Probability

CMPUT 467: Machine Learning |l



PMFEFs and PDFs

Outcome spaceis X = XL | X XH X ... X X,

Outcomes are multidimensional variables X = [xy, X5, . .., X]

Discrete case:
p . X — |0,1]is a (joint) probability mass function if Z p(x) =1
Xed

Continuous case:

p . X — [0,00)is a (joint) probability density function ifJ p(xX)dx =1
VA



Can also write it this way

_)
We can consider a d-dimensional random variable X = (X, ..., X ;) with vector-valued outcomes
X = (xq,...,Xx,), with each x; chosen from some & .. Then,

Discrete case:
p: X XAy X...X,;— [0,1]is a (joint) probability mass function if

Z Z Z p(xi, Xy oy xy) = 1

XEXL | X%EX, XX,

Continuous case:
p: X XAy X...X ;= [0,00)is a (joint) probability density function if

L

2

J' p(x19x29 ---»xd) dxlde...dxd = ]
VA

1 d



Multidimensional PMFE often Is
simply a multi-dimensional array

Now record both commute time and number red lights
Q={4,...,14} x {1,2,3,4,5}

PMF is normalized 2-d table (histogram) of occurrences




Utility for classification

Want to categorize an item into one of d classes
Sample space: & = {0,1 }d (e.g., outcome is (0,1,0,0) for class 2 for d = 4)
PMF Is a table of probabillities, but we can write iIs compactly as

X] A2 Ad | —
p(x;, %, X)) = {0‘1 ..o ifx; +xy+ e +x; =1

0 otherwise

When d = 2, then this is the Bernoull p(x) = a*(1 — )™ fora;, = a,a, = 1 —

For d > 2, this is called a Categorical distribution



Utility for classification

Sample space: X = {0,1 }d (e.g., outcome is (0,1,0,0) for d = 4)

o' . X X+ xy =1

0 otherwise

PX1, Xy ooy X ) = {

When d = 2, then this is the Bernoulli p(x) = a*(1 — a)'™ for ag=a,0=1—-a
For d > 2, this is called a Categorical distribution

Exercise: how do we write the Categorical using only oy, @, ..., 0t ;_1?



Utility for classification (simpler)

» Sample space: & = 10,1 }d (e.g., outcome is (0,1,0,0) for d = 4)

e PD(X1, %y, ..., X)) =@\ assuming X; + X, + - +x, =1
P\X15 X2 d ) J ] T A2 d

« When d = 2, then this is the Bernoulli p(x) = a*(1 — a)!™ for a=a,a=1—«a
 Ford > 2, this is called a Categorical distribution

» Exercise: how do we write the Categorical using only oy, @5, ..., ;17



Exercise Answer

Sample space: X = {0,1 }d (e.g., outcome is (0,1,0,0) for d = 4)

P(Xy, X, - Xy) = 2! assuming Xy + X, + o+ xy = 1

When d = 2, then this is the Bernoulli p(x) = a*(1 — a)' ™ for a=a,a,=1—-a
For d > 2, this is called a Categorical distribution

Exercise: how do we write the Categorical using only ay, &, ..., a;_1?

d—1
X X X
P, X, X)) =l .a i ] —
J

d—1

Xd
a; because a; = 1 — z a;

1 2 d—1



Utility for classification

Want to categorize an item into one of d classes
Sample space: X = {0,1 }d (e.g., outcome is (0,1,0,0) for d = 4)
PMF Is a table of probabilities, but we can write is compactly as

X X X
PXy, Xy, oo X)) = 02

a, g assuming x; + X, + -+ +x, = 1

Question: If you have a dataset with classes % = {apple, banana, orange }, how
would you convert it to use this distribution®



Exercise Answer

Sample space: & = {0,1 }d (e.g., outcome is (0,1,0,0) for d = 4)

PX1, X oy X)) = aflagz...a;d assuming xX; +x, + -+ +x, =1

Question: If you have a dataset with classes % = {apple, banana, orange }, how would you
convert it to use this distribution?

Can rewrite RV Y to vector-valued RV X with d = 3, where
p(y = apple) = p(x = (1,0,0)) = o

p(y = banana) = p(x = (0,1,0)) = o,

p(y =orange) = p(x = (0,0,1)) =z =1—-a; — o,



We did not have to call it X,
can use any term for categorical variable

Sample space: £ = {0,1 }d (e.g., outcome is (0,1,0,0) for d = 4)

P21, 20 .. 2y) = Q2. assuming zp + 2o + o + 2, = 1

1 2 d

Question: If you have a dataset with classes % = {apple, banana, orange }, how would you
convert it to use this distribution?

