Chapter 7: Evaluating Generalization Performance CMPUT 467: Machine Learning II

Generalization Error

- Generalization error (GE) for a a function f is the expected cost
- $GE(f) = \mathbb{E}[cost(f(X), Y)]$ where expected over RVs *X*, *Y* sampled from joint distribution p(x, y)
 - Or equivalently $x \sim p_x$ and $y \sim p(y | x)$ where $p(x, y) = p(y | x)p_x(x)$
- Cost depends on the problem setting

Some costs for regression

- $\operatorname{cost}(\hat{y}, y) = (\hat{y} y)^2$
 - $x \sim p_x$ and $y \sim p(y \mid x)$ where $p(x, y) = p(y \mid x)p_x(x)$

• Exercise: write $GE(f) = \mathbb{E}[cost(f(X), Y)]$ explicitly using $(x, y) \sim p$ or

Exercise: GE for squared error

• Write $GE(f) = \mathbb{E}[cost(f(X), Y)] = \mathbb{E}[(f(X) - Y)^2]$ explicitly using $(x, y) \sim p$ or $x \sim p_x$ and $y \sim p(y \mid x)$ where $p(x, y) = p(y \mid x)p_x(x)$

•
$$\operatorname{GE}(f) = \mathbb{E}[\operatorname{cost}(f(X), Y)] = \int p(X) dx$$

• =
$$\int p(x, y)(f(x) - y)^2 dx dy = \int p_x(x) \int p(y | x)(f(x) - y)^2 dy dx$$

(x, y)cost(f(x), y)dxdy

Some costs for regression

•
$$\operatorname{cost}(\hat{y}, y) = (\hat{y} - y)^2$$

- $\operatorname{cost}(\hat{y}, y) = |\hat{y} y|$
- (squared error)
- (absolute error)
- $cost(\hat{y}, y) = \frac{|\hat{y} y|}{|y|}$ (absolute percentage error)
- Multivariate version per dimension

• e.g.,
$$\operatorname{cost}(\hat{\mathbf{y}}, \mathbf{y}) = \sum_{k=1}^{m} |\hat{y}_k - y_k|$$

Some costs for classification

$$\cos(\hat{y}, y) = \begin{cases} 0 & \text{if } \hat{y} = y, \\ 1 & \text{if } \hat{y} \neq y. \end{cases}$$

 $x \sim p_x$ and $y \sim p(y \mid x)$ where $p(x, y) = p(y \mid x)p_x(x)$

(0-1 cost)

• Exercise: write $GE(f) = \mathbb{E}[cost(f(X), Y)]$ explicitly using $(x, y) \sim p$ or

Exercise: GE for 0-1 cost

• Write $GE(f) = \mathbb{E}[cost(f(X), Y)]$ explicitly using $(x, y) \sim p$ or $x \sim p_x$ and $y \sim p(y | x)$ where $p(x, y) = p(y | x)p_{x}(x)$ • $\operatorname{GE}(f) = \mathbb{E}[\operatorname{cost}(f(X), Y)] = \int_{y \in \{1, 2\}} \sum_{y \in \{1,$ • = $\int p_x(x) \sum_{y \in \{1, 2, ..., m\}} p(y | x) \operatorname{cost}(f(x),$ • = $\int p_x(x)(1 - p(f(x) | x))dx$

$$p(x, y) \operatorname{cost}(f(x), y) dx$$

$$y dx = \int p_x(x) \sum_{y \in \{1, 2, \dots, m\}, y \neq f(x)} p(y \mid x) dx$$

Some costs for classification

•
$$\operatorname{cost}(\hat{y}, y) = \begin{cases} 0 & \text{if } \hat{y} = y, \\ 1 & \text{if } \hat{y} \neq y. \end{cases}$$

• for $\mathscr{Y} = \{0, 1\}, \operatorname{cost}(\hat{y}, y) = \begin{cases} 0 \\ 2 \\ 100 \end{cases}$

• e.g., $\hat{y} = 0$ do not send for (disease) test, $\hat{y} = 1$ do send for test

• What is another asymmetric cost example for 3-class classification?

