
Introduction

CMPUT 467: Machine Learning II 

A Second Course in ML

We get to build on an ML foundation and move to more advanced
modeling

Reminder about the Basics
• Focused on understanding

• optimization concepts
• uncertainty quantification, using the language of probability
• how to formalize learning problems and estimate parameters (MLE and MAP)
• reasoning about generalization capabilities (bias-variance, overfitting)

• Focused on linear models and prediction

• Touched briefly on nonlinear models using polynomial regression

Two Types of Uncertainty
• Uncertainty in our prediction: is a distribution, returning will not

perfectly match the observed
• due to partial observability (e.g., predicting house price using only the age of the

house, missing many important input variables like size etc).
• sometimes called aleatoric uncertainty

• Uncertainty in our estimate: we estimate (or parameters) from data; we have a
distribution that shrinks with more data

• we reasoned about the confidence in our estimator and about how many samples
we need (this is the particular focus of Bayesian methods)

• sometimes called epistemic uncertainty

Y |x ̂y = f(x)
y

f w
p(w |𝒟)

ML II
• Summary: you know about the key concepts of generalization and uncertainty, as well

as optimization approaches
• These concepts are central, do not change when moving to more advanced models

• We can now focus on understanding more advanced models
• move from simple, linear models to nonlinear, high-dimensional models
• focus also on generative models, not just prediction models
• understand the key concepts in data (re)representation, that enables us to extract

powerful models that generalize well
• more advanced algorithms (constrained optimization, EM, etc.)

Course structure
• First few chapters revisit concepts from ML I, but now for slightly more complex settings

• Understanding sensitivity of linear regression, using matrix analysis
• Learning for more general distributions (exponential family)
• Hessians for second-order gradient descent and constrained optimization
• Improved approaches to evaluate generalization error (cross-validation)

• Then we move to the primary new topic: Data Representations
• Explain the goals of data representations
• Discuss prototype-based representations, latent variable models (PCA) and neural

networks
• Show how our methods (predictions, generative models, Bayesian approaches) extend

to use these nonlinear transformations

• Introduction to handling missing data and temporal data

p(y |x)

What do I expect from you?

• I assume you have mostly forgotten details about ML (from CMPUT 267)
• But I expect you to re-pick them up quickly
• e.g., MLE was weird the first time you heard about it, now it will be quick to remember

• I also expect you to want to learn the mathematical underpinnings of ML
• Or at least are willing to learn them so that you can be a better ML practitioner

Expectation Management on Content
• There is a lot to learn in Machine Learning

• You might ask yourself, why are we learning topic X and not topic Y?
• For example, you might have heard of GANs and are wondering why we learn about

VAEs instead of GANs
• Or why we learn about PCA, when everyone just uses neural networks anyway

• The answer: my primary goals it to teach you skills not topics
• certain algorithms/topics are useful case studies to teach those skills
• if you know the underlying concept/approach, you can learn new (more advanced)

things yourself
• learning how to understand derivations is key for learning new ML algorithms/ideas
• I am not teaching you to derive new algorithms, just understand derivations

Hybrid Teaching
• Lectures will be in-person in a classroom AND on Zoom

• In class, I will project my screen. My screen will be shared in Zoom too.

• I will monitor Zoom questions.

• The lectures will be recorded and posted right after class.

• It is better to come to class, Zoom is only a back-up
• And you will have to come to class at least for the 4 quizzes and 1 midterm

Course essentials

• Course information: https://marthawhite.github.io/ml-intermediate/
• Schedule and readings

• Access-controlled course information: eClass
• Getting Started and FAQ (please visit this today!)
• Video recordings, links to lecture meetings and assignment submission

• Office hours: Tuesday 2 - 3 pm (on Zoom and in-person in ATH 3-05)

Teaching Assistants
Alex Ayoub
Sarosh Dandoti
Marcos Jose
Matthew Vandergrift

• Office hours: see eClass for times and locations+Zoom links
• Typically question/answer sessions

• No office hours this week

• There is no lab, you can ask coding questions during office hours

Course Discussion
• We have created a Discord group; please sign up!

• I want to generate as much class discussion as possible

• Please go there first to ask questions. TAs will monitor and answer questions.

• Please answer your classmates questions!
• We’ll step in if there is misinformation, but in many cases you can all help each other

faster than we can get to the question
• Peer discussions can very beneficial

• Details in FAQ and Getting Started linked on eClass

Lectures
• Lectures will mostly involve me writing on my iPad (like a whiteboard)

• I highly encourage you to ask any question
• You can raise your hand and then ask outloud
• You can type questions in Zoom chat
• We will use Discord for any questions you think of outside of class, that I will address

in class

• We will have small (exercise) breaks in class
• sometimes I’ll give you a small derivation or exercise

• I will post my written notes afterwards (and videos will be published)

Readings

• Readings are from the ML II textbook
• Available on course site and written by myself
• Disclaimer: These notes are still quite new
• I changed them a lot based on reactions from when I taught CMPUT 367

• See the schedule for sections and for reading deadlines

• Readings have an associated marked component, Reading Exercises (eClass Quizzes)

General Disclaimer

• This course is still relatively new and not yet fully polished

• The structure, notes and assignments are relatively new

• There will be some adjusting as we go and mistakes

• If this is going to make you really frustrated, then you should talk to me

Grading

• 28%: Assignments (4)
• Mixture of mathematical problems and programming exercises

• 12%: Reading Exercises (5)

• 25%: Midterm exam

• 35%: Final exam

Assignments
• Four assignments

• Trying something new this year: we will not mark your assignments

• Instead
• Still have to submit the assignment (small percentage for submitting an assignment

where you attempted each question)
• An in-class quiz, testing your knowledge of the assignment (need to do the

assignment to do well)

• 4% for assignment submissions, 24% for Assignment Quizzes

• One mulligan: get to drop the lowest Assignment Quiz mark (best 3 of 4)

Readings

• It is critical that you do the readings

• I wrote the notes, and in class lectures follow them quite closely

• If you read and understand the notes, you have learned a lot about ML

• Marked Reading Exercises encourage you to actually do the readings

Reading Exercises

• Five readings with Reading Exercises quizzes on eClass

• They are open for multiple weeks and you can complete them anytime until the
deadline listed on eClass

• Three attempts

• Provide Practice Exercises

• One mulligan: get to drop the lowest Reading Exercise mark (best 4 of 5)

Two exams

• Exams will be in-person

• Practice questions will be available

• For all exams you are allowed a two page cheat-sheet
• One page, front-and-back
• No collaborating on cheat-sheets

Academic conduct
• Submitting someone else's work as your own is plagiarism.

• So is helping someone else to submit your work as their own.

• We report all cases of academic misconduct to the university.

• The university takes academic misconduct very seriously.
Possible consequences:

• Zero on the assignment or exam (virtually guaranteed)
• Zero for the course
• Permanent notation on transcript
• Suspension or expulsion from the university

• If you are thinking of cheating, since you are stuck or doing poorly, please just talk
to me instead. We’ll figure it out.