Can rewrite RV Y to vector-valued RV Z with d = 3, where
p(y = apple) = p(z = (1,0,0)) = o

p(y = banana) = p(z = (0,1,0)) = a,

p(y =orange) =p(z=(00,1)) =3 =1 -, -,



Conditional PMF

e |n classification, we actually learned a conditional PMF on inputs X € |

» How do we write the conditional distribution for %/ = {apple, banana, orange}?



Conditional PMF Example

d

Classes % = {apple, banana, orange}, inputs X € I

As before, we rewrite RV Y to vector-valued RV Z. that is a multinomial with d = 3

d

But now probabillities are functions of inputs X € |
p(y = apple|x) = p(z = (1,0,0) [x)) = a;(x)
p(y = banana|x) = p(z = (0,1,0) [x)) = ay(X)

p(y = orange | X) = p(z = (0,0,1) [ X)) = a3(x)



Contrasting binary versus multiclass

Binary Classification Multiclass Classification

P(x) P(x)

/ al(X) :ﬁ(y — (13090)‘){)

g aZ(X) — ﬁ(y — (09190)‘){)

\ a3(x) = p(y = (0,0,1) | x)

x € R4 . - o (xX) =p(y = 1|x) x € R4

* Later we see how to parameterize these functions in multinomial logistic regression



Multivariate Gaussian

1
p(x) = ——(x—p) T (x - ﬂ))

V()| X| "\ 2

with T € R*?and u € R

The covariance matrix 2= consists of the covariance between each variable

Important note! This Sigma matrix is not the same as singular values!
We re-use this symbol to mean two different things



The Covariance Matrix

%dXd

X =[Xq,..., X, > = Cov[X,X] €
=E[(X - E[X])(X — E(X) ]
—E[XX']|-E[X|E[X]".

X,y € R4
Dot produgt Outer product
XTY — szyz
i=1 L1Y1r T1Y2 ... T1Yd
- L2Y1r L2Y2 ... IL2Yd
Xy =

rdyi® Tqys2 ... TdYd



Covariance for two dimensions

%dXd

X =[Xq,..., X4 > = Cov[X,X] €
=E[(X - E[X])(X - E(X) |
I XX']-E[X]|E[X]'.

X,y € R4

Example:

i XQXl X22 ] I “:[XQ] “:[Xl] ‘E[XQ]Q




Multivariate Gaussian Example

1 1 T —1 .
plw) = exp| —=(w—p) X (w—pu
27) k| 3] 2
] _ ] _ - _
| M _ -1 _ | 10
— — — 1
- M2 i i i 2
W1 — M1
W — U = H
W2 — U2
- ITr 1 - -1 il
W1 — M1 10 S| = 1—10001—,“1
W2 — U2 || 5 - 5 \W2 — U2)
_T_ -




Visually
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The weighted norm with correlations

€1 . i L1 — U ]
I €9 ) - I Lo — U9 )
* [he weighted norm gives a distance to the mean, for the covariance
i €1 ) i 2.3 —1.7 11 €1 ) o i 2.361 — 1.762 ) i €1 )
I €9 ) I —1.7 2.3 1| €9 ) - I —1.761 —|—2.3€2 ) I €9 )

2.36% + 2.36% — 2.4eqe9

» |f ; Is the opposite sign from e,, then the distance is larger
(-2.4 * negative number = positive number added to distance)

» If €; IS the same sign as e,, then the distance Is larger
(-2.4 ™ positive = negative)




1 he determinant component

1 1 Ty —1
exp | —=(w—pu)" X (w—p
27“' k‘Z‘ 2 0.1

3
&
|
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= | 22| = det(X) = product of singular values

reflects the magnitude of the covariance

What is the determinant of this Sigma?



1 he determinant component

1 1 Ty —1
exp | —=(w—pu)" X (w—p
27“' k‘z‘ 2 0.1

3
&
|

N
N

" \
077555 I
SN
Nl e e e AN
4 = NN
2 2% ot

| 22| = det(X) = product of singular values

reflects the magnitude of the covariance

1.0 0.75

What is the determinant of this other Sigma®? =1 075 1.0

It has singular values: 6, = 1.75, 6, = 0.25



1 he determinant component

1 1 Ty —1
exXp | —=(w — >, W —
)3 Tk -

3
&
|

=10 9 | 2| = det(2) = product of singular values

reflects the magnitude of the covariance

1.0 0.75
What is the determinant of this other Sigma? 2, = 075 1.0

It has singular values: 6, = 1.75, 6, = 0.25
Answer: o, X 6, ~ .44



Revisiting MLE

e [ et uslook at MLE for a multivariate Gaussian

» Have a dataset of d-dimensional points & = {x;}_ %02

« What is the most likely Gaussian that generated this data,

with parameters w = (u, 2)?

