INtroduction

CMPUT 467: Machine Learning li



A Second Course in ML

We get to build on an ML foundation and move to more advanced
modeling



Reminder about the Basics

e Focused on understanding
e Optimization concepts
* uncertainty quantification, using the language of probabili
* how to formalize learning problems and estimate parame

* reasoning about generalization capabilities (bias-variance,

 Focused on linear models and prediction

Ly

ers (MLE and MA
overfitting)

* Jouched briefly on nonlinear models using polynomial regression




Iwo lypes of Uncertainty

» Uncertainty in our prediction: Y| x is a distribution, returning y = f(x) will not
perfectly match the observed y

* due to partial observability (e.g., predicting house price using only the age of the
house, missing many important input variables like size etc).

* sometimes called aleatoric uncertainty

» Uncertainty in our estimate: we estimate f (or parameters w) from data; we have a
distribution p(w | &) that shrinks with more data

* We reasoned about the confidence in our estimator and about how many samples
we need (this is the particular focus of Bayesian methods)

* sometimes called epistemic uncertainty




ML I

 Summary: you know about the key concepts of generalization and uncertainty, as well
as optimization approaches

* These concepts are central, do not change when moving to more advanced models

* We can now focus on understanding more advanced models
* move from simple, linear models to nonlinear, high-dimensional models
e focus also on generative models, not just prediction models

e understand the key concepts In data (re)representation, that enables us to extract
powerful models that generalize well

* more advanced algorithms (constrained optimization, EM, etc.)




Course structure

* First few chapters revisit concepts from ML |, but now for slightly more complex settings
* Understanding sensitivity of linear regression, using matrix analysis

» Learning p(y | x) for more general distributions (exponential family)

* Hessians for second-order gradient descent and constrained optimization
* |mproved approaches to evaluate generalization error (cross-validation)

 [hen we move to the primary new topic: Data Representations
e Explain the goals of data representations

* Discuss prototype-based representations, latent variable models (PCA) and neural
networks

 Show how our methods (predictions, generative models, Bayesian approaches) extend
to use these nonlinear transformations

* [ntroduction to handling missing data and temporal data



What do | expect from you"?

* | assume you have mostly forgotten details about ML (from CMPUT 267)
o But | expect you to re-pick them up quickly
* e.g., MLE was welrd the first time you heard about it, now it will be quick to remember

* | also expect you to want to learn the mathematical underpinnings of ML
 Or at least are willing to learn them so that you can be a better ML practitioner



Expectation Management on Content

e Thereis alottolearn

IN Machine Learning

* You might ask yourself, why are we learning topic X and not topic Y*

e For example, you

ight have heard of GANs and are wondering why we learn about

VAEs instead of GANSs
 Or why we learn about PCA, when everyone just uses neural networks anyway

* The answer: my primary goals it to teach you skills not topics
» certain algorithms/topics are useful case studies to teach those skills
e |f you know the underlying concept/approach, you can learn new (more advanced)

things yourself

* |earning how to understand derivations is key for learning new ML algorithms/ideas
* [ am not teaching you to derive new algorithms, just understand derivations




Hybrid Teaching

Lectures will be in-person in a classroom AND on Zoom

In class, | will project my screen. My screen will be shared in Zoom too.
| will monitor Zoom qguestions.

The lectures will be recorded and posted right after class.

It is better to come to class, Zoom iIs only a back-up
* And you will have to come to class at least for the 4 quizzes and 1 midterm



Course essentials

* Course information: https://marthawhite.github.io/ml-intermediate/
e Schedule and readings

 Access-controlled course information: eClass
o (Getting Started and FAQ (please visit this today!)
* Video recordings, links to lecture meetings and assignment submission

* Office hours: Tuesday 2 - 3 pm (on Zoom and in-person in ATH 3-05)



leaching Assistants

Alex Ayoub

Sarosh Dandoti
Marcos Jose
Matthew Vandergrift

e Office hours: see eClass for times and locations+Zoom links
e Jypically question/answer sessions

e No office hours this week

 Thereis no lab, you can ask coding questions during office hours



Course Discussion

We have created a Discord group; please sign up!

| want to generate as much class discussion as possible

Please go there first to ask questions. TAs will monitor and answer questions.

Please answer your classmates questions!

