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PMFs and PDFs
Outcome space is  

Outcomes are multidimensional variables  

Discrete case: 
 is a (joint) probability mass function if   

Continuous case: 

 is a (joint) probability density function if  

𝒳 = 𝒳1 × 𝒳2 × … × 𝒳d

x = [x1, x2, . . . , xd]

p : 𝒳 → [0,1] ∑
x∈𝒳

p(x) = 1

p : 𝒳 → [0,∞) ∫𝒳
p(x) dx = 1



Can also write it this way
We can consider a -dimensional random variable  with vector-valued outcomes 

, with each  chosen from some .  Then, 

Discrete case: 
 is a (joint) probability mass function if 

  

Continuous case: 
 is a (joint) probability density function if 

 

d ⃗X = (X1, …, Xd)
⃗x = (x1, …, xd) xi 𝒳i

p : 𝒳1 × 𝒳2 × … × 𝒳d → [0,1]

∑
x1∈𝒳1

∑
x2∈𝒳2

⋯ ∑
xd∈𝒳d

p(x1, x2, …, xd) = 1

p : 𝒳1 × 𝒳2 × … × 𝒳d → [0,∞)

∫𝒳1
∫𝒳2

⋯∫𝒳d

p(x1, x2, …, xd) dx1dx2…dxd = 1



Multidimensional PMF often is 
simply a multi-dimensional array
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Now record both commute time and number red lights

⌦ = {4, . . . , 14}⇥ {1, 2, 3, 4, 5}
PMF is normalized 2-d table (histogram) of occurrences



Utility for classification
• Want to categorize an item into one of d classes 

• Sample space:  (e.g., outcome is  for class 2 for d = 4) 

• PMF is a table of probabilities, but we can write is compactly as 

•  

• When d = 2, then this is the Bernoulli  for  

• For d > 2, this is called a Categorical distribution 

𝒳 = {0,1}d (0,1,0,0)

p(x1, x2, …, xd) = {αx1
1 αx2

2 …αxd
d  if x1 + x2 + ⋯ + xd = 1

0 otherwise

p(x) = αx(1 − α)(1−x) α1 = α, α2 = 1 − α



Utility for classification
• Sample space:  (e.g., outcome is  for d = 4) 

•  

• When d = 2, then this is the Bernoulli  for  

• For d > 2, this is called a Categorical distribution  

• Exercise: how do we write the Categorical using only ?

𝒳 = {0,1}d (0,1,0,0)

p(x1, x2, …, xd) = {αx1
1 αx2

2 …αxd
d  if x1 + x2 + ⋯ + xd = 1

0 otherwise

p(x) = αx(1 − α)(1−x) α1 = α, α2 = 1 − α

α1, α2, …, αd−1



Utility for classification (simpler)

• Sample space:  (e.g., outcome is  for d = 4) 

•        assuming  

• When d = 2, then this is the Bernoulli  for  

• For d > 2, this is called a Categorical distribution  

• Exercise: how do we write the Categorical using only ?

𝒳 = {0,1}d (0,1,0,0)

p(x1, x2, …, xd) = αx1
1 αx2

2 …αxd
d x1 + x2 + ⋯ + xd = 1

p(x) = αx(1 − α)(1−x) α1 = α, α2 = 1 − α

α1, α2, …, αd−1



Exercise Answer
• Sample space:  (e.g., outcome is  for d = 4) 

•        assuming  

• When d = 2, then this is the Bernoulli  for  

• For d > 2, this is called a Categorical distribution  

• Exercise: how do we write the Categorical using only ? 

•
     because        

𝒳 = {0,1}d (0,1,0,0)

p(x1, x2, …, xd) = αx1
1 αx2

2 …αxd
d x1 + x2 + ⋯ + xd = 1

p(x) = αx(1 − α)(1−x) α1 = α, α2 = 1 − α

α1, α2, …, αd−1

p(x1, x2, …, xd) = αx1
1 αx2

2 …αxd−1
d−1 1 −

d−1

∑
j=1

αj

xd

αd = 1 −
d−1

∑
j=1

αj



Utility for classification
• Want to categorize an item into one of d classes 

• Sample space:  (e.g., outcome is  for d = 4) 

• PMF is a table of probabilities, but we can write is compactly as 

•        assuming  

• Question: If you have a dataset with classes , how 
would you convert it to use this distribution? 