More on cheating

You can collaborate on assignments, but you cannot plagiarize
- We will still check your submitted assignments and mark that you completed them
and check for plagiarism
- Your answers are not getting marked, so why are you plagiarizing? The assignments
are for you to learn, try to do the questions yourself

In an exam, if you talk to anyone beside you or pass any objects (even an eraser),
then we will assume you are cheating and take away your paper

Additional Questions

• Any questions you have are likely answered in the FAQ and Getting Started document
that we have linked on eClass

• Policies like “No late assignments accepted”, “How to contact TAs”, “What to do if you
are going to miss a deadline or exam”

• “How can I get extra resources?” and “How can I brush up on my math background?”

Due Dates

• First Assignment and First Reading Exercise quiz will be released by Friday

• You can start on the First Readings now (Chapters 1 - 4)
• Later Chapters are still being improved by me, I will ensure they are complete as soon

as the previous reading exercise is due
• If you find any typos or issues, then feel free to email me

On to the course!

• The introductory chapter discusses
• A Brief Refresher of the basics of ML
• Generative Models and Predictors
• The Blessing and Curse of Dimensionality
• Matrix Methods

• Let us briefly discuss those here before moving to Probability Background

On to the course!

• The introductory chapter discusses
• A Brief Refresher of the basics of ML
• Generative Models and Predictors
• The Blessing and Curse of Dimensionality
• Matrix Methods

• Let us briefly discuss those here before moving to Probability Background

Refresher of Basics of ML
• Goal was to learn a prediction function for weights

• Input vector of observations

• Outputs a prediction

• If is a discrete, unordered set, then we have a classification problem

• If is a continuous set, then we have a regression problem

• (Some cases we have a discrete, ordered set, and get ordinal regression)

fw : 𝒳 → 𝒴 w

x ∈ ℝd

̂y ∈ 𝒴

𝒴

𝒴

Main goals

• How do we learn this function?

• How do we evaluate whether it is good?

Formalizing the learning problem
• We need a clear criterion (objective function) to optimize

• Ultimate goal: function with low expected cost
• later we called this generalization error

• For regression, cost was squared error
• Optimal predictor is

• For classification, we used the 0-1 cost

• Optimal predictor is

𝔼[cost(f(x), y)]

f*(x) = 𝔼[Y |x]

f*(x) = arg max
y∈𝒴

p(y |x)

Beyond formalization,
to implementation

• We cannot directly find these optimal predictors, rather we are stuck using data
sampled from

• Formalized the MAP and MLE objectives on this data, as a reasonable proxy to
approximate these optimal predictors

• MAP and MLE

p(x, y)

max
θ

p(θ |𝒟) max
θ

p(𝒟 |θ)

MAP and MLE for
Polynomial Regression

• Let’s revisit these concepts for Linear Regression and Polynomial Regression

• For regression we assume , and Gaussian prior on weights

• could be a linear function (linear regression) or a polynomial function

p(y |x) = 𝒩(fw(x), σ2)

fw(x)

Polynomial function is a strict
generalization of linear functions

0 1 2 3 4 5

1

2

3

4

5

x

f3(x)

f1(x)

Exercise

• Imagine we learned using polynomial regression with p=3

•

•

• What is the size of ?

fw
ϕ(x) = [1,x1, x2, …, xd, x1x2, …, x3

d]
fw(x) = ϕ(x)⊤w

w

Exercise

• Imagine we learned using polynomial regression with p=3

•

•

• What is the size of ?
• Same number of elements as

fw
ϕ(x) = [1,x1, x2, …, xd, x1x2, …, x3

d]
fw(x) = ϕ(x)⊤w

w
ϕ(x)

Polynomial regression derivation
(with MLE objective)

• for polynomial function

•
MLE objective is negative log likelihood

• Exercise: Show that

p(y |x) = 𝒩(fw(x), σ2) fw(x)

−
n

∑
i=1

ln p(yi |xi, w)

arg max
w

p(𝒟 |w) = arg min
w

−
n

∑
i=1

ln p(yi |xi, w)

Equivalence
arg max

w
p(𝒟 |w) = arg max

w
p((x1, y1), …, (xn, yn) |w) = arg max

w

n

∏
i=1

p((xi, yi) |w)

= arg max
w

ln
n

∏
i=1

p((xi, yi) |w)

= arg max
w

n

∑
i=1

ln p((xi, yi) |w)

= arg max
w

n

∑
i=1

ln p(yi |xi, w) + ln p(xi |w)

= arg max
w

n

∑
i=1

ln p(yi |xi, w)

= arg min
w

−
n

∑
i=1

ln p(yi |xi, w)

ln(ab) = ln a + ln b

p(x,y |w) = p(y|x, w) p(x|w) = p(x|y, w) p(y|w)

p(x |w) = p(x), constant wrt w

maximize f or minimize -f

Polynomial regression derivation
(with MLE objective)

• for polynomial function

•
MLE objective is negative log likelihood

•

p(y |x) = 𝒩(fw(x), σ2) fw(x)

−
n

∑
i=1

ln p(yi |xi)

ln p(yi |xi) = −
1
2

ln(2πσ2) + ln exp (−
1

2σ2
(fw(xi) − yi)2)

= constants −
1

2σ2
(fw(xi) − yi)2

Polynomial regression derivation
(with MLE objective)

• for polynomial function

•

•
MLE objective is because for constants

•

p(y |x) = 𝒩(fw(x), σ2) fw(x)

ln p(yi |xi) = constants −
1

2σ2
(fw(xi) − yi)2

n

∑
i=1

(fw(xi) − yi)2 c1, c2

arg min
w

n

∑
i=1

(fw(xi) − yi)2 = arg min
w

c1 + c2

n

∑
i=1

(fw(xi) − yi)2

MAP Objective for Regression
• , and Gaussian prior on weights

• The MAP objective corresponded to l2 regularized linear regression (ridge regression)

p(y |x) = 𝒩(fw(x), σ2) p(wj) = 𝒩(0,σ2/λ)

CHAPTER 1. INTRODUCTION TO INTERMEDIATE MACHINE LEARNING 16

1.5 A Very Brief Refresher of the Basics of Machine Learning
In this section we do a whirlwind refresher of the concepts and terminology learned in Basics
of ML. Our primary goal was to learn a prediction function fw : X æ Y, parameterized
by a vector of weights w œ Rk. This prediction function inputs a vector of observations
x œ X µ Rd and outputs a prediction ŷ œ Y. If Y is a discrete, unordered set, like
Y = {giraffe, hippo, ostrich}, then we call the problem of finding f a classification
problem. If Y is continuous, then we say it is a regression problem.2

We discussed (a) how to learn such a function and (b) how to evaluate if that function
is good. To learn the function, we needed a clear criterion (objective function) to optimize.
We discussed that the ultimate goal is to find a function f with low expected cost,
E[cost(f(X), Y)], which we later called the generalization error of f . This cost was
di�erent for di�erent problems. For regression, we used cost(f(x), y) = (f(x) ≠ y)2 and for
classification we used the 0-1 cost

cost(ŷ, y) =

Y
__]

__[

0 when y = ŷ

1 when y ”= ŷ

We found that these choices for costs implied that the optimal predictor for regression
is fú(x) = E[Y |x] and for classification is fú(x) = argmaxyœY p(y|x). This motivated
estimating p(y|x), or the mean of this distribution E[Y |x], using data.