. Or more precisely, what is the MLE solution arg max p(< | w)
W

. and what is the MAP solution arg max p(w | )7
W

* Image from Wikipedia

047




Wait, we have a matrix of
parameters’

Gaussian with parameters w = (u, 2) means we have
W = (//tl,//lz, .o .,//ld, 21,1, 21,2, e o s Zl,d’ 22,1, 22,2, coes Zz,d, co s Zd,d—l’ Zd,d)

In other words, we have a vector of parameters of size d + d?

Our goal is to find w such that all partial derivatives are zero (at a stationary point)

n a n
Our MLE objective is — Z In p(x;| W) so we need — p Z Inp(x;[w) =0
W.
i=1 J i=1



Reminder about Stationary Points

» Every minimum of an everywhere-differentiable function ¢(w) must occur at
a stationary point: A point at which ¢'(w) = 0

* However, not every stationary point is a minimum Local Minima

e Every stationary point is either: Saddlepoint ,
 Alocal minimum
A local maximum

A saddlepoint

. L o Global Minimum
* The global minimum is either a local minimum (or a boundary point)

Let’s assume for now that w is unconstrained (i.e, w € R ratherthanw > 0O orw € [0,1])



|dentifying the type of
the stationary point

e |f function curved upwards (convex) locally,

then local minimum

L ocal Minima

Saddlepo_int _

Global Minimum



Convex functions /@
ftx; + (1 — Dxy) < tf(xg) + (1 = D)f(x,)

tf (21) + (1 — 1) f (@) [ 5
' Convex = shaped like a bowl
Concave = shaped like an upside bow!
1 txy + (1 — 1)z $!2

* from Wikipedia



|dentifying the type of
the stationary point

f function curved upwards (convex) locally,
then local minimum

L ocal Minima

f function curved downwards ( ) locally,
then

Saddlepo_int _

f function flat locally, then might be a saddlepoint
but could also be a local min or local max

Locally, cannot distinguish between local min
and global min (its a global property of the surface) Global Minimum




Second derivative test

. If " (wg) > 0 then wq is a local minimum.
. If " (wg) < 0 then wy is a local maximum.

. If ¢’(wg) = 0 then the test is inconclusive: we cannot say which type of stationary
point we have and it could be any of the three.

Local Minima

Saddlepo_int _

Global Minimum



lesting optimality without the
second derivative test

Convex functions have a global minimum at every stationary point

cis convex <> c(tw; + (1 — Hw,) < tc(wy) + (1 — He(w,)

f(x)




Proceqgure

» Find a stationary point, namely w,, such that ¢'(w,) = 0

 Sometimes we can do this analytically (closed form solution, namely an
explicit formula for wy)

 Reason about If It Is optimal
* Check if your function is convex

e |f you have only one stationary point and it is a local minimum, then it is a
global minimum

o Otherwise, If second derivate test says its a local min, can only say that



Our MLE Objective i1s Convex
with a closed-form solutlon

_ Our MLE objective is — Z In p(x;| W) so we need ——— Z Inp(x;|w) =
i=1 Wi i=1

n

0
Z Inp(x;|w) = ) ——Inp(x;| W)
J

]ll =1

d | 1
. We can show —In p(Xx;|w) = Py In(27) + Py In| 2|+ E(Xi — ﬂ)TZ_l(XZ- — i)

0 0
L —Inpx; W) =04+04+—x —p) TI(x, —p) = =71, I(x; — p)
alul np ‘ a//tl /ﬂ / /’t

Given without derivation First row of X1



Our MLE Objective i1s Convex
with a closed-form solutlon

_ Our MLE objective is — Z In p(x;| W) so we need ——— Z Inp(x;|w) =
i=1 Wi i=1

n

0
Z Inp(x;|w) = ) ——Inp(x;| W)
J

]ll =1

d | 1
. We can show —In p(Xx;|w) = Py In(27) + Py In| 2|+ E(Xi — ﬂ)TZ_l(XZ- — i)