𝒳 = {0,1}d (0,1,0,0)

p(x1, x2, …, xd) = αx1
1 αx2

2 …αxd
d x1 + x2 + ⋯ + xd = 1

𝒴 = {apple, banana, orange}



Exercise Answer 
• Sample space:  (e.g., outcome is  for d = 4) 

•        assuming  

• Question: If you have a dataset with classes , how would you 
convert it to use this distribution?  

• Can rewrite RV  to vector-valued RV  with d = 3, where  

•  

•  

•

𝒳 = {0,1}d (0,1,0,0)

p(x1, x2, …, xd) = αx1
1 αx2

2 …αxd
d x1 + x2 + ⋯ + xd = 1

𝒴 = {apple, banana, orange}

Y X

p(y = apple) = p(x = (1,0,0)) = α1

p(y = banana) = p(x = (0,1,0)) = α2

p(y = orange) = p(x = (0,0,1)) = α3 = 1 − α1 − α2



We did not have to call it X,  
can use any term for categorical variable 

• Sample space:  (e.g., outcome is  for d = 4) 

•        assuming  

• Question: If you have a dataset with classes , how would you 
convert it to use this distribution?  

• Can rewrite RV  to vector-valued RV  with d = 3, where  

•  

•  

•

𝒵 = {0,1}d (0,1,0,0)

p(z1, z2, …, zd) = αz1
1 αz2

2 …αzd
d z1 + z2 + ⋯ + zd = 1

𝒴 = {apple, banana, orange}

Y Z

p(y = apple) = p(z = (1,0,0)) = α1

p(y = banana) = p(z = (0,1,0)) = α2

p(y = orange) = p(z = (0,0,1)) = α3 = 1 − α1 − α2



Conditional PMF

• In classification, we actually learned a conditional PMF on inputs  

• How do we write the conditional distribution for ?

x ∈ ℝd

𝒴 = {apple, banana, orange}



Conditional PMF Example 

• Classes , inputs  

• As before, we rewrite RV  to vector-valued RV  that is a multinomial with d = 3 

• But now probabilities are functions of inputs  

•  

•  

•

𝒴 = {apple, banana, orange} x ∈ ℝd

Y Z

x ∈ ℝd

p(y = apple |x) = p(z = (1,0,0) |x)) = α1(x)

p(y = banana |x) = p(z = (0,1,0) |x)) = α2(x)

p(y = orange |x) = p(z = (0,0,1) |x)) = α3(x)



Contrasting binary versus multiclass 

* Later we see how to parameterize these functions in multinomial logistic regression

x ∈ ℝd

ϕ(x)

α1(x) = ̂p(y = 1 |x)

α1(x) = ̂p(y = (1,0,0) |x)

x ∈ ℝd

ϕ(x)

α2(x) = ̂p(y = (0,1,0) |x)

α3(x) = ̂p(y = (0,0,1) |x)

Binary Classification Multiclass Classification



Multivariate Gaussian

•
 

• with  and  

• The covariance matrix  consists of the covariance between each variable 

•

p(x) =
1

(2π)d |Σ |
exp (−

1
2

(x − μ)⊤Σ−1(x − μ))
Σ ∈ ℝd×d μ ∈ ℝd

Σ

Σij = Cov(Xi, Xj)

Important note! This Sigma matrix is not the same as singular values! 
We re-use this symbol to mean two different things



The Covariance Matrix
X = [X1, . . . , Xd]

where p(y|x) = p(x, y)/p(x).
⇤

In many situations we need to analyze more than two random variables. A simple
two-dimensional summary of all pairwise covariance values involving d random variables
X1, X2, . . . , Xd is called the covariance matrix. More formally, the covariance matrix is
defined as

⌃ = [⌃ij ]
d

i,j=1

where

⌃ij = Cov[Xi, Xj ]

= E [(Xi � E [Xi]) (Xj � E [Xj ])]

with the full matrix written as

⌃ = Cov[X,X]

= E[(X � E[X])(X � E(X)>]

= E[XX>]� E[X]E[X]>.

Here, the diagonal elements of a d ⇥ d covariance matrix are individual variance values for
each variable Xi and the off-diagonal elements are the covariance values between pairs of
variables. The covariance matrix is symmetric and positive semi-definite, i.e., ⌃ ⌫ 0. We
will discuss more about positive semi-definite matrices later in the notes.