Formalizing the problem was fun, but now we have the hard part of estimating these
unknown quantities. We know fú(x) = E[Y |x] for regression, but we don’t have E[Y |x]!
Instead, we only have a dataset of samples D

def= {(xi, yi)}n

i=1 where (xi, yi) ≥ p where
p(x, y) = p(y|x)p(x). This dataset is a poor proxy, but we will have to make do. The
parameters w for the function we learn are actually parameters for the distribution of
p(y|x). Therefore, we decided to find parameters that were the most likely, given the data:
the MAP objective.

For regression we modeled the conditional distribution as a Gaussian with fixed variance
‡2, written as p(y|x) = N (fw(x), ‡2) . The data gives us clues about the true fú that defines
the conditional mean. We want to pick the fw that is the most likely, given this evidence.
In other words, the MAP objective is

argmax
wœRk

p(w|D) = argmax
wœRk

p(D|w)p(w)

= argmax
wœRk

nÿ

i=1
ln p(yi|xi, w) + ln p(w)

= argmin
wœRk

≠

nÿ

i=1
ln p(yi|xi, w) ≠ ln p(w)

where the first step drops constants, the second uses monotonicity of log and the third
uses the equivalence between maximizing a function and minimizing the negative of that

2If Y is discrete but ordered, then sometimes this is modeled as an ordinal regression problem. An
example of an ordinal regression problem is one where the goal is to predict the number of injuries in a
day. Then Y = {0, 1, 2, 3, 4, . . .}, and the set is ordered: 4 injuries is more similar to 5 injuries, than to 100
injuries. We did not talk about ordinal regression before, but when we talk about generalized linear models,
we will see how Poisson regression can be used for this ordinal regression problem.

• The objective is
n

∑
i=1

(fw(xi) − yi)2 + λ∥w∥2
2

Contrasting MLE and MAP
• Assume with Gaussian prior

• MAP is whereas MLE is

•
MLE objective is

• MLE sets , like having a uniform prior on each weight
• But not equivalent, since can’t have zero variance Gaussian

p(y |x) = 𝒩(fw(x), σ2) p(wj) = 𝒩(0,σ2/λ)

max
w∈ℝd

p(w |𝒟) max
w∈ℝd

p(𝒟 |w)

n

∑
i=1

(fw(xi) − yi)2

λ = 0

vs MAP:
n

∑
i=1

(fw(xi) − yi)2 + λ∥w∥2
2

l2-regularized polynomial regression

• MAP adds prior information, to help prevent overfitting

• The l2 regularizer prefers simpler solutions, those where weights do not deviate too far
from zero

• We will revisit why, now with matrices

• Do you think l2 regularization is more useful
• (Q1) for polynomial regression than for linear regression?
• (Q2) for high-degree polynomials rather than low-degree ones?

Why did we go to all this trouble?
• We could have just jumped to the squared cost and add an l2 regularizer, without talking

about MAP and MLE

• Main reason: when generalizing to other settings, MAP and MLE are very useful
• we need these tools, so may as well do a unified treatment and get used to them

• Minor reason: it does provide some probabilistic insight into l2 regularization

• Exercise: What if we want to learn the conditional mean and variance of the data? Do
we just used the squared loss for both? Derive the MLE objective if we assumed
p(y |x) = 𝒩(fw(x), g2

θ(x))

MLE Objective for Classification

• For binary classification with logistic regression, the MLE objective was the
cross-entropy objective

• We will revisit this, when we talk about Generalized Linear Models and
Multinomial Logistic Regression

Evaluating a function

• Now we know how to find a function , but how do we evaluate if it is good?

• One simple way is to split the data into training and test data
• e.g., take a dataset of size 10k, use 8k for training, 2k for testing

• Then we learn on the training data

• And get an estimate of generalization error on the test set

fw

fw

Exercise

• Imagine we learned using polynomial regression with p=3

•

•

• How do we evaluate on the test set? (What is the formula)

fw
ϕ(x) = [1,x1, x2, …, xd, x1x2, …, x3

d]
fw(x) = ϕ(x)⊤w

fw

Exercise
• Imagine we learned using polynomial regression with p=3

•

•

• How do we evaluate on the test set? (What is the formula)

•
 for m the number of test samples

fw
ϕ(x) = [1,x1, x2, …, xd, x1x2, …, x3

d]
fw(x) = ϕ(x)⊤w

fw
1
m ∑

(xi,yi)∈𝒟test

(fw(xi) − yi)2

Exercise
• Imagine we learned using polynomial regression with p=3

•

•

• If we had learned with p = 2, then would

• have lower or higher training error than ?

• have lower or higher testing error than ?

fw
ϕ(x) = [1,x1, x2, …, xd, x1x2, …, x3

d]
fw(x) = ϕ(x)⊤w

fβ
fβ fw
fβ fw

Exercise

• Imagine we learned using polynomial logistic regression with p=3

•

• else = 0

• How do we evaluate on the test set? (What is the formula?)

fw
ϕ(x) = [1,x1, x2, …, xd, x1x2, …, x3

d]
fw(x) = 1 if ϕ(x)⊤w > 0,

fw

Exercise
• Imagine we learned using polynomial logistic regression with p=3

•

• else = 0

• How do we evaluate on the test set? (What is the formula?)

•
 for m the number of test samples

fw
ϕ(x) = [1,x1, x2, …, xd, x1x2, …, x3

d]
fw(x) = 1 if ϕ(x)⊤w > 0,

fw
1
m ∑

(xi,yi)∈𝒟test

1(fw(xi) ≠ yi)

Conceptually Reasoning aout
which models to select

• We can empirically evaluate to select models but we also often reason about when
estimators should or should not perform well

• We discussed bias and variance, and the connection to generalization error

• If it sometimes worth introducing bias to reduce variance, and so reduce the MSE to the
true function in expectation

Different Cases
"

.E- ¥
'

¥ ,I
5
g

s 1
-

§
I &

F
E
I

$
f
u

3
~

.
3

*
µ

-

±
?
÷

/ %
:
*
,

~
µ
s

.
.

.
.

"

÷
§

F
f

&
F
F
A

→
A

%
8

8
s

a
8

{
8

§
'
t
o

§
§

'
s f
→

÷
:÷
:

•
5

5
e-
→

✗
{
→

o

E
f
=

¥
£
;0

E
;

8 u
s-

Uncertainty in Our Estimator

• Confidence intervals to assess uncertainty in a mean estimator
• obtained using distributional assumptions like the Student-t and with less

assumptions using concentration inequalities
• also discussed using Bayesian approach to get credible interval

• Bayesian methods obtain the posterior
• can use this to get a credible interval over the weights and over predictions

p(w |𝒟)

Probability and Optimization
at the Core

• Throughout used optimization tools, to have practical algorithms to obtain weights

• The objective function told us what to optimize, but not how to do so

• We discussed
• brute-force search for low-dimensional, discrete problems
• gradient descent for smooth, continuous optimization problems
• more efficient approximation to GD using mini-batch stochastic GD (SGD)
• when GD or SGD will reach global solutions or get stuck in local minima (or

saddlepoints)
• the role of stepsize selection

Fun Fact about Saddlepoints

• Are local minima or saddlepoints worse?