0
. More simply we can write 6_ Inpx;|w)=04+0+ Z_I(Xi — i)
/L



Our MLE Objective i1s Convex
with a closea-torm solutlon

_ Our MLE objective is — Z In p(x;| W) so we need ——— Z Inp(x;|w) =
i=1 W i=1

0
. a——lnp(xlw) 0+ 0+ (x; — p) c R4
H

p——Zlnp(x W) = Zz 'x;—p) =2 Z(x —p) =

1 n
. Wwhich occurs if and only If Z X.:—pu =0, gvingus g = — 2 X;

n



Our MLE Objective i1s Convex
with a closea-torm solutlon

_ Our MLE objective is — Z In p(x;| W) so we need ——— Z Inp(x;|w) =
i=1 W i=1

0 —1 d
L ——Inpx;|W)=0+0+32"'(x,—p) €I

Op
—— ) Inpx;|w)=0gives g =— ) X, sample mean
Sp Z p(x;|W) = 0 gives p = — ZZ} , (samp )
1 n
- And —— Z Inp(x;|w) = 0 gives X =— Z Xl-Xl.T (sample covariance)

n
=1



What about the MAP objective?

Now we have to select a prior on w = (i, 2). What prior might we pick?
Can pick a zero-mean Gaussian on g, with variance indicating how big it can be

But more complicated for covariance 2, because constrained to be positive definite
* [here are such distributions but goes beyond what you need to know for this course

Once we pick a prior, the steps are similar to MLE

Q1: Intuitively, is there any information you might a priori put on the covariance” What if
you know dimensions 1 and 2 are independent variables? Or know they are dependent?

Q2: \Why might it help to add a prior?



Mixture of Distributions

Mixture model:

T

A set of m probability distributions, {p;(z)}._,

p(x) = Z w;p; ()

where w = (wq, ws, ..., w,,) and non-negative and

221 w; = 1



Mixture of Gaussians

Mixture of m = 2 Gaussian distributions:

w1 — 075, W9 — 0.25

Question: What are the
parameters of the distribution p?

p is defined by vector of
parameters

0 — (Wla W29 //tla M29 0]9 02)

0.5

0.4

0.3

0.2

0.1

pepap—— ,u — 1, o =
— 1=-2,0=0.75
mixture
UURTPY PRTTL ! e L L
-2 -1 0 2 3 4

p(x) = Z w;p; ()



EXercise

m
Show that p(x) = Z w;pAx) is a valid pmf if the p; are valid pmfs
i=1

m
when Zwl-= landw, > 0
i=1

» Show this also for the case where p is a pdf and the p; are pdfs



Exercise Solution for PMFsS

@) =) wp )
=1

» p(x) > 0 because w;p.(x) > 0, sum of nonnegative numbers is nonnegative



Exercise Solution for PMFsS

Y p) =) ﬁ‘, WP (x)
XEX xed i=1




Exercise Solution for PDFsS

Y=Y Y wno [ p(x)dx = J 3 wipix)d
yA AR

XEX xed i=1 =1
= Z Z W;p(X) = ZJ w; p(x)dx
i=1 xe¥ =1 4
= 2 W, Z pi(x) = Z Wi J pix)dx
=1 xXeX =1 v4




Mixture Can Produce
Complex Distributions

b=0.4 b=0.2
©
-
<
LLJ S
O a
X Y
o
o
o
X X

* Image from https://people.ucsc.edu/~ealdrich/Teaching/Econ114/LectureNotes/kde.html



And multivariate mixtures too

\
0.20

\
0.15
\
0.10

\
0.05

\
\ 0.00

* Image from https://towardsdatascience.com/the-math-behind-kernel-density-estimation-5deca/5cba38



Parameters for multivariate mixture

« What if we wanted a mixture of 5 components for a multivariate RV of dimension d?
« Then we can have a mixture over multivariate Gaussians of dimension d

» The parameters are @ = (W, Wy, Wa, Wy, Ws, i, By gy Pas Py 21, 2y 2dr, 2y, 245)



Exercise Question

Multidimensional PMFs essentially allow any distribution (table of probabilities)

Densities for Continuous RVs are more restricted (even with mixtures)

Why not just discretize our variables and use PMFs”

—xample: imagine the RV is in the range [-10, 10}

You discretize into chunks of size 0.1. How many parameters do you have to learn®

What if you use a Gaussian mixture with 5 components”?



Ordered, discrete targets

 Imagine we have a dataset of pairs (X, y) where X are features about a call center and

y are the number of calls received in one hour. We have y € {0,1,2,3,...}

* \We can model this using y a Poisson distribution

e Recall the PM

*Image from Wikipedia

= for a Poisson p(y) = A exp(—A4)/y!