We’ll step in If there is misi
faster than we can get to t

Peer discussions can very beneficial

1

g

formation, but in many cases you can all help each other
e guestion

Details in FAQ and Getting Started linked on eClass



| ectures

Lectures will mostly involve me writing on my iPad (like a whiteboard)

| highly encourage you to ask any question
* You can raise your hand and then ask outloud
* You can type gquestions in Zoom chat

* We will use Discord for any questions you think of outside of class, that | will address
N class

We will have small (exercise) breaks in class
 sometimes I'll give you a small derivation or exercise

| will post my written notes afterwards (and videos will be published)



Readings

 Readings are from the ML Il textlbook
* Avallable on course site and written by myself
Disclaimer: These notes are still quite new

* | changed them a lot based on reactions from when | taught CMPUT 367

* See the schedule for sections and for reading deadlines

 Readings have an associated marked component,

Reading

-xercises (eClass Quizzes)



(General Disclaimer

This course is still relatively new and not yet fully polished
* [he structure, notes and assignments are relatively new
* T[here will be some adjusting as we go and mistakes

e [f this is going to make you really frustrated, then you should talk to me



Grading

28%: Assignments (4)
* Mixture of mathematical problems and programming exercises

12%: Reading Exercises (5)

25%: Midterm exam

35%: Final exam



Assignments

Four assignments
Trying something new this year: we will not mark your assignments

Instead

» Still have to submit the assignment (small percentage for submitting an assignment
where you attempted each guestion)

* An in-class quiz, testing your knowledge of the assignment (need to do the
assignment to do well)

4% for assignment submissions, 24% for Assignment Quizzes

One mulligan: get to drop the lowest Assignment Quiz mark (best 3 of 4)



Readings

It is critical that you do the readings
e | wrote the notes, and In class lectures follow them quite closely

e |f you read and understand the notes, you have learned a lot about ML

 Marked Reading Exercises encourage you to actually do the readings




Reading Exercises

-ive readings with Reading Exercises quizzes on eClass

They are open for multiple weeks and you can complete them anytime until the
deadline listed on eClass

* [hree attempts

Provide Practice Exercises

One mulligan: get to drop the lowest Reading Exercise mark (best 4 of 5)



Two exams

 Exams will be in-person
» Practice questions will be available

* For all exams you are allowed a four page cheat-sheet
* [wo pages, front-and-back
 No collaborating on cheat-sheets



Academic conduct

Submitting someone else's work as your own is plagiarism.
SO IS helping someone else to submit your work as their own.
We report all cases of academic misconduct to the university.

The university takes academic misconduct very seriously.
Possible conseguences:

e Zero on the assignment or exam (virtually guaranteed)
e Zero for the course

 Permanent notation on transcript

e Suspension or expulsion from the university

If you are thinking of cheating, since you are stuck or doing poorly, please just talk
to me instead. We’ll figure it out.




\Viore on cheating

You can collaborate on assignments, but you cannot plagiarize

- We wiill still check your submitted assignments and mark that you completed them
and check for plagiarism

- Your answers are not getting marked, so why are you plagiarizing”? The assignments
are for you to learn, try to do the questions yourself

In an exam, if you talk to anyone beside you or pass any objects (even an eraser),
then we will assume you are cheating and take away your paper




Additional Questions

* Any questions you have are likely answered in the FAQ and Getting Started document
that we have linked on eClass

* Policies like “No late assignments accepted”, “How to contact TAs”, “What to do if you
are going to miss a deadline or exam”

* “How can | get extra resources”” and “How can | brush up on my math background?”




Due Dates

* First Assignment and First Reading Exercise quiz will be released by Friday

* You can start on the First Readings now (Chapters 1 - 4)

o [ater Chapters are still being improved by me, | will ensure they are complete as soon
as the previous reading exercise Is due

e [fyou find any typos or issues, then feel free to emall me




On to the course!

* [he Introductory chapter discusses
* A Brief Refresher of the basics of ML
* (Generative Models and Predictors
* The Blessing and Curse of Dimensionality
 Matrix Methods

* Let us briefly discuss those here before moving to

Probabllity

BSackground



On to the course!

* [he Introductory chapter discusses
- A Brief Refresher of the basics of ML
» (Generative Models and Predictors
* The Blessing and Curse of Dimensionality
e Matrix Methods

e Let us briefly discuss those here before moving to

Probabllity

Sackground



Refresher of Basics of ML

Goal was to learn a prediction function f, : & — ¢ for weights w

d

INnput vector of observations X € |
Outputs a prediction y € ¥
If 4/ is a discrete, unordered set, then we have a classification problem

If 4/ is a continuous set, then we have a regression problem

(Some cases we have a discrete, ordered set, and get ordinal regression)



Viain goals

e How do we learn this function?