• It is believed that SGD often skips past saddlepoints

• It is actually hard work to descend perfectly to a saddlepoint;
more likely you overshoot and keep descending

• It is harder to jump out of a local minima, using only the
stochasticity from SGD

Local Minima

Global Minima

Saddlepoint

Global Minimum

On to the course!

• The introductory chapter discusses
• A Brief Refresher of the basics of ML
• Generative Models and Predictors
• The Blessing and Curse of Dimensionality
• Matrix Methods

• Let us briefly discuss those here before moving to Probability Background

Prediction Models and
Generative Models

• We looked at both learning and

• We usually think of as a generative model and learn for prediction (using
 for regression and for classification)

• This distinction is not quite right. Rather, key is how we use these models

• Generative models: learn (complex) distributions to generate potential outcomes;
focus is obtaining accurate models of the target variable

• Prediction models: learn (simple) distributions to facilitate prediction; focus is obtaining
useful predictions, even if distribution not quite right

p(x) p(y |x)

p(x) p(y |x)
𝔼[Y |x] p(y |x)

Examples
• Let be images of faces (a multi-dimensional RV) and be a binary RV that is 0 if the face

is not narrow and 1 if it is narrow

• is a generative model, because we will simulate hypothetical faces by sampling

• is a prediction model, since we will use this to classify if the face is narrow or not
narrow

• is a conditional generative model, because we will simulate hypothetical faces,
conditioned on whether they are narrow or not

• The distinction is primarily on the complexity of the RV that we are modelling
• for each case we still learn a (conditional) distribution

X Y

p(x) x ∼ p

p(y |x)

p(x |y)

What is a complex distribution?

More simple More complex

This distinction matters a lot
• Once we are modelling more complex variables, then we have to consider how to do so

efficiently and still enable sampling from that distribution

• Sampling from a Bernoulli is easy. Sampling from the set of all faces is harder

• So, though they are clearly highly related and the distinction is not quite crisp, the field
of generative modelling is quite distinct from prediction

• For prediction, we often care primarily about classification (simple discrete targets) or
means of targets (modelled as univariate Gaussians)

• For generative models, we often care about learning complex distributions

Blessing and Curse of
Dimensionality

• Interesting concentration phenomena occur in high-dimensions
• The volume of a high-dimensional ball concentrates near its surface, rather than the

interior

• This phenomena has ramifications for us when learning
• Blessing: data becomes separable in high-dimensions
• Curse: distances become less meaningful

• High-dimensional representations can significantly improve performance, we simply
have to be careful about how we use them

Let us now no longer use these loaded terms

Matrix Methods

• Basics of ML (mostly) avoided matrices

• ML II will embrace this tool (linear algebra is useful)

• Primarily, we use:
• Matrix-vector and matrix-matrix product
• Matrix inverses
• Matrix decompositions (eigenvalue decomposition, svd)

A matrix is an mxn arrayFor this course, I expect you to recall a few basics. Recall that a m ◊ n matrix A is a
two-dimensional array with m rows and n columns.

A =

S

WWWU

a11 a12 . . . a1n

a21 a22 . . . a2n

. . .
am1 am2 . . . amn

T

XXXV =

S

WWWU

a1
a2
. . .
am

T

XXXV

where ai

def= [ai1, ai2, . . . , ain] is a vector corresponding to the ith row. The symbol is bold,
to indicate it is a vector. Sometimes, this row vector is written using the notation Ai: where
the colon indicates the entire row from 1 to n is used. Similarly, to reference a column,
we use A:j . When you multiple a vector x œ Rn with this matrix, the matrix-vector dot
product corresponds to doing a dot product between x and each row of A:

Ax =

S

WWWU

Èa1, xÍ
Èa2, xÍ

. . .
Èam, xÍ

T

XXXV =

S

WWWU

ÈA1:, xÍ
ÈA2:, xÍ

. . .
ÈAm:, xÍ

T

XXXV œ Rm

The resulting vector is the same dimension as the number of rows of A. More generally, if
we do a matrix-matrix product with another matrix B œ Rn◊k

AB = [AB:,1, AB:,2, . . . , AB:,k] =

S

WWWU

A1,:B:,1 A1,:B:,2 . . . A1,:B:,k
A2,:B:,1 A2,:B:,2 . . . A2,:B:,k

. . .
Am,:B:,1 Am,:B:,2 . . . Am,:B:,k

T

XXXV œ Rm◊k

To multiply these matrices, the inner dimension n has to match: A is m◊n and B is n◊k.
The resulting matrix has the same number of rows as A and number of columns as B. It
is a useful sanity check in derivations, to see if you have made a mistake, to check if all
the dimensions match. If you find yourself multiplying two matrices with di�erent inner
dimensions, something went wrong.

1.4.1 Matrix Inverse and Eigenvalue Decomposition
We will also use matrix inverses. Recall that for a scalar number a, it’s inverse a≠1 is 1/a,
because aa≠1 = 1 (which is the definition of an inverse). For a diagonal matrix A, its inverse
is similarly straightforward:

A =

S

WWWU

a1 0 . . . 0 0
0 a2 0 . . . 0

. . .
0 0 . . . 0 ad

T

XXXV A≠1 =

S

WWWU

1/a1 0 . . . 0 0
0 1/a2 0 . . . 0

. . .
0 0 . . . 0 1/ad

T

XXXV

where you can verify that AA≠1 = I for identity matrix I that has 1s on the diagonal

I def=

S

WWWU

1 0 . . . 0 0
0 1 0 . . . 0

. . .
0 0 . . . 0 1

T

XXXV

10

Matrix-vector product

For this course, I expect you to recall a few basics. Recall that a m ◊ n matrix A is a
two-dimensional array with m rows and n columns.

A =

S

WWWU

a11 a12 . . . a1n

a21 a22 . . . a2n

. . .
am1 am2 . . . amn

T

XXXV =

S

WWWU

a1
a2
. . .
am

T

XXXV

where ai

def= [ai1, ai2, . . . , ain] is a vector corresponding to the ith row. The symbol is bold,
to indicate it is a vector. Sometimes, this row vector is written using the notation Ai: where
the colon indicates the entire row from 1 to n is used. Similarly, to reference a column,
we use A:j . When you multiple a vector x œ Rn with this matrix, the matrix-vector dot
product corresponds to doing a dot product between x and each row of A:

Ax =

S

WWWU

Èa1, xÍ
Èa2, xÍ

. . .
Èam, xÍ

T

XXXV =

S

WWWU

ÈA1:, xÍ
ÈA2:, xÍ

. . .
ÈAm:, xÍ

T

XXXV œ Rm

The resulting vector is the same dimension as the number of rows of A. More generally, if
we do a matrix-matrix product with another matrix B œ Rn◊k

AB = [AB:,1, AB:,2, . . . , AB:,k] =

S

WWWU

A1,:B:,1 A1,:B:,2 . . . A1,:B:,k
A2,:B:,1 A2,:B:,2 . . . A2,:B:,k

. . .
Am,:B:,1 Am,:B:,2 . . . Am,:B:,k

T

XXXV œ Rm◊k

To multiply these matrices, the inner dimension n has to match: A is m◊n and B is n◊k.
The resulting matrix has the same number of rows as A and number of columns as B. It
is a useful sanity check in derivations, to see if you have made a mistake, to check if all
the dimensions match. If you find yourself multiplying two matrices with di�erent inner
dimensions, something went wrong.