Properties of expectations

Here we review, without proofs, some useful properties of expectations. We can generically
consider multivariate random variables, X 2 Rd and Y 2 Rd, for d 2 N, with univariate
random variables as a special case. We consider the more general case because it will be
useful to start thinking directly in terms of random vectors. For a constant c 2 R, it holds
that:

1. E [cX] = cE [X]

2. E [X + Y ] = E [X] + E [Y ]

3. V [c] = 0 . the variance of a constant is zero

4. V[X] ⌫ 0 (i.e., is positive semi-definite), where for d = 1, V[X] � 0 is a scalar. Note
that V[X] is shorthand for Cov[X,X].

5. V[cX] = c2V[X].

6. Cov[X,Y ] = E[(X � E[X])(Y � E(Y )>] = E[XY >]� E[X]E[Y ]>

7. Cov[X + Y ] = V[X] + V[Y ] + 2Cov[X,Y ]

In addition, if X and Y are independent random variables, it holds that:

1. E [XiYj ] = E [Xi]E [Yj ] for all i, j

2. Cov[X + Y ] = V[X] + V[Y ]

3. Cov[X,Y ] = 0.

28

Dot product

x>y =
dX

i=1

xiyi

Outer product

x,y 2 Rd

xy> =

2

6664

x1y1 x1y2 . . . x1yd
x2y1 x2y2 . . . x2yd
...

...
...

xdy1 xdy2 . . . xdyd

3

7775

2 Rd⇥d



Covariance for two dimensions
X = [X1, . . . , Xd]

where p(y|x) = p(x, y)/p(x).
⇤

In many situations we need to analyze more than two random variables. A simple
two-dimensional summary of all pairwise covariance values involving d random variables
X1, X2, . . . , Xd is called the covariance matrix. More formally, the covariance matrix is
defined as

⌃ = [⌃ij ]
d

i,j=1

where

⌃ij = Cov[Xi, Xj ]

= E [(Xi � E [Xi]) (Xj � E [Xj ])]

with the full matrix written as

⌃ = Cov[X,X]

= E[(X � E[X])(X � E(X)>]

= E[XX>]� E[X]E[X]>.

Here, the diagonal elements of a d ⇥ d covariance matrix are individual variance values for
each variable Xi and the off-diagonal elements are the covariance values between pairs of
variables. The covariance matrix is symmetric and positive semi-definite, i.e., ⌃ ⌫ 0. We
will discuss more about positive semi-definite matrices later in the notes.

Properties of expectations

Here we review, without proofs, some useful properties of expectations. We can generically
consider multivariate random variables, X 2 Rd and Y 2 Rd, for d 2 N, with univariate
random variables as a special case. We consider the more general case because it will be
useful to start thinking directly in terms of random vectors. For a constant c 2 R, it holds
that:

1. E [cX] = cE [X]

2. E [X + Y ] = E [X] + E [Y ]

3. V [c] = 0 . the variance of a constant is zero

4. V[X] ⌫ 0 (i.e., is positive semi-definite), where for d = 1, V[X] � 0 is a scalar. Note
that V[X] is shorthand for Cov[X,X].

5. V[cX] = c2V[X].

6. Cov[X,Y ] = E[(X � E[X])(Y � E(Y )>] = E[XY >]� E[X]E[Y ]>

7. Cov[X + Y ] = V[X] + V[Y ] + 2Cov[X,Y ]

In addition, if X and Y are independent random variables, it holds that:

1. E [XiYj ] = E [Xi]E [Yj ] for all i, j

2. Cov[X + Y ] = V[X] + V[Y ]

3. Cov[X,Y ] = 0.

28

x,y 2 Rd

2 Rd⇥d

E


X2
1 X1X2

X2X1 X2
2

�
�


E[X1]2 E[X1]E[X2]

E[X2]E[X1] E[X2]2

�

<latexit sha1_base64="4qy/jNdwpaCpThQ8YLZLHxUBgeY="></latexit><latexit sha1_base64="4qy/jNdwpaCpThQ8YLZLHxUBgeY="></latexit><latexit sha1_base64="4qy/jNdwpaCpThQ8YLZLHxUBgeY="></latexit><latexit sha1_base64="4qy/jNdwpaCpThQ8YLZLHxUBgeY="></latexit>

Example:



Multivariate Gaussian Example

⌃ =


10 0
0 2

�
⌃�1 =


1
10 0
0 1

2

�
µ =


µ1

µ2

�

! � µ =


!1 � µ1

!2 � µ2

�


!1 � µ1

!2 � µ2

� 
1
10 0
0 1

2

�
=


1
10 (!1 � µ1)
1
2 (!2 � µ2)