(0-1 cost)

- if $\hat{y} = y$,
- if y = 0 (false positive)
- 00 if y = 1 (false negative)

Some costs for generative model

- What cost could we use for a mixture model? How do you know you did a good job of fitting the data?
- Notice that the function f we evaluate is the distribution p_{θ} where $\theta = (w_1, w_2, ..., w_m, \beta_1, \beta_2, ..., \beta_m)$ are the parameter for the mixture • $p_{\theta} = \sum_{k=1}^m w_k p(y | \beta_k)$
- What is β_k if the mixture components are Gaussian? Or Poisson?

Some costs for generative model

- What cost could we use for a mixture model? How do you know you did a good job of fitting the data?
- Notice that the function f we evaluate is the distribution p_{θ}
- Log-likelihood of the data is a common choice
- $\operatorname{GE}(p_{\theta}) = \mathbb{E}[-\ln p_{\theta}(y)]$

Estimating GE with a Test Set

- Goal is to estimate generalization error (GE) for a learned function f
- Simplest option: split dataset \mathscr{D} into training \mathscr{D}_{tr} and test set \mathscr{D}_{test}
- Q1: For logistic regression, do we compute the cross-entropy on the test set or the 0-1 loss on the test set?

Estimating GE with a Test Set

- Goal is to estimate generalization error (GE) for a learned function f
- Simplest option: split dataset \mathscr{D} into training \mathscr{D}_{tr} and test set \mathscr{D}_{test}
- Issue 1: How much data do we use for train and test?
- Tension: want more data for \mathscr{D}_{tr} to learn a good function f, but also want more data for \mathscr{D}_{test} to get a good GE estimate
- Can we use all of ${\mathscr D}$ to train f, and still get an estimate of GE for it?

Estimating GE via Cross Validation

- Cross-validation let's us use the training data for training and evaluation
 - But, what?!?
- The idea: we use unbiased evaluations of different functions

Unlike having a separate test set, we get a biased estimator, but still a good one

Which functions?

- Step 1: Get k partitions of the dataset, $\mathscr{D}_{tr}^{(i)}, \mathscr{D}_{test}^{(i)}$
- Train a function f_i on training set $\mathscr{D}_{tr}^{(i)}$ and evaluate on test $\mathscr{D}_{test}^{(i)}$ to get error e_i
- We now have functions f_1, f_2, \ldots, f_k with corresponding errors e_1, e_2, \ldots, e_k
- We actually throw away these functions and only use the errors to get our GE We actually throw away mese function of and end, since \mathcal{D}_{i} , $\hat{\mathsf{GE}}(f) = \frac{1}{k} \sum_{i} e_{i}$ estimate for the function f learned on the entire dataset \mathcal{D} , $\hat{\mathsf{GE}}(f) = \frac{1}{k} \sum_{i} e_{i}$

Cross validation

Step 1: Learn f on the entire dataset Step 2: Do CV to estimate the GE for f

Step 2 consists of 1. Get k partitions of the dataset, to get k training and test splits

2. For every i = 1 to k, train $f_i = \text{Alg}(\mathcal{D}_{tr}^{(i)})$ and compute error $e_i^{''}$ on $\mathcal{D}_{test}^{(i)}$

3. Get average error -

Why is this a biased estimate of GE?

$\mathbb{E}\left[\frac{1}{k}\sum_{i=1}^{k}e_{i}\right] = \frac{1}{k}\sum_{i=1}^{k}\mathbb{E}\left[e_{i}\right]$

- It is not likely that $\mathbb{E}[e_i] = \operatorname{GE}(f_i)$ equals $\operatorname{GE}(f)$, because the functions f_i and f are not the same. But, their generalization error should be pretty similar
- Q: We contrasted to using a training test split, where we train f on the training set and the get the GE estimate on the test. Is this unbiased?

How do we get the k partitions?

- Partition means disjoint subsets that cover the data
- There are many ways we can get multiple train and test splits
- k-fold and repeated random subsampling (RSS) are two common ones

k-fold vs RSS

- k-fold is one way to get partitioning
 - Partition data into k folds/chunks
- Each fold is set to a test dataset, the training is union of the remaining folds Repeated random subsampling (RSS) is another way to get a partitioning
 - Randomly sample points for test dataset (without replacement), and set the rest to the training set
 - Have to specify percentage for test p and number repeats k

RRS with percentage p for test k=7 L D Randomly shuffle D Set first (I-p)n as D_{tr} Set last pn as Dite Set last pn as $\mathcal{D}_{te}^{(1)}$

Randomly shuffle D Set first (I-p) n as D_{tr}⁽¹⁾

★ Randomly shuffle D Randomly shuffle D Set first (1-p) n as D_{tr}⁽¹⁾ Set last pn as $\mathcal{D}_{te}^{(1)}$

How do we pick k?