1.4.1 Matrix Inverse and Eigenvalue Decomposition
We will also use matrix inverses. Recall that for a scalar number a, it’s inverse a≠1 is 1/a,
because aa≠1 = 1 (which is the definition of an inverse). For a diagonal matrix A, its inverse
is similarly straightforward:

A =

S

WWWU

a1 0 . . . 0 0
0 a2 0 . . . 0

. . .
0 0 . . . 0 ad

T

XXXV A≠1 =

S

WWWU

1/a1 0 . . . 0 0
0 1/a2 0 . . . 0

. . .
0 0 . . . 0 1/ad

T

XXXV

where you can verify that AA≠1 = I for identity matrix I that has 1s on the diagonal

I def=

S

WWWU

1 0 . . . 0 0
0 1 0 . . . 0

. . .
0 0 . . . 0 1

T

XXXV

10

For this course, I expect you to recall a few basics. Recall that a m ◊ n matrix A is a
two-dimensional array with m rows and n columns.

A =

S

WWWU

a11 a12 . . . a1n

a21 a22 . . . a2n

. . .
am1 am2 . . . amn

T

XXXV =

S

WWWU

a1
a2
. . .
am

T

XXXV

where ai

def= [ai1, ai2, . . . , ain] is a vector corresponding to the ith row. The symbol is bold,
to indicate it is a vector. Sometimes, this row vector is written using the notation Ai: where
the colon indicates the entire row from 1 to n is used. Similarly, to reference a column,
we use A:j . When you multiple a vector x œ Rn with this matrix, the matrix-vector dot
product corresponds to doing a dot product between x and each row of A:

Ax =

S

WWWU

Èa1, xÍ
Èa2, xÍ

. . .
Èam, xÍ

T

XXXV =

S

WWWU

ÈA1:, xÍ
ÈA2:, xÍ

. . .
ÈAm:, xÍ

T

XXXV œ Rm

The resulting vector is the same dimension as the number of rows of A. More generally, if
we do a matrix-matrix product with another matrix B œ Rn◊k

AB = [AB:,1, AB:,2, . . . , AB:,k] =

S

WWWU

A1,:B:,1 A1,:B:,2 . . . A1,:B:,k
A2,:B:,1 A2,:B:,2 . . . A2,:B:,k

. . .
Am,:B:,1 Am,:B:,2 . . . Am,:B:,k

T

XXXV œ Rm◊k

To multiply these matrices, the inner dimension n has to match: A is m◊n and B is n◊k.
The resulting matrix has the same number of rows as A and number of columns as B. It
is a useful sanity check in derivations, to see if you have made a mistake, to check if all
the dimensions match. If you find yourself multiplying two matrices with di�erent inner
dimensions, something went wrong.

1.4.1 Matrix Inverse and Eigenvalue Decomposition
We will also use matrix inverses. Recall that for a scalar number a, it’s inverse a≠1 is 1/a,
because aa≠1 = 1 (which is the definition of an inverse). For a diagonal matrix A, its inverse
is similarly straightforward:

A =

S

WWWU

a1 0 . . . 0 0
0 a2 0 . . . 0

. . .
0 0 . . . 0 ad

T

XXXV A≠1 =

S

WWWU

1/a1 0 . . . 0 0
0 1/a2 0 . . . 0

. . .
0 0 . . . 0 1/ad

T

XXXV

where you can verify that AA≠1 = I for identity matrix I that has 1s on the diagonal

I def=

S

WWWU

1 0 . . . 0 0
0 1 0 . . . 0

. . .
0 0 . . . 0 1

T

XXXV

10

Matrix-matrix product

For this course, I expect you to recall a few basics. Recall that a m ◊ n matrix A is a
two-dimensional array with m rows and n columns.

A =

S

WWWU

a11 a12 . . . a1n

a21 a22 . . . a2n

. . .
am1 am2 . . . amn

T

XXXV =

S

WWWU

a1
a2
. . .
am

T

XXXV

where ai

def= [ai1, ai2, . . . , ain] is a vector corresponding to the ith row. The symbol is bold,
to indicate it is a vector. Sometimes, this row vector is written using the notation Ai: where
the colon indicates the entire row from 1 to n is used. Similarly, to reference a column,
we use A:j . When you multiple a vector x œ Rn with this matrix, the matrix-vector dot
product corresponds to doing a dot product between x and each row of A:

Ax =

S

WWWU

Èa1, xÍ
Èa2, xÍ

. . .
Èam, xÍ

T

XXXV =

S

WWWU

ÈA1:, xÍ
ÈA2:, xÍ

. . .
ÈAm:, xÍ

T

XXXV œ Rm

The resulting vector is the same dimension as the number of rows of A. More generally, if
we do a matrix-matrix product with another matrix B œ Rn◊k

AB = [AB:,1, AB:,2, . . . , AB:,k] =

S

WWWU

A1,:B:,1 A1,:B:,2 . . . A1,:B:,k
A2,:B:,1 A2,:B:,2 . . . A2,:B:,k

. . .
Am,:B:,1 Am,:B:,2 . . . Am,:B:,k

T

XXXV œ Rm◊k

To multiply these matrices, the inner dimension n has to match: A is m◊n and B is n◊k.
The resulting matrix has the same number of rows as A and number of columns as B. It
is a useful sanity check in derivations, to see if you have made a mistake, to check if all
the dimensions match. If you find yourself multiplying two matrices with di�erent inner
dimensions, something went wrong.

1.4.1 Matrix Inverse and Eigenvalue Decomposition
We will also use matrix inverses. Recall that for a scalar number a, it’s inverse a≠1 is 1/a,
because aa≠1 = 1 (which is the definition of an inverse). For a diagonal matrix A, its inverse
is similarly straightforward:

A =

S

WWWU

a1 0 . . . 0 0
0 a2 0 . . . 0

. . .
0 0 . . . 0 ad

T

XXXV A≠1 =

S

WWWU

1/a1 0 . . . 0 0
0 1/a2 0 . . . 0

. . .
0 0 . . . 0 1/ad

T

XXXV

where you can verify that AA≠1 = I for identity matrix I that has 1s on the diagonal

I def=

S

WWWU

1 0 . . . 0 0
0 1 0 . . . 0

. . .
0 0 . . . 0 1

T

XXXV

10

For this course, I expect you to recall a few basics. Recall that a m ◊ n matrix A is a
two-dimensional array with m rows and n columns.