0.40 =

0.35

0.00

R\

0.30 |
—= 0.25F
é 0.20
5 0.15F
0.10 |
0.05 |

©AN=1 _

® \=1

O \AN=10 |




Ordered, discrete targets

» |Imagine we have a dataset of pairs (X, y) where X are features about a call center and
y are the number of calls received in one hour. We have y € {0,1,2,3,...}

* \We can model this using a conditional Poisson distribution

p(y|X) = A(x)exp(=A(x))/y!

* \Why would we choose to do this instead of using a categorical? v

How would you use a categorical? .l
= 0.25 F

0201

sl

0.10 F

0.05 F

0.00

* Later we’ll see Poisson regression



x € R?

Contrasting Poisson & Categorical

Poisson

P(x)

> AX)

x € R4

Need to assume a
maximum number of calls,

Say 100

Categorical

P(x)

a,(x) = ply = (1,0,...,0) | x)

% a,(x) = p(y = (0,1,0,...,0) | x)

alOO(X) — ﬁ(y — (0909° . °9091) ‘ X)




INndependence and Decorrelation

e Recallif Xand Y are independent, then E[XY | = E[X]E[Y]

* |[ndependent RVs have zero correlation

Recall: Cov| X, Y| = E[XY]| — E|X]E[Y]

» Uncorrelated RVs (i.e., Cov(X, Y) = 0) might be dependent

i.e., p(x,y) # p(xX)p(y)).

» Correlation (Pearson's correlation coefficient) shows linear relationships; but can
MIssS nonlinear relationships

. Example: X ~ Unifoom{—=2, — 1,0,1,2}, Y = X?
e EIXY]=2(-2%x4)+22%x4)+ 2(-1x1D)+.2(1 x1)+.2(0x0)
. E[X]=0
. So E[XY] - E[X]E[Y]=0—-0E[Y]=0




Alternative: Mutual Information
(using the KL Divergence)

Mutual information I(X; Y) = Dy (py, | | PPy)
Only zero when X and Y independent



KL Divergence

* Images from Wikipedia

——r’_‘ e

| 1 1 1 | 1 — -
- 4 -2 > 4

Original Gaussian PDF’s KL Area to be Integrated

Called a divergence, does not satisfy requirements to be a metric/distance
- Not symmetric

- But does satisfy Dk (p||g) = 0 and
- Dk(pl1g) = 0ifand only if (iff) p = g




Revisiting Our Example

« Example: X ~ Uniform{—2, — 1,0,1,2}, Y = X?
e E[XY]|—E[X]E[Y]=0-=0E[Y]=0

e X =1{-2,—-1,0,1,2} and ¥ = {0,1,4}

. p(x,y) =0ify # x? and else is 1/5
. p(x)=1/5and py(0) = 1/5,py(1) — 2/5,py(4) = 2/5

px,y)
. KL(p| ‘pxpy) — Z p(x, y)log
(X VEXXY px(x)py(y)



Revisiting Our Example

. p(x,y) =0ify # x* and else is 1/5
» px) =1/5and p,(0) = 1/5,p(1) =2/5,p(4) = 2/5

p(x,y)
KI—(p‘ ‘pxpy) — Z p(x, y)l()g
(X YVEXXY Px(x)Py(Y)

| 1/5
= Z — log
S 1/5py(y)

=% Z log :

ety DY)

1 1 | 1 5
= —[1 + 41 — —[loe5+4log—]~ 1.05+#0
5[Og T ng/s] 5[og ng] F



KL divergence and MLE

Imagine you want to learn a distribution. There is some true underlying distribution p,, but you
do not know even what type It is

* Might be Gaussian, might be a mixture model, might be something we don’t have a name for

Minimizing the KL to the true distribution corresponds to minimizing the negative log likelihood
IN expectation over all data

arg mgin Dy (pol | py) = arg mgin — E[ln py(X)]

Further motivates using MLE, since with more data (bigger n) we get

1 n
— Z — Inpy(x;) =~ — E[In py(X)] and so closer to minimizing the KL to the true distribution
n

i=1



KL divergence and MLE

Imagine you want to learn a distribution. There is some true underlying distribution py,
but you do not know even what type it is

* Might be Gaussian, might be a mixture model, might be something we don’t have a
name for

alg m@in Dy (pol | pg) = arg m@in — E[ln py(X)]

Question1: Imagine our class of models are Gaussian, 8 = (u, 6°), and the true
distribution is Gaussian. Is there a py that can get zero Dk (pg | | Pg)?

Question2: \What if our class of models are Gaussian, but p, is a mixture model”?