 How do we evaluate whether it is good?



Formalizing the learning problem

We need a clear criterion (objective function) to optimize

Ultimate goal: function with low expected cost [E£[cost( f(X), V)]

* |ater we called this generalization error

For regression, cost was squared error
 Optimal predictor is f*(x) = E[ Y| X]

For classification, we used the 0-1 cost

Optimal predictor is f*(X) = arg max p(y | X)
YEY



Beyond formalization,
to Implementation

* We cannot directly find these optimal predictors, rather we are stuck using data
sampled from p(X, y)

 Formalized the MAP and MLE objectives on this data, as a reasonable proxy to
approximate these optimal predictors

. MAPmaxp(@|Y) and MLE maxp(Z|0)
0 0



MAP and MLE for
Polynomial Regression

* [et's revisit these concepts for Linear Regression and Polynomial Regression

» For regression we assume p(y | X) = N (f(X), 6°), and Gaussian prior on weights

» fw(X) could be a linear function (linear regression) or a polynomial function



Polynomial function Is a strict
generalization of linear functions




EXercise

» Imagine we learned f,, using polynomial regression with p=3
o P(X) = [l x1,%, ..., X, XXy, ...,xg]

+ [(X) = h(x)'w

e \What is the size of w?



EXercise

e Imagine we learned fw using polynomial regression with p=3
o Pp(X) =[1x1,%), ..., X, XX, ...,xj]

s fo(X) = d(x)'w

e \What is the size of w?

« Same number of elements as ¢(X)



Polynomial regression derivation
(with MLE objective)

e p(V|X) = N (f(X), o) for polynomial function fo(X)

n
. MLE objective Is negative log likelihood — Z In p(y, | X, W)
i=1

n
. Exercise: Show that arg max p(Z|w) = arg min — Z lnp(yl- | X;s W)
W

W i=1



Equivalence

arg max p(< |w) = arg max p((X;, y), --., (X,,, y,) | W) = arg max H p((X;,y.) | w)
W W W i—1

arg max In | [ p((x;, ) [w)
Yoo

argmax ) Inp((x;,y) | W) In(ab) =Ina+In b
Vool

arg max Z Inp(y;[x;; W) + Inp(x;[w)  ply |w) = plylx, w) pxjw) = p(x]y, w) p(y|w)
Y=l

n
arg max Z Inp(y; | x;, W) p(X |w) = p(x), constant wrt w
w
i=1

n
= arg m;n — Z In p(y; | x;, W) maximize f or minimize -f
i=1



Polynomial regression derivation
(with MLE objective)

e p(V|X) = N (f(X), o) for polynomial function fo(X)

n
~ MLE objective is negative log likelihood — Z Inp(y;|x)
i=1

| |
Inp(y;|x,) = — 5 111(271'02) + Inexp (_2_02( fo(X) — yl.)z)

= constants — ——(f.,(X;) — y;)*
20%



Polynomial regression derivation
(with MLE objective)

e p(V|X) = N (f(X), o) for polynomial function fo(X)

1
. Inp(y;|X;) = constants — (fw(X:) — yl-)2
267

n
. MLE objective is Z (fw(X;) — yl-)2 because for constants ¢y, ¢,
i=1

, argmin Z (fw(X)) —¥)° = argminc, + ¢, Z (fw(X) — ¥
b=l v i=1



MAP Objective for Regression

e p(V|X) = N (f(X), o), and Gaussian prior on weights p(w;) = N (0,6°/2)
* The MAP objective corresponded to 12 regularized linear regression (ridge regression)

argmax p(w|D) = argmax p(D|w)p(w)
wERF wERF

n
= argmax ) Inp(y;|x;, w) + Inp(w)
weRkE _q

n
= argmin — » Inp(y;|x;, w) — In p(w)
wceRFk i—1

n
The objective is Z (fw(X;) — yl-)2 + /IHWH%
i=1



Contrasting MLE and MAP

Assume p(y | x) = N (f(X), o) with Gaussian prior pw) =N (0,6°/2)

MAP is max p(w | <) whereas MLE is max p(< | w)
weR? weR?

MLE objective is Z (X)) = ¥)?  vsMAP: Y (fy(x) —¥)* + Allwll3
i=1 i=1

MLE sets 4 = 0, like having a uniform prior on each weight

* But not equivalent, since can’t have zero variance Gaussian



2-regularized polynomial regression

« MAP adds prior information, to help prevent overfitting

* The |2 regularizer prefers simpler solutions, those where weights do not deviate too far
from zero

 We will revisit why, now with matrices

* Do you think 12 regularization is more useful
e (Q1) for polynomial regression than for linear regression?
e (Q2) for high-degree polynomials rather than low-degree ones”?