A =

S

WWWU

a11 a12 . . . a1n

a21 a22 . . . a2n

. . .
am1 am2 . . . amn

T

XXXV =

S

WWWU

a1
a2
. . .
am

T

XXXV

where ai

def= [ai1, ai2, . . . , ain] is a vector corresponding to the ith row. The symbol is bold,
to indicate it is a vector. Sometimes, this row vector is written using the notation Ai: where
the colon indicates the entire row from 1 to n is used. Similarly, to reference a column,
we use A:j . When you multiple a vector x œ Rn with this matrix, the matrix-vector dot
product corresponds to doing a dot product between x and each row of A:

Ax =

S

WWWU

Èa1, xÍ
Èa2, xÍ

. . .
Èam, xÍ

T

XXXV =

S

WWWU

ÈA1:, xÍ
ÈA2:, xÍ

. . .
ÈAm:, xÍ

T

XXXV œ Rm

The resulting vector is the same dimension as the number of rows of A. More generally, if
we do a matrix-matrix product with another matrix B œ Rn◊k

AB = [AB:,1, AB:,2, . . . , AB:,k] =

S

WWWU

A1,:B:,1 A1,:B:,2 . . . A1,:B:,k
A2,:B:,1 A2,:B:,2 . . . A2,:B:,k

. . .
Am,:B:,1 Am,:B:,2 . . . Am,:B:,k

T

XXXV œ Rm◊k

To multiply these matrices, the inner dimension n has to match: A is m◊n and B is n◊k.
The resulting matrix has the same number of rows as A and number of columns as B. It
is a useful sanity check in derivations, to see if you have made a mistake, to check if all
the dimensions match. If you find yourself multiplying two matrices with di�erent inner
dimensions, something went wrong.

1.4.1 Matrix Inverse and Eigenvalue Decomposition
We will also use matrix inverses. Recall that for a scalar number a, it’s inverse a≠1 is 1/a,
because aa≠1 = 1 (which is the definition of an inverse). For a diagonal matrix A, its inverse
is similarly straightforward:

A =

S

WWWU

a1 0 . . . 0 0
0 a2 0 . . . 0

. . .
0 0 . . . 0 ad

T

XXXV A≠1 =

S

WWWU

1/a1 0 . . . 0 0
0 1/a2 0 . . . 0

. . .
0 0 . . . 0 1/ad

T

XXXV

where you can verify that AA≠1 = I for identity matrix I that has 1s on the diagonal

I def=

S

WWWU

1 0 . . . 0 0
0 1 0 . . . 0

. . .
0 0 . . . 0 1

T

XXXV

10

A ∈ ℝm×n

A nicer picture of matrix multiplication

For this course, I expect you to recall a few basics. Recall that a m ◊ n matrix A is a
two-dimensional array with m rows and n columns.

A =

S

WWWU

a11 a12 . . . a1n

a21 a22 . . . a2n

. . .
am1 am2 . . . amn

T

XXXV =

S

WWWU

a1
a2
. . .
am

T

XXXV

where ai

def= [ai1, ai2, . . . , ain] is a vector corresponding to the ith row. The symbol is bold,
to indicate it is a vector. Sometimes, this row vector is written using the notation Ai: where
the colon indicates the entire row from 1 to n is used. Similarly, to reference a column,
we use A:j . When you multiple a vector x œ Rn with this matrix, the matrix-vector dot
product corresponds to doing a dot product between x and each row of A:

Ax =

S

WWWU

Èa1, xÍ
Èa2, xÍ

. . .
Èam, xÍ

T

XXXV =

S

WWWU

ÈA1:, xÍ
ÈA2:, xÍ

. . .
ÈAm:, xÍ

T

XXXV œ Rm

The resulting vector is the same dimension as the number of rows of A. More generally, if
we do a matrix-matrix product with another matrix B œ Rn◊k

AB = [AB:,1, AB:,2, . . . , AB:,k] =

S

WWWU

A1,:B:,1 A1,:B:,2 . . . A1,:B:,k
A2,:B:,1 A2,:B:,2 . . . A2,:B:,k

. . .
Am,:B:,1 Am,:B:,2 . . . Am,:B:,k

T

XXXV œ Rm◊k

To multiply these matrices, the inner dimension n has to match: A is m◊n and B is n◊k.
The resulting matrix has the same number of rows as A and number of columns as B. It
is a useful sanity check in derivations, to see if you have made a mistake, to check if all
the dimensions match. If you find yourself multiplying two matrices with di�erent inner
dimensions, something went wrong.

1.4.1 Matrix Inverse and Eigenvalue Decomposition
We will also use matrix inverses. Recall that for a scalar number a, it’s inverse a≠1 is 1/a,
because aa≠1 = 1 (which is the definition of an inverse). For a diagonal matrix A, its inverse
is similarly straightforward:

A =

S

WWWU

a1 0 . . . 0 0
0 a2 0 . . . 0

. . .
0 0 . . . 0 ad

T

XXXV A≠1 =

S

WWWU

1/a1 0 . . . 0 0
0 1/a2 0 . . . 0

. . .
0 0 . . . 0 1/ad

T

XXXV

where you can verify that AA≠1 = I for identity matrix I that has 1s on the diagonal

I def=

S

WWWU

1 0 . . . 0 0
0 1 0 . . . 0

. . .
0 0 . . . 0 1

T

XXXV

10

A ∈ ℝm×n

What is m, n and k in this example?

m = 4, n = 2, k = 3

Matrix-matrix product

For this course, I expect you to recall a few basics. Recall that a m ◊ n matrix A is a
two-dimensional array with m rows and n columns.

A =

S

WWWU

a11 a12 . . . a1n

a21 a22 . . . a2n

. . .
am1 am2 . . . amn

T

XXXV =

S

WWWU

a1
a2
. . .
am

T

XXXV

where ai

def= [ai1, ai2, . . . , ain] is a vector corresponding to the ith row. The symbol is bold,
to indicate it is a vector. Sometimes, this row vector is written using the notation Ai: where
the colon indicates the entire row from 1 to n is used. Similarly, to reference a column,
we use A:j . When you multiple a vector x œ Rn with this matrix, the matrix-vector dot
product corresponds to doing a dot product between x and each row of A:

Ax =

S

WWWU

Èa1, xÍ
Èa2, xÍ

. . .
Èam, xÍ

T

XXXV =

S

WWWU

ÈA1:, xÍ
ÈA2:, xÍ

. . .
ÈAm:, xÍ

T

XXXV œ Rm

The resulting vector is the same dimension as the number of rows of A. More generally, if
we do a matrix-matrix product with another matrix B œ Rn◊k

AB = [AB:,1, AB:,2, . . . , AB:,k] =

S

WWWU

A1,:B:,1 A1,:B:,2 . . . A1,:B:,k
A2,:B:,1 A2,:B:,2 . . . A2,:B:,k

. . .
Am,:B:,1 Am,:B:,2 . . . Am,:B:,k

T

XXXV œ Rm◊k

To multiply these matrices, the inner dimension n has to match: A is m◊n and B is n◊k.
The resulting matrix has the same number of rows as A and number of columns as B. It
is a useful sanity check in derivations, to see if you have made a mistake, to check if all
the dimensions match. If you find yourself multiplying two matrices with di�erent inner
dimensions, something went wrong.

1.4.1 Matrix Inverse and Eigenvalue Decomposition
We will also use matrix inverses. Recall that for a scalar number a, it’s inverse a≠1 is 1/a,
because aa≠1 = 1 (which is the definition of an inverse). For a diagonal matrix A, its inverse
is similarly straightforward:

A =

S

WWWU

a1 0 . . . 0 0
0 a2 0 . . . 0

. . .
0 0 . . . 0 ad

T

XXXV A≠1 =

S

WWWU

1/a1 0 . . . 0 0
0 1/a2 0 . . . 0

. . .
0 0 . . . 0 1/ad

T

XXXV

where you can verify that AA≠1 = I for identity matrix I that has 1s on the diagonal

I def=

S

WWWU

1 0 . . . 0 0
0 1 0 . . . 0

. . .
0 0 . . . 0 1

T

XXXV

10

For this course, I expect you to recall a few basics. Recall that a m ◊ n matrix A is a
two-dimensional array with m rows and n columns.