�


1
10 (!1 � µ1)
1
2 (!2 � µ2)

�> 
!1 � µ1

!2 � µ2

�
=

1

10
(!1 � µ1)

2 +
1

2
(!2 � µ2)

2

T T



Visually

<latexit sha1_base64="XP/RghjTiDth7RULcks/118C9OU="></latexit>
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1.0 0
0 1.0
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1.0 0.75
0.75 1.0
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⌃ =


1.0 0.75
0.75 1.0

�

Σ−1 = ( 2.3 −1.7
−1.7 2.3)



The weighted norm with correlations

• The weighted norm gives a distance to the mean, for the covariance

<latexit sha1_base64="KIClrOMp6e5OKWFc5bkjhq/g50U="></latexit>
e1
e2

�
.
=


x1 � u1

x2 � u2

�

<latexit sha1_base64="rXtWUyvPhZUv1wMRlI69c4bkAXo="></latexit>
e1
e2

�> 
2.3 �1.7
�1.7 2.3

� 
e1
e2

�
=


2.3e1 � 1.7e2
�1.7e1 + 2.3e2

�> 
e1
e2

�

= 2.3e21 + 2.3e22 � 2.4e1e2

• If  is the opposite sign from , then the distance is larger  
(-2.4 * negative number = positive number added to distance) 

• If  is the same sign as , then the distance is larger  
(-2.4 * positive = negative)

e1 e2

e1 e2
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1.0 0
0 1.0
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1.0 0.75
0.75 1.0

� <latexit sha1_base64="VYYnITxhVqa2KmoHZj04CYwQLNM="></latexit>

⌃ =


1.0 0.75
0.75 1.0

�



The determinant component

⌃ =


10 0
0 2

�
|Σ | = det(Σ) = product of singular values

What is the determinant of this Sigma?

(reflects the magnitude of the covariance)



The determinant component

⌃ =


10 0
0 2

�
|Σ | = det(Σ) = product of singular values

What is the determinant of this other Sigma?

(reflects the magnitude of the covariance)
<latexit sha1_base64="HNDAEzU2J9AR8o1Us9hukeSG/gw="></latexit>

⌃ =


1.0 0.75
0.75 1.0

�

It has singular values: , σ1 = 1.75 σ2 = 0.25



The determinant component

⌃ =


10 0
0 2

�
|Σ | = det(Σ) = product of singular values

What is the determinant of this other Sigma?

(reflects the magnitude of the covariance)
<latexit sha1_base64="HNDAEzU2J9AR8o1Us9hukeSG/gw="></latexit>

⌃ =


1.0 0.75
0.75 1.0

�

It has singular values: ,  
Answer: 

σ1 = 1.75 σ2 = 0.25
σ1 × σ2 ≈ 0.44



Revisiting MLE 
• Let us look at MLE for a multivariate Gaussian 

• Have a dataset of -dimensional points  

• What is the most likely Gaussian that generated this data,  
with parameters ? 

• Or more precisely, what is the MLE solution   

• and what is the MAP solution ?

d 𝒟 = {xi}n
i=1

w = (μ, Σ)

arg max
w

p(𝒟 |w)

arg max
w

p(w |𝒟)

* Image from Wikipedia



Wait, we have a matrix of 
parameters?

• Gaussian with parameters  means we have 
 

• In other words, we have a vector of parameters of size  

• Our goal is to find  such that all partial derivatives are zero (at a stationary point) 

•
Our MLE objective is  so we need  

w = (μ, Σ)
w = (μ1, μ2, …, μd, Σ1,1, Σ1,2, …, Σ1,d, Σ2,1, Σ2,2, …, Σ2,d, …, Σd,d−1, Σd,d)

d + d2

w

−
n

∑
i=1

ln p(xi |w) −
∂

∂wj

n

∑
i=1

ln p(xi |w) = 0



Reminder about Stationary Points

• Every minimum of an everywhere-differentiable function  must occur at 
a stationary point:  A point at which  

• However, not every stationary point is a minimum 

• Every stationary point is either: 
• A local minimum 
• A local maximum 
• A saddlepoint 

• The global minimum is either a local minimum (or a boundary point)

c(w)
c′￼(w) = 0

Local Minima

Global Minima

Saddlepoint

Global Minimum

Let’s assume for now that w is unconstrained (i.e,  rather than  or  )w ∈ ℝ w ≥ 0 w ∈ [0,1]