Why did we go to all this trouble™

We could have just jumped to the squared cost and add an 12 regularizer, without talking
about MAP and MLE

Main reason: when generalizing to other settings, MAP and MLE are very useful
* Wwe need these tools, so may as well do a unified treatment and get used to them

Minor reason: it does provide some probabilistic insight into 12 regularization

Exercise: \What if we want to learn the conditional mean and variance of the data” Do
we just used the squared loss for both? Derive the MLE objective if we assumed

PO 1%) = N (f(X), g5(X))




MLE Objective for Classification

* [or binary classification with logistic regression, the MLE objective was the
Cross-entropy objective

e We will revisit this, when we talk about Generalized Linear Models and
Multinomial Logistic Regression




—valuating a function

Now we know how to find a function f,, but how do we evaluate if it is good?

One simple way Is to split the data into training and test data
* e.g., take a dataset of size 10k, use 8k for training, 2k for testing

Then we learn f,, on the training data

And get an estimate of generalization error on the test set



EXercise

» Imagine we learned f,, using polynomial regression with p=3
3
o ¢(X) — [1,)61,)62, coe9 X gy X1X0, ...,xd]

¢ fuX) =x)'W

» How do we evaluate f,, on the test set? (What is the formula)



EXercise

» Imagine we learned f,, using polynomial regression with p=3
o Pp(X) =[1x1,%), ..., X, XX, ...,xj]

° fw(X) — ¢(X)TW

+ How do we evaluate f,, on the test set? (What is the formula)

1
— Z ( fw(xi) — yi)2 for m the number of test samples
° m
(Xi’yi)egztest



EXercise

» Imagine we learned f,, using polynomial regression with p=3
o Pp(X) =1[1x1,%), ..., X, XX, ...,xj]
+ f(X) = p(x)'wW

. If we had learned ]% with p = 2, then would
» /g have lower or higher training error than f,?

o ];} have lower or higher testing error than f.?



EXercise

» Imagine we learned f,, using polynomial logistic regression with p=3

¢ PO = (10,0, - o X, o X
¢ foX)=1ifgp(x)'W > 0, else =0

» How do we evaluate f,, on the test set? (What is the formula?)



EXercise

» Imagine we learned f., using polynomial logistic regression with p=3

o Pp(X) =[1x1,%), ..., X, XX, ...,xj]
. f(X)=1ifh(x)'w > 0, else =0

» How do we evaluate f,, on the test set? (What is the formula?)

1
— Z 1(fw(X;) # y;) for m the number of test samples
*m
(X)) EDtast



Conceptually Reasoning aout
which models to select

 We can empirically evaluate to select models but we also often reason about when
estimators should or should not perform well

 We discussed bias and variance, and the connection to generalization error

e [fit sometimes worth introducing bias to reduce variance, and so reduce the MSE to the
true function in expectation



Different

BN lm'Jl/\ Lot oo

Ow 4’“1/ Qrvov -

(a)

Cases

(m> 4 .SVVWL“, ngm))u/c [
(f‘j' 5: - XM O(iju FU[JV\‘DM\m\\)

(b> /V'_ SVVWL“, j S/V-VIP(& ((j //'Vlcﬁr)

(age L 1C1VM¢ S)W\-Plc
(hse 2 Frpe mplex
(C> Ui b'lj) \9: ODVV‘\P(()(

(d) n big, Fmple
i L7 Fpw STple
Case & 7C'h/w., “Mf'{/\‘




Uncertainty in Our Estimator

o (Confidence intervals to assess uncertainty in a mean estimator

* oObtained using distributional assumptions like the Student-t and with less
assumptions using concentration inequalities

* also discussed using Bayesian approach to get credible interval

» Bayesian methods obtain p(w | &)the posterior
e can use this to get a credible interval over the weights and over predictions



Probability and Optimization
at the Core

* [hroughout used optimization tools, to have practical algorithms to obtain weights
* [he objective function told us what to optimize, but not how to do so

* \We discussed
* prute-force search for low-dimensional, discrete problems
e gradient descent for smooth, continuous optimization problems
* more efficient approximation to GD using mini-batch stochastic GD (SGD)

 when GD or SGD will reach global solutions or get stuck in local minima (or
saddlepoints)

* the role of stepsize selection




Fun Fact about Saddlepoints

L ocal Minima

Are local minima or saddlepoints worse? Saddlepoint

t Is believed that SGD often skips past saddlepoints

't Is actually hard work to descend perfectly to a saddlepoint
more likely you overshoot and keep descending

Global Minimum

't is harder to jump out of a local minima, using only the
stochasticity from SGD




On to the course!