A =

S

WWWU

a11 a12 . . . a1n

a21 a22 . . . a2n

. . .
am1 am2 . . . amn

T

XXXV =

S

WWWU

a1
a2
. . .
am

T

XXXV

where ai

def= [ai1, ai2, . . . , ain] is a vector corresponding to the ith row. The symbol is bold,
to indicate it is a vector. Sometimes, this row vector is written using the notation Ai: where
the colon indicates the entire row from 1 to n is used. Similarly, to reference a column,
we use A:j . When you multiple a vector x œ Rn with this matrix, the matrix-vector dot
product corresponds to doing a dot product between x and each row of A:

Ax =

S

WWWU

Èa1, xÍ
Èa2, xÍ

. . .
Èam, xÍ

T

XXXV =

S

WWWU

ÈA1:, xÍ
ÈA2:, xÍ

. . .
ÈAm:, xÍ

T

XXXV œ Rm

The resulting vector is the same dimension as the number of rows of A. More generally, if
we do a matrix-matrix product with another matrix B œ Rn◊k

AB = [AB:,1, AB:,2, . . . , AB:,k] =

S

WWWU

A1,:B:,1 A1,:B:,2 . . . A1,:B:,k
A2,:B:,1 A2,:B:,2 . . . A2,:B:,k

. . .
Am,:B:,1 Am,:B:,2 . . . Am,:B:,k

T

XXXV œ Rm◊k

To multiply these matrices, the inner dimension n has to match: A is m◊n and B is n◊k.
The resulting matrix has the same number of rows as A and number of columns as B. It
is a useful sanity check in derivations, to see if you have made a mistake, to check if all
the dimensions match. If you find yourself multiplying two matrices with di�erent inner
dimensions, something went wrong.

1.4.1 Matrix Inverse and Eigenvalue Decomposition
We will also use matrix inverses. Recall that for a scalar number a, it’s inverse a≠1 is 1/a,
because aa≠1 = 1 (which is the definition of an inverse). For a diagonal matrix A, its inverse
is similarly straightforward:

A =

S

WWWU

a1 0 . . . 0 0
0 a2 0 . . . 0

. . .
0 0 . . . 0 ad

T

XXXV A≠1 =

S

WWWU

1/a1 0 . . . 0 0
0 1/a2 0 . . . 0

. . .
0 0 . . . 0 1/ad

T

XXXV

where you can verify that AA≠1 = I for identity matrix I that has 1s on the diagonal

I def=

S

WWWU

1 0 . . . 0 0
0 1 0 . . . 0

. . .
0 0 . . . 0 1

T

XXXV

10

A ∈ ℝm×n

Notice that the inner dimension matches:  
 times produces a matrix 

It is an easy rule of thumb to check if you have made a mistake somewhere,  
by checking that these dimension match and you have a valid operation

m × n n × k m × k

Matrix Inverse for Diagonal Matrix

For this course, I expect you to recall a few basics. Recall that a m ◊ n matrix A is a
two-dimensional array with m rows and n columns.

A =

S

WWWU

a11 a12 . . . a1n

a21 a22 . . . a2n

. . .
am1 am2 . . . amn

T

XXXV =

S

WWWU

a1
a2
. . .
am

T

XXXV

where ai

def= [ai1, ai2, . . . , ain] is a vector corresponding to the ith row. The symbol is bold,
to indicate it is a vector. Sometimes, this row vector is written using the notation Ai: where
the colon indicates the entire row from 1 to n is used. Similarly, to reference a column,
we use A:j . When you multiple a vector x œ Rn with this matrix, the matrix-vector dot
product corresponds to doing a dot product between x and each row of A:

Ax =

S

WWWU

Èa1, xÍ
Èa2, xÍ

. . .
Èam, xÍ

T

XXXV =

S

WWWU

ÈA1:, xÍ
ÈA2:, xÍ

. . .
ÈAm:, xÍ

T

XXXV œ Rm

The resulting vector is the same dimension as the number of rows of A. More generally, if
we do a matrix-matrix product with another matrix B œ Rn◊k

AB = [AB:,1, AB:,2, . . . , AB:,k] =

S

WWWU

A1,:B:,1 A1,:B:,2 . . . A1,:B:,k
A2,:B:,1 A2,:B:,2 . . . A2,:B:,k

. . .
Am,:B:,1 Am,:B:,2 . . . Am,:B:,k

T

XXXV œ Rm◊k

To multiply these matrices, the inner dimension n has to match: A is m◊n and B is n◊k.
The resulting matrix has the same number of rows as A and number of columns as B. It
is a useful sanity check in derivations, to see if you have made a mistake, to check if all
the dimensions match. If you find yourself multiplying two matrices with di�erent inner
dimensions, something went wrong.

1.4.1 Matrix Inverse and Eigenvalue Decomposition
We will also use matrix inverses. Recall that for a scalar number a, it’s inverse a≠1 is 1/a,
because aa≠1 = 1 (which is the definition of an inverse). For a diagonal matrix A, its inverse
is similarly straightforward:

A =

S

WWWU

a1 0 . . . 0 0
0 a2 0 . . . 0

. . .
0 0 . . . 0 ad

T

XXXV A≠1 =

S

WWWU

1/a1 0 . . . 0 0
0 1/a2 0 . . . 0

. . .
0 0 . . . 0 1/ad

T

XXXV

where you can verify that AA≠1 = I for identity matrix I that has 1s on the diagonal

I def=

S

WWWU

1 0 . . . 0 0
0 1 0 . . . 0

. . .
0 0 . . . 0 1

T

XXXV

10

For this course, I expect you to recall a few basics. Recall that a m ◊ n matrix A is a
two-dimensional array with m rows and n columns.

A =

S

WWWU

a11 a12 . . . a1n

a21 a22 . . . a2n

. . .
am1 am2 . . . amn

T

XXXV =

S

WWWU

a1
a2
. . .
am

T

XXXV

where ai

def= [ai1, ai2, . . . , ain] is a vector corresponding to the ith row. The symbol is bold,
to indicate it is a vector. Sometimes, this row vector is written using the notation Ai: where
the colon indicates the entire row from 1 to n is used. Similarly, to reference a column,
we use A:j . When you multiple a vector x œ Rn with this matrix, the matrix-vector dot
product corresponds to doing a dot product between x and each row of A:

Ax =

S

WWWU

Èa1, xÍ
Èa2, xÍ

. . .
Èam, xÍ

T

XXXV =

S

WWWU

ÈA1:, xÍ
ÈA2:, xÍ

. . .
ÈAm:, xÍ

T

XXXV œ Rm

The resulting vector is the same dimension as the number of rows of A. More generally, if
we do a matrix-matrix product with another matrix B œ Rn◊k

AB = [AB:,1, AB:,2, . . . , AB:,k] =

S

WWWU

A1,:B:,1 A1,:B:,2 . . . A1,:B:,k
A2,:B:,1 A2,:B:,2 . . . A2,:B:,k

. . .
Am,:B:,1 Am,:B:,2 . . . Am,:B:,k

T

XXXV œ Rm◊k

To multiply these matrices, the inner dimension n has to match: A is m◊n and B is n◊k.
The resulting matrix has the same number of rows as A and number of columns as B. It
is a useful sanity check in derivations, to see if you have made a mistake, to check if all
the dimensions match. If you find yourself multiplying two matrices with di�erent inner
dimensions, something went wrong.