Identifying the type of  
the stationary point

• If function curved upwards (convex) locally, 
then local minimum

Local Minima

Global Minima

Saddlepoint

Global Minimum



Convex functions

* from Wikipedia

f(tx1 + (1 − t)x2) ≤ tf(x1) + (1 − t)f(x2)

Convex = shaped like a bowl

Concave = shaped like an upside bowl



Identifying the type of  
the stationary point

• If function curved upwards (convex) locally, 
then local minimum 

• If function curved downwards (concave) locally, 
then local maximum 

• If function flat locally, then might be a saddlepoint 
but could also be a local min or local max 

• Locally, cannot distinguish between local min  
and global min (its a global property of the surface)

Local Minima

Global Minima

Saddlepoint

Global Minimum



Second derivative test

For example, assume again that we are doing linear regression, with only one feature
and so only one weight w œ R. The derivative of the objective c(w) =

qn
i=1(xiw ≠ yi)2 is

d

dw
c(w) = d

dw

nÿ

i=1
(xiw ≠ yi)2

=
nÿ

i=1

d

dw
(xiw ≠ yi)2

=
nÿ

i=1
2(xiw ≠ yi)xi

where the last step follows from the chain rule. Our goal is to find w such that d
dw c(w) = 0;

once we find such a stationary point, we can then determine if it is a local minimum, local
maximum or saddlepoint.

Sometimes we can infer what type of stationary point we have simply from properties
of the objective. In particular, if the objective is convex, then we know that the stationary
point is a global minima. A function c : Rd æ R is said to be convex if for any w1, w2 œ Rd

and t œ [0, 1],
c(tw1 + (1 ≠ t)w2) Æ tc(w1) + (1 ≠ t)c(w2) (4.1)

This definition means that when we draw a line between any two points on the function
surface, the function values between these two points all lie below this line. Intuitively, this
means the function surface is shaped like a cup, and so the stationary point (or points) are
all at the bottom of the cup and are global minimum.

A corresponding definition is a concave function, which is precisely the opposite: all
points lie above the line. For any convex function c, the negative of that function ≠c is a
concave function.

The second derivative test tells us locally if the stationary point is a local minimum,
local maximum or if it is inconclusive. Namely, the test is

1. If cÕÕ(w0) > 0 then w0 is a local minimum.

2. If cÕÕ(w0) < 0 then w0 is a local maximum.

3. If cÕÕ(w0) = 0 then the test is inconclusive: we cannot say which type of stationary
point we have and it could be any of the three.

To understand this test, notice that the second derivative reflects the local curvature of the
function. It tells us how the derivative is changing. If the slope of the derivative cÕ(w0) is
positive at w0, namely cÕÕ(w0) > 0, then we know that the derivative is increasing and vice
versa.

Let us consider an example to understand this better. Consider a sin curve sin(w) and
the point halfway between the bottom and top of the hill. At one these in-between points,
say w = 0, the derivative is maximally positive: it is cos(0) = +1. As we increase w, the
derivative starts to decrease until it is zero at the top of the hill, at w = fi/2. Then it flips
and gets more and more negative until it reaches w = fi with derivative maximally negative
at cos(fi) = ≠1. In this region between [0, fi], the derivative is constantly decreasing and
the second derivative is negative. At this point, the derivative again begins to increase from
its maximally negative point cos(fi) = ≠1, and becomes less and less negative until reaching

38

Local Minima

Global Minima

Saddlepoint

Global Minimum



Testing optimality without the 
second derivative test

Convex functions have a global minimum at every stationary point 

c is convex ⟺ c(tw1 + (1 − t)w2) ≤ tc(w1) + (1 − t)c(w2)



Procedure
• Find a stationary point, namely  such that  

• Sometimes we can do this analytically (closed form solution, namely an 
explicit formula for ) 

• Reason about if it is optimal 

• Check if your function is convex 

• If you have only one stationary point and it is a local minimum, then it is a 
global minimum 

• Otherwise, if second derivate test says its a local min, can only say that 

w0 c′￼(w0) = 0

w0



Our MLE Objective is Convex 
with a closed-form solution

•
Our MLE objective is  so we need   

•
And  

• We can show  

•

−
n

∑
i=1

ln p(xi |w) −
∂

∂wj

n

∑
i=1

ln p(xi |w) = 0

∂
∂wj

n

∑
i=1

ln p(xi |w) =
n

∑
i=1

∂
∂wj

ln p(xi |w)