* [he Introductory chapter discusses
* A Brief Refresher of the basics of ML
Generative Models and Predictors
* The Blessing and Curse of Dimensionality
e Matrix Methods

e Let us briefly discuss those here before moving to

Probabllity

Sackground



Prediction Models and
(Generative Models

We looked at both learning p(x) and p(y | x)

We usually think of p(x) as a generative model and learn p(y | x) for prediction (using
=[ Y| x] for regression and p(y | x) for classification)

This distinction is not quite right. Rather, key Is how we use these models

Generative models: learn (complex) distributions to generate potential outcomes;
focus Is obtaining accurate models of the target variable

Prediction models: learn (simple) distributions to facilitate prediction; focus is obtaining
usetul predictions, even If distribution not quite right




EXamples

et X be images of faces (a multi-dimensional RV) and Y be a binary RV that is O if the face
IS not narrow and 1 if it Is narrow

p(x) is a generative model, because we will simulate hypothetical faces by sampling x ~ p

p(y|x) is a prediction model, since we will use this to classify if the face is narrow or not
narrow

p(x|vy) is a conditional generative model, because we will simulate hypothetical faces,
conditioned on whether they are narrow or Not

The distinction is primarily on the complexity of the RV that we are modelling
e for each case we still learn a (conditional) distribution



What Is a complex distribution®
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This distinction matters a lot

Once we are modelling more complex variables, then we have to consider how to do so
efficiently and still enable sampling from that distribution

Sampling from a Bernoulli is easy. Sampling from the set of all faces is harder

S0, though they are clearly highly related and the distinction is not quite crisp, the field
of generative modelling Is quite distinct from prediction

For prediction, we often care primarily about classification (simple discrete targets) or
means of targets (modelled as univariate Gaussians)

For generative models, we often care about learning complex distributions



Blessing and Curse of
Dimensionality

* [nteresting concentration phenomena occur in high-dimensions

* [he volume of a high-dimensional ball concentrates near its surface, rather than the
interior

* [his phenomena has ramifications for us when learning
e Blessing: data becomes separable in high-dimensions
e (Curse: distances become less meaningfu

* High-dimensional representations can significantly improve performance, we simply
have to be careful about how we use them

Let us now no longer use these loaded terms



Matrix Methods

e Basics of ML (mostly) avoided matrices
ML Il will embrace this tool (linear algebra is useful)

* Primarily, we use:
* Matrix-vector and matrix-matrix product
* Matrix inverses
* Matrix decompositions (eigenvalue decomposition, svd)



| ra
A matrix IS an mxn array

- _ a
Ain
) aill 192 .o .
A2n,
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Vlatrix-vector product

- (ag,x) - (A1,x)
Ax — (ag, X) _ (Aa., x) c R
C(am,x) || (Amnx)
a1l 12 A1n ]
A | G2 a2 azn | _ | a2




Matrix-matrix product
A = Rm)(n

AB = [AB:,ly AB:,27 SR ABZ,k’]

B &

nxk

i Al,:B:,l
AQ,:B:,l

i Am,:B:,l Am,:B:,Q

Al,:B:,Q
AZ,:B:,Q

Al,:B:,k’ _
AZ,:B:,kJ

- Am,:B:,k )



A nicer picture of matrix multiplication
A e Rm)(n B c nXxk

B
What is m, n and K in this example? -E

m=4n=2,k=3




Matrix-matrix product

A e Ran B c nXk

A1:B.1 A;B.

)° *)

AB = [AB;jl, AB;Q, ..., AB. k] — A27:B:>1 AQ,IBI,Q

i Am,:B:,l Am,:B:,Q

Notice that the inner dimension matches:

Al,:B:,k’
AZ,:B:,kJ

Am,:B:,k

m X n times n X k produces a m X k matrix

It Is an easy rule of thumb to check if you have made a mistake somewhere,
by checking that these dimension match and you have a valid operation



MVatrix Inverse tor Diagonal Matrix

a; O ... 0 0 " 1/a; O ... 0 O
A_| 0 a O 0 A-l_| 0 L/az 0 ... 0
_O 0 0 ad_ i 0 0 0 1/ad_

where you can verify that AA™" = I for identity matrix I that has 1s on the diagonal

1 0 ... 0 O
def O ]. O O

00 ... 0 1



Viatrix Decompositions

e Singular Value Decomposition (SVD)
e every matrix has an SVD

* Eigenvalue Decomposition
e every square, symmetric matrix has an eigenvalue decomposition

e other matrices do too, but we don’t need to reason about the eigenvalue
decomposition for anything by square, symmetric matrices

* [hese decompositions are useful for reasoning about the properties of the matrix and
computing the inverse of the matrix




A matrix as an operator

« M is an operator on vectors: X = MXx

e it transforms the input vector X to a new X

« How can we reason about the properties of this operator?