- How is bias impacted by the choice of k in for k-fold CV?
- How is bias impacted by the choice of k or pfor RRS CV?

e of k in for k-fold CV? e of k or pfor RRS CV?

How do we pick k? (for bias)

- How is bias impacted by the choice of k in for k-fold CV?
 - Bigger k means training set size (k-1)/k n closer to full dataset size n
 - Each f_i more similar to f learned on all the data
 - Extreme: leave-one-out CV, where train n functions!

How do we pick k? (for bias)

- How is bias impacted by the choice of k in for k-fold CV?
 - Bigger k means less bias
- How is bias impacted by the choice of k or p for RRS CV?
 - Smaller p means training set size (1-p) n closer to full dataset size n
 - Each f_i more similar to f learned on all the data
 - Can get same behavior as leave-one-out k-fold CV, but do not need to learn n functions, k is independently chosen from p

How do we pick k?

- For lower bias pick k large for k-fold and p smaller for RRS
- But variance can increase with large k for k-fold or smaller p for RRS, as variance of errors larger (error is computed with smaller # of testing samples)
- And large k or smaller p means there is likely more covariance between errors

$$\operatorname{Var}\left[\bar{G}\right] = \frac{1}{k^2} \left(\sum_{j=1}^k \operatorname{Var}\left[\operatorname{err}^{(j)}\right] + \sum_{i,j} \operatorname{Cov}\left[\operatorname{err}^{(i)}, \operatorname{err}^{(j)}\right] \right)$$

How do we pick k?

- For lower bias pick k large for k-fold and p smaller for RRS
- **But** variance can increase with large k for k-fold or smaller p for RRS, as variance of errors larger (error is computed with smaller # of testing samples)
- And large k or smaller p means there is likely more covariance between errors
- Finally, large k is computationally expensive, so rarely set very big
- No clear answers, just some rules of thumb, usually pick interim k

Couple of exercises

- Can we pick k = 2 for k-fold? Any issues?
- What if we pick k = 2 and p = 0.01?

CV for hyperparameter selection

- Our estimate of (GE) is a good criteria to pick hyperparameters
- We can use it as an algorithm to pick hypeparameters
- Let us define a fully-specified algorithm, Learner(D), that uses CV to pick hyperparameters for Alg(D, h)
 - Essentially, Learner is also an algorithm, but one that does not have hyperparameters

CV for hyperparameter selection

Evaluating the Learner

- Our estimate of (GE) is a good criteria to pick hyperparameters
- We still need to evaluate the model produce by Learner
- Can use training / validation set to evaluate it
 - Step 0: Split data into training \mathscr{D}_{tr} and validation set \mathscr{D}_{test}
 - Step 1: Call Learner on dataset \mathcal{D}_{tr} , to get function f
 - Step 2: Evaluate f on D_{test}

Evaluating the Learner

- Our estimate of (GE) is a good criteria to pick hyperparameters
- We still need to evaluate the model produce by Learner
- Can use training / validation set to evaluate it
 - Step 0: Split data into training \mathscr{D}_{tr} and validation set \mathscr{D}_{test}
 - Step 1: Call Learner on dataset \mathscr{D}_{tr} , to get function f
 - Step 2: Evaluate f on \mathscr{D}_{test}
- What is the issue with this approach?

Evaluating the Learner

- Our estimate of (GE) is a good criteria to pick hyperparameters
- We still need to evaluate the model produce by Learner
- Can use training / validation set to evaluate it
 - Step 0: Split data into training \mathscr{D}_{tr} and validation set \mathscr{D}_{test}
 - Step 1: Call Learner on dataset \mathscr{D}_{tr} , to get function f
 - Step 2: Evaluate f on \mathscr{D}_{test}
- What is the issue with this approach? Data inefficient, let's use CV!

Nested Cross-Validation

Step 1: Learn f on the entire dataset Step 2: Do CV to estimate the GE for f

Step 2 consists of 1. Get k partitions of the dataset, to get k training and test splits

 $\sum e_i$

2. For every i = 1 to k, train $f_i = \text{Alg}(\mathscr{D}_{tr}^{(i)})$ and compute error e_i on $\mathscr{D}_{test}^{(i)}$

3. Get average error –

cannot deploy function