−ln p(xi |w) =
d
2

ln(2π) +
1
2

ln |Σ | +
1
2

(xi − μ)⊤Σ−1(xi − μ)

∂
∂μ1

ln p(xi |w) = 0 + 0 +
∂

∂μ1
(xi − μ)⊤Σ−1(xi − μ) = Σ−1[1, :](xi − μ)

First row of Σ−1Given without derivation



Our MLE Objective is Convex 
with a closed-form solution

•
Our MLE objective is  so we need   

•
And  

• We can show  

• More simply we can write 

−
n

∑
i=1

ln p(xi |w) −
∂

∂wj

n

∑
i=1

ln p(xi |w) = 0

∂
∂wj

n

∑
i=1

ln p(xi |w) =
n

∑
i=1

∂
∂wj

ln p(xi |w)

−ln p(xi |w) =
d
2

ln(2π) +
1
2

ln |Σ | +
1
2

(xi − μ)⊤Σ−1(xi − μ)

∂
∂μ

ln p(xi |w) = 0 + 0 + Σ−1(xi − μ)



Our MLE Objective is Convex 
with a closed-form solution

•
Our MLE objective is  so we need   

•  

•
Sp   

•
which occurs if and only if , giving us 

−
n

∑
i=1

ln p(xi |w) −
∂

∂wj

n

∑
i=1

ln p(xi |w) = 0

∂
∂μ

− ln p(xi |w) = 0 + 0 + Σ−1(xi − μ) ∈ ℝd

−
∂

∂μ

n

∑
i=1

ln p(xi |w) =
n

∑
i=1

Σ−1(xi − μ) = Σ−1
n

∑
i=1

(xi − μ) = 0

n

∑
i=1

xi − μ = 0 μ =
1
n

n

∑
i=1

xi



Our MLE Objective is Convex 
with a closed-form solution

•
Our MLE objective is  so we need   

•  

•
Sp  gives                (sample mean) 

•
And  gives          (sample covariance) 

−
n

∑
i=1

ln p(xi |w) −
∂

∂wj

n

∑
i=1

ln p(xi |w) = 0

∂
∂μ

− ln p(xi |w) = 0 + 0 + Σ−1(xi − μ) ∈ ℝd

−
∂

∂μ

n

∑
i=1

ln p(xi |w) = 0 μ =
1
n

n

∑
i=1

xi

−
∂

∂Σ

n

∑
i=1

ln p(xi |w) = 0 Σ =
1
n

n

∑
i=1

xix⊤
i



What about the MAP objective?
• Now we have to select a prior on . What prior might we pick? 

• Can pick a zero-mean Gaussian on , with variance indicating how big it can be 

• But more complicated for covariance , because constrained to be positive definite 
• There are such distributions but goes beyond what you need to know for this course 

• Once we pick a prior, the steps are similar to MLE 

• Q1: Intuitively, is there any information you might a priori put on the covariance? What if 
you know dimensions 1 and 2 are independent variables? Or know they are dependent? 

• Q2: Why might it help to add a prior?

w = (μ, Σ)

μ

Σ



Mixture of Distributions



Mixture of Gaussians

Question: What are the 
parameters of the distribution p?

p is defined by vector of 
parameters

θ = (w1, w2, μ1, μ2, σ1, σ2)



Exercise

•
Show that  is a valid pmf if the  are valid pmfs 

•
when  and  

• Show this also for the case where  is a pdf and the  are pdfs 

p(x) =
m

∑
i=1

wipi(x) pi

m

∑
i=1

wi = 1 wi ≥ 0

p pi



Exercise Solution for PMFs

•
  

•  because , sum of nonnegative numbers is nonnegative 

p(x) =
m

∑
i=1

wipi(x)

p(x) ≥ 0 wipi(x) ≥ 0



Exercise Solution for PMFs
∑
x∈𝒳

p(x) = ∑
x∈𝒳

m

∑
i=1

wipi(x)

=
m

∑
i=1

∑
x∈𝒳

wipi(x)

=
m

∑
i=1

wi ∑
x∈𝒳

pi(x)

=1

=
m

∑
i=1

wi = 1



Exercise Solution for PDFs
∑
x∈𝒳

p(x) = ∑
x∈𝒳

m

∑
i=1

wipi(x)