Singular Value Decomposition

M is an operator on vectors: X = MXx

e it transforms the input vector X to a new X

Any matrix can be decomposed using an SVD: M = uxv!
2. is a diagonal matrix with nonnegative elements on the diagonal

U, V are orthonormal matrices, meaning that
- U'U=1
- VIV =1I



Singular Value Decomposition

M =UXV ' Mx = UXV 'x = UX(V 'x)

Every matrix Is a linear operator that can be decomposed Into
a rotation (V), scaling (Sigma), and rotation (U) operation




Exercise: VWhat happens It a singular
value IS zero?
Mx = UXV 'x = UX(V 'x)

* Every matrix Is a linear operator that can be decomposed Into
a rotation (V), scaling (Sigma), and rotation (U) operation
 What does the scaling operation do”

« Answer: it zeros out a component of X = V'x

n n—1
Ux = 2 uxX, = Z u.X; is a weighted sum of n-1 basis vector

i=1 i=1
* |t reduces the dimension by 1: it projects the vector into a lower-
dimensional space



Example using SVD on data matrix

X € R4 for n samples and d features

Let’s Imagine d = 2 Not an obvious step, but true

2
X =0UXV' = [ul, uz]diag(GD 62)[‘7-1'_; Vg] — Z GjujVJT
j=1

2 V —
where w; € R", 0, > 0,v; € R%, V = [v, V,]

— T T _ Qv T
A row (sample) equals X; = U; 6,V + U,0,v, = PV, + p,V,

« a linear combination of (right singular) vectors \f



Visualizing 6, = 0

*r x> N~
K o . <
X <
X X
X P X ROf'“]L(’ KA U
X « >
< g )< )/(L: XV
= O’]’VL‘ |
FVll( \fﬁV)k X 6,20 ﬁ\/ X ﬂ(([ ()DIW+\S Oh/J VA Vj
X = [w u, | Li\ 60 ][V,T;vﬁ '\ dhe dUnengion
L

Notice neither x1 nor x2 are always zero,
features look like they vary in both dimensions



The effect on predictions

U~

Rufatﬁr e e W

P=Xw=XWwherew =V'w X=XV
:O’E’VH

\ : V ~ )D-IVV'L o VA v
X = [oyuy, 0], meaning XW = oyu,;w, HL por-ts only vary

'\ odhe dinvngron

Effectively only have one degree of freedom

Usually for a 2d input space, for a linear function, y lies on a 2d plane. Here, it lies on a
1d plane (a line)



—ffectively learning In a
lower-dimensional space

1

e




Rank of a matrix

* [he number of non-zero singular values Is the rank
 [he rank of a matrix is the dimension of the space that It projects vectors to

* [or a matrix with one singular value that is zero, it projects all vectors to one dimension
lower (a plane in dimension N-1 inside the large n-dimensional space)




Class Poll

Should | change the inputs to be row vectors”

1xd

Reasoning: X € R has each sample as a row, X; € |

dx1

When we write Xw for w € R“"", we are taking each row and computing X;w

dx1 T

l

Usually we assume X; € | so we write X; W and say the rows of X consist of XiT

Sut when we move to NNs and learning representations, convenient to treat X; € | IXdas a

row vector and write X;W
o Other plus: the minimal ink principles, it removes a bunch of transposes

Issue: is this going to confuse you a lot? [o see X;W instead of Xl.TW



cigenvalue Decomposition

. A square symmetric matrix M = UAU"

« A is a diagonal matrix

» Notice this like an SVD, where the second rotation is U again

. Computing the inverse is now easy: M~ = UA~IU'

e How do we know? We can check.



Checking the Inverse Condition

M- =UAIUT

MM~ = (UAUHUA-IUT
= UAU'UA-IUT
= UAIAUT
= UAA-'UT
= UIU
= UU
=1

Exercise: Check that M~'M =1



