance between errors

• Finally, large k is computationally expensive, so rarely set very big

• No clear answers, just some rules of thumb, usually pick interim k

Couple of exercises

• Can we pick k = 2 for k-fold? Any issues?

• What if we pick k =2 and p = 0.01?

CV for hyperparameter selection

• Our estimate of (GE) is a good criteria to pick hyperparameters

• We can use it as an algorithm to pick hypeparameters

• Let us define a fully-specified algorithm, Learner(D), that uses CV to pick
hyperparameters for Alg(D, h)

• Essentially, Learner is also an algorithm, but one that does not have
hyperparameters

CV for hyperparameter selection

LearnerDataset
Internal CV

k=4

Alg(D, h)

f

for every hyper h in H

f1 e1

…
fkek…

average

err[h]

Best h*
(err[h*] lowest)

f

Evaluating the Learner

• Our estimate of (GE) is a good criteria to pick hyperparameters

• We still need to evaluate the model produce by Learner

• Can use training / validation set to evaluate it

• Step 0: Split data into training and validation set

• Step 1: Call Learner on dataset , to get function f

• Step 2: Evaluate f on

𝒟tr 𝒟test

𝒟tr

𝒟test

Evaluating the Learner

• Our estimate of (GE) is a good criteria to pick hyperparameters

• We still need to evaluate the model produce by Learner

• Can use training / validation set to evaluate it

• Step 0: Split data into training and validation set

• Step 1: Call Learner on dataset , to get function f

• Step 2: Evaluate f on

• What is the issue with this approach?

𝒟tr 𝒟test

𝒟tr

𝒟test

Evaluating the Learner

• Our estimate of (GE) is a good criteria to pick hyperparameters

• We still need to evaluate the model produce by Learner

• Can use training / validation set to evaluate it

• Step 0: Split data into training and validation set

• Step 1: Call Learner on dataset , to get function f

• Step 2: Evaluate f on

• What is the issue with this approach? Data inefficient, let’s use CV!

𝒟tr 𝒟test

𝒟tr

𝒟test

Nested Cross-Validation

EvaluatorDataset

External CV
k=4

Learner(D)

f

f1

…
fk

e1 ek…

average

error estimate of f
If error acceptable, then f

else
cannot
deploy

function

Step 1: Learn f on the entire dataset 
 
Step 2: Do CV to estimate the GE for f

 
Step 2 consists of 
1. Get k partitions of the dataset, to  
get k training and test splits 
 
2. For every i = 1 to k,  
train and 
compute error on

 

3. Get average error  

fi = Alg(𝒟(i)
tr)

ei 𝒟(i)
test

1
k ∑

i

ei