=
m

∑
i=1

∑
x∈𝒳

wipi(x)

=
m

∑
i=1

wi ∑
x∈𝒳

pi(x)

=1

=
m

∑
i=1

wi = 1

∫𝒳
p(x)dx = ∫𝒳

m

∑
i=1

wipi(x)dx

=
m

∑
i=1

∫𝒳
wipi(x)dx

=
m

∑
i=1

wi ∫𝒳
pi(x)dx

=1

=
m

∑
i=1

wi = 1



Mixture Can Produce  
Complex Distributions

* Image from https://people.ucsc.edu/~ealdrich/Teaching/Econ114/LectureNotes/kde.html



And multivariate mixtures too 

* Image from https://towardsdatascience.com/the-math-behind-kernel-density-estimation-5deca75cba38



Parameters for multivariate mixture

• What if we wanted a mixture of 5 components for a multivariate RV of dimension ?  

• Then we can have a mixture over multivariate Gaussians of dimension  

• The parameters are 

d

d

θ = (w1, w2, w3, w4, w5, μ1, μ2, μ3, μ4, μ5, Σ1, Σ2, Σ3, Σ4, Σ5)



Exercise Question

• Multidimensional PMFs essentially allow any distribution (table of probabilities) 

• Densities for Continuous RVs are more restricted (even with mixtures) 

• Why not just discretize our variables and use PMFs?  

• Example: imagine the RV is in the range [-10, 10] 

• You discretize into chunks of size 0.1. How many parameters do you have to learn? 

• What if you use a Gaussian mixture with 5 components?



Ordered, discrete targets

• Imagine we have a dataset of pairs  where  are features about a call center and 
 are the number of calls received in one hour. We have  

• We can model this using y a Poisson distribution 

• Recall the PMF for a Poisson 

(x, y) x
y y ∈ {0,1,2,3,…}

p(y) = λy exp(−λ)/y!

*Image from Wikipedia



Ordered, discrete targets

• Imagine we have a dataset of pairs  where  are features about a call center and 
 are the number of calls received in one hour. We have  

• We can model this using a conditional Poisson distribution 
 

• Why would we choose to do this instead of using a categorical? 
How would you use a categorical?

(x, y) x
y y ∈ {0,1,2,3,…}

p(y |x) = λ(x)yexp(−λ(x))/y!

* Later we’ll see Poisson regression



Contrasting Poisson & Categorical 

x ∈ ℝd

ϕ(x)

λ(x)

α1(x) = ̂p(y = (1,0,…,0) |x)

x ∈ ℝd

ϕ(x)

α2(x) = ̂p(y = (0,1,0,…,0) |x)

Poisson Categorical
Need to assume a 

 maximum number of calls,  
Say 100

α100(x) = ̂p(y = (0,0,…,0,1) |x)

. 

. 

.



Independence and Decorrelation
• Recall if X and Y are independent, then   

• Independent RVs have zero correlation  

        Recall:  

• Uncorrelated RVs (i.e., ) might be dependent  
(i.e., ). 
• Correlation (Pearson's correlation coefficient) shows linear relationships; but can 

miss nonlinear relationships 
• Example: ,  

•  
•  
• So 

𝔼[XY] = 𝔼[X]𝔼[Y]

Cov[X, Y] = 𝔼[XY] − 𝔼[X]𝔼[Y]

Cov(X, Y) = 0
p(x, y) ≠ p(x)p(y)

X ∼ Uniform{−2, − 1,0,1,2} Y = X2

𝔼[XY] = .2(−2 × 4) + .2(2 × 4) + .2(−1 × 1) + .2(1 × 1) + .2(0 × 0)
𝔼[X] = 0

𝔼[XY] − 𝔼[X]𝔼[Y] = 0 − 0𝔼[Y] = 0



Alternative: Mutual Information 
(using the KL Divergence)

Mutual information  
Only zero when X and Y independent

I(X; Y) = DKL(pxy | |pxpy)



KL Divergence

KL(p||q) =
X

x2X
p(x) log

p(x)

q(x)

=
X

x2X
p(x) [log p(x)� log q(x)]

=
X

x2X
p(x) log p(x)�

X

x2X
p(x) log q(x)