1.4.1 Matrix Inverse and Eigenvalue Decomposition
We will also use matrix inverses. Recall that for a scalar number a, it’s inverse a≠1 is 1/a,
because aa≠1 = 1 (which is the definition of an inverse). For a diagonal matrix A, its inverse
is similarly straightforward:

A =

S

WWWU

a1 0 . . . 0 0
0 a2 0 . . . 0

. . .
0 0 . . . 0 ad

T

XXXV A≠1 =

S

WWWU

1/a1 0 . . . 0 0
0 1/a2 0 . . . 0

. . .
0 0 . . . 0 1/ad

T

XXXV

where you can verify that AA≠1 = I for identity matrix I that has 1s on the diagonal

I def=

S

WWWU

1 0 . . . 0 0
0 1 0 . . . 0

. . .
0 0 . . . 0 1

T

XXXV

10

Matrix Decompositions
• Singular Value Decomposition (SVD)

• every matrix has an SVD

• Eigenvalue Decomposition
• every square, symmetric matrix has an eigenvalue decomposition
• other matrices do too, but we don’t need to reason about the eigenvalue

decomposition for anything by square, symmetric matrices

• These decompositions are useful for reasoning about the properties of the matrix and
computing the inverse of the matrix

A matrix as an operator

• is an operator on vectors:
• it transforms the input vector to a new

• How can we reason about the properties of this operator?

M x̃ = Mx
x x̃

Singular Value Decomposition
• is an operator on vectors:

• it transforms the input vector to a new

• Any matrix can be decomposed using an SVD:

• is a diagonal matrix with nonnegative elements on the diagonal

• are orthonormal matrices, meaning that
•
•

M x̃ = Mx
x x̃

M = UΣV⊤

Σ

U, V
U⊤U = I
V⊤V = I

Singular Value Decomposition
M = U⌃V> Mx = U⌃V>x = U⌃(V>x)

Every matrix is a linear operator that can be decomposed into
a rotation (V), scaling (Sigma), and rotation (U) operation

Exercise: What happens if a singular
value is zero?

Mx = U⌃V>x = U⌃(V>x)

• Every matrix is a linear operator that can be decomposed into
a rotation (V), scaling (Sigma), and rotation (U) operation
• What does the scaling operation do?

• Answer: it zeros out a component of

•
 is a weighted sum of n-1 basis vector

• It reduces the dimension by 1: it projects the vector into a lower-
dimensional space

x̃ = V⊤x

Ux̃ =
n

∑
i=1

uix̃i =
n−1

∑
i=1

uix̃i

Example using SVD on data matrix
• for n samples and d features

• Let’s imagine d = 2

•

• where ,

• A row (sample) equals

• a linear combination of (right singular) vectors

X ∈ ℝn×d

X = UΣV⊤ = [u1, u2]diag(σ1, σ2)[v⊤
1 ; v⊤

2] =
2

∑
j=1

σjujv⊤
j

uj ∈ ℝn, σj ≥ 0,vj ∈ ℝ2 V = [v1, v2]

xi = Ui1σ1v⊤
1 + Ui2σ2v⊤

2 = β1v⊤
1 + β2v⊤

2

vj

Visualizing σ2 = 0
I
F

✗
"
=

§
,

×

✗

×

s
s

~
s

f
w

g
-
-

×
×

9
0
-

✗
9

×
×

µ
0

-
I

- ÷
✗

g
✗

"
X

0
×

✗
&

&
✗

✗
✗

✗

I

µ
×
>
☒

"
O 1
-

-
9
×
9
+

-5
<
i
n

$

5-
=

✗

→
✗

§
9

.

a
s

✗

I
§

✗
E.
◦

✗

{
s

×

s
←

*

I
s
•

-5

9
g

T T;

Notice neither x1 nor x2 are always zero,  
features look like they vary in both dimensions

I
F

✗
"
=

§
,

×

✗

×

s
s

~
s

f
w

g
-
-

×
×

9
0
-

✗
9

×
×

µ
0

-
I

- ÷
✗

g
✗

"
X

0
×

✗
&

&
✗

✗
✗

✗

I

µ
×
>
☒

"
O 1
-

-
9
×
9
+

-5
<
i
n

$

5-
=

✗

→
✗

§
9

.

a
s

✗

I
§

✗
E.
◦

✗

{
s

×

s
←

*

I
s
•

-5

9
g

The effect on predictions

• where

• , meaning

• Effectively only have one degree of freedom

• Usually for a 2d input space, for a linear function, y lies on a 2d plane. Here, it lies on a
1d plane (a line)

̂y = Xw = X̃w̃ w̃ = V⊤w

X̃ = [σ1u1, 0] X̃w̃ = σ1u1w̃1

Effectively learning in a
lower-dimensional spaceI

F
✗

"
=
-

¥
≤

a

×

I
s
s

"
✗

§
~
s

§
-
x

S
-

x
✗

9
a
-

0
-

✗
a

×
×

"

✗
-

I

÷
✗

g ,
-

✗

g
✗

I
"

t

0
×

✗
&

&
✗

✗
×

✗

I

I
"
¥
>
* Is

a
*
✗
+

%
×

-5
<
i
n

•

¥
¥

-

5-
=

✗

✗
→

×
'

¥
×

a
5

I
✗

{
E.
◦

✗

{
s

×

s
←

*

I
s
•

-5

9
g

Rank of a matrix

• The number of non-zero singular values is the rank

• The rank of a matrix is the dimension of the space that it projects vectors to

• For a matrix with one singular value that is zero, it projects all vectors to one dimension
lower (a plane in dimension n-1 inside the large n-dimensional space)

Class Poll
• Should I change the inputs to be row vectors?

• Reasoning: has each sample as a row,

• When we write for , we are taking each row and computing

• Usually we assume so we write and say the rows of consist of

• But when we move to NNs and learning representations, convenient to treat as a
row vector and write

• Other plus: the minimal ink principles, it removes a bunch of transposes

• Issue: is this going to confuse you a lot? To see instead of

X ∈ ℝn×d xi ∈ ℝ1×d

Xw w ∈ ℝd×1 xiw

xi ∈ ℝd×1 x⊤
i w X x⊤

i

xi ∈ ℝ1×d

xiW

xiw x⊤
i w

Eigenvalue Decomposition

• A square symmetric matrix
• is a diagonal matrix
• Notice this like an SVD, where the second rotation is again

• Computing the inverse is now easy:

• How do we know? We can check.

M = UΛU⊤

Λ
U

M−1 = UΛ−1U⊤

Checking the Inverse Condition
MM−1 = (UΛU⊤)UΛ−1U⊤

= UΛU⊤UΛ−1U⊤

= UΛIΛ−1U⊤

= UΛΛ−1U⊤

= UIU⊤

= UU⊤

= I

Exercise: Check that M−1M = I

M−1 = UΛ−1U⊤