<latexit sha1_base64="9AKpmBK2cWkXEOnZmrdAMoTKgD4=">AAAC0HicjVJNbxMxEPUuXyV8BTj2YhGB0gPRplTQHpAqekECpIJIGyleRV5nNrHq9W7sWZTIWSGu/Dxu/AL+Bt5NVBWKUEey9ebNvPHY46RQ0mIU/QzCa9dv3Ly1dbt15+69+w/aDx+d2Lw0AgYiV7kZJtyCkhoGKFHBsDDAs0TBaXJ2VMdPv4CxMtefcVlAnPGplqkUHD01bv9iCAt0795X3YKuVnS+Q1vPXlNmy2zsFpRJTVnGcSa4csOqokV3sUOZyqeUpYYLV/uVm9c7Y1dRQoqjRt/4z9e15k3MyOkM46uVuVDgf5nn1cftTtSLGqOXQX8DOmRjx+P2DzbJRZmBRqG4taN+VGDsuEEpFFQtVloouDjjUxh5qHkGNnbNQCr61DMTmubGL420YS8qHM+sXWaJz6w7tn/HavJfsVGJ6X7spC5KBC3WB6WlopjTerp0Ig0IVEsPuDDS90rFjPtBof8DreYRDmp7eX7ly+Bkt9d/0dv7uNc5fLN5ji2yTZ6QLumTV+SQvCXHZEBE8CGwwSqowk/hIvwaflunhsFG85j8YeH33ykj3BU=</latexit>

or

KL(p||q) =
Z

X
p(x) log

p(x)

q(x)
dx

<latexit sha1_base64="KG0zdAqSBfbo9nwjY1FE/ceTcQw="></latexit>

* Images from Wikipedia

Called a divergence, does not satisfy requirements to be a metric/distance

- Not symmetric

- But does satisfy  and

-  if and only if (iff) 

DKL(p | |q) ≥ 0
DKL(p | |q) = 0 p = q



Revisiting Our Example
• Example: ,  

•  

•  and  

•  if , and else is 1/5 

•  and  

•

X ∼ Uniform{−2, − 1,0,1,2} Y = X2

𝔼[XY] − 𝔼[X]𝔼[Y] = 0 − 0𝔼[Y] = 0

𝒳 = {−2, − 1,0,1,2} 𝒴 = {0,1,4}

p(x, y) = 0 y ≠ x2

px(x) = 1/5 py(0) = 1/5,py(1) = 2/5,py(4) = 2/5

KL(p | |pxpy) = ∑
(x,y)∈𝒳×𝒴

p(x, y)log
p(x, y)

px(x)py(y)



Revisiting Our Example
•  if , and else is 1/5 

•  and  

•

p(x, y) = 0 y ≠ x2

px(x) = 1/5 py(0) = 1/5,py(1) = 2/5,py(4) = 2/5

KL(p | |pxpy) = ∑
(x,y)∈𝒳×𝒴

p(x, y)log
p(x, y)

px(x)py(y)

= ∑
x∈𝒳,y=x2

1
5

log
1/5

1/5py(y)

=
1
5 ∑

x∈𝒳,y=x2

log
1

py(y)

=
1
5

[log
1

1/5
+ 4 log

1
2/5

] =
1
5

[log 5 + 4 log
5
2

] ≈ 1.05 ≠ 0



KL divergence and MLE
• Imagine you want to learn a distribution. There is some true underlying distribution , but you 

do not know even what type it is 
• Might be Gaussian, might be a mixture model, might be something we don’t have a name for   

• Minimizing the KL to the true distribution corresponds to minimizing the negative log likelihood 
in expectation over all data 

•  

• Further motivates using MLE, since with more data (bigger n) we get

 and so closer to minimizing the KL to the true distribution

p0

arg min
θ

DKL(p0 | |pθ) = arg min
θ

− 𝔼[ln pθ(X)]

1
n

n

∑
i=1

− ln pθ(xi) ≈ − 𝔼[ln pθ(X)]



KL divergence and MLE
• Imagine you want to learn a distribution. There is some true underlying distribution , 

but you do not know even what type it is 
• Might be Gaussian, might be a mixture model, might be something we don’t have a 

name for   

•  

• Question1: Imagine our class of models are Gaussian, , and the true 
distribution is Gaussian. Is there a  that can get zero ? 

• Question2: What if our class of models are Gaussian, but  is a mixture model?

p0

arg min
θ

DKL(p0 | |pθ) = arg min
θ

− 𝔼[ln pθ(X)]

θ = (μ, σ2)
pθ DKL(p0 | |pθ)

pθ


